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I. SUMMARY 

Two research activities directed at hypersonic vehicle configurations are currently un- 

derway. The first activity involves the validation of a number of classical local surface 

inclination methods commonly employed in preliminary design studies of hypersonic flight 

vehicles. Unlike several studies aimed at validating such methods for predicting overall ve- 

hicle aerodynamics, this effort emphasizes validating the prediction of forces and moments 

for flight control studies. Specifically, several vehicle configurations for which experimen- 

tal or flight-test data are available are being examined. By comparing the theoretical 

predictions with these data, the strengths and weaknesses of the local surface inclination 

methods can be ascertained and possible improvements suggested. The second research 

thrust, of significance to control during take-off and landing of most proposed hypersonic 

vehicle configurations, is aimed at determining the change due to ground effect in control 

effectiveness of highly swept delta planforms. Central to this research is the development 

of a vortex-lattice computer program which incorporates an unforced trailing vortex sheet 

and an image ground plane. With this program, the change in pitching moment of the 

basic vehicle due to ground proximity, and whether or not there is sufficient control power 

available to trim, can be determined. 

In addition to the current work, two different research directions are suggested for 

future study. The first would be aimed at developing an interactive computer program 

to assist the flight controls engineer in determining the forces and moments generated 

by different types of control effectors that  might be used on hypersonic vehicles. The  

first phase of this work would deal in the subsonic portion of the flight envelope, while 

later efforts would explore the supersonic/hypersonic flight regimes. The second proposed 

research direction would explore methods for determining the aerodynamic trim drag of a 

generic hypersonic flight vehicle and ways in which it can be minimized through vehicle 

design and trajectory optimization. For proposed work, it is desired to select the research 

direction of the most value to NASA’s ongoing and future activities. 
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11. ACTIVITIES IN PROGRESS 

Validation of M e t h o d s  for  Predic t ing  Hypersonic  F l igh t  Controls Forces and 

Moments 

Before a great deal of activity is undertaken in assessing different types of flight 

control systems for hypersonic vehicles, it is important to understand the strengths and 

limitations of the prediction tools most likely to be used in this effort. Consequently, 

a number of supersonic/hypersonic methods are currently being evaluated. Specifically, 

because their inherent simplicity makes them ideally suited to preliminary design work, 

among the tools under examination are the classical local surface inclination methods, 

including Newtonian theory, tangent-wedge/ tangent-cone met hods, and shock expansion 

techniques. These methods are all part of an industry-standard computer program called 

the “Hypersonic Arbitrary Body Program (HABP) ,” originally prepared by Gentry’ and 

now part of a more encompassing program, the “Aerodynamic Preliminary Analysis System 

(APAS),” detailed in Ref. Although HABP has been widely used for preliminary 

design activities since the early 1970’s and a number of studies have been undertaken to  

examine its ability to  predict the overall vehicle aerodynamics, Ref. 3 and 4 for example, 

it is apparent that  no comprehensive, systematic study has explored its ability to predict 

forces and moments generated by aerodynamic flight controls. Thus, the goal of the 

present activity is to  determine the accuracy and range of validity of the simple local 

surface inclination methods for predicting control forces and moments for a variety of 

configurations. 

2. 

The approach being used in this validation effort is to examine several vehicle config- 

urations which cover a broad range of proposed hypersonic vehicle configurations and for 

which wind-tunnel and/or flight-test data are available. These configurations include the 

Space Shuttle, presented in Figure 1, the X-15, shown in Figure 2, a wing-body vehicle5, 

as given in Figure 3, and possibly an all-body‘ or cone-body configuration. 

Thus far, as represented by Appendix A, a literature search aimed at identifying 
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appropriate configurations and available experimental data has been conducted, the APAS 

computer program has been implemented on the Penn State computer system, and the 

configurations of the first three vehicles to be considered have been input. Comparison 

of predicted control forces and moments with experimental values has begun and, along 

with a thorough evaluation of the local surface inclination methods for use in flight control 

evaluation efforts, is expected to be completed by late summer. 

Control of Highly Swept Delta P l a n f o r m s  in Ground Effect 

The  second activity currently in progress is the prediction of control forces and mo- 

ments of highly swept delta planforms in close proximity to the ground. Because of the 

possibility that such configurations suffer a large loss of control effectiveness in ground 

effect, this is an important area of concern for proposed hypersonic flight vehicles. Fur- 

thermore, any analysis of such configurations in ground effect must examine the coupling 

tha t  exists between deflecting a control surface to achieve a proper moment for tr im and 

the change that such a deflection causes in the total lift generated. In order to explore these 

issues, a vortex-lattice method, which includes a free-wake and a reflective image plane 

to model ground proximity, is currently being programmed. With this tool, it should be 

possible to examine the change in moment of the entire vehicle, as well as the change in 

control effectiveness, due to ground effect. In this way, it can be determined whether or not 

sufficient control power for trim in ground effect is available and if not, the vortex-lattice 

code should be useful in evaluating innovative ways of generating the required moments 

to trim. 

The activity in this area thus far has included the completion of a literature review, 

summarized in Appendix B, addressing aerodynamic prediction methods applicable to 

highly swept delta wings. At present, a computer algorithm to implement the vortex- 

lattice method with a free-wake has been written and it remains to add the image plane 

capability to model the ground. As with the code validation efforts already discussed, 

it is anticipated that the study of highly swept delta planforms in ground effect will be 

concluded by late summer. 
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111. PROPOSED ACTIVITIES 

Because there is more insight into the problems of the control of hypersonic vehicles 

now than was present at the beginning of this program, it seems appropriate to re-examine 

its original direction and goals. As a result of this re-examination, two different directions 

are proposed for the major thrust of future activities. It is hoped that a choice between 

these two options will be made which will result in the greatest benefit to all concerned. 

Proposed Research, Option 1: Control Force and Moment Prediction for Hy- 

personic Vehicle Configurations 

Because of the gains in performance that are made possible by modern controls tech- 

nology, the configurations of advanced flight vehicles will be increasingly dictated by con- 

cerns of control rather than by those of classical aerodynamics. For this reason, it is 

important that  the flight controls engineer be able to fully participate in preliminary de- 

sign activities of new aircraft. To facilitate this, it is proposed to develop a design tool with 

which the controls engineer can estimate the forces and moments generated by' different 

types of effectors used to control hypersonic vehicles configurations. The  ultimate goal of 

this program is envisioned to be an interactive computer program which could be used 

by the controls engineer in preliminary design work to evaluate and consequently select 

appropriate control effectors to meet specific control requirements. This design tool would 

not help the engineer in identifying the hypersonic vehicle control requirements but would 

be of use once those requirements have been determined. 

If this proposed direction is taken, the first phase of the research would deal with the 

control of hypersonic vehicle configurations at subsonic speeds. This phase would begin 

by cataloging existing effectors and the methods available for analyzing them. These 

methods would be assessed for accuracy by comparing predictions made using them with 

available experimental data. The existing methods would be improved when possible and 

new methods would be developed when necessary. Ultimately, this information would be 

incorporated into the interactive computer program for use by the controls engineer. 
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Once the subsonic phase of this work is completed, which is estimated to take approx- 

imately one year, future phases of the program would extend the range of capability of the 

program to  supersonic and hypersonic speed ranges. 

