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AN HIERARCHICAL APPROACH TO 

PERFORMANCE EVALUATION OF EXPERT SYSTEMS 

ABSTRACT 

T h e  number and the size of expert systems is growing rapidly. 

Formal evaluation of these systems - w h i c h  is not done f o r  many 

systems - increases the acceptability by the user conmunity and 

hence their success. Hierarchical evaluation that had been 

conducted for computer systems is applied for expert s y s t e m  

performance evaluation. Expert systems are also evaluated by 

treating t h e m  as software systems (or programs). This paper 

reports many of the basic concepts and ideas in the Performance 

Evaluation of Expert Systems Study that is being conducted at 

USL. Future report(s) will provide details and/or explanations 

of many of these ideas and issues identified in this report. 
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AN HIERARCHICAL AP P R O A C H  To 

PERFORMANCE EVALUATION OF EXPERT SYS- 

1. EVALUATION OF EXPERT S Y S T W  

1.1 I n t r o d u c t ipp 
-? 

N o w  i t  is m o r e  than 10 years since the MYCIN research group at 

Stanford demonstrated the potential of the Artificial 

Intelligence discipline to undertake problem-solving in complex, 

re a 1 -wo r 1 d doma ins . In contrast to m u c h  of the w o r k  being 

conducted at the time, namely, to develop powerful, general 

purpose problem-solving methods, the MYCIN group took the 

alternative approach of incorporating the domain knowledge 

actually used by experts. Thus, the MYCIN program successfully 

achieved its objectives of diagnosing bacterial infections by 

using explicit knowledge of bacteremia (bacteria in the blood). 

T h e  incorporation of explicit domain knowledge into 

problem-solving programs proved to be of great practical 



importance_. First, i t  enabled AI to solve many real-world 

problems that were previously beyond the scope of "conventional" 

programming methods and came to known as "knowledge engineering" 

( o r  "applied" AI). Secondly, the knowledge-based approach 

created its own problems, thus extending the theoretical 

interests in AI. Some of the issues raised include knowledge 

representation, representation of uncertainty. 

T h e r e  are n o w  a substantial number of "expert systems" w h i c h  

can c l a i m  expert, or near expert, performance in a w i d e  range- 

domains, undertaking such problem-solving tasks as medical 
Tf 

diagnosis, data analysis and planning. Some of the best known 

systems include: 

(1) MYCIN, a system for diagnosing bacterial infections. 

( 2 )  DENDRAL, a system f o r  inferring the structure of 

chemical compounds f r o m m a s s - s p e c t r a l  data. 

( 3 )  CASNET/glaucoma, a system f o r  diagnosing the eye 

disease glaucoma. 

( 4 )  R1, a system f o r  configuring VAX computers 

( 5 )  DIPMETER ADVISOR, a system f o r  oil w e l l  log 

interpretation. 



(6)-MILGEN, a n  automated "'scientist's assistant" in the 

field of molecular genetics. 

T h e  systems listed above have been very successful within their 

n a r r o w  domains of application, and some systems are moving f r o m  

research and development environment into the marketplace. 

DENDRAL, R1, a n d M l L G E N  all are routinely used by users w h o  +e 

not connected to the designers of the system. Therefore, the 

developers are expected to provide some objective demonstration 

that the system performs as well as they claim. 

Existing techniques for evaluating the E S s  are f e w  and 

primitive. M u c h  m o r e  effort has been devoted to designing and 

constructing E S s  than to measuring their resulting performance. 

There is no consensus about h o w  to evaluate ESs ( o r  w h e n  or  why). 

T h e  criteria like correctness, efficiency, or  friendliness 

that are used to evaluate other computer-based systems c a n  be 

used to evaluate ESs. But they are not enough, because ESs use 

human expertise and are usually compared with human performance. 

