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Frequency Stabilization of Diode - Laser - Pumped Solid State Lasers

I. Introduction

The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state
lasers on the space shuttle and while doing so to perform a measurement of their frequency stability
and temporal coherence. These measurements will be made by combining the outputs of the two
lasers on an optical radiation detector and spectrally analyzing the beat note. The major piece of
capital equipment purchased with this grant was the monolithic 40 mW diode-laser-pumped solid-
state laser from Lightwave electronics. All of the purchased equipment will lead to a higher
stability narrower linewidth system. As of this date, however, the laser has not been deliveréd.
The delivery time for these devices is typically six months. All of the other equipment purchased
with this grant has been delivered and was used in the work described below. All of the equipment
ordered with the support of this grant was used to support laboratory experiments for the NASA
Sunlite program and is listed in appendix F. This equipment will also be used to perform future
experiments for the Sunlite program. The accomplishments and plans for the future are covered in
this report.

Diode-laser-pumped solid-state lasers have several characteristics that will make them
useful in space borne experiments. First, the diode-laser-pumped solid-state laser has high
electrical efficiency. Second, the laser is of a technology that enables scaling to higher powers in
the future. Third, the laser can be made extremely reliable. Reliability is crucial, for many space
based applications. Fourth, they are frequency and amplitude stable and have high temporal
coherence.

Diode-laser-pumped solid-state lasers are inherently efficient (see Appendix A). Recent
results at Lightwave Electronics Corporation have shown 59% slope efficiency for a diode-laser-

pumped solid state laser (Kane 1988, see Section II.). As for reliability, the laser we propose



should be capable of continuous operation. This is possible because the diode lasers can be remote
from the solid state gain medium by coupling through optical fibers.(see appendix A for a rhore
complete discussion) Diode lasers are constructed with optical detectors for monitoring their
output power built into their mounting case . A computer can actively monitor the output of each
diode laser. If it sees any variation in the output power that might indicate a problem, the computer
can turn off that diode laser and turn on a backup diode laser.

As for stability requirements, it is now generally believed (Hall, 1988) that any laser
can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as
it is likely to drift in a measurement time. The actuator bandwidth must be roughly ten times the
highest frequency having phase noise greater than 1 rad rms in the free running laser. A stable
Fabry-Perot cavity, or some narrow atomic or molecular transition must be available as a frequency
reference, and a proper feedback controller must be realizable. When these requirements are met,
the laser can operate with a linewidth narrower than the minimum free running linewidth of the
oscillator ( the Schawlow-Townes linewidth) and should only be limited by the shot noise of the
detection system. However, all else being equal, it is simpler to stabilize a laser whose free-
running linewidth is narrow to begin with because the controller's bandwidth requirements are then

less stringent. In the Section II we discuss the frequency stabilization experiments using fringe

side locking we have completed, the experiments we are currently building that used Pound-Drever

locking. In Section III we discuss the frequency doubling experiments we have done and the
prepartions underway to double a diode-laser-pumped solid-state laser and lock it to a transition in

iodine.

II. Frequency stabilization of NonPlanar Ring Oscillators (NPROs)
The diode-laser-pumped nonplanar ring oscillator (NPRO) was invented in 1984 by
Kane and Byer. The first NPROs were designed with several geometric constraints that limited

slope efficiency and frequency stability (Kane 1985). Figure 1 shows an NPRO pumped by a



diode laser. The nonplanar ring oscillator with diode laser pumping, monolithic resonator, and
unidirectional operation showed an extraordinarily narrow free-running linewidth of 3 kHz. Kane
and Byer measured this linewidth by performing a beat note measurement between two

independent NPROs in 1986 (see Figure 2).

Figure 1. Diode-laser-pumped nonplanar ring oscillator (NPRO)

A new more general mathematical analysis of the operation of the NPRO has been
performed by Nilsson and Byer (1988) allowing the constraints of the initial NPRO designs to be
removed.(see appendix B) The new theory is a Jones matrix eigenpolarization analysis of
monolithic solid-state unidirectional nonplanar ring oscillators, and the theory addresses the
following issues: 1) unidirectional operation, 2) low pump thresholds, and 3) irhmimity to
feedback.(see Appendix C) All of these concerns effect frequency stability directly. Optimized
NPROs have been designed with this new quantitative understanding of their operation and were
used in the experiments described below.

The observed 3 kHz linewidth, shown in Figure 2, is not the fundamental free-running

linewidth of the device, which is governed by the Schawlow-Townes equation

Av=-—m’2—
2nd°P



where Av is the laser linewidth in Hz, § is the photon decay time of the resonator, P is the output
power of the device, and hv is the photon energy. This equation, first published in the 1958 paper
that proposed the optical maser, shows that the expected quantum-limited linewidth is of order

1 Hz for output powers of order 1 mW.

Figure 2. Spectral analysis of the beat signal of two free running NPROs

The 1-Hz-mW linewidth-power product is not the limit of temporal coherence for
neodymium-doped solid-state lasers. The Schawlow-Townes equation shows that intrinsic losses
in the gain medium govern the ultimate free-running linewidth. Currently available Nd:Glass with
an intrinsic loss coefficient of 0.001 cm-! yields a theoretical linewidth of 32 mHz-mW. For low-
loss glass of the type now used in fibers, the theoretical linewidth is 2.2 mHz-mW.

Diode-laser pumping of Nd:Glass was demonstrated by Kozlovsky et al. (1986). They
showed that Nd:Glass with its lower gain and compensating lower loss has about the same
threshold as Nd:YAG. The pumping threshold for laser oscillation in our Nd:Glass experiment
was 2 mW. Furthermore, the low loss of the Nd:Glass medium led to a slope efficiency of 43%.
Nd:Glass is an interesting medium for diode-laser pumping &cause of its low loss, high optical
quality, and broad absorption band at the diode-laser pump wavelength. These factors, together

with the ability to dope glass at neodymium concentrations of up to 12%, may, in the future, make



Nd:Glass the medium of choice for diode-laser-arfay pumping at high average power -and high
temporal coherence.

The Schawlow-Townes limit is not the limiting linewidth of a laser oscilllator. With a
fringe side locking experiment as described below the fundamental linewidth is determined by the
detector shot noise. (Salomon,1988)

We have recently begun to study the problem of active frequency control of these
lasers. The laser systems used in our work were modified Lightwave Model 120 NPROs. A
typical Lightwave Model 120 NPRO consists of a Nd:YAG laser crystal, end-pumped by a low
power diode laser operating at 809 nm. For our experiments the Nd:YAG laser crystals were
removed and replaced by Nd:GGG crystals designed using the theory of Nilsson and Byer. The §
mW output radiation is at 1.06 um.

In Figure 3 we show the optical layout of our present experiment, a variant of the

fringe-side locking technique used on commercial dye lasers. (Barger,1973)
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Figure 3. Opﬁcal Layout for fringe side locking and beat note analysis

The frequency control and linewidth measurement scheme used in our experiment is as follows.

The outputs from two orthogonally polarized NPROs are combined on a beam splitter and relayed




to a confocal Fabry-Perot interferometer with a finesse of 300, a free spectral range of 300 MHz,
and cavity linewidth of IMHz. The nominal center frequencies of the two lasers are separated by
one free spectral range of the confocal Fabry-Perot (300 MHz) to avoid injection locking
ambiguities. The radiation transmitted through the interferometer is separated according to the two
orthogonal polarizations into two beams that are detected with fast silicon photodiodes. Consider
one of these two beams. The voltage from the detector is provided to a differential amplifier that
compares the output voltage to a reference voltage representing the high-slope point (120kHz/V) of
the cavity transmission fringe. The error signal is driven to zero by feedback to a piezoelectric
transducers (PZT) bonded directly to the Nd:GGG cxfystals. A voltage applied to the PZT alters the
length of the laser resonator and thereby changes the laser's frequency. The tuning coefficient of
the PZT transducer is 500 kHz/V, with a bandwidth of approximately 400 kHz. The second
output port of the beamsplitter that precedes the Fabry-Perot in Figure 3 enables simultaneous
measurement of the heterodyne beatnote between the two lasers. The heterodyne signal obtained
under locked conditions is displayed on an RF spectrum analyzer for linewidth analysis. Figure 4
shows the 500 Hz, resolution limited, relative linewidth of the two lasers locked to the Fabry-

Perot.
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Figure 4 The 500 Hz relative linewidth of the two lasers locked to the Fabry-Perot.



This 500 Hz relative linewidth is not the limit in stability that can be achieved with the
Nd:GGG NPRO. It was previously mentioned that these lasers have a Schalow-Townes linewidth
limit of 1Hz-mW. Thus for a SmW laser this linewidth is 200mHz. The fact that the observed
linewidth is 500Hz is due to the fact that we are sensitive to amplitude fluctuations in the laser
output when the detected light is compared to a reference voltage rather than a reference light
intensity. These fluctuations are interpreted as frequency noise by the servo system and therefore
impose FM noise onto the laser. This AM-FM noise in our system contributes approximately
300Hz from each laser giving an expected beatnote linewidth limit of between 500-600Hz. We are
presently implementing a system which overcomes this AM-FM noise contribution and also
replaces the detector shot noise limit with a limit in frequency stability dependent only upon the
shot noise in the laser beam. This systemn will have a theoretically obtainable linewidth of less than

1Hz.
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Figure 5. Experimental setup for Pound-Drever locking with RF sidebands



In this scheme, known as Pound-Drever (1983) locking (see Figure 5), the outputs of
the lasers are phase modulated at a frequency which lies outside the pass band of a Fabry-Perot
frequency discriminator. The sidebands reflect from the cavity and strike a detector, where they
mix with the reflected and phase shifted carrier. The phase shift of the carrier is strongly frequency
dependent because of the dispersion of the Fabry-Perot cavity near a resonance. The detected
signal at the modulation frequency is then mixed with the RF source to provide a low-noise, phase-
sensitive error signal with large dynamic range. The slope of this error signal is proportional to the
finnesse of the cavity. This error signal can be fed to an integrating controller with large DC gain
to actively reduce the laser linewidth by feeding back to a PZT bonded directly to the crystal. The
dynamics of this controller will determine the ultimate linewidth of the laser. We have been
actively working on the design of high gain controllers that will completely remove the laser's
_ intrinsic noise.

When the laser noise has been suppressed the remnant shot noise on the laser beam
determines the limit in frequency stability that can be achieved( Hall, 1986). In this regime the

remnant frequency fluctuations in a bandwidth f are given by(Drever, 1988)

OVoms = 5ch{2—%h—!ﬁ

where dv.,y is the cavity linewidth, v is the laser frequency M is the efficiency of the detector and P

is the laser power. This corresponds to a shot noise limited Loretzian linewidth of approximately

1mHz with a 1MHz cavity and ImW of 1.06pm radiation. Notice also that this limit in frequency
stability is improved with the narrower cavity linewidths and higher powers. We intend to
demonstrate that the Nd:YAG NPRO can be stabilized to the detector shot noise limit which is
about half of the Schawlow-Townes limit of 200mHz..In addition, we are obtaining 40 mWatt
lasers to reduce the shot noise limit still further.

As described above the linewidth of the Fabry-Perot reference cavity will ultimately
determine the linewidth limit. That is, a higher finesse cavity is a better frequency discriminator.

An important technical issue then, is the development of narrow linewidth, high finesse Fabry-



Perot cavities at the NPRO wavelengths near 1.06 um. Present technologies limit cavity
linewidths to approximately 50kHz, a hundredfold improvement over our present discriminator.
Therefore, with the use of cavities having finesse improvements of at least one order of magnitude,
we expect immediate improvements in the narrow linewidth operatidn of our Nd:YAG lasers.

A narrow linewidth hyperfine transition in molecular iodine represents a high Q
reference to which our lasers could also be locked. The linewidths of these transitions are typically
100kHz and therefore represent an improvement by a factor of almost 10 over our existing
reference. This molecular Q is not as high as that represented by present cavity technology, but the
long term drifts in the iodine transition frequencies are negligible compared to those of typical
interferometers. We intend to investigate the possibility of obtaining narrow linewidth operation
by doubling the laser radiation from our NPROs and locking them to iodine with controllers similar
to those already used in our present cavity-locking experiments.

Much of the technical noise associated with a laser originates in the laser's
environment. To this end we feel that improved isolation of the nonplanar ring oscillators can only
improve the starting linewidth and hence ease any requirements for further reduction. Therefore,
we intend to build isolation chambers for our laser systems and quantify the improved noise
spectral density and linewidth measurements that can be expected.

Recent work on ultrastable laser development at Stanford has led to an improvement in
NPRO linewidths from 3 kHz to 300 Hz or by a factor of 10 over those previously reported. We
have developed an experimental system that is capable of quantitative measurement of linewidths
and noise spectral densities, and we have demonstrated limited agreement between the two kinds of
measurements. Most importantly, we have identified four areas of research which we believe will
allow us to reduce the relative linewidth of locked lasers to below 1Hz. The four essential issues
are 1) improved feedback electronics development, 2) stable, high finesse Fabry-Perot cavity

development, 3) locking of laser frequencies to hyperfine transitions in molecular iodine, and 4)



vacuum isolation of the NPROs. In this work we are following closely the ideas that have been
worked out by Professor Jan Hall and his collaborators at JILA in Boulder, Colorado.

These results are reasonable as recently shown by actual measurements. Figure 6
shows results recently obtained by Tom Kane (1988) at Lightwave Electronics in which a slope
efficiency of 59% was demonstrated using a narrow divergence diode Jaser pump from Spectra
Diode Labs. Note that the diode's electrical to optical conversion efficiency is 59%, leading to an

overall electrical efficiency of 22% for this laser.
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Figure 6. Slope efficiency of NPRO pumped by a narrow divergence SDL diode laser.