Proposed Research,  O p t i o n  2: The Minimiza t ion  of the A e r o d y n a m i c  Trim 

Drag of Hyperson ic  Vehicles 

In addition to the significant moments generated by the propulsion system, an aircraft 

accelerating through subsonic, transonic, supersonic, and hypersonic speeds will experience 

a large variation in the pitching moment required for trim due to Mach number effects on 

the aerodynamics. As a result, the drag created in trimming the vehicle for flight through 

such radically changing speed regimes can be significant. Unfortunately, based on present 

technology, the success of proposed hypersonic vehicles is critically dependent on achieving 

the highest performances possible in the areas of propulsion, materials, aerodynamics, and 

flight controls. Thus, the ability to minimize the trim drag may be one of the deciding 

factors in the success or failure of such a vehicle. The second proposed research program 

would investigate this problem. The proposed research would begin by determining the 

steady-state trim drag problem for a generic single-stage to orbit vehicle configuration. 

For this purpose, the control moments and associated trim drag for a generic hypersonic 

wing/body configuration, including the effects of the propulsion system, would be consid- 

ered. One of the objectives of this research would be to determine ways to minimize the 

moments generated by the changing aerodynamic and propulsive forces. 

Different control concepts such as thrust vectoring, center-of-gravity transfer, and 

variable geometry would be evaluated and a trade-off analysis of the different systems 

performed. The evaluation of each system would be largely dependent on maximizing the 

control moments generated while minimizing the drag that the system produces. 

The ultimate goal of this research would be to develop strategies for vehicle design, 

and determine the optimum flight trajectories which would minimize the trim drag penalty 

over the entire phase of atmospheric flight for hypersonic vehicles. 
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Discussion of the Proposed Research Options 

In considering the two research directions proposed, it is clea that while the force 

and moment prediction of control effectors is certainly more in line with the original plan 

for this research, the level of need for such a tool is not certain. Further, if not taken to 

the full measure of considering all effectors over the entire speed range, the usefulness of 

intermediate results is certainly limited. Consequently, contributing to the solution of the 

trim drag problem, one of the major problems confronting all hypersonic vehicles, might 

better serve NASA interests. Also, the level of research required in the analysis of the trim 

drag problem is more appropriate for graduate thesis work than is the cataloging of force 

and moment prediction methods. Thus, from our point of view, an effort directed at the 

trim drag problem is the more attractive of the two options. 
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IV. BUDGETARY CONSIDERATIONS 

Although the formal starting date of the flight controls research grant was February 

15, 1988, it is important to note that prior commitments and the mid-semester starting 

date of this work resulted in some delays before the effort was at full strength. In fact, from 

February until May the primary investigator and one graduate student worked on half the 

budgeted time fraction, and the second budgeted graduate student did not begin working 

until August 1988. Thus, with the budgeted funds not spent early in this program, it is 

possible to continue at current levels without additional funding for three months past 

the formal February 14, 1989 termination date. For this reason, a no-cost extension of 

this grant is requested until May 14, 1989. After that time, it is hoped that a follow-on 

grant would continue to support option 1 or 2 of the proposed activities, as well as the 

hypersonic configurations in ground effect study through its completion in July 1989. The  

code validation effort is funded internally through May 1989. 

After completion of the code validation and ground effect research activities, it is 

desired to limit the scope of this program to a single topic. In this way, by reducing the 

amount of time required on administration and advising duties, it is felt that  the principal 

investigator can contribute much more directly to the research effort. 

The  funding requirements for the program outlined above are tabulated on the follow- 

ing page with October 1 used as the starting date for future awards. As shown, $28,379 

are required to conduct the program outlined from May 15, 1989 through September 30, 

1989. Thereafter, the support required to continue one of the research options discussed in 

the previous section is reduced from the current level to approximately $56,425 per year. 
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Tentative Budget - Force and Moment Prediction of 
Control Effectors for Flight Vehicles 

NASA Langley Research Center 

5/14/89 - 9/30/89 10/1/89 - 9/30/90 

DIRECT COSTS 

Salaries (Category I) 

M .D. Maughmer 
15% academic year 

50% summer 

Secretary 
7% academic year and summer 

Subtotal 

Salaries and Wages (Category 11) 

Graduate Assistant I 
50% summer 

Graduate Assistant I1 
50% academic year and summer 

Subtotal 

Total Salaries and Wages 

Fringe Benefits 
Travel 
Materials and Supplies 
Publication Costs/Page Charges 
Computer Services 

Total Modified Direct Costs 

Graduate Assistant Tuition 
Total Direct Costs 

INDIRECT COSTS 

Indirect Cost 

TOTAL BUDGET ESTIMATE 

9,011 

590 

9,601 

2,394 

3,408 

5,802 

15,403 

2,818 

500 
100 

0 
1,000 

19,821 

410 
20,231 

8,148 

28,379 

15,933 

1,769 

17,702 

10,837 

10,837 

28,539 

5,207 
1,500 

210 
210 

2,000 

37,666 

3,316 
40,982 

15,443 

56,425 
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VI. APPENDIX A 

Experimental Data for Hypersonic Vehicle Configurations 
Literature Survey 

1. Beeler, D.E.,  “The X-15 Research Program,” AGARD Report 289, October 1960. 

Brief description of the X-15 research program. Comparison of wind tunnel 
tests and flight measured values of stability derivatives a t  Mach numbers from 
0.0 to  8.0. Variation of control effectiveness with Mach number including hori- 
zontal tail, vertical tail and ailerons. 

2. Bernot, P.T., “Effect of Modifications on Aerodynamic Characteristics of a Single- 
Stage-to Orbit Vehicle at Mach 5.9,” NASA TM 84565, January 1983. 

The model was based on control-configured stability concepts. Results are pre- 
sented for elevons, body flap, and wing tip fin controllers. Model similar to  
tha t  in NASA TM X-3550 (item 3). 

3. Bernot, P.T., “Aerodynamic Characteristics of Two Single-Stage-to-Orbit Vehicles 
at Mach 20.3,” NASA TM X-3550, August 1977. 

Control deflection data are for elevons and a body flap. Most results are for 
high angles of attack (between 16” and 50’). 

4. Boisseau,Peter C., “Investigation of the Low-speed Stability and Control 
Characteristics of a 1/7-Scale Model of the North American X-15 Airplane,” 
NACA RM L57D09, 1957. 

Early X-15 data from free flying model tests. Purpose was to evaluate the use 
of the horizontal tail for roll control. Control deflection results are presented 
for the  wing trailing edge flap, all moving vertical tail, and symmetrical and 
differential horizontal tail deflections. 

5 .  Boyden, R.P. and Freeman, D.C. Jr., “Subsonic and Transonic Dynamic Stability 

Dynamic and static stability are investigated. Dynamic results are presented 
to show the effect of rudder flare in combination with body flap deflection. 
The static lateral stability data show the effect of the vertical tail, combination 
body flap and rudder flare, and body flap alone. 

Characteristics of a Space Shuttle Orbiter,” NASA T N  D-8042, November 1975. 

6. Brooks, C.W. Jr. and Cone, C.D. Jr., “Hypersonic Aerodynamic Characteristics of 
Aircraft Configurations with Canard Controls,” NASA T N  D-3374, April 1966. 