But this raises a n  important issue: w h e t h e r  a correct solution 

(for a n  ES) is one that a human expert w o u l d  give, one that a 



group of experts w o u l d  agree upon, or that represents the ideal 

solution (after testing and analyzing) [Hayes-Roth, et al, 831. 

No one has developed a method to evaluate human expertise 

objectively and adequately. Though there are many kinds of tests 

for human experts, f e w  of these methods s e e m  to apply directly to 

the issues faced in evaluating a n  ES. (The last f e w  paragraphs 

are taken f r o m  [Kavi, 841, pages 2 5 5 - 2 5 6 )  

This report is a initial attempt to develop a methodology in 

evaluating expert systems. Many issues will need to be explained 
-j 

and discussed in m o r e  detail in future versions of this report. 

ESs are evaluated by various individuals at various stages of 

their development as shown in Figure 1. 



FIGURE 1 Expert System and its Evaluators -9 

Since accurate, reliable advice is essential for any ES, i t  i s  

usually the area of greatest research interest and is a n  area to 

emphasize in evaluation. However, it i s  not easy to decide 

whether a system’s advice i s  appropriate or accurate, mainly 

because E S s  are built f o r  those domains in w h i c h  decisions are 

highly judgmental. Yet, i t  w o u l d  be difficult for the intended 

ES users to accept the ES if they are not convinced that the 

decisions m a d e  and the advice given are appropriate or accurate. 

Some experts also evaluate a n  ES not just to determine 

whether or  not the ES produces “correctm advice, but to determine 



whether i t  - reaches decisions in a "correct" way. T h o u g h M Y C I N  

w a s  not intended to simulate human problem solving in any formal 

w a y ,  there i s  a n  increasing realization that expert-level 

performance may require attention to the mechanisms by w h i c h  

human experts actually solve the problems for w h i c h  the ESs are 

being built [Buchanan, et. al, 841. 

-3 
End users evaluate ESs for their discourse (I/O content) and 

hardware m e d i u m  ( 1 1 0  medium) [Hayes-Roth, et. al, 831. Some of 

the issues related to discourse are: 

( 1 )  T h e  choice of words used in the questions and 

responses generated by the program. 

(2) T h e  ability of the ES to explain the basis of i t s  

decisions and to customize those explanations 

appropriately for the level of expertise of the user. 

( 3 )  T h e  ability of the system to assist the user w h e n  he 

or she i s  confused or w a n t s  help. 

( 4 )  T h e  ability of the ES to give advice and to educate 

the user in such a w a y  that the psychological barriers 



- t o  computer use are eliminated. 

O n e  of the m o s t  important issue w h e n  end-users evaluate the 

hardware environment of a n  ES is the interface that facilitate 

interactions between the user and the ES. Light pen interfaces, 

touch screens, specialized keyboards, etc. will greatly simplify 

the users’ interaction with ESs. Details o f  the hardware 

interface often influence the design o f  ES software. Thus, w h e n  

one is evaluating a n  ES f o r  its decision-making performance or 

its discourse ability, one cannot ignore the user’s reaction -7 0 
the terminal interface. 

Knowledge engineers evaluate a n  ES throughout its life cycle. 

Some of the issues that are important for knowledge engineers 

during system development are: 

( 1 )  Knowledge Representation Scheme (production rules, 

semantic nets, or frame representation). 

(2) Knowledge chunk size. 

( 3 )  Control Structures (inference engine strategies). 



(4l-Certainity Factors (CFs). 

There are two useful metrics to evaluating the usefulness or 

effectiveness of a particular control strategy. They are: 

( 1 )  Branching factor. 

( 2 )  Penetrance. 

Various other metrics or  criteria could be used to e v a l 9 e  

a n  ES. F o r  example, the number (or percentage) of rules in the 

knowledge base that are used for a number (or percentage) of time 

or  the number ( o r  percentage) of rules that change frequently. 

T h i s  measure could be used to organize ( o r  store) a knowledge 

base in a m o r e  efficient manner. 