III.  Resonant frequency doubling of an NPRO
An important extension of diode-laser-pumped solid-state lasers involves the generation
of visible radiation by frequency doubling. Since the power of the diode-laser-pumped laser is
low, compared to the peak powers available from pulsed lasers, efficient second harmonic
generation (SHG) requires some method of increasing the intensities in the doubling crystal.
Approaches to cw second harmonic generation have concentrated on intracavity frequency
doubling (Baer 1986), intracavity sum generation (Risk, 1988), and self doubling (Fan 1986),

where advantage is taken of the high circulating intensity present inside the laser resonator.
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Although these internal SHG lasers yield good conversion efficiencies, they typically oscillate in
several axial modes, resulting in large amplitude fluctuations at the second harmonic.

An alternative approach to SHG is the use of an external resonant cavity to enhance the
fields present in the doubling crystal as was first demonstrated by Ashkin, Boyd and Dziedzic in
1966. Their approach allows the external harmonic resonant cavity and the laser cavity to be
independently optimized, which is especially important in low gain or quasi-three-level laser
systems. Independent optimization also allows the design of a single axial mode laser, thus
insuring that the output of the external doubler is also a single axial mode.

The results of earlier investigations of external resonant doubling have indicated the
importance of both frequency stable lasers, for maintaining the resonance condition, and the use of
very low loss external cavities and doubling crystals for large enhancement of the fundamental
power. The recent development of single-mode, frequency-stable monolithic nonplanar ring
Nd:YAG oscillators has made resonant doubling feasible. Another important advance is the
development of high quality MgO:LiNbOj3 as a nonlinear material. Its loss at 1064 nm is less than
0.003 cm-1, and it does not suffer from photorefractive effects when frequency doubling 1064 nm
light at the 107°C phasematching temperature.

Recently we have demonstrated 56% conversion efficiency by external resonant cavity
second harmonic generation of a 53 mW single-frequency Nd:YAG NPRO (Kozlovsky, 1987 and

Appendix E) with the apparatus shown in Figure 7. The 56% conversion efficiency was obtained

Figure 7 Setup for resonant harmonic generation
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with a 12.5 mm long monolithic external ring cavity resonant doubler, which produced 29.7 ﬁlW
of cw, single axial mode 532 nm radiation from an input of 53 mW and was the highest cw
nonlinear conversion yet achieved. Theory shows that external resonant SHG conversion
efficiency will improve to 80-90 % when optimized by the proper selection of mirrors and cavity
length (Kozlovsky, 1988).

The second scheme to frequency stabilize the lasers is to lock their second harmonic to
a transition in iodine. This will require the use of the high efficiency doubled and the the 40 mW

lasers. A second laser is being purchased on the Sub

IV. Conclusion

The goal of the NASA Sunlite program, that this grant has supported, is to measure thé
laser stability and temporal coherence of two diode-laser-pumped solid-state lasers on the space
shuttle. These measurements will be made by combining the outputs of the two lasers on a
detector and spectrally analyzing the beat note. A list of the equipment purchased with this grant to
support laboratory experiments for the NASA Sunlite program is contained in Appendix F.

We have locked two diode-laser-pumped solid-state lasers to the same Fabry-Perot
interferometer. The output of the two lasers was then combined on a silicon photodiode and the
beat note spectrally analyzed to determine the frequency stability and temporal coherence of the
laser interferometer system. The resulting linewidth was 500 hertz. We are currently modifying
this experiment to use Pound-Drever locking and expect to approach if not surpass the Schawlow-
Townes limit for the free running lasers. The frequency doubling experiments have produced the
most efficient doubling to date for a low power cw laser and we are currently preparing an

experiment to lock the second harmonics of two NPRO:s to a transition in iodine.
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With the completion of these experimemsi we will prepare for the upcoming critical

design review and expect to begin the process of designing the shuttle Sunlite experiment in the

spring.
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Eigenpolarization Theory of Monolithic NonPlanar Ring Oscillators

Alan C. Nilsson, Eric K. Gustafson, and Robert L. Byer

| L. INTRODUCTION
Solid-state Nd:YAG lasers emitting frequency stable, narrow linewidth radiation have long been
sought for applications such as coherent communication, spectroscopy, remote sensing, and
precision metrology. Technical noise has made it difficult to achieve laser linewidths narrower
than several hundred kilohertz [1]-{3]). The receat invention of the monolithic NonPlanar Ring
Oscillator (NPRO) [4], [S], a diode-laser-pumped ring laser with an integral optical diode [6] that
forces unidirectional traveling-wave operation has overcome several technical noise problems.
Heterodyne experiments performed with a free-running pair of diode-laser-array-pumped Nd: YAG
NPROs have demonstrated that the short-term linewidth of the output radiation is as narrow as
- 3kHz under favorable environmental conditions [7]). Recently, NPROs with single-stripe di_odc
laser pumps (8], (9] have been investigated, and these lasers may have even narrower linewidths.
The principal sources of linewidth broadening and frequency instability in Nd:YAG lasers [10]
are: 1) fluctuations in optical path length caused by vibration and thermal effects, 2) fluctuations
caused by unstable pumping, 3) multiaxial mode operation caused by spatial hole burning, and
4) instability caused by extracavity optical feedback. The NPRO, by virtue of its diode-laser-
pumped monolithic ring design, overcomes these limitations.
First, the NPRO resonator is small (typically 5 x 4 x 2 mm for recent designs) and rigid since it
consists of a monolithic block of Nd:YAG or a similar material. Second, diode laser pumping can
be extremely stable in both wavelength and power, and diode laser pumping greatly reduces the
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thermal loading of the resonator compared to lamp pumping [11]. Third, the integral optical diode
enforces unidirectional traveling-wave operation of the laser and thereby eliminates spatial hole
burning, so the laser oscillates in a single axial mode. By properly focusing the diode laser pump
radiation into the mode volume of the NPRO, TEMgyq transverse mode operation is obtained as
well. Finally, the ring geometry reduces the sensitivity of the laser to extracavity optical feedback,
because output radiation reflected back into the NPRO cavity is in a high loss polarization state for
its direction of propagation and is also frequency shifted from the resonant frequency for that
direction (see Sec. IT). Thus, the reflected light does not swongly couple to the oscillating mode.

The key to the operation of the NPRO as a unidirectional traveling wave laser is its integral

optical diode. Discrete-clement Faraday effect opdcal diodes have long been used .to enforce stable
unidirectional operation of solid-state [12]-[14], He-Ne [15], and dye ring lasers [16]-[17]. The
optical diode creates a polarization-dependent difference in loss for the eigenmodes of the two
directions of propagation around a ring. The loss difference is produced by a combination of a
reciprocal polarization rotator such as c-axis quartz, a nonreciprocal rotator such as a Faraday
rotator, and a polarizer. Ideally, one arranges the reciprocal and nonreciprocal rotations to cancel
for one direction of propagation and add for the other. For the direction in which the rotations
cancel, the eigenpolarizations are the low and high loss linear polarization states aligned with the
principal axes of the partial polarizer. For the direction in which the rotations add, the
eigenpolarizations are in general linear or elliptical polarization states with losses intermediate
between the maximum and minimum.

The NPRO combines the elements of the optical diode in the monolithic solid-state gain medium
itself.! The NPRO uses a four-reflector nonplanar ring resonator as its reciprocal polarization
rotator [18]-[20]. (See also Appendix A.) A magnetic field applied to the gain medium causes
nonreciprocal Faraday rotation. A multilayer dielectric mirror used at oblique incidence is the
partial polarizer. The NPRO is a unidirectional ring laser with no discrete intracavity elements,
which means that the resonator can have low loss and small intracavity coupling of
counterpropagating modes. Fig. 1 shows a schematic of the diode laser pump and the monolithic

Nd:YAG resonator with its nonplanar ring light path.
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In this paper we present a comprehensive formalism that enables us to analyze the
eigenpolarizations of a monolithic NPRO. We explain how the properties of the integral optical
diode depend on the choice of the gain medium, the applied magnetic field, and the geomery of the
nonplanar ring light path. Using optical equivalence theorems to gain insight into the behavior of
the NPRO, we discuss in detail a design strategy for producing strong intracavity optical diodes.
We conclude with a detailed analysis of the eigenpolarizations for one such NPRO, and we discuss
the prospects for further reducing the linewidths of these remarkable lasers.

II. THEORY OF THE NPRO

We present here a theory of the polarization effects in a monolithic, optically isotropic, nonplanar
ring laser based on the Jones matrix calculus. Extensive discussion of the Jones calculus can be
found in Jones's original papers {21}, [22] and in Azzam and Bashara {23). Applications of the
Jones calculus to finding eigenpolarizations of anisotropic laser resonators are found in [24]-{32]
and references therein. We first review the Jones matrix calculus, describe the geometry of the
light path in the nonplanar ring, and introduce the coordinate systems used in our analysis. Then
we give the explicit forms of the Jones matrices for the polarization-influencing elements of the
resonator, and we find the round trip Jones matrices for the two directions of propagation around
the ring. From the round trip matrices we solve for the eigenvalues, from which we derive the
round trip losses and the frequency differences of the polarization eigenmodes. We conclude with

a brief discussion of the eigenpolarizations themselves.

A. Review of Jones matrix calculus

Consider a monochromatic TEM plane wave propagating along the z axis in a lossless, isotropic
medium. The polarization of the light at a point in space is defined by the behavior of the electric
field E at that point as a function of time. For a uniform plane wave the polarization is constant in

any plane transverse to the direction of propagation, so we write the electric field as

E(z, t) = Re(Eq exp[i (wt+9)] exp(-ikz)}. (h



Here Ey) is a complex vector amplitude, Eg = Ex & + Ey §, where E, and Ey are complex.

The Cartesian Jones vector ( the Jones vector expressed with respect to the linear polarization
basis states  and § ) for the above electric field contains the information on the state of

polarization and suppresses the propagation terms. The Cartesian Jones vector E is given by [23]

E,
b
. @

Unless one is interested in the amplitude and absolute phase of the electric field, it suffices to

characterize the state of polarization by the ratio of the components of the Jones vector,

E
x=—Z= e
E, |E4 , 3)

with § = arg( Ey ) - arg( Ex ).

From the complex number x, we find the azimuth 8 (-x/2 < 8 < #/2), and ellipticity parameter
€ (-nt/4 S & S =/4) of the elliptical polarization state by

anaty = 2R
1-|x | 4
sin(2e) = 22200
1+lx| (5)

The azimuth is the angle between the major axis of the ellipse and the x axis of the coordinate
system. Let the semimajor (semiminor) axis of the ellipse be a (b). The ratio of the axes,tya
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(0 <b/a £1), is called the ellipticity. The helicity of the elliptically polarized light is the sign of
the projection of the angular momentum of the light onto the direction of propagation. Helicity
relates to the sense in which the ellipse is traced in time by the electric field vector. If the ellipse is
traced in the counterclockwise (clockwise) sense as seen by an observer looking toward the light
source, the helicity is positive (negative). Thus positive helicity corresponds to the traditional
optics convention for left-handed light, and negative helicity corresponds to right-handed light.
The helicity and the ellipticity are combined into a single ellipticity parameter € such that

|tan(e) { = b/a with e positive for right-handed light and negative for left-handed light.

The Jones matrix of an optical element is the 2x2 complex matrix M that maps the input Jones

vector into the output Jones vector, that is

B o '
M21M22 y in (6)

The Jones matrix calculus is straightforward mathematically, but there are many pitfalls involving
polarization conventions, coordinate system conventions, and forms of the Jones matrices
themselves. We have adopted the polarization conventions recommended by Bennett and Bennett
in the Handbook of Oprics [33] and used by Azzam and Bashara [23]. We will exhibit our
coordinate systems and the explicit forms of the Jones matrices as we proceed.

B. Geometry of light path

A general NPRO resonator is shown in top and side views in Fig. 2. The monolithic, nonpianar
ring resonator is a single block of optically isotropic gain medium (e.g. Nd:YAG) with four
reflecting surfaces whose normals are not coplanar. The facets containing points B, C, and D are
optically polished flat surfaces at which total internal reflection (TIR) occurs. The output coupler at
A is a convex spherical surface with a multilayer dielectric mirror coating that is partially

transmitting. The curvature of the surface at A determines the spatial modes of the resonator.



The ray geometry of the light path within the resonator is shown in Fig. 3. Fig. 3(a) shows only
the light path with unit propagation vectors along each leg, and Fig. 3(b) introduces the notation
for the angles that specify the light path. The light path is the perimeter of a three-dimensional
geometric figure formed by joining two isosceles triangles (ABD and BCD) along a common base
(BD). The dihedral angle between the two planes of the triangles is denoted by 8. For any value
of B other than 0 or &, the light path is nonplanar. The light path has a plane of reflection
symmetry (ACE). A uniform magnetic field B is applied parallel to AE as shown in Fig. 3(b).

We denote the angles of incidence at A, B, C, and D by 84, 68, 8¢, and Op (= 0p), respectively.

The geometry of the light path has four degrees of freedom: two parameters for the first
isosceles triangle, only one parameter for the second isosceles triangle since the triangles share a
common base, and one parameter to characterize the nonplanarity. The light path is fully specified
by, for example, the lengths AE and CE of the isosceles nﬁngla, together with the two angles 04
and B. We choose these parameters due to their physical significance. The angle of incidence on
the output coupler, 8 5, determines both the astigmatism of the resonator and the difference
between the s and p Fresnel reflection coefficients. The dihedral angle B measures the nonplanarity

of the resonator. The distance AE determines the amount of Faraday rotation that occurs along legs
AB and DA since AE is the projection of those legs parallel to the applied magnetic field.
Similarly, CEcos(B) determines the amount of Faraday rotation that occurs along legs BC and CD.

C. Coordinate system conventions

There are two ways to traverse the ring: counterclockwise (CCW) and clockwise (CW) as
viewed from above the light path (upper view of Fig. 2). Fig. 3(a) shows the unit vectors for
propagation along each leg in the CCW direction A»B—C—D—A. In Figs. 4 and 5 we
introduce the coordinate systems used in analysing CCW propagation. There are four reflections
in a round trip through the resonator. We describe the incident and reflected waves in the principal
axis system (basis vectors perpendicular and parallel to the plane of incidence) for the given
reflector. Since the resonator is nonplanar, the planes of incidence for successive reflections do not

coincide. For example, to transform from the principal axis system for reflection at A into the
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principal axis system for reflection at B requires a rotation about the axis AB by the angle 0 45,
We show two views of this transformation in Fig. 4(a). The left hand side of Fig. 4(a) is drawn
from the point of view of an observer at B looking toward A, and the right hand side is a
perspective view.