The investigation was done on a wing-body configuration with a 70” swept 
delta wing at a Mach number of 10.03. Four different canards were each tested 
on various configurations. Results include canard effectiveness on longitudinal, 
lateral, and directional characteristics. 
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7. Brooks, C.W. Jr. ,  “Interference Effects of Canard Controls on the Longitudinal 
Aerodynamic Characteristics of a Winged Body at Mach 10,” NASA T N  D-4436, 
April 1968. 

Effect of canard interference is studied by comparing body alone data with ca- 
nard deflection data which appeared in NASA T N  D-3374 (item 6)  and T N  D- 
3728 (item 44).  

8. Clark, L.D., “Hypersonic Aerodynamic Characteristics of an All-Body Research Air- 
craft Configuration,” NASA T N  D-7358, December 1973. 

Experiment was done at  Mach 6 on a lifting body configuration and compared 
with theoretical models. The horizontal wing-tip-type control surfaces were 
adjustable in 5” increments from +15” to -30”. HABP was used for theoret- 
ical predictions. The tangent-cone method gave the best agreement at control 
settings between +5” and -5” and at positive lift coefficients except for direc- 
tional characteristics. None of the methods predicted characteristics well at 
negative lift coefficients and large control deflections. 

9. Clark, L.E. and Richie, C.B., “Aerodynamic Characteristics at Mach 6 of a Hyper- 
sonic Research Airplane Concept Having a 70” Swept Delta Wing,” NASA T M  X- 
3475, May 1977. 

The study was a configuration build up and includes effect of elevon defleciton 
on trim characteristics. Elevon data are given for deflections of 10” to  -20” in 
5” increments for seven different configurations. Speed brake deflection data  
are also included. 

10. Covell, P.F., Wood, R.M., Bauer, S.X., and Malker, I.J., “Configuration Trade and 
Code Validation Study on a Conical Hypersonic Vehicle,” AIAA Paper 88-4505, 
September 1988. 

Test Mach numbers were between 2.5 and 4.5. Effect of canard shape, vertical 
tail shape, wing location, and wing incidence on aerodynamic characteristics in- 
cluded. A comparison is also made between the experimental results and three 
theoretical analysis programs: HABP, LT (Linear Theory), and SIMP (Super- 
sonic Implicit Marching). 

11. Decker, J.P. and Spencer, B. Jr., “Low-Subsonic Aerodynamic Characteristics 
of a Model of a Fixed-Wing Space Shuttle Concept at Angles of Attack to  76”,” 
NASA T M  X-1996, April 1970. 

These tests were done on an early shuttle concept at a Mach number of 0.25. 
Longitudinal stability and control are provided by a horizontal tail with an ele- 
vator. Elevator deflections of 20” to -20” were effective at  low angles of attack 
where flow separation is not a major problem. 
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12. Dillon, J.L. and Creel, T.R. Jr., "Aerodynamic Characteristics at Mach Number 
0.2 of a Wing Body Concept for a Hypersonic Research Airplane," NASA TP 1189, 
1978. 

The experiment consisted of configuration buildup from the basic body by 
adding a wing, center vertical tail and scramjet engines. The test anglc of at- 
tack range was approximately -5" to 30" at  constant angles of sideslip of 0" 
and 4". The elevons were deflected from 5" to -15". Roll and yaw control were 
investigated. Also includes rudder deflection data. 

13. Dillon, J.L. and Pittman, J.L., "Aerodynamic Characteristics a t  Mach Numbers 
from 0.33 to 1.20 of a Wing-Body Design Concept for a Hypersonic Research Air- 
plane," NASA T P  1044, 1977. 

The tests were done a t  seven different transonic Mach numbers. Control de- 
flection data  includes: symmetrical elevon deflections of 0", -lo", and -20"; 
differentially deflected elevons at f 2 0 " ;  and rudder deflections of 0" and 15.6". 

14. Dillon, J.L. and Pittman, J.L., "Aerodynamic Characteristics a t  Mach 6 of a Wing- 
Body Concept for a Hypersonic Research Airplane," NASA TP 1249, August 1978. 

Similar configuration build-up of model in T P  1044 (item 13) and 
TP 1189 (item 12) at Mach 6. The elevons were deflected from 10" to -15" 
for pitch control and yaw and roll control were also investigated. HABP was 
used and gave good predictions for the longitudinal but not for the lateral- 
directional aerodynamic characteristics. 

15. Ellison, J.C., "Investigation of the Aerodynamic Characteristics of a Hypersonic 
Transport Model at Mach Numbers to 6," NASA TN D-6191, April 1971. 

Tests were done at Mach numbers from 0.36 to 6.0. Results for elevon deflec- 
tions from 5" to -20" are included for all Mach numbers. The configuration 
also had strakes which helped provide positive Cn4. 

16. Fetterman, D.E. Jr . ,  Penland, J.A., "Static Longintudinal, Directional, and Lateral 
Stability and Control Data from an Investigation at a Mach Number of 6.83 of Two 
Developmental X-15 Airplane Configurations," NASA TM X-209, March 1960. 

Directional control da ta  were obtained by testing vertical tail deflections of 0" 
and - 5 " ,  and lateral control data were obtained by testing differential horizon- 
tal tail deflect,ions of 0", -lo", and -20". Results for speed brake deflections of 
20" are also included. 

17. Freeman, D.C. Jr., "Dynamic Stability Derivatives of Space Shuttle Or- 
biter Obtained from Wind-Tunnel and Approach and Landing Flight Tests," 
NASA TP 1634, April 1980. 

Wind tunnel and flight test data were compared with ADDB values at subsonic 
Mach numbers for the parameters of pitch, yaw and roll damping, as well as 
the yawing moment due to rolling velocity and the rolling moment due to yaw- 
ing velocity. 
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18. Freeman, D.C. and Boyden, R.P., “Supersonic Dynamic Stability Characteristics of 
a Space Shuttle Orbiter,” NASA TN D-8043, January 1976. 

Similar results to NASA TN D-8042 (item 5) except for different Mach num- 
bers. Elevon data are also included. 

19. Freeman, D.C. and Fournier, R.H., “Static Aerodynamic Characteristics of a Single- 
Stage-to-Orbit Vehicle With Low Planform Loading at Mach Numbers from 0.3 to 
4.63,” NASA TM 74056, November 1977. 

Tests were run a t  eight different Mach numbers. At a Mach number of 0.9, 
elevon deflections of 10” became completely ineffective a t  angles of attack above 
6”. The resulting nonlinearity in C M ~ ,  was also seen in the Space Shuttle. 

20. Freeman, D.C. and Fournier, R.H., “Static Aerodynamic Characteristics of 
a Winged Single-Stage-to-Orbit Vehicle at Mach Numbers from 0.3 to 4.63,” 
NASA TP 1233, August 1978. 

Tests were done to determine the static longitudinal stability and trim, the 
static lateral-directional stability, and the aileron control cffectiveness. Elevons 
were deflected from 0” to -20” for all eight Mach numbers tested. 

21. Freeman, D.C. and Jones, R.S., “LOW -Speed Static Stability and Control Charac- 
teristics of Two Small-Scale, Hypersonic Cruise Configurations,” NASA T M  X-2021, 
June 1970. 