S y s t e m  analysts evaluate a n  ES for its efficiency and cost 

effectiveness: 

(1 )  Efficiency. T h e  issues considered here include 

response time, CPU usage, m e m o r y  allocation, etc. 



( 2 ) -  Cost effectiveness. The issues that are important 

here are whether the ES is a "deep and narrow" type or  

a "broad and shallow" type. 

1.4 -tp Evalu-? 

T h e  evaluation of a n  ES is a continual process that should begin , 

at the time of system design, continue through the early stages 

of development and become increasingly formal as a develo+g 

system m o v e s  towards real-world implementation. Table 1 

4 

sumnarizes the steps in the evolution of a n  ES and the steps are 

discussed briefly below [Gashing, et. al, 831. 



1. Top-level design; definition of long-range goals. 

2. Implementation of prototype. showing feasibility. 

3. Refinement of system, usually by 
a. Running informal test cases to generate feedback 

f r o m  the expert, resulting in refined prototype. 
b. Releasing the prototype to friendly users and 

soliciting their feedback. 
c. Revising system on basis of user’s feedback. 
d. Releasing revised prototype to users and returning 

to stage 3b. 
I 

4. Structured evaluation of performance. 

5. Structured evaluation of acceptability to users. -7 
6. Service functioning for extended period in prototype 

env i r o n m e n  t . 
7. Conducting follow-up studies to demonstrate the 

s y s t e m * s  large-scale usefulness. 

8. M a k i n g  program changes to a l l o w w i d e  distribution of 
the system. 

9. General release and marketing with f i r m  plans for 
maintenance and updating. 

TABLE 1 Steps in the Implementation of a n  Expert System 

[Hayes-Roth, et. al, 83 p. 2581 



(l),The first stage of a system’s development (Step 11 ,  

the initial design, should contain explicit statements 

of what the measures of the program’s success will be 

and h o w  success or failure of the system will be 

evaluated along with the long-range goals for building 

the ES. If evaluation plans and long-range goals are 

clearly defined, they will influence the early design 

of the ESs. For example, if explanation capabilities 

are deemed to be crucial for the user conmunity for 

w h o m  the system is intended, this will have important -2 
implications for the system’s underlying knowledge 

representation. 

( 2 )  In Step 2, the feasibility of the design of the ES i s  

demonstrated. At this stage, there i s  no attempt to 

demonstrate expert-level performance. T h e  goal is to 

show that there is a representation scheme appropriate 

for the task domain, and that knowledge engineering 

techniques c a n  be applied to build a prototype s y s t e m  

w h i c h  shows some reasonable performance of some 

subtask of that domain. 

( 3 )  In Step 3, some informal test cases are run through 

the developing system, the system’s performance i s  

observed, and feedback is sought from expert 



- collaborators as well as some potential users. This 

feedback will be useful in identifying major problem I 

areas in the system’s development. Revisions will be 

m a d e  to the system and i t  will be released again to I 

I 

expert collaborators and users. This iterative 

process may g o  on for months or  years, depending on 

the complexity of the knowledge domain, the 

flexibility of the knowledge representation and the 

control strategies. 

9 
( 4 )  After S t e p  3 i s  successfully completed, i.e., after 

the system i s  performing well on m o s t  cases w i t h  w h i c h  I 

i t  i s  presented, a m o r e  structured evaluation of the 

ES’s decision making ability should be conducted (Step I 

I 

I 
4 ) .  In this phase, the emphasis is to test the ES’s 

ability to solve random cases (within i t s  domain) with 

expert-level performance. A formal evaluation with I 

randomized case selection may reveal that the ES is 

not performing at a n  expert level, in w h i c h  case one 

should g o  back to Step 3. 

( 5 )  In Step 4, actual utility of the ES i s  not emphasized, 

only i t s  expert-level problem solving. In Step 5, the 
~ end-users will evaluate the s y s t e m  in a formal way. 