There are many different conventions for the coordinate systems used to describe reflection, and
the phases of the Fresnel coefficients depend on the coordinate systems. Qur coordinate systems
are shown on the left in Fig. 4(b). The orthogonal unit vectors for the incident and reflected
coordinate systems are chosen as follows. Set £ parallel to the propagation direction R. Choose §
perpendicular to the plane of incidence and common to both coordinate systems, and choose & in
the plane of incidence such that & x § = 2. The incident and reflected coordinate systems thus
share a common § and are related by a rotation about § through an angle & — 28inc, Where Qinc
denotes the angle of incidence. In this set of coordinate systems the Fresnel amplitude coefficients
for reflection from a planar interface between two nonmagnetic, lossless, optically isotropic media
are [34])

. El(ref) -5in( 04, = 6 1rane)
= Ey(mc) sm(9m+9m) N

,‘(ref) tan( 8. — 6 1 2ng)
PTEO)  tan(8,,+0,0,) ®

where subscripts s and p mean perpendicular and parallel to the plane of incidence, respectively;
E(inc) and E(ref) are the incident and reflected electric field amplitudes, Oinc is the angle of
incidence, and 0 rans is the angle of refraction related to Binc by Snell's law.

The right hand side of Fig. 4(b) shows a perspective view of the two coordinate systems
associated with reflection from B. To describe reflection from C, we must once again rotate

coordinate systems. Fig. 4(c) shows the rotation through 8pc that moves % from the plane of
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incidence at B to the plane of incidence at C. Finally, Fig. 5 shows all of the coordinate systems
for a round trip in the CCW direction. Since there are four reflections and two coordinate systems
per reflection, we have eight different coordinate systems. The two coordinate systems associated
with reflection at a vertex are related by rotation about their common $, and along a given leg the
two coordinate systems are related by a rotation about their common 2.

To obtain the coordinate systems used for analysis of the CW propagation, we simply rotate each
of the local CCW coordinate systems by x about its y axis. This rotation places the local £ along
the new direction of propagation, preserves the choice of the perpendicular ($) to the local plane of
incidence, and reverses the direction of & to keep the coordinate system right-handed.

The motivation for introducing this collection of 16 local coordinate systems is that they are the
principal axis systems for the reflections, and the Jones matrices are most simply expressed in the
principal axis coordinate systems. Additionally, the distinction between CCW and CW coordinate
systems makes possible a simple proof of the need for the nonplanar geometry in establishing
unidirectional operation (see Sec. ILF.1). We believe that these conventions best separate the
physics of the problem from the complications of the nonplanar geometry.

D. Explicit forms of Jones matrices

We assume two properties for the solid-state gain medium from which the resonator is
constructed: optical isotropy, and Faraday rotation in an applied magnetic field. We further
assume that the pumped medium is optically isotopic, i.e. we neglect the small thermal
birefringence induced by the diode laser pumping, and we do not consider nonlinear saturation
effects, Within a monolithic resonator made from such a medium (e.g. Nd:YAG; a cubic crystal
with a nonzero Verdet constant), the polarization of light is modified by reflections and by
propagation along an applied magnetic field. Thus, Jones matrices for reflection and rotation
appear in our analysis. We express the Jones matrices for reflections in their principal axis
systems, so those matrices are diagonal. Here we give, for each polarization-influencing effect in

the resonator, the explicit Jones matrices for CCW (+) and CW (=) propagation.



\J

1. Jones matrices for reflection from the output coupler at A

The Jones matrices for reflection from the output coupler at A are identical for CCW and CW

propagation and are given by

Or,

+ - Jr,0
M A= M A= [ P ]
, ()
where i'p and rg are the Fresnel amplitude reflection coefficients for the mirror at A. These
coefficients are complex numbers with unequal moduli due to the oblique angle of incidence on the

dielecuic mirror. We can extract any common phase factor from rg and rp and rewrite the matrix as

(10
where Rp =) rpl , Rg=| rsl, and A is the relative phase shift on reflection, defined by

A=8p-3, (11)

In principle the phase shift on reflection from a dielectric mirror is calculated by the method of
characteristic matrices [35]. The phase shift that occurs in practice will depend on the complicated
details of the thin film coating process used to make the dielectric stack. Experimentally, therefore,
one must measure the phase shift on reflection from a multilayer dielectric mirror ellipsometrically.
For theoretical simplicity our analysis assumes that a quarter-wave dielectric stack with the

standard phase shift of x is used, so we can write the Jones matrix in the simpler form

. . [ir, ©
M*’MA’[ Op-iR]
s) (12)
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In this form we see that the Jones matrix for the output coupler is equal to the product of the Jones
matrix for a linear partial polarizer,

Rp0
0O R,
and the Jones matrix for a half-wave plate,
io
0-i

2. Jones matrices for total internal reflection (TIR) at B, C, and D

The Jones matrices for TIR are identical in form to the Jones matrices for reflection from a

dielectric mirror, except that the moduli Rp and Ry are both unity, and we have a simple formula
for calculating the relative phase shift A. The Jones matrix for TIR at vertex j =B, C,or D is

written as
i 3
. e 2 0
M;=M;= G4
0 e 2J
. (13)

where the relative phase shift A; is related to the angle of incidence 8; by (36]

cos(9) 4 | sin’(®)-—
n

. 2
2 sin (85 _ | (14)
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It is assumed that the external medium has an index of refraction of unity, and the internal
medium has an index of refraction n. For a bare surface A is positive and lies in the range
0 <A sx. The Jones matrix for TIR is identical in form to the Jones matrix for a lossless,
linear birefringent waveplate. Indeed, Fresnel rhombs are examples of TIR-based retarders.

The angles of incidence at B, C, and D can be calculated in terms of the parameter set used to
specify the geometry of the nonplanar ring light path, AE, CE, 04, and 8. We give the relevant
equations in Appendix B. The requirement that TIR occur at B, C, and D imposes restrictions on
the permissible geometries for the light path because each of 8, 6, and O p must exceed the
critical angle of incidence for the medium, 8z = sin-1(1/n).

- 3. Matrices for rotations of coordinate systems

Successive mirror reflections involve different principal axis systems related by rotation about
their common £ Since the Jones matrices are expressed in their principal axis systems, we must
introduce rotation matrices for transformation of the Jones vector between successive principal axis

systems. We write rotation matrices as follows

cos(a) -sin()

R =
@) sin(a) cos(a) ' (15)

The operator that projects a Jones vector into a new coordinate system related to the old one by a
positive rotation of the coordinate axes about their common 2 by angle a is the rotation matrix
R(—ct). The minus sign appears on & because we write the rotation operator in the active sense:
physically rotating the vector in the positive sense by @ in a fixed coordinate system is represented
by R(x). Consider the coordinate system transformation involved on leg AB. For CCW
propagation (from A to B) we must rotate the coordinate system at A by 8 Ap in the positive sense
to get the coordinate system at B. (See Fig 4(a).) For CW propagation (from B to A) we must
rotate the coordinate system at B also by 8 o3 in the positive sense to get the coordinate system at
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A. The signs of these angles do not change, because we use different coordinate systems for the
two directions of propagation. Thus we have, for the change of coordinate system on a given leg

from vertex j to adjacent vertex k
R*(8jk ) =R-(Bjk ). (16)

Equations for calculating the required coordinate system rotation angles in terms of the ring
parameters AE, CE, 0 5, and f are given in Appendix B.

4. Jones matrices for Faraday rotation
Light propagating in an otherwise optically isotropic medium in an applied magnetic field
experiences Faraday rotation. The azimuth of the polarization state is rotated by an angle

y=VLReB a7

in propagating a distance L in the medium. Here, V is the Verdet constant of the medium, R is a
unit vector in the direction of propagation, and B is the applied magnetic field. The corresponding

Jones matrix is again a rotation matrix, given by

cos(y) -sin(y)
sin(y) cos(y) . (18)

M=R(y) =
Note that for a given V, L, and B, the sign of the Faraday rotation angle dcgend_s on the direction
of propagation with respect to the field B. Consider propaéation along a given leg, say AB, and
assume the magnetic field is applied parallel 1o AE. Then for CCW propagation from A to B the
Faraday rotation Jones matrix is R(YAB), whereas for CW propagation from B to A the sign of the
angle changes because the direction of propagation R has been reversed, and the Jones matrix is
R(~YaB). Reversal of direction of propagation changes the signs of the Faraday rotation angles in
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our coordinate system convention but does not charige the signs of the geometric rotation angles.
This sign difference is the manifestation of the nonreciprocal nature of the Faraday effect. The
physical direction of polarizadon rotation due to the Faraday effect is determined only by the
direction of the magnetic field and does not depend on the direction of propagation. Coordinate

systems and sign conventions enter into the determination of the algebraic signs of the Faraday

rotation angles. Therefore,

M* = R(rp), (192)
M- = R(1j) = RC-10. (19b)

By extracting common phase factors from the Fresnel amplitude reflection coefficients, we have
expressed the Jones matrices for all but the reflection from the output coupler as two dimensional
unitary matrices with determinant +1, which defines these Jones matrices as members of the
special unitary group SU32. The output coupler’s Jones matrix cannot be unitary in general because
energy is lost through the output coupler, and the output coupler acts as a partial polanzer The
group properties of SU3 are helpful both analytically and numerically since they reduce the work

involved in evaluating and checking products. The most general element of SU2 can be written in

the form

b a 20)

with a and b complex numbers such that (a a* + b b*) = 1. In evaluating a product of two

elements of SU? it thus suffices to find just the two entries of a row or column in order to know

the entire matrix.
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E. Round trip Jones matrices for CCW and CW propagation

In steady state laser operation the polarization state: at any point along the beam axis of the
resonator must repeat itself after a round trip. We have assumed that the pumped medium is
optically isotropic, so the main effect of the gain is t maintain the amplitude of the electric field.
The allowed polarizations of the cavity are determined by the anisotropy of the unpumped cavity,
so we will solve for the cigenpolarizations of the unpumped cavity. First we must derive the
expressions for the round trip Jones matrices in terras of the individual Jones matrices described in
Section II.D.

A convenient starting point for the analysis is the point labeled A+ in Fig. 5. The ring may be
traversed in two ways starting from A*. The CCW path A*—B—C—D—A—A+ is denoted by a
superscript (+). The CW path A*—»A—D—C—-B—A* is denoted by a superscript (-). The

round trip Jones matrices for these two paths are:
M+ =M, R(O,5 -7aB) Mp R(-8pc-T180) Mc R(@pc + Y80) Mg R(-8,5 +¥aR), (21)
M~ = R(-8 ,g-YaR) Mp R(@pc - 180 Mc R(-8p¢ + Y8c) Mp R(85 +¥AB) M4 . (22)

We have combined the Faraday and geometric rotations that occur along a given leg, since
rotations about the same axis are additive. We have also used the existence of the plane of
symmetry, ACE, to replace the rotation angles along AD (CD)with those of AB (BC). Looking at
M+ and M~ we see the polarization effects accompanying propagation along each leg: rotation due
to the Faraday effect (Y), a rotation associated with the change of coordinate system (9), and phase
and amplitude shifts on reflection (M;, i =A, B, C, or D).

Close examination of M* and M~ reveals severil symmetry relations. First, if we know one of
the round trip Jones matrices, we can find the other one by 1) reversing the order of the individual
operators, and 2) changing the sign of each Faraday rotation angle. These two rules have simple
physical interpretations. Reversing the direction of propagation from a given point reverses the

order in which the polarization-influencing elements are encountered. Since the round trip Jones
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matrices are written as operator-ordered products, reversing the propagation direction inverts the
product ordering. The change of sign of the Faraday rotations is the expression (in our coordinate
system convention) of the nonreciprocity of the Faraday effect.

Let us introduce some additional notation for convenience. Define the following sums (0) and

differences (3) of geometric (8) and Faraday (¥) anjjles on legs AB and BC:

daB=0AB- YAR » (23a)
OB =OAB +YAB (23b)
Spc =0sc-1BC (242)
Opc = eBC +¥8C- (24b)

We can rewrite M+ and M~, making use of Egs. (:!3) and (24) and noting that Mp = Mg by

symmetry, as
M* = Ma R(3aB) Ma R(-0p0) Mc R(d¢) M R(-8ap) , 25)
M-= R(-g) MB R(8p¢) Mc R(-S3c) M3 R(Gap) MA . (26)

In terms of the new angles, conversion of M* to M-~ (and vice versa) requires inversion of the

product ordering and letting § — cand 0 — 3.

F. Eigenvalues )

The eigenvalues of the round trip Jones matrices are of primary interest to us. From the
eigenvalues we find the losses and frequency splirtings of the polarization eigenmodes of the
resonator. Since M+ and M- are of rank two, each matrix has two complex eigenvalues and two

eigenvectors. The modulus of an eigexivalue represents the factor by which the amplitude of the
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electric field of the eigenmode is reduced after a round trip through the unpumped cavity, and the
phase of the eigenvalue contains information about the round trip phase shift of the field.
We find the eigenvalues for a given round trip Jones matrix M (M = M+ or M-) by solving the

quadratic characteristic equation
A2 <A Tr(M) + det(M) =0, @7

where Tr(M) denotes the trace of the matrix and det(M) denotes the determinant. The special forms
of the individual Jones matrices permit us to make some analytical statements about the coefficients
in the characteristic equations. Recall that all of the individual Jones matrices except for M4 are in
the special unitary group SU2. Consequently, the two round trip Jones matrix products can be

written as
M+ =M, U+, (28)
M-= U-M,, 29

where U+, U- € SU2 and
U+ = R(3AB) MB R(-0gc) Mc R(0pc) MB R(-8aB) , (30)
U- = R(-Gap) MB R(8pc) Mc R(-850) Mg R(Gap) - 31)
The determinant of a product is the product of th2 determinants, so
det(M*) = det(M-) = det(Ma) = RpRs . (32)

We note that the determinant is a positive real mumber, 0 S RpRg 1. The only complex

coefficients in the characteristic equations are the iraces of the round trip matrices. Since the
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detexminanis of M* and M~ are the same, the characteristic equations and thus the eigenvalues for
CCW and CW propagation differ only if Tr(M+) # Tr(M~).