The  first model was a distinct wing-body with a conventional rudder for direc- 
tional control and differential deflections of the all-movable horizontal tail for 
roll control. The second model was a blended wing-body with elevons for both 
pitch and roll control and a center vertical rudder for directional control. 

22. Freeman, D.C. and Spencer, B. Jr., “Comparison of Space Shuttle Orbiter Low- 
Speed Static Stability and Control Derivatives Obtained from Wind-Tunnel and 
Approach and Landing Flight Tests,” NASA T P  1779, December 1980. 

The longitudinal stability, elevon effectiveness, lateral directional stability and 
aileron effectiveness derivatives were compared from wind tunnel tests, ap- 
proach and landing flight tests and ADDB values. Body flap and speed brake 
deflections are included. 

23. “Hypersonic Aerodynamic Characteristics of Two Delta- Wing X-15 Airplane Con- 
figurations,” NASA TN D-5498, October 196Q. 

The  effects of wing geometry and longitudinal position, wing fins, nose cant, 
strakes, and speed brakes were looked at  for elevon deflections to -45”. The 
experimental aerodynamic characteristics were compared with the analytical 
results from HABP. At the time of the investigation, HABP was very new and 
the results were not very good. 
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24. Kelly, M. W., “Wind-Tunnel Investigation of the Low-Speed Aerodynamic Charac- 
eristics of a Hypersonic Glider Configuration,’’ NACA RM A58F03, Septem- 
ber 1958. 

The tests were done to investigate the adequacy of the low speed stability and 
control characteristics for landing. Trailing-edge flaps at  the wing tips supplied 
both yaw and roll control. The effect of wing tip droop on lateral and direc- 
tional stabiltiy is also reported. 

25. McCandless, R.S. and Cruz, C.I., “Hypersonic Characteristics of an Advanced 
Aerospace Plane,” AIAA Paper 85-0346, January 1985. 

Tests were run at  Mach numbers of 6, 10, and 20. Results include elevator, 
elevon and rudder deflection data. The experimental data  were then compared 
with APAS I1 predicted values. 

26. McCandless, R.S., “Hypersonic Characteristics of an Advanced Aerospace Plane at 
Mach 20.3,” NASA TM 86435. 

Aerodynamic control effectiveness was determined by deflecting the elevators, 
the elevons, and the rudder. Tests were run at a Mach number of 20.3 at vari- 
ous Reynolds numbers. 

27. McKinney, R.L. and Lancaster, J.A., “Investigation of the Aerodynamic Charac- 
teristics of a 0.02-Scale Model of the X-15 Airplane at Mach Numbers of 2.96, 3.96, 
and 4.65 at High Angles of Attack,” NASA TM X-820, June 1963. 

Supersonic tests on the final X-15 configuration. Results include deflections of 
the horizontal tail, asymmetric deflections of the upper and lower verticals, and 
deflections of upper and lowcr speed brakes. 

28. Mellinger, G.R., “Design and Operation of the X-15,” Shell Aviation News, 
April 1961, pp 14-21. 

Includes a description of the X-15 design. The article discusses design decisions 
such the need for the wedge airfoil for the upper and lower vertical tails. 

29. Moore, M.E. and Williams, J.E., “Aerodynamic Prediction Rationale for Analyses 
of Hypersonic Configurations,” AIAA Paper 89-0525, January 1989. 

A method selection rationale was developed for S/HABP. They suggest braking 
the configuration into three basic parts: nose, body, and aerodynamic surfaces. 
Analyses were done on the Space Shuttle, the FDL-7, and the 8-24C-lOD. No 
comparisons for control deflections. 

30. Nelms, W.P. and Ames, J.A., “Longitudinal Aerodynamic Characteristics of Three 
Representative Hypersonic Cruise Configurations at Mach Numbers from 0.65 to 
10.70,” NASA T M  X-2113, October 1970. 

Two configurations were discrete wing-body concepts and the third was a 
blended wing-body design. Effects of varying angle of attack, Mach number, 
and configuration build-up were considered. There are no control deflection 
da ta  in this report. 
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31. Nelms, W.P. and Thomas, C.L., “Aerodynamic Characteristics of an All-Body Hy- 
personic Aircraft Configuration at Mach Numbers from 0.65 to 10.6,” NASA T N  D- 
6577, November 1971. 

The effectiveness of horizontal tail, vertical tail and canard stabilizing and con- 
trol surfaces were investigated. The horizontal tail was deflected both symmet- 
rically and differentially. The rudder was deflected asymmetrically and flared as 
a speed brake. 

32. Osbourne, R.S., “Aerodynamic Characteristics of a 0.0667 Scale Model of the N.A. 

Tests were run at eight Mach numbers between 0.6 and 21.43. The tests were 
not run on the final X-15 configuration (does not include vertical wedge airfoil). 
Results are presented for symmetrical and differential deflections of the horizon- 
tal tail. 

X-15 Research Airplane at Transonic Speeds,” NASA TM X-24, 1959. 

33. Penland, J.A., “Low-Speed Aerodynamic Characteristics for a Hypersonic Re- 
search Airplane Concept Having a 70” Swept Delta Wing,” NASA T M  X-71974, 
August 1974. 

Tests were conducted at  a Mach number of 0.06 on a model like that in NASA 
reports: T P  1252 (item 38), T P  1552 (item 39), TM X-3475 (item 9),  and 
T N  D-8065 (item 37).  Eight model configurations were tested with various 
elevon and aileron deflections. 

34. Penland, J.A. and Fetterman, D.E. Jr., “Static Longitudinal, Directional, and Lat- 
eral Stability and Control Data at a Mach Number of 6.83 of the Final Configura- 
tion of the X-15 Research Airplane,” NASA TM X-236, April 1960. 

Data are presented in comparison plots to show the effects of component break- 
down and control deflection. Control surfaces include: vertical tail, horizontal 
tail (symmetrical and differential deflections) , speed brakes. The configuration 
geometry is well documented in the report (0.02 scale model). 

35. Penland, J.A. and Creel, T.R. Jr., “Low-Speed Aerodynamic Characteristics of 
a Lifting-Body Hypersonic Research Aircraft Configuration,” NASA T N  D-7851, 
February 1975. 

Configuration is similar to that of NASA T N  D-7358. The model was tested 
with two sets of horizontal and vertical tip controls, a center vertical tail, and 
two sets of canard controls. 

36. Penland, J.A.,  Creel, T.R. Jr., and Howard, “Experimental Low-Speed and Calcu- 
lated High-speed Aerodynamic Characteristics of a Hypersonic Research Airplane 
Concept Having a 65” Swept Delta Wing,” NASA TN D-7633, August 1974. 

Experimental low speed tests were done to determine lift and stability during 
landing. Calculated results using HABP are presented for Mach numbers from 
3 to 12. Results are given for elevon, aileron, and wing tip rudder deflections. 
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37. Penland, J.A., Fournier, R.H., and Marcum, D.C. Jr . ,  “Aerodynamic Characteristics 
of a Hypersonic Reseach Airplane Concept Having a 70” Swept, Double-Delta Wing 
a t  Mach Numbers from 1.50 to 2.86,” NASA TN D-8065, December 1975. 

A configuration build-up was done as well as the effect of elevon deflections. 
Data for elevon deflections of 0”, - lo”,  and -20” are presented at four super- 
sonic Mach numbers. Aileron effectiveness data are also presented. 