T h e  purpose of this phase is to determine whether or  I 

1 



- not the ES is acceptable to the users for w h o m  i t  w a s  

intended. T h e  emphasis at this phase is on the ES's 

discourse abilities and the hardware environment that 

is provided. A successful completion of this phase 

will ensure that the ES does m a k e  expert-level 

decisions and that i t  is acceptable to users. 

(6) St e p  6 is "field testing". During this phase, a large 

number of cases (along with the associated 

peculiarities of the environment) are tested by -9" 
ES. Careful attention during this stage must be 

directed towards problems of scale, i.e., w h a t  n e w  

difficulties will arise w h e n  the system is m a d e  

available to a large number of users. 

( 7 )  In St e p  7, follow-up studies to demonstrate the ES's 

large-scale usefulness are conducted. Some of the 

issues of concern at this phase are the systems's 

efficiency, its cost effectiveness, its acceptability 

t o  users (who are not involved in its early 

experimental development), and its impact on the 

execution of the t a s k  with w h i c h  i t  w a s  designed to 

assist. 

( 8 )  Before the system c a n  be distributed (Step 8 1 ,  some 



- modifications may be required to allow the system to 

run on a smaller or portable machine. 

( 9 )  Step 9 is general release of the ES as a marketable 

product or  in-house tool. Firm plans for maintaining 

the knowledge base and keeping it current are 

necessary at this phase. 

The methodology that i s  considered for evaluation of expert 

systems i s  applicable at Step 4, the formal evaluation of t h e -  . 
I t  will be described in detail in a future report. 

7 



- - - - - - - - - - -  
I N A S A  I 
- - - - - - - - - - -  

2. EXPERT SYSTEM AS A CCMPUTER SYSTEM 

In this chapter, a n  ES is considered as a computer system and 

some basic performance evaluation and system modelling concepts 

are presented. Actual m o d e l s  for expert system performance 

evaluation will be discussed in a future report. 

2.1 Performance Evaluat i o n  ConceDts 

T h e  performance of a computer system is defined as the 

effectiveness with w h i c h  the system handles a specific 

application. Various measures can be used to describe the 

performance of a computer system. For example, the system 

throughput, the most conmonly used, is defined as the number of 

tasks processed by the system in a unit of time. 

Performance evaluation c a n  be viewed f r o m  two different 

aspects: 

(1 )  T h e  determination of the performance function F, such 

that 



- S y s t e m  performance = F(av1, . . a m ,  w 1 ,  . .wvn) 

wh e r e  the avi are the system architecture parameters, 

and the wvj are the s y s t e m w o r k l o a d  parameters. 

( 2 )  T h e  estimation of values of the above performance 

function for a specific set of system parameter values 

(avl, . . a m ,  w v 1 ,  ..wvn) 

Any analysis of a system is only a n  analysis of a model of the 

system. This is true of system performance evaluation, w h i c h  is 

a n  analysis of one aspect of the system - its performance. A 

m o d e l  of a system can be defined as a n  abstraction that contains 

only the significant variables and relations of the system 

[Zeigler, 761.  

M o d e l s  used for system performance evaluation c a n  be divided into I 

three broad classes [Svobodova, 761: 
I 



( 1 ) -  S t r u c t u r d  M o d e l s  describe aspects of individual 

system components and their interaction. T h e y  usually 

serve as the basis for more abstract models, by 

providing a n  interface between the real system and the 

m o r e  abstract models. An example is a block diagram 

m o d e l  of a system in w h i c h  each block is a system 

component. 

(2) W c t i d  M o d e l s  define the operation of the system 

such that the model c a n  be analyzed mathematicalljfpr 

studied empirically. Examples of functional models 

are queueing models that have mathematical solutions 

for the performance measures of interest, and 

simulation m o d e l s  that provide empirical evaluations 

o f  performance measures. 

