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1. 

the 

the 

INTRODUCTION 

The task of this research, as originally proposed, was to focus on 

development of a statistical methodology that may be used to enhance 

Space Shuttle Main Engine (SSME) performance prediction accuracy. 

- 

This methodology was expected to be used in conjunction with existing 

SSME performance prediction computer codes to improve parameter 

prediction accuracy and to quantify that accuracy. However, after a 

review of related literature, the researchers for this project concluded 

that the proposed problem required a coverage of areas such as linear 

and nonlinear system theory, measurement theory, statistics, and 

stochastic estimation. 

Since state space theory is the foundation for a more complete study 

of each of the before mentioned areas, these researchers chose to 

refocus the emphasis of the project to cover the more specialized topic of 

state vector estimation procedures. State vector estimation was also 

selected because of current and future concerns by NASA for SSME 

performance evaluation. That is ,  there is a current interest in an 

improved evaluation procedure for actual SSME post flight performance as 

well as for post static test performance of a single SSME. Furthermore, 

Taniguchi (1985) and Cikanek (1985) described a current investigation of 

analytical methods that may be used to improve test stand failure 

detection. Many of the analytical tools that have been suggested for 

failure detection applications are based on a function of a state vector 

estimate. Hence, this paper considers the issue of post flight/test state 

variable reconstruction through the application of observations made on 

the output of the Space Shuttle propulsion system. The incentive for 

the concepts discussed here is rooted in a NASA contract report by 

Rogers (1987). Rogers used the 

-1- 
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Kalman filtering procedure to reconstruct the state variables of the Space 

Shuttle propulsion system. 

An objective of this paper is to give the general setup of the Kalman 

filter and its connection to linear regression. 

examine the Rogers (1987) reconstruction methodology for application 

A second objective is to 

to the reconstruction of the state vector of a single Space Shuttle Main 

Engine (SSME) by using static test firing data. 

Throughout this paper, underlined capital letters are used to denote 

vectors, capital letters denote matrices, and the identity matrix is denoted 

by the letter I. 

of any matrix or vector is denoted by using the letter T at the superscript 

position. 

All vectors are of the column type and the transpose 

The letter E denotes the expectation operator, N(U, C ) denotes 

the multivariate normal probability distribution with mean vector U and 

covariance matrix C , The caret symbol '? ,. 11 written directly above -a scalar 

- 

or vector denotes a statistical estimator of that vector or scalar. 

2. ESTABLISHMENT - OF NOTATION 

For any Space Shuttle flight, let - Z tdenote the observed values of 

vector - Z at time t. 

of the Space Shuttle propulsion system that can be measured. For example, 

the components of - Z t  may be chamber pressure, oxygen flow rate, hydrogen 

flow rate, etc.,  for each of the three SSME's. 

components for vector Zt and 71 components for vector X t  where - X t  is 

defined below. 

-t 

Each component of - Z t  represents a relevant ouptut 

Rogers (1987) lists 35 

Vector X 

It is assumed that the observation vector - Z 

is a state vector of parameters to be estimated at time 

is a function of the t. 

state vector Xt . That is, 

3 = & at , t )  + 3 (2.1) 
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where h - is some function and xt 41 N(O - , R t ) .  

to change with respect to time according to the equation 

State vector 5 is known 

T where f - is some function, Kt % N(O - ,Qt) and E(W, xt 1 = 0. 

I f  it is assumed that f and h in equations ( 2 . 1 )  and ( 2 . 2 )  are - - 
linear, then numerical procedures allow u s  to transform these equations 

to the form 

S = H  Y + v  K % -K ( 2 . 4 )  

where K represents discrete values of t ,  W 

N(O ,RK). 

'L N ( g ,  QK) and xK ?r 4 

-After a Space Shuttle flight has taken place, the post flight reconstruc- 

tion procedure seeks to use the observed values of & and the equations in 

( 2 . 3 )  and ( 2 . 4 )  to reconstruct (estimate) the parameters zK so that the cstima- 

tion error is minimized. The estimated value of 5 is denoted by ZK. A 

3. A RECURSIVE ESTIMATOR OF X 

In order to complete the development of the reconstruction process 

mentioned in section 2 ,  w e  consider a system of equations 

where (3.1) is a system of linear equations that has been generated by 

making n observations on the single equation 



4 

where Z *  and E* are vectors or  scalars. 

j = number of components in vector Z *  and X is fixed. 