38. Penland, J.A., Creel, T.R. Jr . ,  and Dillon, J.L., “Aerodynamic Characteristics of a 
Hypersonic Research Airplane Concept Having a 70” Swept Double-Delta Wing at 
Mach Number 0.2,” NASA TP 1252, September 1978. 

Tests were done a t  a Mach number of 0.2 for various Reynolds numbers. The  
elevons were deflected from 0” to -20” in 5” increments. Roll control was also 
investigated. 

39. Penland, J.A., Hallissy, and Dillon, J.L., “Aerodynamic Characteristics of a Hy- 
personic Research Airplane Concept Having a 70” Swept Double-Delta Wing 
at Mach Numbers from 0.80 to 1.20, With Summary of Data from 0.20 to 6.0,” 
NASA TP 1552, December 1979. 

Wind tunnel data of static longitudinal, lateral, and directional stabilty char- 
acteristics of a hypersonic research airplane, for angles of attack from -4” to  
23”, and at angles of sideslip of 0” and 5”. The configuration variables included 
wing planform, tip fins, and the center vertical tail. The second area is a sum- 
mary of the variations of the more important aerodynamic parameters with M 
= 0.2 to 6.0. Elevon deflections are included. 

40. Pittman, J.L and Riebe, G.D., “Experimental and Theoretical Aerodynamic Char- 
acteristics of Two Hypersonic Cruise Aircraft Concepts at Mach Numbers of 2.96, 
3.96, and 4.63,” NASA TP 1767, December 1980. 
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cal tails. 

41. Powell, R.W. and Freeman, D.C., Jr., “Application of a Tip-Fin Controller to  the 
Shuttle Orbiter for Improved Yaw Control,” Journal of Guidance and Control, 
AIAA Paper 81-0074R, 1982. 
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configurations. 

42. Powell, R.W. and Freeman, D.C. Jr., “Aerodynamic Control of the Space Shut- 
tle Orbiter with Tip-Fin Controllers,” Journal of Spacecraft, AIAA Paper 84-0488, 
Sep tember-Oc tober 1985. 

Results show that the orbiter with tip-fin controllers can successfully perform 
the required maneuvers during entry. They do however exhibit less control au- 
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tion,” NASA TM X-98i, July 1964. 

The tests were run at  a hhch  numbr of 10.03 and at  various Reynolds num- 
bers. The relative effectiveness of plain and ported elevons and the effect of 
wing position on elevon effectiveness were reported. Newtonian impact theory 
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44. Putnam, L.E. and Brooks, C.W. Jr., “Hypersonic Aerodynamic Characteristics 
of Wing-Body Configurations with Canard Controls,” NASA T N  D-3728, Decem- 
ber 1966. 
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45. Rainey, R.W., Fetterman,D.E. Jr., and Smith, R., “Summary of the Static Stabil- 
ity and Control Results of a Hypersonic Glider Investigation,” NASA T M  X-277, 
May 1960. 

Test Mach numbers of 6.7 to 18.4. Wing trailing edge flaps provided longitudi- 
nal and lateral control, and the wing-tip fins with rudders provided directinal 
stability and control. Other control surfaces tested include delta tripanel t ip 
controls, pyramidal tip controls, and conical tip controls. 

46. Romere, P.D. and Young, J.C., “Space Shuttle Entry Aerodynamic Comparisons of 
Flight 2 with Preflight Predictions,” AIAA Paper 82-0565, March 1982. 

Control deflection data  given only for the speed brakes. 
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dynamics of Controls, in the Light of Future Needs,” Aerodynamics of Controls - 
Paper 2, AGARD CP 262. 
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tors. A bibliography of control da ta  for pitch, roll, yaw, and lift motivators is 
included. They are further broken down into different speed regimes. 

48. Shuttle Performance: Lessons Learned, “Space Shuttle Entry Longitudinal Aero- 
dynamic Comparisons of Flights 1-4 with Prefight Predictions,” NASA CP 2283, 
March 8-10, 1983. 

Analysis results of the STS 2 and 4 maneuvers during entry indicate that  the 
hypersonic trim discrepancy is due to an error in the prediciton of the basic 
vehicle pitching moment and not an error in prediction of the elevon and body 
flap effectiveness. Speed brake da ta  are included. 

49. Small W.J., Kirkham, F.S., and Fetterman, D.E., “Aerodynamic Characteris- 
tics of a Hypersonic Transport Configuration a t  Mach 6.86,” NASA TN D-5885, 
June 1970. 

Configuration was a low-wing, distinct wing-body with a vertical tail. Elevon 
deflection data are included. The analytical prediction methods used were 
found to be inadequate. At a = 6.85” the vertical tail became ineffective due 
to interference and shielding effects. 
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The configuration has an adjustable wing which is stowed a t  high speeds and is 
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Results are @veri for body-base flap deflections at  various transonic Mach num- 
bers. The wing leading edge sweep angle was also varied with body flap deflec- 
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rameters for the Space Shuttle Discovery as Determined from Flight test Data,” 
NASA T M  100555, February 1988. 

Comparison of flight test data with predictions. Results include: rolling and 
yawing moments due to aileron deflection; rolling and yawing moments due to  
rudder deflection; and pitching moment due to elevon deflection. These results 
are given versus Mach number from 25.0 to 0. 

54. Syvertson, C.A., Gloria, H.R., and Sarabia, M.F.? “Aerodynamic Performance and 
Static Stability and Control for Flat-Top Hypersonic Gliders a t  Mach Numbers 
from 0.6 to 18,” NACA RM A58G17, September 1958. 

The model was a 77.4” swept arrow wing with deflected wing tips, a retractable 
ventral fin, plain trailing edge flaps, a rudder on the ventral fin, and body flaps 
that  could also be used for speed brakes. All of the test results are  presented in 
tabular form. 

55. Trescot, C.D. and Spencer, B. Jr., “Hypersonic Aerodynamic Characteristics of a 
Lifting Reentry Vehicle Model with Four Types of Longitudinal Control Surfaces,” 
NASA TM X-1173, November 1965. 

Tests were at a Mach number of 10.03. The baseline configuration is that of 
TM X-768 (item 52) with the wing in the 75” leading edge sweep position. The 
four types of controls tested were aft-mounted fins, a canard, a chin flap, and 
two body trailing edge flaps (one each on upper and lower surfaces). 
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56. Underwood, J.M. and Cooke, D.R., “A Preliminary Correlation of the Orbiter Sta- 
bility and Control Aerodynamics from the First Two Space Shuttle Flights (STS 1 
and 2) with Preflight Predictions,” AIAA Paper 82-0564, March 1982. 

Data from STS-1 and STS-2 are compared with Shuttle Data Book values. Re- 
sults are presented for a.ileron and rudder effectiveness. 

57. Walker, H.J. and Wolowicz, C.H., “Stability and Control Derivative Characteristics 

Results compare actual flight test data with wind tunnel test predictions. Con- 
trol deflections include horizontal tail, upper vertical tail rudder, and speed 
brakes. 

of the X-15 Airplane,” NASA TM X-714, March 1962. 