The sum of the two roots of Eq. (27) equals the trace of the matrix, and the product of the two
roots equals the determinant. These two simple rules have some important physical consequences,

as we shall see in part 2 of this section.

1. Round trip losses

The round trip pouket loss of the mode with eigenvalue A; is
(Loss for eigenmode i) = 1 -] A;|2. (33)

Suppose that one eigenvalue is larger in modulus than any of the other eigenvalues. The
associated eigenmode has the lowest loss and reaches laser threshold first. Since the Nd:YAG
laser transition is homogeneously broadened, the first traveling-wave mode to oscillate saturates
the gain uniformly and prevents the higher loss modes from reaching threshold. In this way
unidirectional, single-axial-mode operation of the ring laser can be established and maintained.

In contrast unidirectional oscillation will not occur stably if the eigenvalues for CCW propagation
are equal to those for CW propagation. Examination of cases in which these eigenvalue pairs are
equal gives insight into the need for both a nonplanar ring geometry and an applied magnetic field
for establishing unidirectional operation in an optically isogopic, monolithic medium. Here we
prove that stable unidirectional oscillation will not. occur for either (a) a planar ring with an arbitrary

applied magnetic field, or (b) a nonplanar ring with no applied magnetic field.

a. Planar ring with applied magnetic field. Consider an arbitrary planar ring light path
in a monolithic, optically isotropic medium in an applied magnetic field. Since for a planar ring all
the reflecting surfaces have coplanar normals, there are no rotations of coordinate systems about
the direction of propagation to consider. The most general Jones matrix for a CCW traversal of the
ring can be written in the form [37]
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N
M"= [T D; O(y,

iml

’ (34)
where Dj represents a diagonal matrix (reflection miatrix), and O; represents a proper orthogonal
matrix (Faraday rotation or the unit matrix). Applying the rule for obtaining M— from M+, we
reverse the order of multiplication of the matrices and change the signs of all the Faraday rotation
angles, giving

1

M- = H Oi (—'{i) Di
isN . 39)

Recall that the most general proper orthogonal mitrix can be written in the form of a rotation
matrix. The transpose of a 2x2 rotation matrix is obtained by changing the sign of the rotation
angle. Diagonal matrices are unchanged under wransposition. Recalling that the transpose of a
product of matrices is the product of the ransposes in reverse order, we see that M—and M+ are
transposes of one another. Since a matrix and its t-anspose have identical eigenvalues, there is no
loss difference between the two directions of prop:gation, hence no preferred direction of
propagation around the ring.

The nonplanar geometry circumvents this proof by introducing additional rotations whose angles
do not change signs when the direction of propagation is reversed, thus making it impossible to
generate the other round trip Jones matrix by simply taking a transpose. In simple terms a
monolithic, planar, optically isotropic medium offirs no means of producing reciprocal rotation.

b. Nonplanar ring with no applied magnetic field. Next consider the case of a
nonplanar nng with no applied magnetic field. For concreteness let us restrict our attention to the

NPRO case. Then the round trip Jones matrices are
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Mt = My R(SAB) Mg R(—egc) MC R(© Bd Mj R(—OAB) . (36)
M- =R(-08 op) Mg R(8gc) Mc R(-8gc) Mg R8,8) My - (37
We have already seen that the determinants of M* and M~ are equal. We now prove that the

traces are also equal, which implies that the CCW eig=nvalues are equal to the CW eigenvalues.
Recalling that cyclic permutation of matrices in a product does not change the trace of the product,
we can permute the terms of M~ cyclically to get

Tr (M) =Tr {M R(-82) Mg R(83c) Mc R(-8pc) Mp R(8,4p)} (38)
The 1_'otati0n matrix R() is related to the rotation matrix R(—t) by the following transformation

R(-a)= TR(@) T, (39)
where T is the reflection operator
e[2¢] '
. (40)
By inspection we can then write
TrM-) = Tr{(Mp, TR(8 58)T Mg TR(-85¢ )T Mc TR(p0)T Mg TR(-8 4p)T}. 41)

Another cyclic permutation and use of the associativity of matrix products gives us

TrM-) = Tr([T MATIR(0 op)(T MpT]R(-8p¢ )[T Mc TIR(Bp0)[T MpTIR(-84p)} .  (42)
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For a diagonal matrix D we have TDT = D, so (42) reduces to

Tr(M-) = Tr(M,, R(645) Mp R(-85¢) Mc R(60) Mp R(-8,4p))
=Tr(M?). (43)

. We conclude that, in the absence of an applied magnetic field, the nonplanar ring geometry alone
cannot produce stable unidirectional operation. The absence of the Faraday rotation makes the
entire system reciprocal, so there can be no loss difference between the two directions of
propagation.

The two degenerate cases described above can be explained intuitively. An optical diode requires
reciprocal rotation, nonreciprocal rotation, and a polarizer. An optically isotropic monolithic
medium has no reciprocal rotation if it is planar anc| has no noareciprocal rotation if there is no
applied magnetic field. Thus to establish an optical diode in the NPRO we require both the
nonplanar geometry and the applied magnetic field.

2. Frequency splitting

So far we have considered only the losses of the eigenpolarization modes of the NPRO
resonator. Equally important for our purposes are the eigenfrequencies, which are related to the
- round trip phase shifts, Since we eliminated isotvpic phase shifts and retained only anisotopies
in writing the Jones matrices, the phases of the cigenvalues explicitly yield the frequency
differences among the eigenmodes.

If the resonator is isotropic, the four eigenfrequencies are identical because each eigenmode has
the same optical path length around the ring. Phasie anisotropy lifts this degeneracy. Recall that
the product of the two eigenvalues for one direction of propagation must equal the determinant of
the round trip Jones matrix. From Eq. (32) we krow that the determinant is a real number. Let A
and A2 be the two eigenvalues for CCW propagation, say. Since AqA2 is real and since the
cigenfrequencies are degenerate for the case of an isotropic resonator, the phases of A1 and A2
must be equal in magnitude and opposite in sign. Physically, the consequence is that ph'asc
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anisotropy in the resonator causes the two eigenfrecuencies for one direction of propagation to lie
equally spaced above and below the degenerate frequency corresponding to an isotropic resonator.
We now consider all four eigenvalues. The frequency shift Av; of the ith eigenmode away from

the inidally four-fold degenerate resonant frequency is
Av; = (c/nL)(¢¥/2x), ‘ (44)

where ¢; = arg(A;) in radians, c is the speed of light, L is the round trip path length of the ring, and
n is the average index of refraction of the ring path. From a pair associated with a given direction
of propagation, one frequency is shifted upward aad the other downward by an identical amount.
The magnitudes of the shifts for the two directions; of propagation are in general different.

A general NPRO resonator thus has four possible eigenfrequencies for its four
eigenpolarizations. The existence of four different frequencies in a nonplanar ring resonator has
been explored in connection with multioscillator ring laser gyroscopes (MRLG) [20] based on the
He-Ne laser (see Appendix A). The MRLG resoriators are painstakingly engineered to ensure that
the four eigenpolarizations are circular and that all four modes oscillate simultaneously, which is
possible because of the inhomogeneous broadeniag of the laser transitions. With such a spectrum
of oscillating modes it is possible to arrange that :wo oppositely biased ring laser gyros coexist and
share the same optical path. Taking the difference between the outputs of the two coresident ring
laser gyros permits the cancellation of the bias and doubles the scale factor for the gyroscope.

In the homogeneously broadened gain medium of the NPRO only the lowest loss mode
oscillates. Still, that the four possible eigenfrequencies of an NPRO are generally distinct has
some important consequences for optical feedback effects. Consider the eigenvalue with the
largest modulus. The associated mode is the on¢: that first oscillates, as we explained previously.
Imagine that the mode propagates in the CCW direction and that there is some backscatter in the

resonator or some extracavity opdcal feedback. Not only does the mode with the largest CW
eigenvalue suffer more loss than the oscillating CCW mode, there is generally a frequency shift
between them as well. Thus light coupled from the oscillating CCW mode into its closest CW
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competitor couples weakly to that mode. Unidirectional oscillation established on the basis of
differential loss between the modes gains additional stability due to the frequency splitting.

G. Eigenvectors

With each eigenvalue is associated an eigenvector. The eigenvector is the Jones vector of the
light at the point A*. The eigenvector changes as i propagates through the resonator, but it
reproduces itself (modulo an overall amplitude reduction and phase shift) after a round trip. If we
specify the state of polarization by ¥ as in Eq. (3), then we find % directly in terms of the elements

of the round trip Jones matrix as [38]

M32-My) + NTr(M)2 ~ 4 det(M)

X2 = Mz - 45)

Consider the two eigenvectors for a given direction of propagation. In general these eigenvectors
are nonorthogonal, elliptical states of polarization with different round trip losses. The
nonorthogonality and loss difference are caused by the amplitude anisotropy of the partial
polarizer. A resonator with no amplitude anisotropy can be represented by a special unitary round
trip Jones matrix once the isotropic amplitude reduction is factored out. Such a resonator has
orthogonal elliptical eigenstates with identical lossies.

Special design efforts are required to produce specific eigenpolarizations in a NPRO resonator.
We will solve an important special case in Sec. IV and show that it is possible to find linearly
polarized eigenstates even in the presence of the polarization rotations in the cavity. Another
special case yielding circular eigenpolarizations is. described in Appendix A in connection with the
multioscillator ring laser gyros.

OL SIMPLIFIED ANALYSIS OF THE NPRO RESONATOR
The algebraic complexity of the round trip Jones matrices of Eqgs. (21) and (22) makes it difficult
to use intuition to design monolithic nonplanar ring oscillators. Fortunately, we can use an optical
equivalence theorem of Hurwitz and Jones [22] to reduce the resonator to a simpler equ‘ivalcnt
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form. In this section we introduce the optical equivalence theorem and use it to simplify the

interpretation of the round trip Jones matrices for the NPRO.

A. Optical equivalence theorem
The optical equivalence theorem of interest to us here involves analysis of lossless polarization-
influencing systems. We have seen in Sec. ILD that such a system is represented by a special

unitary Jones matrix. Mathematically, any matrix V € SU2 can be written as a product of two

rotation matrices and a diagonal element of SU»,
V = R(a) G(y) RB), (46)

where R(c) and R(B) are rotation matrices as in Ej. (15), and the diagonal matrix G(\) has the

form

ivw

G(\") - . e-i "
. (47)

As explained by Hurwitz and Jones this theorem: has an optical interpretaton: a system
containing any number of linear retarders and rotators (any devices whose Cartesian Jones matrices
are rotation matrices) is equivalent to a system containing just one linear retarder and one rotator.
The constructive proof of the theorem given by Hurwitz and Jones explicitly gives the parameters
a, B, and y in terms of the matrix elements of V.

B. Application of optical equivalence theorem to NPRO

We have seen in Egs. (28) and (29) that the round trip Jones matrix M* (M") is a product of a
special unitary matrix U+ (U-) and the nonunitary matrix Ma. The special unitary products U*
and U~ represent the complicated net cffecfs of all the TIR phase shifts and Faraday rotations. The
optical equivalence theorem applied to U+ and U~ yields important insight into the polarization
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effects of the NPRO resonator. In Appendix C we jfive analytical expressions for the matrix
clements of U* and U=, and we explicity solve for the rotation angles & and B and the retardance

parameter W that appear in (30). We find that & =-f in each case, so we can write
U+ = R(a+) G(y*) R(-a*), (48)
U-=R(a~) G(y) R(-a~). 49)

We can therefore interpret U+ (U-) simply: the Jones matrix U* (U-) is optically equivalent to a
single retarder with Jones matrix G(y*) (G(y~))whose principal axes make an angle a* (a-) with
respect to the principal axes of the output coupler M 4; no additional rotator appears in the optical
equivalent. This key result enables us to form a simple mental picture of how the NPRO resonator
affects polarization. Instead of trying to imagine how the Faraday rotations, geometric rotations,
and TIR phase shifts separately influence the polarization of the intracavity radiation, we envision a
simple optical equivalent. For a given direction of propagation around the ring the NPRO
resonator consists of a retarder and the output coupler. The principal axes of the retarder are in
general rotated with respect to those of the output coupler. The output coupler is itself optically
equivalent to a half-wave plate and a partial polariz:r.

IV. OPTIMIZING LOSS DIFFERENCE: HALF-WAVE PLATE EQUIVALENT
SOLUTIONS

With the formalism and the simple optical equivzlent model in mind we now address the question
of how to select the geometry of a NPRO resonator. Many considerations enter into the design,
including resistance to optical feedback, sensitivity to environmental effects, magnetic field
requirements for unidirectional operation, threshold and slope efficiency, output beam quality and
polarization, and frequency tunability. Recently, we have concentrated our efforts on designing
NPROs that should be insensitive t optical feedbzck. Arguing that output radiation reflected back

into the resonator can be treated as an external signal injected into a reflective regenerative amplifier
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(39}, we have concluded that increasing the loss difference between the two directions of
propagation is important in reducing the sensitivity to optical feedback [40].

We have thus focused our attention on the following question. Given a gain medium with index
of refraction n and Verdet constant V in a given applied magnetic field B, how should we choose
the geometry of an NPRO resonator to optimize the: loss difference between CCW and CW
propagation? We must first explain what we mean by optimal loss difference. We assume that the
eigenvalue spectrum is nondegenerate. We calculate the round trip losses of the lower loss
eigenmodes for both CCW and CW propagation, and we take the difference between these two
losses. The absolute value of the resulting number is called the loss difference. We want to design
the NPRO resonator such that the loss difference i as large as possible, subject to the additional
constraint that the oscillating mode have an eigenpolarization with the minimal loss possible for the
resonator. This same problem has been addressed. for Nd:YAG NPROs by Trutna ez al. [8]. We
shall see later that this solution is not the conditior: for maximal loss difference for NPROs made of
Nd:YAG.