being fixed means that X does not change with time or does not change 

H* is a jxp matrix where 

Vector X 

- - 
- - - - 

- 
as the number of observations on Z increase. 

det ( 1) f 0, then the weighted least squares estimate of kector X is 

given by 

I f  Cov( E) = C and - - 

- 

( 3 . 3 )  

and the covariance of the estimate is given by 

Cov(k> = E [(i - X )  - - -  (2 - X ) T ]  = (HT 2 - l  H)-' = P . ( 3 . 4 )  

The reader should be reminded that w i t h  the appropriate assump- 

tions, the max imum likelihood, the minimum variance unbiased linear as 

well as the minimum mean-squared error estimator of X are identical to 

the estimator given by equation ( 3 . 3 ) .  

measure of the quality of the estimates in vector X. 

cussion of these estimators may be found in Elbert (1984). 

- 
We also remark that Cov(X) is a - 

A 

A detailed dis- - 

In the sequel that follows, the estimator in equation ( 3 . 3 )  will be 

rearranged so that X can be estimated by using a recursive process. 

The development of the recursive process is started by assuming that 

there are K observations on equation (3.2) which form the system 

- 

-K 2 = H K X +  - ZK (3.5) 

where Cov L~ = Z K  and det (2,) # 0. B y  equation ( 3 . 3 )  

is the estimate of X where observations up to and inciuding observation 

I< are used. 

- 
The covariance of the estimator is denoted by PK and 
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Assume that an additional measurement gK+l has been made. Let 

T T 
cmd E (sK E ~ + ~ )  = 0 .  Note that E ( L ~  - E ~ + ~ )  = O ’K+1 where Cov (&K+l)  = 

means that the (K+l)th observation is independent of the 1st K observa- 

tions. 

the system 

Putting the K observations with the (K+l)th observation yields 

By substituting into equation ( 3 . 3 )  we get 

( 3 . 1 0 )  

Note that w e  can write 

Substituting results from ( 3 . 6 )  and ( 3 . 1 0 )  into ( 3 . 1 1 )  and using matrix 

algebra, we get , 

A A - 1  ) - 1  T - 1  
) . ( 3 . 1 2 )  T 

&+1 -  - -K x + (P-l K + H K + l  ‘K H K + l  H K + l  ‘K+1 (&+1 - H K + l  -K 

B y  substituting into equation ( 3 . 7 )  and using matrix algebra, we get 
I 

Substituting PK+l into equation ( 3 . 1 2 )  yields 



(3.13) 

and 

Equations ( 3.13) and ( 3.14) provide recursive equations for estimating 

X and its corresponding covariance matrix P .  - 
Recall that the estimator given in equation ( 3 . 3 )  may be identified 

I 

by using the symbol Zn. Therefore, if X is fixed as it is in equation 

(3.1), the recursive equations of (3.13) and (3.14) have no statistical 

- 

advantage over the estimator given in equation ( 3 . 3 ) .  

changes with time where there is one observation per time interval, 

then the recursive equations are quite useful. 

and (3.14) when combined with equations (2.3) and (2.4) form the 

Kalman filtering process. 

However, if X - 

In fact, equations (3.13) 

4.  

used 

THE KALMAN FILTER 

It is worthwhile to mention that Brown (1983) and Gelb (1974) 

matrix theory to express equations (3.13) and (3.14) as 

where 

K K + l  = P  K H K + 1  ( 'K+1 + H K + l  P K H T  K + 1  >-' 
and KK+l  is called the gain matrix. 

(4.3) 
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For the convenience of the reader, equations ( 2 . 3 )  and ( 2 . 4 )  are 

reprinted here. That is, 

&+1 = F K -K X + W K  - 
and 

( 4 . 4 )  

When equations (4.1) and (4.2) are combined with equations ( 4 . 4 )  and 

(4.51, two types of estimates of XK+l are possible for each K .  

notation by Gelb (1974) allows for the two estimators to be distinguished. 

That notation is 

A - 

A 

X -K+1 = the estimate of XK+l using all observations up to and - 
including observation K . 

= the estimate of P using all observations up to and including 'K+1 
observation K . 

iKiI' = the estimate of XK+l using all observations up to and - 
including observation ( K + 1 ) .  

The values of XKcl - - (-1 and p K l i )  are obtained by using equations (4.4) 

and (4 .5 ) .  The _Xg+l vector is often called the extrapolated o r  pre- 

dicted value of XK+l and PK+l ( - I  is called the extrapolated variance of 

a ( -1  

CI 

- 
X K + 1  * .  