( 3 )  A a a l p t i c a  PtrfoFance W e l s  formulate the dependence 

of performance on the system workload and 

architectural variables. Such m o d e l s  are usually 

functions that are fitted to data obtained f r o m  

functional models. 



Three main aspects of m o d e l s  are: validity, cost, and amount of 

information obtainable f r o m  the model. 

. .  1. Validitv 

A m o d e l  is said to be valid w h e n  the performance measure values 

Ym generated by i t  agree w i t h  the actual observations of sy 

performance to within a desired range of accuracy. The ran~e nf 
. .  validitv of a model i s  the region in the multi-dimensional space 

of system parameters over w h i c h  the model is valid. 

T h e r e  are varying degrees of rigor to the validity of models 

[Zeigler, 7 6 3 :  

( 1 )  At the least rigorous level, a m o d e l  i s  m l i c a t i v e l v  

valid if i t  m a t c h e s  the performance values already 

acquired f r o m  the real system. 

. .  ( 2 )  At a m o r e  rigorous level, a m o d e l  is pIedictivelv 

valid w h e n  its predictions of performance are 

corroborated by observations of the system. 



- - - - - - - - - - -  
I N A S A  I 

(3)-At the most rigorous level, a model i s  Structurallv 

v a U  if i t  not only reproduces the observed system 

behavior, but truly reflects the w a y  in w h i c h  the real 

system operates to produce this behavior. 

2. Cost 

T h e  cost of a model is usually related to the computational 

complexity of the model, i.e., the w o r k  involved in using- 

model to m a k e  a single evaluation of system performance. Thus 
Ye 

simulation m o d e l s  are usually quite expensive in their 

computational demands, while mathematical m o d e l s  such as queueing 

models and analytical performance models are quite inexpensive. 

During a performance evaluation study, the systems analyst is 

interested in m o r e  than one measure of s y s t e m  performance. For 

example, in a s y s t e m w h i c h  is a n  interconnection of resources, 

resource utilization is as important a measure as system 

throughput, since i t  can point to system bottlenecks. M o d e l s  

with higher structural validity are capable of yielding m o r e  

information than m o d e l s  of m e r e l y  predictive validity. 



T h e  -detail with w h i c h  the information c a n  be obtained also 

depends on the models. A queueing model may attempt to yield 

accurately only the average utilization of a resource, while a 

simulation model c a n  yield a n  entire histogram of resource 

utilization. 

2.5 -Bulld ing Process 

Regardless of the type of model chosen, there are certain co-n 

features in the process of building the model as a tool for 
2 

performance evaluation. T h e  following are some of the basic 

phases of the m o d e l  building process [Zeigler, 761:  

( 1 )  wicePfExr,trimental Frame. T h e  experimental frame 

characterizes a limited region of the entire system 

parameter space, in w h i c h  the system i s  to be 

modelled. All the characteristics discussed in the 

previous section of a model are only with respect to 

the experimental frame for w h i c h  the model is 

constructed. T h u s  a model may be invalid in a n  

experimental frame other than the one chosen, but only 

its validity in the chosen frame is of importance. 



( 2 ) -  Model C a l i b r a t i o n  . Calibration is the process of 

estimating the parameters that describe the model in 

the experimental frame. For example, the parameters 

of a n  analytical model that expresses performance as a 

linear function of system parameters, 

m n 
P = B o  + E Bi . avi + E rj . wj 

i = l  j=l 

are the coefficients Bi ( i  = 0 through m) and rj = 

1 through m). Th e  calibration of such a model may 

I 

d 

involve the fitting of a linear regression equation to 

observed values of system performance for varying 
i 

values of the system parameters. 

( 3 )  M o d e l  V a l i d a t i p n  . Once a m o d e l  has been calibrated, 

i t  c a n  be used to predict system performance. 

Validation is the process of establishing the validity 

of the model by comparing m o d e l  predictions of I 

performance with observations of system performance. 