All 6f the resonator loss in this idealized i)mbletn occurs at the output.coupler. The reflection
coefficient of the output coupler is greater for the 5 polarization than for the p polarization, so the
minimal loss eigenstate for the resonator would be a linear, s-polarized state at the output coupler.

Our approach to finding a resonator with optimal loss difference consists of forcing the CCW
cigensté,tes to be the s and p linear polarization states at the output coupler (to satisfy the constraint
of minimal loss for the low loss CCW eigenstate) and simultaneously forcing both of the CW
eigenstates to have large p components at the output coupler so that they will have large losses.

If there were no nontrivial phase shifts (i.e. relative phase shifts other than 0 or ) on the
reflections at B, C, and D, the problem would be simple. We would pick the geometry of the
resonator so that the Faraday rotations and the geometric rotations would cancel for the CCW
direction and add for the CW direction, exactly as in a Faraday effect optical isolator. For media
such as Nd: YAG it is difficult to obtain substantial Faraday rotation at the laser wavelength since
the Verdet constant is small, V = 103 deg T-! m! at 1.06 um [2]. In the absence of TIR phase

shift cbmplications, then, the natural way to choose the gcometfy would be to make the {ight path
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nearly planar, because then the small reciprocal rotation and the Faraday rotation can be made equal
in magnitude.

The phase shifts due to TIR make the analysis more difficult. Trutna ez al. [8] have shown that
Nd:YAG NPRO designs with minimal threshold and large loss differences for small applied
magnetic fields are possible if: 1) the light path is nearly planar, and 2) the TIR phase shifts are
chosen so that the sum of the retardances is 180 deg. They argue that, by properly choosing the
nonplanarity of the ring, the resulting cavity emulates the discrete-element unidirectional ring
design of a half-wave plate with a fast axis orientation angle that is half of the Faraday rotation
angle. Their discussion assumes that the collective TIR phase shift can be treated as a single
optical element, an approximation that neglects the intervening Faraday rotations. For small
resonators constructed of weak Faraday rotators such as Nd:YAG, this approximation is excellent.
Here we give an analysis of the problem without resitrictions on the magnitude of the Faraday
rotations, and we show that in fact the cumulative TIR retardance must exceed 180 deg for optimal

loss difference.

A. Rotator and partial polarizer

Our approach to emulating the ideal discrete-element unidirectional ring design is the following.
We have seen that for each direction of propagatior: the NPRO resonator is rigorously optically
equivalent to a retardation plate with its principal axes oriented at an angle with respect to the
principal axes of the the output coupler. The output coupler is in turn optically equivalent to a half-
wave plate and a partial polarizer. Recall that two half-wave plates with an angle 8 between their
" fast axes are optically equivalent to a rotator with Jones matrix R(26). (See Appendix D for a
proof.) We want to choose the geometry of the NFRO such that the equivalent retardation plates
for CCW and CW propagation are nearly half-wave plates. Then we can approximate the NPRO
resonator as a ring comprising a partial polarizer ard a rotator whose rotation angle depends on the
direction of propagation. Assume that we want to ¢stablish unidirectional oscillation in the CCW
direction. To sausfy our constraint of having mininal loss for the CCW direction, we require the

CCW resonator to have a null rotator. To produce as large a loss difference as possible, we
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require the CW rotation angle to exceed a certain mirimum determined by the strength of the partial
polarizer. (See Appendix E for a complete analysis). We do not have the freedom to choose these
quantides independently, of course. To meet all of these requirements imposes many restrictions

on the possible media and geometries, as we shall sce.

B. CCW half-wave plate aligned with output coupler

The general equations for the equivalent retardanc:s and principal axis orientation angles of the
CCW and CW unitary products U+ and U- are derived in Appendix C. We want the CCW unitary
product to be optically equivalent to a half-wave plate with its principal axes aligned with those of
Ma, so we substitute 2y+ =180 and a* = 0 for the CCW direction into equations (C.15 - C.17)

and arrive at
0 = cos(Ap) cos(Ac/2) - sin(Ap) sin(Ac/2) cos(2 GBQ) » (50)

1 = [sin(AB) cos(Ac/2) + cos(Ap) sin(A¢/2) <0s(2 OBC)] cos(2 aB)
+ [sin(Ac/2) sin(2 oBC)] sin(2 8aB) , (51)

0 = [sin(Ap) cos(Ac/2) + cos(AB) sin(Ac/2) cos(2 oBO)]sin(2 5aB)
— {sin(A¢/2) sin(2 0BC)] cos(2 3aB) - (52)

From Eq. (50) we begin to find constraints imposcd on the resonator. We can rewrite Eq. (50) as

(53)

tan(Ap)an(Ac/2) = o052 On0)

Note that the right-hand side is greater than one for nonzero opc. We have no solution unless
the left-hand side is also greater than one, which puts a restriction on the phase shifts due to TIR.
There is an additional constraint imposed by the geometry. We choose 84, AE, CE, and B.
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Having done so fixes 8 and 8. The index of refrzction and the angles of incidence 0 4 and 8¢
determine the phase shifts Ag and Ac. With these rules one can show that the requirement that the
left-hand side of Eq. (53) exceed one is '

2Ag +Ac> 180, (54)

This rule has an important consequence for the chcaioe of the gain medium. In Appendix F we
piove that Eq. (54) (and thus Eq. (5§3)) has no solution unless the index of refraction of the gain
medium is greater than V3. Therefore, for media such as Nd:YAG (n = 1.82) and Nd:GGG (n =
1.945) we can find optimal loss NPRO geometries. For media such as Nd:glass (for example,
HOYA LHG-5 glass with n = 1.53) different approaches are required.

So far we have seen that the gain medium must hzve a sufficiently large index of refraction if we
are to find solutions to the optimal loss difference problem. The remainder of the problem consists
of solving Egs. (51) and (52) in order to arrive at half-wave plate equivalent solutions with the
principal axes of the equivalent half-wave plate aligned with those of M for CCW propagation.
These solutions are best found numerically. In the course of searching for solutions we have
found some limitations on the possible ran_gu of the angles of the resonator. For example, the
smallest angle of incidence on the output coupler tt.at still leads to optimal loss difference solutions
in Nd:YAG is roughly 28.15 deg. This result is irrportant because one might be inclined to try to
reduce the astigmatism of the resonator by reducing © A, but the constraints associated with optimal

loss difference impose a lower limit on 0 A.

C. Choice of partial polarizer

Once we know how to solve for the geometry of’ the resonator given the index of refraction and
Verdet constant of the gain medium, we still need to know how to choose the output coupler. We
have restricted ourselves to consideration of output couplers that act in reflection like a combination
of a partial polarizer and a half-wave plate, so the problem reduces to choosing the parameters Ry

and R of the partial polarizer. For the purpose o finding loss differences rather than absolute
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losses, it is sufficient to charac.terize the partial polarizer strength of the output coupler by the ratio
p = Rp/Rs.

The problem at hand is to choose the partial polarizer so that the loss difference between the two
directions of propagation is made as large as possible. An exact solution has not been found, but
we can give an approximate solution that yields some important insight. We neglect the slight
difference between the retardances of the equivalent waveplates for CCW and CW propagation.
The geometry that produces a null rotator for the the CCW direction completely determines the
rotation angle of the equivalent CW resonator. Given the value of the CW equivalent rotation
angle, ¢, we want to choose the partial polarizer to jjive the largest possible loss difference. This
problem has been solved by Kruzhalov and Kozhevnikov [41). In Appendix E we show that the
largest loss difference for small rotation angles ¢ is obtained by choosing the partial polarizer such
that p = 1 £2¢, and the resulting loss difference is 2R¢24 , with ¢ in radians.

As a practical matter one cannot choose arbitrary ‘values of the partial polarizer parameter p,
because the partial polarizer is the multilayer dieleciric mirror used at oblique incidence. If the
available rotation angle becomes large, the value of p consistent with having reasonable reflectivity
for the s component and 180 deg relative phase shift will generally be larger than the value that

maximizes the loss difference.

D. Comparison of various NPRO designs

In Secs. IV.A - IV.C we have argued that a large loss nonreciprocity occurs if the equivalent
waveplate obtained from the unitary Jones matrix product U+ for the NPRO resonator is chosen to
be a half-wave plate with its principal axes aligned with those of the output coupler. In Table I we
present the numerically calculated optical equivalents of all currendy published NPRO designs,
together with one of our new designs. The Table shows the retardances 2y* and 2y~ of the
equivalent CCW and CW waveplates together with the orientation angles a* and a~ of the
principal axes of the waveplates with respect to the principal axes of the output coupler. For each
design we havc- given a complete specification of the parameters required to calculate the results

shown in Table L

30



(Table I to appear here)

The nonplanar geometry originally used by Kane and Byer [2] had a dihedral angle B of 90 deg.
Such a large dihedral angle leads to a resonator with a small loss difference. The loss difference in
such a resonator increases monotonically with increasing applied magnetic field between O and 1 T.
In Table I we have calculated the loss differences for the two designs with B = 90 deg assuming an
applied field of 1.0 T, even though such a field is bzyond the range of simple permanent magnets.
Table I shows that the NPROs with a dihedral angle: of 90 deg have optical equivalents that are far
from the desired half-wave plate solutions discussed above, as Trutna ez al. [8] have also noted.

The design of Trutna et al. is closer to the desirec| solution. Our analysis of their resonator
shows that the equivalent CCW waveplate is aligned with the principal axes of the output coupler
when the applied magnetic field is 0.43 T. The CW equivalent waveplate is rotated by
approximately half a degree, and its retardation is zbout 181 deg. _'

Our design is shown as the last entry in the Table. We have numerically solved Egs. (50)-(52) to
produce this design. The equivalent CCW wavepliite is a half-wave plate exactly aligned with the
principal axes of the output coupler for an applied field of 0.5 T. The equivalent CW waveplate is
also nearly a half-wave plate, and its axes are rotatd by more than half a degree. With an optimal
choice of partial polarizer parameters in the output coupler, our design shows that a loss difference
of approximately 4% is possible while simultaneously maintaining the lowest round trip loss
(1.2 % for this resonator) for the linear, s_-polarized oscillating mode. We present a detailed

analysis of our design below.

V. EIGENPOLARIZATIONS OF SPECIAL NPRO RESONATORS
In Sec. II we showed how to find the eigenvaluss and eigenvectors of the round trip Jones
matrices of a general NPRO resonator, and in Sec. [V we introduced a special kind of NPRO in
which, for a given value of the applied magnetic field, the CCW resonator is rigorously equivalent
to a null rotator and a partial polarizer while the CW resonator is approximately equivalent to a
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nonzero rotator and a partial polarizer. In this section we examine in detail the eigenvalues and
eigenpolarizations of one of these special Nd:YAG NPRO designs. This particular NPRO is
designed to produce optimal loss difference in an applied magnetic field of 0.5 T. The resonator
has 0 = 29.814 deg, AE = 4.0 mm, CE =2.29 mm, and B = 1.061 deg. The mirror has Fresnel
amplitude reflection coefficients with moduli Rp =:0.95707 and Ry = 0.99398, and the mirror
produces a relative phase shift of & between the s and p components of the electric field. We have
calculated the loss difference, output couplings, fr:quency shifts, azimuths, and ellipticities of all
four possible eigenpolarizations for this NPRO as a function of applied magnetic field, and the
results are plotted in Figs. 6(a)-(e).

A. Losses and loss difference

The loss difference between the two directions ¢f propagation as a function of applied magnetic
field for a NPRO designed as described in Sec. I'/ is shown in Fig. 6(a). The distinctive shape of
this loss difference curve is typical of NPROs designed to produce optimal loss difference. At
B =0 there is no loss difference because the resonator is reciprocal. As the field is turned up the
loss difference climbs rapidly until a cusped peak is reached. Beyond the cusp the loss difference
fall.': rapidly and levels off. Note that the maximum loss difference occurs for a larger magnetic
field than the "optimal loss difference” design point of B=0.5 T.

This result and the existence of a cusp in the loss difference curve are explained by Fig. 6(b),
which shows the round trip losses for all four polarization eigenmodes versus the applied magnetic
field. First examine the losses of the eigenpolari::ations for a given direction of propagation around
the ring. There is a high-loss mode and a low-loss mode. As the magnetic field is increased the
losses change. For CW propagation the losses repidly approach one another until they nearly
coalesce for B 20.7 T. The losses behave differently for CCW propagation. As the field is
increased from B = 0, the losses initially separate, reach a maximum separation, then rapidly
approach each other, ultimately coalescing at B2 1.7 T.

The most stﬁking feature of Fig. 6(b) is the approximate coalescence of the losses at different

characteristic values of the applied magnetic field depending on the direction of propagation.
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Recall that for B = 0.5 T we rigorously forced the CCW resonator to be optically equivalent to a
null rotator and a partial polarizer. If we approximare the behavior of the NPRO over the entire
range of magnetic field values by the rotator and partial polarizer system, then the coalescences of
the losses become comprehensible. The characteristic equation of the rotator and partial polarizer
system is a quadratic equation with real coefficients, As discussed in Appendix E this means that
the eigenvalues for a given direction of propagation become complex conjugates for sufficiently
large rotation angles. Complex conjugate eigenvalues have the same modulus, hence the
corresponding eigenmodes have the same round tri) loss. Moreover, the magnitude of the loss
becomes independent of rotation angle above the critical point (see Appendix E). The losses for a
given direction thus coalesce and clamp at a critical value of applied magnetic field.