58. Yancy, R.B., Rediess, H.A., and Robinson, G.H., “Aerodynamic Derivative Charac- 
teristics of the X-15 Research Airplane as Determined from Flight Tests for Mach 
Numbers from 0.6 to 3.4,” NASA TN D-1060, January 1962. 

Flight test results are derived from pulse, pull-up and sideslip maneuvers and 
are compared to wind tunnel results for corresponding conditions. Results are 
given for aileron, vertical tail and horizontal stabilizer deflections. 
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APPENDIX B 

Aerodynamic Prediction Methods for Highly-Swept Delta Planforms 
Literature Survey 

1. Barsby, J.E., “Flow Past Conically-Cambered Delta Wings With Leading-Edge Sep- 
aration,” ARC R&M 3748, 1972. 

The efficiency of a. conically cambered wing can be better than a flat wing. 

2. Boyden, R.P., “Theoretical and Experiental Studies of the Effects of L.E. Vortex 
Flow on the Roll Damping of Slender Wings,” AIAA Paper 70-540, 1970. 

Increments in roll damping due to vortex flow is not too dependent on AR, but 
it is a function of notch ratio. At high a,  the vortex migrates inboard and away 
from the wing, while the rolling moment decreases. 

3. Campbell, B.A. and Riebe, G.D.., “An Investigation of the Subsonic Maneuver 
Characteristics of Two Supersonic Fighter Wing Concepts,” NASA CP 2417, Pa- 
per 10. 

4. Carey K.M. and Erickson, G.E., “Vortex Flap Technology: A Stability and Control 
Assessment,” NASA CR 172439, November 1984. 

Deflected vortex flaps reduce CL at a given a,  increase C L ~ : , ~ ,  decrease drag 
due to lift, and produce a nose-down increment in the pitching moment with 
little change in stability. Drag reduction decreases with sweep angle from 45% 
less for a 45” delta to 16% less for a 70” delta. A part-span vortex flap doesn’t 
reduce CD; as much because of vortex interaction. The vortex migrates off flap 
more quickly for larger sweep. The actual thrust component is less for high 
leading edge sweep angles. Pitch due to sideslip is reduced by vortex flaps. The  
cropped arrow wing is best wing for lift generation. In all sweep cases, as the 
trailing edge flap deflection increases, its longitudinal control effectiveness de- 
creases. Asymmetric trailing edge flap deflections can cause large rolling mo- 
ments (they act as elevons). 

5 .  Carlson, H.W. and Darden, C.M., “Attached Flow Numerical Methods for the Aero- 
dynamics Design and Analysis of Vortex Flaps,” NASA CP 2417, Paper 6. 

If separation is confined to the leading edge flap, its effects on the overall flow 
patterns and loadings are small, and this approximates an attached flow. Lin- 
earized attached flow theory should therefore be capable of predicting efficient 
flap systems, since efficient flaps produce minimal flow separation. 
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6. Carlson, H.W. and Darden, C.h.I., “Applicability of Linearized-Theory Attached- 
Flow Methods to Design and Analysis of Flap Systems at, Low Speeds for Thin 
Swept Wings With Sharp Leading Edges,” NASA TP 2653, January 1987. 

The highest levels of flap-system aerodynamic performance require a flow that  
is as nearly attached as circumstances allow. Trailing edge flaps are necessary 
to reduce the amount of flow turning at  the wing leading edge. Otherwise, sep- 
aration a t  the leading edge hinge line. Separation at the trailing edge flap hinge 
line is not as detrimental as separation at  the leading edge flap hinge line. A 
severely deflected leading edge flap is useful for maintaining smooth flow, but 
most likely, this case will lead to a highly loaded leading edge and cause sepa- 
ration at the leading edge hinge line. For this reason, it is best to use trailing 
edge flaps to reduce the severe flow turning requirements. 

7. Carlson, H.W. and Mack, R.J., “Estimation of Attainable Leading-Edge Thrust for 
Supersonic Wings of Arbitrary Planform,” NASA TP 1270, October 1976. 

8. Carlson, H.W. and Walkly, K.B., “A Computer Program for Wing Subsonic Aero- 
dynamic Performance Estimates Including Attainable Thrust and Vortex Lift Ef- 
fects,” NASA CR 3515. 

This report describes the numerical methods which are used to analyze twisted 
and cambered wings of arbitrary planform, with attainable thrust taken into 
account. A superposition of independent solutions for cambered, twisted, and 
flat wings allows for accurate integration of the pressure distributions. 

9. Carlson, H.W. and Walkly, K.B., “An Aerodynamic Analysis Computer Program 
and Design Notes for Low-Speed Wing Flap Systems,” NASA CR 3675, 1986. 

This program has the additional capability of analyzing simple hinged leading 
and trailing edge flaps. The Reynolds number can affect aerodynamic perfor- 
mance of twisted and cambered wings as well as wings with leading and trailing 
edge flaps. An increased Re yields an increased value of the limiting C,. An 
increased Mach number decreases the limiting value of C,. 

10. Carlson, H.W. and Walkly, K.B., “Numerical Methods and a Computer Program for 
Subsonic and Supersonic Aerodynamic Design and Analysis of Wings with Attain- 
able Thrust  Considerations,” NASA CR 3808, August 1984. 

This paper presents some ideas about the types of wing camber and flap sys- 
tems one might use in design. There are not many results. 

11. Carlson, H.W., “The Design and Analysis of Simple Low-Speed Flap Systems with 
the Aid of Linearized Theory Computer Programs,” NASA CR 3913, 1987. 

This report demonstrates how CR 3675 (item 9) and CR 3808 (item 10) can 
be used to design wing-flap combinations. The major assumption is that the 
flow over the wing must remain as nearly attached as possible. A vortex flap 
is a good way to limit the amount of flow separation and recover some leading 
edge thrust. It is applicable to subsonic or supersonic flow with round or sharp 
leading edges. Most of the distributed leading edge thrust acts on the outboard 
wing stations. 
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12. Carlson, H. W., ” Applicat,ion of an Aerodynamic Analysis Method Including At- 
tainable Thrust Estimates to Low Speed Leading Edge Flap Design for Supersonic 
Cruise Vehicles,” NASA CR 165843, March 1982. 

Flaps can be designed smaller and simpler than conventional methods when the 
actual attainable leading edge thrust is considered. 

13. Carlson, H.W., Mack, R.J., and Barger, R.L., “Estimation of Attainable Leading- 
Edge Thrust for Wings a t  Subsonic and Supersonic Speeds,” NASA TP 1500, Octo- 
ber 1979. 

Empirical method is presented to estimate the theoretical leading edge thrust. 
The method is based on a simple 2-D sweep theory and accounts for twist and 
camber. 

14. Coe, P.L. Jr. and Weston, R.P., “Effects of Wing Leading-Edge Deflection on Low- 
Speed Aerodynamic Characteristics of a Low-Aspect-Ratio Highly Swept Arrow- 
Wing Configuration,” NASA TP 1434, June 1979. 

The minimum induced drag occurs with 100% leading edge suction. In all ob- 
served cases, it was necesary to use a continuous flap deflection. Segmented 
deflections lead to separation even with fairings in place. This is similar to 
TP 1777 (item 15), but opposite to T P  1351 (item 42). Leading edge flap de- 
flections which promote attached flow improve aileron and trailing edge flap 
efficiency. The leading edge deflection is most important for outboard portions 
of the wing. 