If the validity i s  satisfactory, the model predictions 

in the experimental frame will be accepted. If the 

validity is poor, the model may have to be I 

recalibrated with the n e w  observations of performance. 



- Calibration and validation for any model can be 

improved simultaneously u p  to a point; beyond that 

point, they may have to be traded off. Thus, 

calibration using data f r o m  a larger number of 

observations than the order of complexity of the model 

may cause poor overall validity in the region. On the 

other hand, the same model may yield a n  acceptable 

degree of validity for more local sub-regions. 

Ven -*Model. Once a model has ( 4 )  P r e d i c t l o p  . .  

calibrated and validated in a n  experimental frame, i t  

c a n  be used to predict system performance in that 

frame. However, if the experimental frame should ever 

change, the process of calibration and validation will 

have to be repeated for the new frame. 

Performance evaluation of computer systems is not a n e w  concept. 

For example, Ballance, et. al. describe a simulation model that 

w a s  used in the design of the look-ahead unit of the IBM Stretch 

S y s t e m  [Ballance, et. al., 6 2 1 .  Boland, et. al. discuss a 

simulation model used in designing the m e m o r y  unit of the I I M  

S y s t e m  360/Model 9 1  [Boland, et. al., 671. 



Hierqrchical approaches to modelling have also been examined 

in the past [Browne, et. al., 72; Bhandarkar, 761. These models 

are concerned with the reduction in complexity of analytical 

models, by structural decomposition of the s y s t e m m o d e l  to f o r m  

sub-system m o d e l s  that are analyzed independently. Thus, all the 

m o d e l s  in the hierarchy use the same modelling tools. However, 

Kumar’s mo d e l  [Kumar, 781 brings together a variety of 

state-of-the-art modelling tools, whose range of cost and 

complexity m a k e  i t  very suitable for use in a hierarchy. 

-3 
T h e  reasons for undertaking performance studies are 

(typically) the following: 

(1) T o  d e s i gn a computer system w h i c h  is the optimum 

s y s t e m  for some objective function that includes 

s y s t e m  performance as a component. 

(2) To optimize a n  existing computer system f o r  a n  I 
objective function as in (1). 

In either case, the systems analyst is interested in obtaining a n  I 

optimum s y s t e m  configuration. 

Since optimization procedures usually use a n  iterative 

scheme to converge to the optimum, a number of evaluations of the I 



objective - function i s  required. This requires that the 

performance component of the function be evaluated with minimum 

cost, so as to keep the cost of the optimization procedure within 

reasonable bounds. On the other hand, the performance evaluation 

must be sufficiently accurate to meet the accuracy demanded of 

the optimization procedure. A performance model hierarchy 

provides a cost-effective trade-off between accuracy and 

computational cost, in m u c h  the same w a y  that a memory hierarchy 

is a cost-effective tradeoff between memory access time and cost 

[Kumar, 7 8 1 .  

2.7 m r a c t e r i s t  ics pf 3 , k  Hierarchp 

T h e  hierarchy of performance models have the following , 

characteristics: 

(1) L p s r d .  The l o w  end of the hierarchy contains models I 

of high structural, and thus high predictive, 

validity. These models have a broad range of validity 

in the system parameter space and they are capable o f  

yielding detailed performance information of great 

accuracy. T h e  price to be paid for these qualities is 

in the high computational demands of these models. i 



The high end of the hierarchy will contain 

models of only predictive validity and their range of 

validity in the system parameter space is very m u c h  

limited. The performance information that they yield 

generally has l e s s  accuracy than the low level models 

and are sumnary type, i.e., l e s s  detailed. However, 

they have the advantage of being very m u c h  less 

demanding in their computational requirements. 

:-I 
Intermediate levels of the hierarchy have intermediate 

values of these characteristics. Thus, travelling up the 

hierarchy, one s e e s  models that have [Kumar, 781:  

(1) L e s s  structural validity. 

(2) M o r e  limited range of validity. 