The loss difference for the resonator at a given value of applied magnetic field is the difference
between the two low-loss curves of Fig. 6(b). The origin of the cusp in the loss difference curve
is the sudden clamping of the CW loss while the CICW loss continues to rise. The fact that the
maximal loss difference occurs for a value of applied magnetic field in excess of the amount
required to produce a linear s-polarized CCW eiger:state at the output coupler is explained by
noting that the CW loss has not yet clamped but is instead steeply increasing at that point. Since
the CCW loss changes slowly in the vicinity of its minimum while the CW loss rises rapidly
toward its clamped value, the loss difference continues to increase until the clamping of the CW
loss occurs. For a different medium it may be possible to arrange that the optimal loss difference

and maximal loss differences occur at the same value of applied magnetc field.

B. Eigenpolarizations

In Figs. 6(c) and 6(d) we show the azimuths and. ellipticities of the eigenpolarizations
themselves. Recall that the azimuths are restricted to the range -90 S 8 < 90 deg, so the break in
the curve of the azimuth labeled CCW- is only an artifact of the range restriction. The interesting
behavior in both Figs. 6(c) and 6(d) occurs at the critical points discussed in connection with the
losses of the modes. We can see that the azimuth; of the polarization eigenstates coalesce to

+45 deg when the losses coalesce. The ellipticities remain small until the losses coalesce, at which
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point the eigenstates suddenly increase in ellipticity. The rotator and partial polarizer
approximation again accounts for these effects. When the amplitude anisotropy of the partial
polarizer dominates over the rotation, the resulting sigenstates are linearly polarized with azixﬁuths
that depend on the amount of rotation. When the rtation dominates over the amplitude anisotropy,
the eigenstates become elliptically polarized, the azimuths pin at £45 deg, and the losses are

identical.

C. Frequency splfxtting

Because the resonant frequencies of the polarization eigenmodes depend on the amount of
Faraday rotation, the magnetic field can be used to tune the frequency of the laser, as Kane and
Byer [2] noted. Fig. 6(¢) shows the frequency shifts of the four polarization eigenmodes versus
the applied magnetic field. The frequencies are four-fold degenerate when B = 0. As the magnetic
field is murned on the frequencies split. For each direction of propagation we see that one
eigenfrequency is upshifted while the other is downshifted by the same amount, as we explained in
Sec. ILF.2. Nothing dramatic occurs until B = 0.7 T, at which point the eigenfrequencies of the
pair of CW modes begin to tune rapidly. The analogous point for the CCW modes occurs at B =
1.7 T. Focusing attention on the low loss CCW eigenmode that will oscillate unidirectionally, we
infer the tuning rate from the slope of the frequency curve. The tuning rate around the assumed
bias point of 0.5 T is 230kHz/T. -Near the critical point at 1.7 T the tuning rate jumps to
143 MHZ/T.

The sudden changes in tuning rate occur at the same critical values discussed in connection with
loss coalescence. Again, the rotator and partial polarizer model explains this occurrence. For low
values of magnetic field the loss anisotropy of the partial polarizer dominates over the rotation, and
the resulting eigenstates are linearly polarized anc! frequency degenerate. For our case this analysis
is only approximate. The origin of the frequency tuning is the change in effective optical path
length due to the circular birefringence caused by the Faraday effect. Linear polarized light does
not experience any change in optical path length; the effect appears only for elliptically polarized
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light. At the critical points in the frequency splitting curves the modes in a given direction
suddenly increase in ellipticity and thus experience the changing optical path length.

D. Loss difference and the choice of the partial polarizer

In Sec. IV.C. we observed that an optical system characterized by a partial polarizer and a rotator
whose rotation depends on the direction of propagation produces a maximal loss difference
between the two directions of propagation for a specific value of the partial polarizer strength.
Fig. 7 shows how the loss difference for the NPRC) resonator designed to emulate the rotator and
partial polarizer varies as the strength of the partial polarizer is varied. The largest loss difference
for this system, 3.39%, occurs for a partial polarizer with Ry/Rq = 0.965.

V1. Extensions of the theory
In Secs. I-V we have presented an eigenpolarization theory that applies to monolithic, optically
isotropic resonators with four reflections arrayed irt a nonplanar ring geometry. Three of the
reflections are TIR, one is an oblique reflection from a standard quarter-wave multilayer stack. If
we change any of these assumptions, there are new effects to consider. In this section we outline
some of the interesting possibilities for extending our formalism to new devices.

Anisotropic media. We have only considered optically isotropic gain media thus far. A rich
class of problems based on uniaxial and biaxial media remains to be explored. Several difficultes
arise in connection with propagation in anisotropic media, however, including bireflection at
interfaces, Poynting vector walk-off, and thermally sensitive birefringence. For the same reason
we have not modeled the effects of stress applied to initially isotropic media , although photoelastic
tuning appears to be a promising approach for frecuency tuning a monolithic NPRO (42]. Applied
stress breaks the isotropy of the medium.

Composite évities. One of the great advantages of the NPRO is its monolithic constructon.

Composite cavities introduce new interfaces, which lead to increased coupling between the two
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directions of propagation. Composite cavities are also less rugged than monolithic cavities. Still,
there are many reasons for examining composite czvities. Among them are the possibility of
making cavities with reduced thermal sensitivity by using media that compensate for each other's
thermooptic behaviors, the possibility of incorporating strong Faraday rotators into the cavity, and
the prospect of using an electro-optic medium in part of the cavity. If an electro-optic medium can

be incorporated, then electro-optic tuning of the frequency of the laser will be possible.

Exotic mirrors. So far our theory has assumed that the four intracavity reflections are total
internal reflections from three bare surfaces and or.e reflection from a standard quarter-wave stack
mirror. The TIR phase shifts, which play a major role in our choice of optimal geometry for a
given medium, can be varied by the use of coatings on the TIR surfaces. Similarly, the phase shift
on reflection from the output coupler can be variec| by changing the dielectric stack design. These
degrees of freedom will open up a much wider class of geometries for consideration. Controlling
the precise phase shifts on reflection by the manipulation of dielectric films is an expensive
proposition, however, and we have not modeled raany of the possibilities.

Our discussion of mirrors has thus far excluded magneto-optic effects. Magnetic Kerr effect
mirrors offer an additional means of inducing nonreciprocal rotation, as has been explored in
connection with the MRLG schemes [43]. If magneto-optic mirrors are used, the Faraday rotation
requirements of the gain medium may be reduced.

VIL CONCLUSION

We have presented a comprehensive theory of tae eigenpolarizations of the monolithic nonplanar
ring oscillator (NPRO). The explicit round trip Jones matrices derived in Sec. IT make it possible
to perform numerical evaluations of the eigenpolarizations, losses, and frequency splittings for any
NPRO. The use of the optical equivalence theorem in Sec. III provides an intuitive understanding
of the resonator. Armed with intuition and the analytical expressions, the design of NPROs with
specific properties becomes possible. In Secs. [V and V we designed and numerically analyzed a
type of NPRO whose inherent optical diode best =mulates the ideal discrete-element format ofa
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rotator and a partial polarizer. This resonator has linearly polarized output, low round trip loss for
the oscillating mode, and large loss nonreciprocity. For,such a resonator we showed that there is a
best choice for the partial polarizer strength of the output coupler, leading to maximal loss
nonreciprocity.

We proved analytically that stable unidirectional operation of the NPRO requires both the
nonpla.nar}ring geometry and an applied magnetic field. We also proved that NPROs with
resonators analogous to the rotator and partial polarizer model do not exist for media with an index
 of refraction less than V3.

We now conclude with a discussion of the prospexts for further narrowing the linewidth of the
NPRO. Experimentally, linewidths of less than 3 kHz have been observed to date {7]. This
linewidth should be compared with the Schawlow-Townes quantum limit [44], [45] of less than
1 Hz for a Nd:YAG NPRO with a round trip path of 1 cm, round trip loss of 1%, and output
power of 1 mW. Clearly, there is much room for iniprovemeat in making narrow linewidth
NPROs. At some point efforts to improve the passive stability of the NPRO will cease to be
useful, and active locking of the NPRO frequency to an external standard will be essential. Servo
loops that use the temperature of the laser crystal and the applied magnetic field as control variables
will enable us to lock the NPRO to a passive Fabry-Perot resonator. Such an actively stabilized
system should exhibit improved short-term frequency stability.

Long-term control of the frequency may be possidle by locking the second harmonic of the
Nd:YAG NPRO radiation to hyperfine spectral features of molecular iodine [46], or perhaps by
locking the 1.06 pm fundamental directly to hypertine spectral features of Cs2 [47]. Looking stll
further into the future, it may one day be possible to lock the NPRO to a spectral feature of a single
atom or ion in a trap [48]. The NPRO technology makes the possibility of a solid-state laser
operating with a quantum-limited linewidth seem l2ss a remote dream and more an area for active

research.
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APPENDIX A
NONPLANAR RINGS

In this appendix we review the literature on nonplanar ring lasers and show how the monolithic

NPRO relates to previous discrete-element nonplanar ring designs. Nonplanar rings with an even

number of reflections cause reciprocal polarization rotation analogous to natural optical activity and
have been most thoroughly investigated in connection with clear-path multioscillator ring laser
gyroscopes (MRLG) based on the He-Ne Zeeman laser. This work has been described in recent
publications [20], (49]-[51] and is related to our own. The goal of the MRLG work is rotation
sensing, which requires that counterpropagating modes coexist in the resonator, whereas we want
unidirectional, single-mode oscillation. Both the MRLG and the NPRO use reciprocal rotation
arising from the nonplanar ring geometry and nonreciprocal rotation established by applying a
longitudinal magnetic field to the gain medium to iachieve the desired performances. The MRLG
resonator is designed to have no amplitude anisowopy. The goal is to establish four coresident
circularly polarized eigenmodes with equal losses and different frequencies. In our work, on the
other hand, we design the monolithic solid-state n:sonator so that only one of four possible modes
will oscillate. The homogeneous broadening of the Nd:YAG gain medium makes this process
- straightforward. We use the loss differences to force unidirectional oscillation, and the frequency
differences are chosen to help reduce the effects of intracavity and extracavity feedback on the
stability of the single oscillating mode.
To our knowledge the earliest proposed application of nonplanar ring resonators is that of

Amaud [18], who applied the idea of image rotation to the design of optical cavities in which an

arbitrary ray retraces its own path after a single round trip. The first application of nonplanar ring
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concepts to laser gyroscopes was reported by Jacobs [52], [53]. He used six mirrors arrayed in
two planes to form an isotropic cavity for a CO; laser gyro. The goal was to balance out the
anisotropy of three mirrors in one plane with the anisotropy of the three mirrors in the second
plane. A similar concept involving the MRLG has recently been patented by Sanders and
Anderson [53].

Nonplanar rings have also been investigated outside of the laser gyroscope context. In 1979
Biraben [19] suggested using the reciprocal polarization rotation of a nonplanar ring as a
component of an optical diode to improve the performance of unidirectional, traveling-wave, cw
dye ring lasers. The same idea is applied in the NPRO in a monolithic setting. Discrete-clement
Nd:YAG nonplanar rings have been investigated by Smyshlyaev et al. [55], Golyaev et al. [56]-
[58], and Nanii and Shelaev [59].

A large body of theoretical work on the properties of nonplanar ring lasers has been developed.
The theory of stability of the optical axis of nonplanar rings is described in references [60]-[66].
Calculations of spatial mode properties are presented in [20], [(67], and [68]. Polarization theory
similar to what we present here is found in [18]-[20], [50], and [51].

APPENDIX B
NONPLANAR RING GEOMETRY
We have chosen to specify the geometry of the nonplanar ring light path by the lengths AE and
CE and the two angles 64 and P (sec Fig. 3(b)).. In this Appendix we give the transcendental
equations from which we find the angles of incidence 6¢ and 8 (= 8p) and the coordinate system
rotation angles 8 Ap and Opc.
First we solve for the angle of incidence at C. Since isosceles triangles ABD and BCD share the

common base BD, we have

tan(® 9 = £zan® ) B
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The reflection at C is required to be a total internal reflection bounce, so 8¢ must exceed the critical
angle of incidence determined by the index of refraction of the NPRO medium from the formula
sin(Bcritical) = 1/n. For Nd:YAG with index of refraction equal to 1.82 for radiation of
wavelength 1.06 um, the critical angle is approximately 33.33 deg.

Once we have found 8¢, we can solve for the remaining three angles using the following

equations.
c0s(20 p) = sin(@ ,)sin(8 o) - cos(@ Jcos(@ C)cos(ﬂ) .
cos(8 ,p) = sin(@ Jcos(8 ) + cos(8 Jsin(® Jcos(B)
sin(20 ) ’ 3
cos(8p0) = sin(8 Jeos(8 9 + cos(® Ysin(® Jcos(B)
sin(20 p) . -

We require total internai reflection at B and D, so 88 (= 8p) must also exceed the critical angle.