15. Coe, P.L. Jr., Huffman, J.K., and Fenbert, J.W., “Leading-Edge Deflection Opti- 
mization for a Highly Swept Arrow Wing Configuration,” NASA TP 1777, Decem- 
ber 1980. 

Ninety percent suction was recovered with a 16” root and a 50” tip deflection 
of the leading edge for a continuously warped wing. Attempts to approximate 
continuous warp/camber with multi-segmented leading edge flaps resulted in a 
large drag increase. Leading edge suction can be increased with increasing Re 
for attached flow. 

16. Coe, P.L. Jr., Thomas, J.L., Huffman, J.K., Weston, R.P., Schoonover, W.E. Jr. 
and Gentry, G.L. Jr., “Overview of the Langley Subsonic Research Effort on SCR 
Configurations,” NASA CP 2108, N81-17982, March 1980. 

The most significant advance during this period is the development of leading 
edge deflection concepts which reduce leading edge flow separation. This signif- 
icantly delays pitch-up, increases trailing edge flap effectiveness, and increases 
lateral control capability. Some attached flow methods may be impractical for 
supersonic wings, which are typically thin. 

17. Coe, P.L. and Graham, A.B., “Results of Recent NASA Research on Low-Speed 
Aerodynamic Characteristics of Supersonic Cruise Aircraft,” NASA C P  001, Pa- 
per 6, November 1976. 

Some limited information on directional stability with and without strakes, 
C M ~ ,  for apex flaps with Kruger flaps on the outboard panel, and CL, for some 
limited trailing edge flap deflections is presented. 
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18. Coe, P.L. and Huffman, J.K., “Influence of Optimized Leading Edge Deflection and 
Geometric Anhedral on the Low Speed Aerodynamic Characteristics of a Low As- 
pect Ratio Highly Swept Arrow-Wing Configuration,’‘ NASA T M  80083, June 1979. 

Leading edge deflections provided a favorable reduction in the inherently high 
level of CL,,. The paper investigates the effects of varying the deflection of the 
leading edge across the span to match the local upwash angle. Some of these 
results are also in NASA TP 1434 (item 14). 

19. Coe, P.L. and Johnson, T.D., “Effect of Outboard Vertical-Fin Position and Ori- 
entation on the Low Speed Aerodynamic Performance of Highly Swept Wings,” 
NASA TM 80142, September 1979. 

Outboard vertical fins improve the lateral stability and can act as winglets by 
producing forward thrust when properly oriented. 

20. Covell, P.F., Wood, R.M. and Miller, D.S., “An Evaluation of Leading Edge Flap 
Performance on Delta and Double Delta Wings a t  Supersonic Speeds,” AIAA Pa- 
per 86-0315, 1986. 

This paper presents an experimental investigation of the effects of AR, plan- 
form, and leading edge flap planform on the supersonic performance of simple 
wing/body configurations. 

21. Davenport; E.E. and Huffman, J.K, “Experimental and Analytical Investigation of 
Subsonic Longitudinal and Lateral Aerodynamic Characteristics of Slender Sharp- 
Edge 74” Swept Wings,” NASA TN D-6344, July 1971. 

Aerodynamic characteristics are only moderately effected by Mach numbers 
from .2 to .8 . The longitudinal characteristics with p less than 4” remain 
about unchanged. 

22. Davenport, E.E., “Aerodynamic Characteristics of Three Slender Sharp-Edge 
74” Swept Wings at Subsonic, Transonic, and Supersonic Mach Numbers,” 
NASA T N  D-7631, August 1974. 

The slope of the pitching moment curve becomes more negative with increasing 
M. Typically, a decrease in stability occurs at  supersonic Mach numbers. 

23. Decker, J.P. and Jacobs, P.F., “Stability and Performance Characteristics of a Fixed 
Arrow Wing Supersonic Transport Configuration (SCAT15F-9898) at Mach Num- 
bers From .6 to 1.2,” NASA TM 78726, June 1978. 

Wing tip Kruger flap deflections of 20” and an outboard wing sweep angle of 
60” alleviated the higher-angle-of-attack pitch-up. Ventral fins, as well as lead- 
ing and trailing edge flaps were considered. This is a complete and probably 
quite useful report. 

24. Dollyhigh, S.M., “Theoretical Evaluation of High-speed Aerodynamics for Arrow- 
Wing Configurations,” NASA TP 1358, 1979. 

This paper is about the applicability of three computer programs which NASA 
Langley used at the time. The configuration was tested at Mach numbers of 0.8 
to  2.70. 
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25. Edwards, J.B.W., “Free-Flight Measurements of Control Effectiveness on Three 
Wing Planforms at Transonic Speeds,” ARC CP 572, March 1961. 

26. Ellison, J.C., “Investmigation of the Aerodynamic Characteristics of a Hypersonic 
Transport Model at Mach Numbers to 6,” NASA TN D-6191, April 1971. 

This is primarily a. data-gathering report, but some comparisons with theory 
are presented. It also considers elevon deflectic9ns and vertical tails. 

27. Erickson, G.E., “Application of Free Vortex Sheet Theory to Slender Wings With 
Leading-Edge Vortex Flaps,” AIAA Paper 83-1813, 1983. 

FVS is a non-conical flow model since the Kutta Condition is applied at  all ap- 
propriate wing edges. FVS is good for preliminary design of flaps. Cranked 
delta wings can create vortex flap desing difficulties since two vorticies are 
formed for cranks grea.ter than 10”. 

28. Erickson, G.E. and Campbell, J.F., “Improvement of Maneuver Aerodynamics by 
Spanwise Blowing,” NASA TP 1065, 1977. 

Some good data for blowing on vs. blowing off. There are conclusions regard- 
ing benefit of blowing such as: good at high CY and high M, and increased trail- 
ing edge flap effectiveness. 

29. Erickson, G.E., and Rogers, L.W., “Experimental Investigation at Low and High 
Subsonic Speeds of a Moderately Swept Fighter Wing With Deflected Leading-Edge 
Flaps,” NASA C P  2417, Paper 8. 

Mainly presents low leading edge sweep angle results. Compressibility reduces 
the upwash at the leading edge for a given CY . Ninety percent suction recovery 
at  maneuvering CLS is achieved. 

30. Feryn, M.O. and Cambell, .J.F., “Effects of Wing Dihedral and Planform on Sta- 
bility Characteristics of a Research Model at Mach Numbers From 1.80 to 4.63,” 
NASA T N  D-2914, 1965. 
’ This paper presents the effects of planform, horizontal tail, and dihedral; there 

are no control deflections. 

31. Fox, C.H. Jr., “Predicting Lift and Drag for Delta Wings in Ground Effect,” 
NASA TN D-4891, January 1969. 

If potential theory or the suction analogy predicts free-air coefficients, it will 
predict ground effect coefficients accurately. ( A R  < 2).  

32. Fox, C.H. and Lamar, J.E., “ Theoretical and Experimental Longitudinal Aerody- 
namic Characteristics of an Aspect Ratio .25 Sharp-Edged Delta Wing at Subsonic, 
Supersonic, and Hypersonic Speeds,” NASA T N  D-7651, August 1974. 