(3) Less detailed performance information. 

( 4 )  Less accurate information. 

( 5 )  Lower computational requirements. 



In terms of the types of models described in Section 2.3, there - 
will be structural models at low levels, functional models at 

intermediate levels and analytical m o d e l s  at very high levels of 

the hierarchy. 

T h i s  hierarchical approach will be used to evaluate the 

performance of expert systems: developing a simulation model of 

( o r  of a part of) an ES and collecting performance data; this 

data will be used to develop a n  analytical model of the entire 

ES. T h e  analytical model thus developed could be used to p r e w t  

the performance of the ES. 
4 

D e t a i l s  of this approach along with other issues will be 

addressed in a future report. 



3. THE EXPERT SYSTEM AS A SOFWARE SYSTIM (OR PROGUM) 

Expert systems can also be evaluated by using many metrics ( o r  

criteria) that have been used to evaluate software systems in i 

general. Some of the criteria are listed below: 

(1) Reliability. 

( 2 )  Correctness. 

( 3 )  Learnability. 

( 4 )  Usability. 

( 5 )  Flexibility. 

( 7 )  Applicability. 

( 8 )  Security/Protection. 

(9) Cost-effectiveness. 



( 1 0 )  -Maintainability. 

This list will be refined and/or extended w h e n  used to 

evaluate ESs and will be addressed in m u c h  m o r e  detail in a 

future report. 
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4. PRESENT CONSIDERATIONS 

DIPMETER ADVISOR is tentatively "selected" as the ES that will be 

used in this hierarchical performance evaluation study. 

-7 
DIMTER ADVISOR (DA) is a n  expert system to interpget 

oil-well logs and w a s  developed by Schlumberger (Ridgefield, 

Connecticut). An overview of the system is provided b e l o w  (based 

on [Davis, et. al., 81; Gershman, 821). 

T h e  principal business of Schlumberger is gathering and 

interpreting data related to oil wells. Sensors are lowered into 

the bore hole, and measurements are m a d e  as sensors are raised. 

Some measurements are taken every tenth of a n  inch and some are 

t a k e n  only every six inches. There are as m a n y  as twenty 

different types of sensors, and two or three c a n  be used at once. 

D a t a  f r o m  the sensors dropped into bore holes are plotted on 

logs. T h e s e  data indicate how different kinds of energy (sonic, 

electrical, and nuclear) interact with the formation. 



Some-of the questions that the expert w h o  looks at the 

sensor data need to answer are whether there i s  hydrocarbon under 

the ground; if so i s  i t  oil or  gas? h o w m u c h  is there? can i t  be 

removed? D e p t h  is also important because in completing a well, 

making i t  a producer, the expert needs to k n o w  the exact location 

of the hydrocarbon. 

L i k e  experts in any domain, oil-well log interpretation 

experts are very few. Schlumberger’s solution is to embody the 

skill of its valuable people in computer-based expert systems--1 - 

T h e  DA attempts to emulate a special type of expert in this 

interpretation, starting w i t h  measurements f r o m  the dipmeter 

tool. T h e  dipmeter measures the t i l t  of the underground 

formations. In one place, the layers may be basically flat. In 

another, the layers m a y  start to incline at a substantial degree. 

A sensor on each of the dipmeter tool’s four arms measures 

the conductivity of the formation as the tool is pulled out of 

the hole. T h i s  results i n  four curves that look approximately 

the same. A s  the sensor comes out of a hole bored into a tilted 

formation, not all of the arms will measure the movement into the 

formation at the same time. By observing the difference in the 

measurements, one can determine the magnitude of the inclination, 

as w e l l  as the direction. 



I t  1 s  possible to associate certain types of patterns with 

these data. O n e  of the patterns may indicate roughly constant 

magnitude w i t h  increasing depth. Another pattern may indicate 

magnitude with increasing depth. These patterns can be detected 

by part of the DA system. F r o m  relationships among these 

patterns, combined w i t h  other data, one can deduce the geology. 