APPENDIX C

DERIVATION OF MATRIX ELEMENTS OF U+ AND U-; OPTICAL EQUIVALENCE
THEOREM
In this appendix we apply the optical equivalence theorem of Hurwitz and Jones to the special
unitary matrices U+ and U=, We seek expressions for the matrix elements of U* and U-, and from
these we want to solve for the rotation angles & and B and the retardance 2y of the optically
equivalent system. We explicitly derive these parameters for the matrix U+. The resuit for U= is

then found by the substitutions 85— -6, 0— 3. Since U* is in SU2 we need only evaluate

(U*)1; and (U*)21. Recall the expression for U+:

U+ =R(8aB) { Mp [ R(~0BC) Mc R(0BO) ] M3 ) R(-8aB). (C.1)
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This product is most easily evaluated by starting in the middle at Mc. Mc undergoes an
orthogonal transformation by the rotation matrix R(ogc). The resulting matrix is premultiplied and
postmultiplied by the diagonal matrix Mp. Finally, this product undergoes an orthogonal
transformation by the rotation matrix R(-8aB). Using the explicit expressions for the individual
Jones matrices given in the text, we arrive at the following results for the real and imaginary parts

of the matrix elements (U*+)11 and (U*)y1:
Re{(U*)11} = (cos(AB) cos(Ac/2) ~ sin(AB) sin(Ac/2) cos(208C) } , : (C.2)

Im{(U*)11} = [sin(AB) cos(Ac/2) + cos(AB) sin(Ac/2) cos(20BC)] cos(25AB)
+ [sin(A¢/2) sin(20BC)] sin(25AB) , (C.3)

Re((U21} =0, | | RN (oP)

Im({(U*)21) = [sin(AB) cos(Ac/2) + cos(Ap) sin(Ac/2) cos(20B()] sin(25A8)
~ [sin(A¢/2) sin(20BC)] cos(25AB) . (C.5)

According to the optical equivalence theorem we can write U* in the form
U+ =R(a) G(y) R(B) . _ (C.6)

Multiplying out the right-hand side of (C.6) we find

(Cn
(C.8)

Re{U*11) = cos(a + B) cos(y) ,
Im(U*11)} = cos(a - B) sin(y) ,
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Re{U*21) = sin(a + B) cos(y), (C.9)
Im{U*21} = sin(a - B) sin(y) . (C.10)

Equating the different expressions for the matrix elements (U*+)1; and (U+)7; gives us four real

equations:
cos(a + B) cos(y) = (cos(AB) cos(Ac/2) - sin(Ap) sin(Ac/2) cos(2080) } , (C.11)

cos(a — B) sin(y) = [sin(Ap) cos(Ac/2) + cos(AB) sin(Ac/2)cos(20B¢)]cos(25AB)
+[sin(A¢/2) sin(20B()] sin(25A8) , (C.12)

sin(a + B) cos(y) =0, (C.13)

sin(a — B) sin(y) = [sin(AB) cos(Ac/2) + cos(Ap) sin(Ac/2) cos(20Bc)]sin(25A8)
H{sin(A/2) sin(20Bc)] cos(25B) - (C.14)

From (C.13) and (C.11) we see that @ = -f8. Equation (C.13) reduces to an identity, and we are
left with three equations:

cos(y*) = (cos(Ap) cos(Ac/2) - sin(Ag) sin(Ac/2) cos(208C) | , (C.15)

cos(2a*) sin(y*) = [sin(Ap) cos(Ac/2) + cos(Ap) sin(Ac/2) cos(208C)] cos(25aB)
+(sin(Ac/2) sin(20pC)] sin(26A8) (C.16)
sin(2a+) sin(y*) = [sin(AB) cos(Ac/2) + cos(AB) sin(Ac/2) cos(20B0)] sin(28AB)

- [sin(A¢/2) sin(208C)] cos(25AB) . (C.17)
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There is just one rotational angle and one retardance parameter required for the optical equivalent
of U+, which means that U+ is optically equivalent to a retardation plate (retardance 2y*) with its
principal axes rotated by angle a* with respect to the principal axes of M. No additional rotator
is required.

The three equations for the optical equivalent of U- are found directly from the equations for U+
by the substitutions 8 — —o and ¢ —» -3 in equations (C.15) - (C.17):

cos(y™) = {cos(Ap) cos(Ac/2) - sin(Ap) sin(Ac/2) cos(28ac) }, (C.18)

cos(2a-) sin(y~) = [sin(AB) cos(Ac/2) + cos(Ap) sin(Ac/2) cos(28B()] cos(20AB)
+ [sin(Ac/2) 5in(23p()] sin(20AB) , (C.19)

sin(2a-) sin(y~) = ~{sin(Ap) cos(Ac/2) + cos(AB) sin(Ac/2) cos(28Bc)] sin(20AB)
+ [sin(Acf2) sin(28pc)] cos(20AB) - (C.20)

Examination of equations (C.15) and (C.18) reveals that the retardances associated with the
CCW and CW propagation directions do not depend on 0 Ap or YAB, and the retardances differ
only through the replacement of ¢ by 3¢, These results have an intuitive explanation.
Consider the product that defines U+, Eq. (C.1). The outermost rotation matrices involving 0B
perform a similarity transformation on the product inside the brackets. The product in brackets is
itself a product of retardation and rotation matrices and is optically equivalent to a similarity
transférmation of the Jones matrix of a single retardation plate. We thus see that the retardation
parameter \y* is completely determined by the product in the brackets of Eq. (C.1) and does not
depend on 9B or YAB. Similar comments apply to U=, the only difference being the replacement
of opc by 8pc inside the brackets because of the nonreciprocity of the Faraday effect.

Observe that ogc = Spc if there is no applied field or if the dihedral angle B is 90 deg, because
then ygc =0. When g = 3B, the retardances of the equivalent waveplates for CCW and CW

propagation are identical. Examples of this effect appear in Table I for the two geometries with

43



B =90 deg. For these geometries the nonreciprocity appears only in the orientation of the

equivalent waveplates with respect to the principal axes of the output coupler. In general,
however, the retardance parameters for CCW and CW propagation differ slightly, as the entries in

Table I with B # 90 deg show. For such resonators the nonreciprocity appears in both the

retardances and the orientations of the equivalent waveplates.

APPENDIX D
TWO HALF-WAVE PLATES ARE EQUIVALENT TO A ROTATOR
In this appendix we prove that a system of two half-wave plates whose fast axes are rotated with
respect to one another by the angle ¢ is optically equivalent to a rotator with Jones matrix R(2¢).
We choose a coordinate system aligned with the principal axes of the first half-wave plate of our
system and such that the fast axis of the plate is along the x axis of the coordinate system. If the
fast axis of the second half-wave plate is rotated in the positive sense by ¢, then the Jones matrix of

the system of two half-wave plates is
Vo] COS® -sin(®) i 0| cos) sine || 1.0
sin(¢) cos(@) || O -1}|-sin() cos(d) |} O -1 o)

Multiplying these matrices out we find

cos(24) -sin(2¢)]

M=-

so we see that two half-wave plates have a Jones matrix proportional to a rotation matrix. The

rotation angle of the rotator is twice the angle between the fast axes of the half-wave plates.



APPENDIX E
ROTATOR AND PARTIAL POLARIZER

Here we review the polarization eigenmodes of a ring resonator containing a rotator and a partial
polarizer [19], [41]. We first derive and discuss the eigenvalues of the system. In particular we
derive the loss difference for an optical system consisting of a partial polarizer and a rotator whose
:otatidn dcpends on the direction of propagation. We assume that the CCW direction has a null
rotator, and the CW direction has a rotation angle of ¢.
 The eigénvectors of a null rotator and a partial polarizer are linear polarization states aligned with
'the principal axes of the partial polarizer. We represent the partial polarizer by a diagonal matrix
with diagonal elements Rp and Ry, and we assume that Rg > Rp. The larger eigenvalue for CCW
propagation is thus Rg, and the loss for CCW propagation is 1 - R¢2.

The eigenvalues of a nontrivial rotator and a partial polarizer are found by solving the
characteristic equation. The trace of the roundtrip Jones matrix is (Rg + Rp}cos(4), and the
determinant is RRp. Note that both of these coefficients are real for this system, so we
immediately know that the eigenvalues for CW propagation will fall into one of three categories:
1) real and nondegenerate, 2) real and degenerate, or 3) complex conjugates. Explicitly, the
eigenvalues are given by

A2 .._321 {(1 +p) cos(d) t\l(l + p)2 cos2(¢p) -4p }, (E.1)

where p = %‘," <l

The eigenvalues are real and nondegenerate when the radicand is positive, real and degenerate
when the radicand is zero, and complex conjugates when the radicand is negative. The
eigenpolarizations associated with real eigenvalues are linearly polarize# and have the same
eigenfrequency. The eigenpolarizations associated with complex conjugate eigenvalues are
ellipdcal, and they have the same loss. A further important property of the complex conjugate
ecigenvalues appears when we examine the square of the modulus, which is simply R¢2 p. Note

that this result is independent of the rotation angle ¢. Consider the behavior of the eigenvalues as
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the mtadonhis slowly increased from 0. At first the eigenvalues are real and nondegenerate. Ata
critical value of rotation determined by the strength of the partial polarizer, the eigenvalues are real
and degenerate. For larger rotation angles the eigenvalues have identical moduli, and the moduli
are independent of the rotation angle until the radicand of the characteristic equation again becomes
nonnegative.

For the problem of optimizing the loss difference of the NPRO resonator we have a fixed CW
rotation available, and we want to make the larger modulus of the CW eigenvalues as small as
possible by our choice of the partial polarizer strength p. Inspection of (E.1) reveals that the best
choice of p is the one that makes the radicand exactly zero. Therefore, we want to choose p such

that

4
cos(¢)

p2+(2- Yp+1=0. (E.2)

The CW rotation angle ¢ is typically small in the problems of interest to us since it is determined
by the amount of Faraday rotation available in the gain medium. We can therefore solve for p to
first order in the small angle ¢:

p=1t2¢. (E.3)
Since we require p < 1, the admissible solution is p = 1 - 2¢. The corresponding eigenvalue is
A=Rg(1-9). (E.4)

The loss difference is given by 2R¢2¢. This important result shows that the amount of loss
difference available in the system that is optically equivalent to a rotator and partial polarizer
dcpehds on the amount of rotation available. For our system the amount of rotation is limited by

the small Faraday rotations accessible with small crystals and reasonable magnetic fields.
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APPENDIX F
DERIVATION OF MINIMAL REFRACTIVE INDEX CONSTRAINT

In this appendix we prove that the minimal refractive index for which we can solve

1

tan(Ap)tan(A¢/2) =
cos(20C)

(F.1)

is nmin = V3. The restriction arises from the existence of a maximum TIR phase shift for a given

index of refraction:

tan (A"‘a" I—’ﬂﬂ (E.2)

Note that the right-hand side of (F.1) is greater than one if opc is nonzero. To have any hope of
a solution we at least require the left-hand side to exceed one. Since the tangent functions are

monotonic, we can derive a cutoff value of the TIR phase shifts that might lead to solutions of

(F.1) as follows. Set each of Ap and Ac equal to Amax to make the left-hand side as large as
possible. Then equate the left-hand side to one in order to find the smallest admissible index of

refraction. The resulting equation is

antep)
i)

Solving, we find tan (Amax) = V3. Plugging this result for tan (Amax) back into (F.1) enables us

to solve for npin. The equation is

2 2

—=npin-1=0
ﬁ min . (F.4)
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The roots of this equation are —1/¥3 and V3. The negative index of refraction is not physically
permissible, which leaves us with the result nmip = V3. This result can be given a more mnemonic

interpretation. The minimum index of refraction required to give a cumulative TIR phase shift of

180 deg in three bounces is npin = V3.
We have as yet made no use of the constraints imposed by the geometry. The nonplanar ring
light path requires that the inequality
0A+208+60¢c< 180 : (F.5)

must hold, with the equality true only for the case B = 0. For a = V3 the maximum TIR phase
shift in one bounce is 60 deg and occurs for an angle of incidence 45 deg. Setting 8 =60¢c =

45 deg, the constraint on 85 is O <45 deg. In fact we can derive a relation between 84 and

since we know 0p and O8¢. The relation is

tan(0 ) = cos (B), (F.6)

which has allowed solutions for B between O and 90 deg.
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Footnotes
1. Itis interesting to note that Clobes and Brienza [13] obtained unidirectional oscillation in a

discrete element ring in which the Nd:YAG laser rod alone served as the differential loss
clement. A magnetic field applied to the rod provided Faraday rotation. Thermally induced
stress birefringence caused by the pumping by a 1500 W tungsten lamp served as the
reciprocal waveplate. Brewster-angled endfaces served as the partial polarizer. The
mirrors of the resonator served only to define a ring path for the light and to provide output

coupling.
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Table L. Calculated optical equivalents of the Faraday rotations and total internal reflections of all
published NPRO designs and one of our recent designs. For CCW' (CW) propagation the
collective effect of all the Faraday rotations and total internal reflections is optically equivalent to a
waveplate with retardation 2y+ (2y~) whose principal axes are rotated by an angle o+ (o) with
respect to those of the output coupler. The dihedral angle B characterizing the nonplanarity of the
ring is shown for each design. The loss differences shown in the last column cannot be compared
directly because loss differences depend on the choice of the output coupling mirror, but the loss

differences are indicative of the results obtained with various resonator designs.

Table L Calculated Parameters of Optical Equivalents of NPRO Designs

NPRO a+(deg) 2y+ (deg) o~ (deg) 2y-(deg) Loss Diff. (%)

Kane and Byer 2 15.208 96.565 -22.737 96.565 0.02

B =90.00 deg '

Kane et al b 22,181 78.231 -24.346 78.231 0.01

B = 90.00 deg

Trutna et al¢ 0.002 180.984 -0.451 180.994 0.60

B =1.25deg

Nilsson, Gustafsond 0.000 180.001 -0.538 180.015 3.39 |
|

B =1.06 deg . !

a Ref. [2]. NPRO parameter set: B = 90.00 deg, 64 =7.80 deg, AE = 36.50 mm, CE = 1.80
mm. Mirror parameters Rp = 0.99398, Rg=0.99599. B=1.00T.
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b Ref. [7). NPRO parameter set: B = 90.00 deg, 05 = 15.95 deg, AE = 10.50 mm, CE = 1.50
mm. Mirror parameters Ry = 0.98995, Rg = 0.99599. B = 1.00T.

¢ Ref [8]. NPRO parameter set: B = 1.25 deg, 64 = 30.00 deg, AE = 4.23 mm, CE = 1.77 mm.
Mirror parameters Rp = 0.92195, Ry = 0.99950. B = 0.43 T. Note that the design of Trutna ez al.
was not chosen to maximize the loss difference. Fig. 3(b) of their paper shows a calculated loss

difference exceeding 6% for a design with an applied magnetic field of 0.9 T and a dihedral angle

of approximately 5 deg.

d NPRO parameter set: B = 1.06 deg, 64 = 29.81 deg, AE = 4.00 mm, CE =2.29 mm. Mirror
parameters Rp = 0.95919, Rg = 0.99398. (optimal mirror parameters) B=050T.
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Fig. Captions

Fig. 1. Schematic of diode-laser-pumped monolithic nonplanar ring oscillator (NPRO). The laser
operates unidirectionally because the combination of the nonplanar ring light path in the crystal, the
Faraday rotation caused by the applied magnetic field, and the oblique angle of incidence on the

output coupler produces a loss difference between the two directions of propagation around the

ring.

