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1. Introduction
For many practical and theoretical problems in time series analysis,
cf. Akaike (1975), Tsay and Tiao (1985), Pourahmadi (1985), it is of

interest to know or «compute p the canonical or maximal correlation

between the past
P-[-oo. xt-l)xt]'i

and the future

F = [Xt41:Xe420 -]
of a stationary time series (X}, and the corresponding canonical
component or the best predictable aspect of future. Using the familiar
ideas from multivariate analysis, this task, requires computation of
eigenvalues, eigenvectors and inversion of infinite matrices or
operators.

For ARMA processes canonical correlations and components can be
computed (exactly) by solving linear systems of algebraic equations, ecf.
Helson and Szego (1960) and Yaglom (1983). For general stationary
processes, Jewell et. al. (1983) have given an algorithm for
computing (approximating) the canonical correlations as the eigenvalues
of an infinite-dimensional (Hankel) operator, in the spectral domain.

In this paper, we provide a time domain algorithm for computing
(approximating) canonical correlations of a (nondeterministic)
stationary process, which requires only‘_solving linear system(s) of
algebraic equations, cf. Yaglom (1965). For instance, in our approach,
computation of p;, the canonical correlation between the (infinite) past
P and (finite) future

Fp = [Xe+do - oXeam) s lsmce,

requires solving one (generalized) eigenvalue problem for two mxm




matrices Gy and Iy, cf. Theorem 2.3.

Our approach relies primarily on the Wold decomposition of a
(nondeterministic) stationary process; this makes it possible to reduce
the genuinely infinite-dimensional problem of computation of pp or p to
an, essentially, finite-dimensional problem; in addition to its
computational simplicity, this approach also provides a procedure for
computing p even when it does not exist as an eigenvalue of an operator,
cf. Jewell and Bloomfield (1983) and Jewell et. al. (1983).

In section 2, we develop a procedure for computing the best
predictable aspect of (finite) future; the main result is Theorem 2.3.
This result along with a simple fact about geometry of Hilbert spaces are
used in Section 3, to give an algorithm for computing p and the best
predictable aspect of the entire future. This procedure is applied to
the well-known models fitted to the sunspot numbers series; it turns out
that even for m=4, pp provides a good approximation for p.

An interesting and yet open problem in this area is that of finding
a sharp upper bound for p; we have conjectured that 1- gﬁ; is an upper
bound for p, where o0'? is the interpolation error of a missing wvalue
based on the other values of the process. Throughout this paper, we have
emphasized computation of the largest canonical correlation; other
canonical correlations and components can be computed by following a

standard procedure in multivariate analysis, ¢f. Theorem 2.3.

2. Best Predictable Aspect of (Finite) Future
For many practical and theoretical problems it is of interest to
find the best predictable aspect of the future of a system; when the

system is modelled by a stochastic process {X¢}, the problem of interest



can be restated as that of finding the best predictable linear functional

of the future values of the form

X = rglcrxc+r' (2.1)
where m<w and ¢j,...,¢p are (necessarily) wunknown; when m = o, (2.1)
should be viewed as the limit in the mean of finite linear combination s.,«
In general, this is a hard problem to solve.

For the time being, we deal with the simpler problem of finding the
best linear predictor and prediction error of X in (2.1) when m and
¢l1,...,¢p are known, and then in the next section we show how the
solution of this apparently simpler problem can be employed to resolve
the more difficult problem of finding the best predictable aspect of the
future. The need for prediciton of linear functionals of the form (2.1),
with known m and c¢j,...,cp, arises when the forecaster is interested not
only in a forecast of individual future values but also in forecast of a
linear combination of m future values and a confidence interval for it.
For example, if sales are recorded monthly, the forecaster might be
interested in the forecast of next year’s total sales (m = 12, ¢} = ... =
¢12 = 1), or one might be interested in forecasting the average of some
future values (¢} = ... = ¢y = 1/m), etc.