.. < - I  
(+) are computed by substituting &+l The values of &+l ,. (+I and PKcl 

for XK in equation (4.2) and PKcl (-1 for pK in equation (4.1). - 
The computation summary is 



a 

( + I  T 
FK + QK = F p 

’K+1 K K  
( 4 . 7 )  

( 4 . 1 0 )  

Equations ( 4 . 6 )  to (4.10) completely describe the K a l m a n  filtering process 

when the original functions f and h of equations ( 2 . 1 )  and ( 2 . 2 )  are 

linsar . 
- - 

. 
However, when functions f and h are nonlinear, the state vectors - - 

XK ( K  = to, t l ,  . . . t T )  are estimated through the application of an 

extended K a l m a n  filtering procedure. 

iznlioll of functions f and h about some known state value X K .  The 

next paragraph provides a brief overview of the extended K a l m a n  filter 

concept . 

- 
This procedure requires a linear- 

. *  
- - - 

* 
Let XK be some known value of X and assume that AX is s m a l l .  - - - 

A first degree Taylor series approximation of functions ( 2 . 1 )  and ( 2 . 2 )  

may be 

and 

( 4 . 1 1 )  

(4.12) 

. *  * If it is assumed that X K  * is selected so that X K  = f ( z K ,  IC), then - - 
equations ( 4 . 1 1 )  and ( 4 . 1 2 )  become 
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and 

( 4 . 1 3 )  

(4.14) 

Equation (4.13) i s  called the linearized dynamics equation and ( 4 . 1 4 )  

is the linearized measurement equation. Note that equations ( 4 . 1 3 )  and 

( 4 . 1 4 )  may be transformed to equations that are equivalent to equations 

(2.3) and ( 2 . 4 ) .  

and error covariance matrices can be determined. 

estimate at time K is then given by 

Hence for each discrete t i m e  K ,  AXK can be estimated - 
The state vector 

where A"+) is computed by substituting from equations ( 4 . 1 3 )  and 

( 4 . 1 4 )  into equation ( 4 . 8 ) .  
A 

Vector XK+I is computed by letting - 
A 

X* = X and repeating the above procedure. -K+1 -K 

The extended Kalman filter has performed well in a large class of 

However, there are occasions when divergence occurs in applications. 

the state vector estimates. 

entries of the error covariance matrix PK become s m a l l  as compared to 

the actual error in the estimate of the state vector. 

divergence is not due to a defect in the filtering procedure, but may 

be caused by the linear approximation procedure, numerical rounding 

error,  or an inadequate model of the sys.tem being studied. 

Divergence occurs when the computed 

The cause of this 

Additional 

possibIe causes of divergence are mentioned by Celb (1974). 



A publication by Varhaegen and Van Dooren (1986) is representa- 

tive of the theoretical and experimental analyses that are currently 

being done on the divergence problem. 

code has implemented the U-D factorized algorithm as a means of con- 

The Rogers (1987) computer 

trolling numerical roundoff error that may lead to divergence in the 

state vector. 

are conducted through computer evaluations. 

Checks for other sources that may generate divergence 

5. CONCLUSION 

At this point w e  have reviewed the general setup for a regression 

problem where the parameters to be estimated are fixed. 

recursive equations ( 4 . 1 1 ,  ( 4 . 2 ) ,  and ( 4 . 3 )  which allowed for the 

development of an estimation procedure for a time varying parameter. 

When functions f and h are linear, it has been clearly stated that 

equations ( 2 . 3 )  and ( 2 . 4 )  are the essential ingredients for state 

variable reconstruction. 

by h e a r i n g  h and f about some known vector and treating the 

This lead to 

- _- 

If f and h are nonlinear, X K  can be estimated - - - 
- - 

linearized equations as if they are equations ( 2 . 3 )  and ( 2 . 4 ) .  

The problem of applying the extended Kalman filtering procedure 

to tke static test firing data remains. The basic approach for the 

application is identical to the presentation given in Section 4. 

fore, the computer codes that have been prepared by Rogers (19871, 

which are currently operational on the MSFC computer system, may be 

modified so that static test data may be analyzed. 

setup differs from the actual flight data in that many flight associated 

modules will  become inactive. Therefore, after adjustments are made 

for the analysis of static test data, it wil l  be necessary to evaluate the 

Performance of the computer code for the divergence of parameter 

estimates. 

There- 

The static test 
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