Fig. 2. Top and side views of the monolithic laser crystal with the nonplanar ring light path
indicated (bold line). Totwl internal reflection occurs at B, C, and D. Qutput coupling occurs at A,
a partially transmitting, multilayer dielectric coated spherical surface.

Fig. 3. (a) A perspective view of the nonplanar ring light path with unit propagation vectors for
CCW propagation shown on each leg. (b) Notation for characterizing the nonplanar ring. The
angles of incidence at A, B, C, and D are @4, 98, 8¢, and 8p (= 0B), respectively. The dihedral
angle B characterizes the nonplanarity: it is the angle between planes ABD and BCD. Point E is an
auxilliary point useful in defining lengths and directions in the ring, because plane AEC is a plane
of mirror symmetry for the geometry. An external magnetic field B is applied parailel to AE.

Fig. 4. (a) The two coordinate systems used for describing propagation of light along leg AB are
related by a rotation about AB. The Fig. on the left is drawn from the point of view of an

observer at B looking toward A, and the Fig. on the right is a perspective view. Positive rotaton
of system 1 by 0 op rotates the normal to the plane of incidence at A, y, into the normal to the

plane of incidence at B, y2. (b) Two views of the coordinate systems used to describe reflection
from a planar interface between two isotropic media. The Fig. on the left is used in defining the
phases of the Fresnel coefficients. The Fig. on the right shows a perspective view of the two

coordinate systems associated with total internal reflection at B. (¢) To transform from the
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principal axis system for reflection at B into the principal axis system for reflection at C requires a
negative rotation about axis:BC through the angle 8¢ as shown here. For simplicity only the

basis vectors in the two planes of incidence are shown.

Fig. 5. Exploded view of the nonplanar ring light path showing all eight of the coordinate systems
used to describe counterclockwise propagation of light. The basis vectors are always chosen such
that x is in a plane of incidence, y is perpendicular to a plane of incidence, and z is in the direction

of propagation.

Fig. 6. Calculated magnetic field dependence of the eigenpolarization properties of a Nd:YAG
NPRO resonator designed to emulate a rotator and partial polarizer. (a) Difference between the
round trip losses in percent of the low-loss eigenpolarizations for CCW and CW propagation. (b)
Round trip losses of the four eigenpolarizations. The low-loss eigenpolarizations are labeled
CCW; and CW;. The minimal loss occurs for the CCW>, eigenpolarization at B=0.5 T. (c)
Azimuths of the eigenpoiariutions. (d) Ellipticity angles of the eigenpolarizations. Recall that the
ellipticity angle ¢ is related to the ratio of the axes of the polarization ellipse by tan(e) = tb/a. (e)
Frequency shifts of the four eigenpolarizations with respect to the initial four-fold degenerate
frequency that occurs in the absence of an applied magnetic field. Note that the frequencies
associated with a given direction of propagation split symmetrically.

Fig. 7. The calculated dependence of the loss difference of a NPRO resonator designed to emulate
a rotator and partial polarizer versus the strength of the partial polarizer, defined by Rp/R,. This
curve is generated by holding Re and all other resonator parameters fixed and varying only Rp.
Note the sharply peaked maximum showing that the loss difference is maximized by choosing a

partial polarizer whose polarizing strength depends on the amount of rotation available.
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Narrow Linewidth Operation of Diode-Laser-Pumped Nonplanar Ring Oscillators

Alan C. Nilsson, Timothy Day, Alejandro D. Farinas, Eric K. Gustafson, Robert L. Byer
Edward L. Ginzton Laboratory
Stanford University
Stanford, CA 94305

L. Introduction

The search for gravity waves, improved tests of relativity theory, advances in high resolution
spectroscopy, and optical frequency standard development impose stririgcnt requirements on the linewidth
and frequency stability of lasers. Most efforts to produce narrow linewidth lasers have focused on He-Ne,
dye, argon ion, or semiconductor lasers. These lasers exhibit free-running linewidths ranging from tens of
kilohertz to several gigahertz and thus require wideband servo techniques for narrow linewidth operation
(1]. Diode-laser-pumped monolithic solid-state lasers, on the other hand, can have free-running linewidths
of a few kilohertz (2, 3], which makes them attractive candidates for narrow linewidth operation using low
bandwith servo techniques. The short-term free-running stability is attributed to the smalil size and rigidity
of the monolithic laser, which makes the optical cavity resistant to acoustical excitation, and to the low
noise and efficiency of the diode laser pumping. Of particular interest are the diode-laser-pumped
monolithic NonPlanar Ring Oscillators (NPROs) that overcome the problems of spatial hole burning and
sensitivity to optical feedback inherent in linear cavity lasers (3, 4, 5]. Here we present our current NPRO
design and explain its properties, discuss our recent narrow linewidth results obtained by locking a pairof
diode-laser-pumped Nd:GGG NPROs to an optical cavity, and speculate about future developments.

2. Current NPRO Design

A schematic of our current NPRO design is shown in Fig. 1. The NPRO is a monolithic crystal (Nd:YAG
or Nd:GGG ) in which a nonplanar ring light path is formed by three flat total internal reflection facets and
one multilayer-dielectric-coated spherical surface that serves as the output coupler. Figure 1 shows the
nonplanar ring light path as a dashed line within the crystal. The light travels in two planes that subtend an
angle of 3 degrees in recent Nd:GGG designs. This small angle contrasts with the 90 degree dihedral
angle of the original invention [4). Pump radiation from a single-stripe GaAlAs diode laser operating at a
wavelength near 809 nm is focused into the crystal through the center of the output coupler as shown.
Proper focusing of the diode laser radiation excites only the TEMoo mode of the NPRO. The crystal size is
typically Sx4x2 mm3. The crystal is temperature-controlled through the bottom face. A magnetic
induction of 0.4 T, provided by a small permanent magnet, causes Faraday rotation in the crystal.



Nd:.YAG magnet
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Fig. 1 Diode-laser-pumped monolithic
nonplanar ring oscillator (NPRO)

heater

The NPRO, owing to its integral optical diode [6], offers two major advantages over monolithic linear
cavity lasers: unidirectionality, and improved resistance to the destabilizing effects of optical feedback. As
with a discrete-element unidirectional ring the NPRO's optical diode contains the analogs of optical
activity, Faraday rotation, and a partial polarizer. The difference is that in the NPRO all of these effects are
elegantly embodied in a monolithic crystal. Reciprocal polarization rotation is provided by the nonplanar
ring light path, Faraday rotation occurs in the crystal because of the applied magnetic field, and the partial
polarizer results from the oblique reflection from the output coupler. In general there are four possible
cigenpolarizations (two for each direction of propagation around the ring) having four different round trip
losses and four different eigenfrequencies.

1.1 Unidirectionali

Since the laser transitions in Nd:YAG are homogeneously broadened, the lowest loss eigenpolarization
oscillates as a traveling wave and uniformly saturates the gain, preventing competing modes from
oscillating. In terms of round trip loss the closest competitor to the oscillating mode is the low loss mode
for the nonoscillating direction. The loss difference of the resonator is defined as the difference between
the losses of the oscillating mode and its closest competitor. To enforce and maintain unidirectional

operation, the loss difference must be sufficiently large to overcome coupling between the two directions
of propagation caused by scatter and extracavity optical feedback. Loss differences of 104 are more than

adequate to produce unidirectional operation, even in discrete-element Nd:YAG ring lasers [7].

32 Resi Optical Feedbac]
Imagine that the NPRO is operating unidirectionally in the CCW direction and that some of the output
radiation is reflected back into the NPRO cavity. We want to know how strongly the closest CW
competitor mode is excited by this optical feedback. Apart from the question of spatial modemarching,
there are two additional factors to consider: polarization state, and frequency. The optical feedback
generally arrives in a high loss polarization state that differs in frequency from the resonant frequency for
its direction of travel, hence the optical feedback couples weakly to the CW competitor. This heuristic
argument suggests that resistance to optical feedback improves with increasing loss difference and
frequency splitting [8].

For diode-laser-pumped operation we have designed NPROs that simultaneously yield low output

" coupling (so that thresholds are low) and large loss differences (for improved resistance to optical




feedback). A complete discussion of this problem can be found in {[9]. The main result of the theoretical
treatment is that in a given applied magnetic field there is a best choice for the geometry of the nonplanar
ring light path and a best choice for the output coupler in order to obtain the lowest output coupling and a
large loss difference.

 Locki f NPROS Fabrv-Perot Cavi
Previous experiments by KANE et al. have demonstrated 3 kHz free-running linewidths of diode-laser-
pumped NPROs [3]. The NPROs used in these early experiments were large (12x9x3 mm3) and thus had
high thresholds that necessitated the use of diode-laser-arrays for pumping. Two improvements suggested
themselves: reduction of the crystal size to permit pumping by stable, single-stripe diode lasers, and
discovery of some nonthermal means of controiling the frequency of the NPROs.

Both of these changes have been implemented in our current experiments, which are based on modified
Model 120 monolithic NPROs from Lightwave Electronics [10]. The Nd:YAG crystals have been
replaced with custom Nd:GGG crystals. Typical pump power thresholds are below § mW for these
devices, casily within the range of the single-stripe GaAlAs diode lasers used here. Rapid frequency
tuning is implemented by bonding a piezoelectric transducer to the nonoptical top face of the NPRO
crystal. Voltage applied to the transducer strains the NPRO crystal and changes the frequency of the laser.
The tuning coefficient for our Nd:GGG crystals is 450 kHz/V, and the bandwidth for effective modulation
is 400 kHz. KANE and CHENG have recently phase-locked two such NPROs together, demonstrating -
that low bandwidth servo techniques should be capable of producing narrow linewidth operation of such
lasers [12].

4.1 System
To investigate this possibility, we have locked two Nd:GGG NPRO lasers to a single confocal Fabry Perot

cavity used in transmission [12], as shown schematically in Fig. 2. Output from the two NPROs is
combined in a polarizing beam splitter cube. One output port of the cube is used to mix the two bearns on
a photodiode to generate a heterodyne signal for spectral analysis. The other output port of the cube sends
the two collinear but orthogonally polarized beams into a commercial Fabry-Perot optical cavity (finesse
300). The lasers are separately locked to the sides of two adjacent transmission fringes of the Fabry-Perot,
separated in frequency by the 300 MHz free spectral range of the cavity. The slope of the fringe at the lock
point is 120kHz/V. In response to a change in the amplitude of the transmitted light a voltage is applied to
the piezoelectric transducer of the NPRO to restore the transmitted amplitude to its injtial point. The servo
loop consists of proportional and integral control, has unity gain at 6 kHz, and has a closed loop gain
approaching 105 for low frequencies. In this simple servo system amplitude instability of the NPROs is
interpreted as frequency instability, so our linewidth results thus far only set preliminary upper bounds on
the linewidth of the heterodyne signal.

Two important diagnostic tools have been explored thus far. First, spectral analysis of the frequency
discriminator signals under locked condition indicates how tightly the servo loops are able to lock the
lasers to the set points on the transmission fringes. Second, spectral analysis of the heterodyne signal
reveals information about the relative short-term linewidths of the two lasers under lock. Since the free-
running NPROs already have good short-term linewidths, the process of locking the lasers to an
undoubtedly less stable external cavity degrades the frequency stability of the output radiation of each
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individual laser. Nonetheless, the information gained about our ability to lock the lasers to an external
standard is crucial, and improvements of the overall stability of the system will require careful attention to
the stability of the external standard {1].

4.2 Results

The importance of the power spectrum of the discriminator signal for diagnosing locking efficacy has been
emphasized by SALOMON et al. {1]. Figure 3 is a spectrum analyzer trace of the discriminator signal for
one of the two NPROs under lock. The lower frequency limit is imposed by the rf spectrum analyzer. In
order to have high enough signal gain from the detector and to limit the bandwidth of the control loop, the
cutoff frequency of the detector is 6.25 kHz. Interpretation of the noise spectrum above this cutoff
frequency requires caution. If the RMS power spectral density of the discriminator signal were well
represented across the entire spectrum by the behavior observed in Fig. 3 the analysis of ELLIOTT et
al. [13] would predict a heterodyne linewidth of order 1 Hz. In fact, however, there is structure in the

spectrum caused by residual 60-cycle signals and by inadequacies in the control loops.
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The power spectrum of the heterodyne signal is shown in Fig. 4. This signal has a resolunon-



bandwidth-limited full width at half maximum of 511 Hz, which places an upper limit on the short-term
relative linewidth of the NPROs under lock. In the near future we expect to have improved means of
characterizing these linewidths, including the use of the Allan variance.
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With improved detection and careful attention to the noise properties of the servo loops we anticipate
continued progress in narrowing the linewidths of NPROs. The preliminary results reported here aiready
show six-fold improvement over the free-running linewidths previously attained by KANE et al. [3].
Moreover, the relative frequency drift between the two NPROs is eliminated in our present locking
scheme.

3. Speculation About the Future

Immediate plans for improving on these results involve isolation of the external optical cavity from
acoustical disturbance. Once the cavity is well isolated, we will benefit from using the rf Pound/Drever
technique of locking to the cavity in reflection. To pin down the center frequency of the NPRO we plan to
use external second harmonic generation in a monolithic MgQO:LiNbO3 ring doubler to produce narrow
linewidth green light that can be locked to hyperfine transitions in I2. Ultimately, NPRO-pumped optical
parametric oscillators or new laser transitions in other solid-state gain media will make it possible to
interrogate long-lived transitions in trapped ions [14, 15].
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Appendix F - Equipment purchased with grant NAG-1-828

Two quarter wave plates
One half wave plate
“Five rotation stages
‘Three Beamsplitters
Three beamsplitter mounts
Five mounting posts
Five mounting post holders
Five post holder bases
One tilt table
One xyz translation stage
Three lens holders
One 2235 Tektronix oscilloscope
One Spectra-Diode labs diode laser
One SRS 510 lockin amplifier
One Lightwave Electronics Model 120-01A Laser