Note that when ¢ = ... = ¢p.1 = O agd cp = 1, then X = X¢yp, and
the prediction problem of Xi 4, can be solved in the time domain by using

the Wold decomposition of {X }; in fact, with

[+ ] [ +]
Xe = Z bree.r + Ve, by =1, ZT byp? < w, 02 = Var(e 2.2
€T 2o Ckftek tr» Po Koo k (ee) (2.2)



representing the Wold decomposition of (X¢}, where {ec} 1is the
innovation process of {X )} and {V ]} a deterministric process uncorrelated

with {z.}, the best linear predictor of Xy4r is given by

a ©
Xevr = 2 Pketsr-k * Veur, (2.3)

and its (mean square) prediction error is

A r'l 2
Var (Xc+r - Xt+r] - g2 2 b

. 2.4
o Pk (2.4)

" Note that (2.2) also gives rise to the following representation of

I - [7i-j)i =1, the covariance matrix of {Xi}:
I = g2TT' + PV (2.5)

where T = (bj-i)i'j-l,w with by = 0 for j < 0, and Pv is the covariance
matrix of the deterministic process (V1. As it 1is expected, the
prediction problem of the more general 1linear functional (2.1) also

hinges on the Wold decomposition of (X }. 1Indeed, from (2.1) and (2.2)

we have
X= ( z b ] + v
c -m) € - Zc R
]Orlrr+km t+m-k 1% T
- ( él + Z ]( z b ] + Z v
c -ml € - c R
k=0 I =1 rPr+k-m) €t+m-k el rVt+r

from this, X the best linear predictor of X based on P is



0
Consider the harmonizable process {Xt, t e R} ¢ L(ZJ(P) given by Xt -[ eit Z(de)
R

and its spectral bimeasure which is induced by Z, i.e.,

F(A,B) = E Z(A) Z(B).

We claim that the corresponding spectral domain LZ(F) in this case is not complete.

Verification. By our-Lemma there exists a nonzero vector inIHy(~¢)'which does .

not have a series representation as in (4). Take one such vector V, Since V . .

is clearly in Hy(O) there exists a sequence I asz_k =y a of finite linear

combination of Yk's; k < 0 which codVerges to V in LE(P). We can write

v, < jghfn(e)Z(de)

where the nonzero functions fn are defined on positive integers- with f;(k) =

an. By our Theorem in section 2 we have:

k
e, =2 g =11 v ~v|l -

Now since v converges to Vv and hence is Cauchy so is fn' However this

particular sequence fn of functions in LZ(F) does not converge to any element

f in LZ(F). Because otherwise another application of the Theorem in section

2 shows that f is in Ll(Z) and

ey = £llp = gt = D 0z || = [, ~fg 2a2l| .
Thus we see thatVn also converges to j fdz, So
R
v=/ £dz == § f@) z ({1}) = T £(A Y,
R i=0 i=0

which contradicts our choice of V,
REMARK 1. Our example shows that the main ;esult of [7] claiming the
completeness of the spectral domain of any mulzlvariate weakly harmonizable
process Xt is false even for a univariate strongly harmonizable process,
- REMARK 2, We feel that the error in [7] occurs in lines 8 and 9 of the
second column of page 4612, where the existence of a '"certain projection onto
a subspacg" is asserted and a reference to page 33 of [97] is made to

support it. In view of the results established in this note the results in



which is a quadratic form whose matrix is the matrix of prediction
errors. For computational purposes, it 1s important to note that the
matrix Gp 1s, indeed, the wupper left mxm submatrix of the matrix
G = o2T'T, (2.8)

where the (infinite) matrix T is as in (2.5), this provides a simple
method of computing G when the moving average parameters bj,bp,... are
known or the task of Cholesky factorization of the covariance matrix T
is accomplished. 1In the following I'y also stands for the upper left mxm
submatrix of I.

The measure of (linear) predictability of any function X is usually

defined as
Var (X-X)
A =1 - Jarm
cf. Jewell and Bloomfield (1983).
Next, we summarize some of the previous results.

Lemma 2.1. Let {X¢} be a nondeterministic stationary process with

covariance function {yx} and moving average parameters b, = 1,

m

by,bo,...,X = El cyXt4y wWhere m < o and c¢j,...,cyq are given real
Y=

constants. Then, with X denoting the best linear predictor of X based

on the infinite past X¢,X¢.1,..., we have

(a) Var(X-X) = c¢’Gpe.

(b) the measure of (linear) predictability of X is given by
AX) =1 - Eng—E "

Remark 2.2. For m=1, the measure of predictability of X = X, ;1 has the

simple form A(Xe41) = 1 - 0%2/y,, cf. Lemma 2.1(b), since o2 =

exp{flog f(x) drx/2n}, where f(A) is the spectral density of the process,

it follows that A(X¢4]) can be expressed in terms of the density of the

process. However, for m>l, it seems difficult to find expressions for



A(X) in terms of the density.