An example of a rule in DA is: 

If T h e r e  exists a normal fault, and 
There exists a red pattern 

with bottom above the top of the fault, 
with length greater than 200 ft., 
with azimuth perpendicular to the strike 

of the fault 

T h e n  T h e  fault is a growth fault 
with direction to downthrown block 
opposite to the azimuth of the red pattern 

This type of rule deals with a large number of ideas: a normal 

fault, a red pattern, and some of the geometry. T h e  goal of this 

kind of rule is to identify, to the greatest degree possible, 

what type of fault is involved. Currently there are 90 such 

rules in the DA system. 

T h e  DA goes through many steps before reaching conclusions, 

as shown in the Table 2. 



Validity C h e c k  

Washout zones 
Blank zones 
M i r r o r  image zones 

Structural D i p  Analysis 

Structural dip zone determination 
Structural dip removal 

Structural Feature Analysis 

Structural interruption detection 
Structural pattern detection 
Structural feature description 

Stratigraphic Feature Analysis 

Lithology determination 
Depositional environment analysis 
Stratigraphic pattern detection 
Stratigraphic feature description 

TABLE 2 DIPMETER ADVISOR System: Interpretation Steps 

[Baker, 84 p. 591 



T h e  validity check is needed because several things 

c a n  go wrong. For example, if the bore hole 

collapses, the sensors will be unable to measure 

anything. 

( 2 )  

( 3 )  

( 4 )  

After the DA verifies that the data are correct, i t  

begins the structured dip analysis. Structured d i p  

refers to large t i l t s  in the formation that have 

occurred after deposition. These tilts are important 

f o r  two reasons: they are likely indicators that 

there is a fault in the area, and the tilts m u s t  be 

removed (i.e., the structure must be retilted by the 

system in order f o r  the analysis to continue). 

- 

In the third step, the DA tries t o  identify the 

geometry and the characteristics of the faults that 

are present. 

T h e  last step is a stratigraphy analysis, w h i c h  

relates t o  determination o f  the geological structures 

involved. 



F r o m  the preliminary comparison of LISP, PROLOG, and OPSS, OPS5 

seems to be m o r e  suitable for expert system implementation. 

PROLOG's search strategies are very restrictive and i t  i s  

difficult to encode uncertain information (PROLOG is based on 

predicate logic). 

OPSS is a production system oriented (IF-" type) 

language developed at W and i s  based on LISP. On e  of:.the 

highly successful expert system R1 ( o r  XCON at DEC) is 

implemented by using OPSS. 

- 

T h o r o u g h  evaluation of OPSS is planned at USL (in the near 

future) a n d  the results of the evaluation will be provided in a 

future report. 

4.3 Reconstruct ion Yersus Silaulatipn 

"Reconstruction- m e a n s  building a small portion of a n  existing ES 

(e.g., D I P M E T E R  ADVISOR) using some ES building tool. T h e  main 

mo t i v a t i o n  is the following: 

For those w h o  like to develop a working ES without going 

through a lengthy apprenticeship of research and theoretical 



I 

study, the_ approach of "rebuild and improve" will be very 

effective m e a n s  of gaining considerable practical knowledge and 

experience in a relatively short time, i.e., to become a 

knowledge engineer quickly! (Japanese are well-known for this, 
I 

they are doing the same in their Fifth Generation Project.) , 

By reconstructing DIPMETER ADVISOR ( o r  some other ES), the 

author w o u l d  like to analyze and provide a critical review of I 

that system, addressing choice of the language, the methodology, 

the certainty factors, line of reasoning, etc. and be a b l e t o  

"fine tune" the system. 

I 
- 

"Simulation" m e a n s  simulating (using SIMSCRIPT or GPSS that 

are available at USL) the performance of a n  ES m u c h  like 

developing simulation models for computer systems in general. I 
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