As M increases, the Mach cone approaches the leading edge and the upwash 
field is reduced, causing smaller, weaker leading edge vorticies. K,  becomes a 
function of CY for M > 1.  The Tangent Cone Hypersonic Method is valid for 
M > 3. 
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33. Frink, N.T., “Analytical Study of Vortex Flaps on Highly Swept Delta Wings,” 
ICAS 82 (. .7.2. 

Description of VLM-SA, WVLM-SA, and FVS comput,er programs. There are 
comparisons with experiment. Trailing edge flaps increase circulation. 

34. Frink, N.T., “Critical Evaluation of a Vortex Flap Design Concept Using a 74” 
Delta Configuration,” NASA CP 2417, Paper 2. 

It can be difficult to use VLM-SA for highly deflected leading edge vortex flaps 
(40”) since it applies linear boundary conditions. The Free Vortex Sheet (FVS) 
method applies non-linear boundary conditions. Again, the percentage increase 
in L/D for vortex flaps is greatest for wings with lower sweep. 

35. Frink, N.T., Huffman, J.K. and Johnson, T.D. Jr., “Vortex Flap Flow Reattach- 
ment Line and Subsonic Longitudinal Aerodynamic Data on 50” to 74” Delta Wings 
With Common Fuselage,” NASA TM 84618, 1983. 

This study investigates how the reattachment line is affected by canards, trail- 
ing edge flaps, and wing sweep. 

36. Goebel, T.P., Bonner, E. and Robinson, D.A., “A Study of Wing Body Blending for 
an Advanced Supersonic Transport,” NASA CP 2108, N81-17987, March 1980. 

This paper compares the attainable leading edge thrust which is predicted by 
H.W. Carlson (item 13) to APAS. 

37. Grantham, W.D. and Nguyen, L.T., “Recent Ground Based and In-Flight Simula- 
tor Studies of Low-Speed Handling Characteristics of Supersonic Cruise Transport 
Aircraft,” AIAA Paper 77-1144, 1977. 

Low speed handling problems of an arrow wing supersonic cruise transport 
were solved by using a small lifting canard and small horizontal tail by Boe- 
ing, but  NASA was able to  solve them with careful attention to  wing planform, 
wing leading edge design, ;.nd high lift devices. So, it is possible that  many 
aerodynamic stability problems of delta wing aircraft designed for supersonic 
speeds may be solved without extra control surfaces if the aerodynamicist use 
some ingenuity. 

38. Grantham, W.D., Nguyen, L.T., Deal, P.L.,. Neubauer, M.J. Jr., Gregory, F.D. 
and Smith, P.M., “Ground Based and In Flight Simulator STudies of Low-Speed 
Handling Characteristics of Two Supersonic Cruise Transport Concepts,” NASA 
TP 1240, July 1978. 

The results of a study of the amount of control augmentation necessary to per- 
mit acceptable stability and flying qualities are presented. 

39. Grantz, A.C., “The Lateral-Directional Characteristics of a 74’ Delta Wing Em- 
ploying Gothic Planform Vortex Flaps,” NASA CP 2417, Paper 3. 

For a > 15”, the configuration’s stability decreases despite the improved ver- 
tical tail effectiveness. Asymmetric leading edge deflections are shown to be 
inferior to conventional ailerons in generating rolling moments. Lan’s empirical 
formulas for predicting vortex burst and its effects did not work. 
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40. Hardy, B.C. and Fiddes, S.P., “Prediction of Vortex Lift of Non-Planar Wings By 
the Suction Analogy,” Aeronautical Journal, April 1988. 

A 3-D panel method is used to calculate the edge-suction forces for thin sharp- 
edged wings. The suction forces are then used to estimate the vortex lift by 
using the suction analogy. 

41. Henderson, J.M., “Low Speed Handling of a Slender Delta (HPl lS) ,”  Journal of the 
Royal Aeronautical Society, Vol. 69, 1965, p. 311. 
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42. Henderson, “Effects of Wing Leading-Edge Flap Deflections on Subsonic Longitudi- 
nal Aerodynamic Characteristics of a Wing-Fuselage Configuration With 44” Swept 
Wing,” NASA TP 1351, November 1978. 

Deflecting simple leading edge flaps recovered a significant portion of the lead- 
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43. Hoffler, “Investigation of the Vortex Tab,” M.S. Thesis, N.C. State Univ., 
NASA CR 172586, May 1985. 

Increases in L/D obtained with a vortex tab are small and may be offset by the 
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44. Hoffman, S., “Bibliography of Supersonic Cruise Research (SCR) Program From 
1977 to  Mid-1980,” NASA RP-1063, December 1980. 
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46. Huebner, L.B. and Lamar, T.E., “Performance Analysis and Supersonic Design of 
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per 7. 
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May 1960. 
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about the planform effects on longitudinal aerodynamic characteristics. 
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70” Sweepback,” ARC R&M 3673, November 1969. 
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tudinal stability, and reductions in lift-dependent drag. For bi-convex airfoils 
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4. 
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2-D airfoil type flow is the degenerate case of conical flow. Secondary separa- 
tion causes additional outboard pressure peaks, resulting in non-conical flow. 
The load at the trailing edge doesn’t vanish for a supersonic wing. Vortex 
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way to  obtain vortex thrust. 
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55. Kulfan, R.M., “Wing CTeornet,ry Effects on Leading Edge Vorticies,” AIAA Pa- 
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Leading-Edge Thrust a t  Cruise,” NASA TP 1632, 1980. 

Experimental and theoretical correlations are presented which show that  signif- 
icant levels of leading edge thrust are possible at  supersonic speeds for certain 
wings. 

93. Robins, A.W., Carlson, H.W. and Mack, R.J., “Supersonic Wings With Significant 
Leading-Edge Thrust at Cruise,” NASA CP 2108, N81-17990, March 1980. 

It is possible to exploit the leading edge suction phenomenon at supersonic 
speeds with the proper wing design. 

94. Robins, A.W., Lamb, H., and Miller, D.S., “Aerodynamic Characteristics at Mach 
Numbers of 1.5, 1.8, and 2.0 of a Blended Wing-Body Configuration With and 
Without Integral Canards,” NASA TP 1427, May 1979. 

At low CLS in the supersonic regime, any reduction in the vortex drag through 
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suction can be obtained at C ~ = . 6 5  . Leading edge flaps have less of an effect 
on CD or CL when the trailing edge flaps are deflected. 

97. Ross, A.J. and Beechan, L.J., “An Approximate Analysis of th  Non-Linear Lateral 
Motion of a Slender Aircraft (HP115) at Low Speeds,” ARC R&M 3674. 

98. Runyan, L.J., Middleton, W.D. and Paulson, J.A., “Wind Tunnel Test Results 
of a New Leading Edge Flap Design fo Highly Swept Wings-A Vortex Flap,” 
NASA C P  2108, N81-17986, March 1980. 

This paper presents an investigation of a leading edge flap which has a small 
tab on the leading edge to force separation. An increase in both lift and drag, 
typical of leading edge vortex formation, is found. 

33 



1 
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ing edge flaps and their effects on vortex lift,  pitch instability, L/D,  and more. 
Lateral information is also provided. 

36 



. . 

E 
v) 
a, 
V 
(d a rn 



.- . 

d s 
m 
r( 

I 
x .. 
N 



x 
3 Is 

I 
M 
E 

.. 
m 