Next, we find the best predictable aspect of the future for a given

m. In view of Lemma 2.1(b) this amounts to finding ¢j,...,cp such that
m .

for X = 21 cyXe4r, A(X) is maximized. The next theorem shows how this
T

can be reduced to a standard (generalized) eigenvalue problem,

Theoxrem 2.3. Let Xy} be a nondeterministic stationary process and
m
X = 21 ceX¢4y, for m2l fixed. Then X is the best predictable aspect
o=
of the m future values X¢41,...,X¢4m, Lf ¢ = [¢1,...,cq) satisfies
(G - Alp)c = 0, for some X € R. (2.9)

More precisely, let X1<...<\g, (k = m) be the distinct roots of the

determinantal equaﬁion

det(Gy - AT'p) = 0 (2.10)
and ¢(1),...,¢(p) be the corresponding orthonormalized eigenvectors, i.e.
e¢i)lme(y) = 61,3, 1.3=1,2,....m.
‘Then, X¢1y—= c¢i)Fp. with Fyp = [Xc41,...,Xeqm] 1is the best predictable

aspect of future with the measure of predictability
Ty

X(X(l)) =1 - ),
LI ]
and in general X(j) = Czi)Fm is the ith best predictable aspect of future

with measure of predictability given by



A(X(i)) -1 - 2.
Proof. Note that the problem of maximizing A(X) over the variation of ¢
is equivalent to minimizing c¢'Gy, ¢ subject to the side condition c'ly ¢ = i.
Now, the results follow either from wusing the standard Lagrangian
multiplier method, cf. Rao (1973, p. 583), or a method based on the
Hilbert-Courant maximization Lemma, c¢f. Johnson and Wichern (1988, p.
441).

For the purpose of computation it is important to note that roots
of (2.10) are the same as the eigenvalues of the matrix S;G,S;p, where Sj
can be chosen to be either the inverse of the symmetric square root
of 'y or the inverse of the Cholesky factor of Ip. In the computation
that follows we have used the latter, For a given time series data
set Xi,...,XT, the moving average parameters bj,by,... can be estimated
either by fitting ARMA models to data or factorizing the estimated
spectral density, cf. Jewell et al. (1983).

2.4 Example.
(a) For Xg = e + €¢.1, Var(eg) = 1, m = 2, we have
ry = [2 1]; Gy = [1 ;], det(Gy - AT9) = (1 - A)(1 - 3))

1 2 1

with roots and corresponding vectors
A1 = 1/3, cc1y = [- 2//6, 1//61",
Ag = 1, c(2y = [ 0, 12721,
and best predictable aspects
Yo
X(1) = -2/J6 Xeq1 + 1106 Xeqp, A(X(1)) = 2/3
X(2) = 1/42 Xgh2,  A(X(2)) = O.

Note that X(z) is actually uncorrelated with X, Xe-1 -



(b) For X¢ = e¢ + .216 €¢.]1 - .36¢e¢.2, Var(eg) = 1, m=4 we have

i Aq c(1)

1 .7291 [.817, -.703, .363, -.258]:
2 .9419 [.552, .71, .061, .21 ]
3 1.000 [ 0, o, o, .922]
4 1.000 [ o0, 0, .929, -.109]

(¢) For X¢ - .216X¢.] + .36Xg.2 = €, Var(eg) = 1, m=4, we have

i Aq C(1)

1 .810 [ .818, -.573, 0, O ]:
2 .912 [ .499, .73, o0, O ]
3 1.000 [-.110, .409, -.511, .952]
4 1.000 [ .343, -.096, .886, .306]

(d) For X¢ - .216Xe.1 = €¢ - .36er.1, Var(eg) = 1, m=4, we have

i Ay c(i)

1 .9756 [ .976, .351, .126, .43 ]:

2 1.000 [-.552, -.113, .975, .148]

3 1.000 [-.009, -.001, -.019, .986)
4 1.000 [-.214, .94 , .230, -.058]'

It is interesting and important to note the pattern of zeros in the
c(i)'s in examples (b) and (c), and explore their relationship with

those in Tsay and Tiao (1985).

3. Canonical Corre{:tion
It is well-known that there is a close connection between prediction
(regression) problems and the concept of correlation; the root of this
phenomenon can be traced to the following simple property of the geometry
of Hilbert spaces: For N a subspace of a Hilbert space H, and X an

element of H with P§ denoting its orthogonal projection onto N, we have
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X X X
(X, P) = (X, X-X + B) = Ixiz - «x, X-Py)

- Ixl7 - Ix-23l2. (3.1)

In this identity, the relationship between the correlation (angle) of X
and Pﬁ, and their distance "X-P§“2 (prediction error) is rather self-
evident; in the following we shall make deeper use of (an extension of)
this identity in developing an algorithm for computing p, and p, the
canonical correlation between P and Fy, P and F respectively; which
allows us to reduce a genuinely infinite-dimensional problem to a finite-
dimensional problem; for this we need the following two wuseful lemmas
which are not necessarily new and their proofs might be around in the
literature. Due to the importance of these lemmas in our work, in
Section 4 we provide proofs for these lemmas.
Lemma 3.1. Let M and N be any two subspaces of L2(Q), the space of
square integrable random variables. Then,

;gﬁl Corr(X,Y)| = 1 - inf [x-PRIZ

YeN X|l=1
furthermore with p(M,N) denoting the above quantity, we have
p(M1,N1) < p(M,N1) < p(M,N), for any MjCM and NjCN, that is p(:,*) is
an increasing (set) function.
Lemma 3.2. Llet {X. )} be a stationary proces:: with P, F, Fp, p and pp as

before, and Py = [X¢.p+1,.--.Xe], m=1. Then,
(a) p = p(P,F) = 2im pp.
m~wo

b = fim P.,F = fim fim Pn, Fpr).
(b) » im p(Pp,Fp) m_mn_mp(m n)
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Next, we state and prove the main result of this section. It {is
instructive to compare the result in part (b) with Theorem 1 in Jewell
and Bloomfield (1983).

Theorem 3.3. Let {X .} be a nondeterministic stationary process with
covariance function {yi} and moving average parameters by, = 1, bp,bsp,..
Then,
(a) pp, the first canonical correlation between the (infinite) past P
and (finite) future Fpy, is given by
Pm = J1-Xy g

where Al,m is the smallest root of the determinantal equation (2.10),

(b) As m, pp t p, in fact,

p-sgppm-fm ,
and the best predictable aspect of the (entire) future F is equal to
éiz X(1)» where X(1) is as in Theorem 2.3.
Proof. Part (a) follows from Lemma 3.1 and Theorem 2.3, by taking N and
M as the closed linear span of entries of P and Fpy, respectively.
(b) follows from Lemma 3.2(a) and Theorem 2.3. &

Due to the importance of p in many situations, it is desirable to
find accurate bounds for it, whenever it is not possible to compute its
exact value. This problem has been studied by Jewell et. al. (1983) and
some elementary upper bounds for p a{s given in terms of certain

components of the spectral density of the process. A sharp lower bound for p

Xe41

«/'Yo

can be obtained from Lemma 3.2(a) and 3.1 by taking X = F;

p=2J1-02/y,, cf. Remark 2.2. (3.2)
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To show that this bound is sharp, note that for an AR(l) process

Xg = aXg.p + €¢, 02 =1, Jaj<l,
we have v, = I%:E and the bound / 1 - 02/y, = |a| is attained by p. It
is much harder to find a sharp upper bound for p; however, motivated by

(3.2) we conjecture that when p<l, then
p /1 -0/, (3.3)

where o0'2? 1is the interpolation error of Xi;); based on {Xg; s » t+l}.
We note that the bound (3.3) 1is attained for the aforementioned

AR(1) process, since in this case, by using a result of Kolmogorov (1941),

we have
o2 = ([ £ (oya0/24)t = 1,
ig -2
where £(8) = |1 - ae | is the spectral density of the AR(1l) process,
and

J1 -0/ = |a].
A more solid motivation for the bound in (3.3) is the fact that p(-,‘),
cf. Lemmas 3.1 and 3.2, is an increasing (set) function of its arguments;
therefore, replacing N(P) by Nj = Sp{Xg; s » t+l}, one arrives at a bound

of the form

ST - Ko %/,

for p, where K is a constant. Thus, the conjecture amounts to showing
that K = 1.
Remark 3.4. The canonical correlation between P and F(x) = (Xgqk,

Xc+k+1,---fc k>1 fixed, denoted by p(k), can be also computed by the

procedure developed in this paper. In fact, for any m > k, and taking c =
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{0,...,0,cKk41+.-.,cy] one can prove results similar to those in Sections 2
and 3 for pg.k(k), which 1s the largest correlation between P and

(Xk+1,-.-:Xg). It is evident that pp.x(k) » p(k) as m + », cf. Theorem

3.3; in this case pp.k(k) = J1- Al,m-k(k) , Where Al,m-k(k) is actually
the smallest root of
det(Gg.x - ATp.x) = O,

where Gx;x-k is the (m-k)x(m-k) matrix obtained from G, by deleting its
first k rows and k columns.

Example 3.5. The well-known sunspot numbers series has been studied by
many people and various models fitted to the data are given in Table 1,
cf. Jewell et al. (1983). We have calculated p4, that is the canonical
correlation between P and F4, and the corresponding canonical component,
using the method of Theorem 3.3, see Table 2. These results are very
close to the results in Table 2 of Jewell et al. (1983) which contains the
value p for these models; this suggests that the rate of convergence of pp
to p must be rather fast. For model 2, p4 is far from p reported in
Jewell et al. (1983), this difference persists even when m is large; it
should be noted that model 2 represents a nonstationary process, and it
might be that for such processes our approximation'may not work well as
far as compution of p is concerned. Despite this, the canonical component

for model 2 is almost the same as that for model 1.
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Table 1
Model Source
1 Xe = 1.34X¢.1 + .65X¢.g = ¢€¢ Yule, Box-Jenkins
2 Xe - 1.62X¢.1 + X9 = € Yule
3 Xe - 1.3Xe.] + .56Xe.p + .15X¢.3
- 19K .4 + L 26Xpl5 - 4Xe.g = € Bailey
4 Xe - 1.57X¢.1 + 1.02X¢.g2 - .21Xe.3 = e Box-Jenkins
5 Xe = 142X 1 + . 72X¢.9 = € - .1oer.q Phadke and Wu
6 Xe - 1.25X¢. 1 + 54Xe.g - . 19Kp3 = e Morris, Schaerf
Table 2
Model pi Canonical Component
1 .8566 Xe - .36Xe41
2 .99 Xe - .38Xe41
3 .8602 Xe - .268Xe41 - 107X¢42
4 .9149 - Xe - 674Xe41 - .082X¢40
5 .8476 Xe - .296Xp4] - .044X¢42
6 .8676 Xe - 409Xy + .126X42

4. Proofs of the Lemmas

A "
In this section we provide proofs of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. It is obvious that

{Corr(X, P§); X € M} € {Corr(X,Y); X € M, Y € N},



15

and therefore,
X
su Corr(X, P,,)| < su Corr(X,Y)|. (1)
sup | (X, P = sup | I
YeN
Also, for any X € M we have from (3.1) that
|Corr(X,Y)| = |Corr(X, P§)|, for all Y € N,
and thus,
X
su Corr(X,Y)| =< su Corr((X, PD)|. (2)
Xeﬁ ! | xGﬁ I N
YeN
Now, from (1) and (2), we get that
X
su Corr(X,Y)| = su Corr(X, P)]. 3
32 | - V!

YeN

For any X € M we have

X X X

R o I I

Corr(X, PN) - X - X - "x"
Ixllegl  Ix[ izl

Ixj2- |x-2X| 2
- S .

where Y - H§H € M with ||Y| = 1; furtehrmore, from (3.1) we
have
Y / Y
Corr(Y, Py) = . 1-"Y-PN”2 ,
thus

-

{|Corr(x. Pg)l; Xe M} - {\!1-HY-P§”2; YeM, [y - 1} ,

or equivalently,

suplCorr(X, P§>| - /1- inf Ix-23l2 (%)
XeM A
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The desired result, now, follows from (3) and (4). &

Proof of Lemma 3.2: The sequence {pp} is bounded and nondecreasing,

thus it is convergent and, in fact,

2im pp = sup pp. (L)
m-o m

Also, since the linear span of F is a subset of that of F, we have
pm < p, for all m =1,

and therefore,

2im pp = p. (2)
m

To establish equalitly in (2), note that for any two finite linear

n m
combinations X = kzO apXe.k) Y = kzl brX¢4k, we have

|Corr(X,Y)| = py =< s;p Pm - (3)

By taking supremum of both sides of (3), over all X and Y as above,

we arrive at

p < sup pp - (4)
m

The desired result, now, follows from (1), (2) and (4). Proof of (b) is

A
similar to (a).
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