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Abstract

Two methods for studying the free-vibration
characteristics of a large split-blanket solar
array in a 0-g cantilevered configuration are
presented. The 0-g configuration corresponds to
an on-orbit configuration of the space station
solar array. The first method applies the equa-
tions of continuum mechanics to determine the natu-
ral frequencies of the array; the second uses the
finite element method program, MSC/NASTRAN. The
stiffness matrix from the NASTRAN solution was
found to be erroneously grounded. The results from
the two methods are compared. It is concluded that
the grounding does not seriously compromise the
solution to the elastic modes of the solar array.
However, the correct rigid body modes need to be
included to obtain the correct dynamic model.

Nomenclature
b blanket width
£l boom bending stiffness
Ip mass polar moment of inertia per unit
iength
Itp mass moment of inertia of tip piece
Ttp tip piece inertia ratio (Eq. 19)
JG boom torsional stiffness
K axial load parameter for bending
(Eq. 15
kKt torsional stiffness factor (Eq. 19)
] blanket and boom length
My total mass of boom
Mm total blanket mass
M mass ratio (Eq. 15)
Mtp mass of tip piece
Mtp mass ratio (Eq. 15)
My (X) torsional moment distribution along boom
My(x) bending moment distribution along boom
P compressive preload in boom
Q(x) shear distribution along boom
T blanket tension per unit width
t time
Vix,y,t> boom displacement

Wm total blanket weight

W(x,y,t) blanket displacement

X longitudinal coordinate

y lateral coordinate

ay,ap,a3 characteristic values (Eq. 17)

B bending frequency parameter (Egq. 16)
Et torsional frequency parameter (Eq. 20)
4 transformed coordinate (Eq. 3)

Pb mass per unit length of boom

om mass per unit length of blanket

w circular frequency of vibration

Introduction

NASA's Space Station Freedom derives its elec-
trical power from eight photovoltaic arrays. Each
array is cantilevered off of the main space station
truss as shown in Fig. 1. The eight arrays repre-
sent a significant amount of the mass and inertias
of the space station outboard of the habitation and
experimentation modules. The structural design of
the photovoltaic arrays has been evolutionary.
Several spacecraft and experiments have used simi-
lar designs in the past. A center extendable truss
supports a pallet at the tip of the array. Two
blanket substrates, with solar cells mounted on one
side, are attached to this tip piece. The two
blankets are arranged on either side of the extend-
able truss. The bottom of the blankets are con-
strained by negator springs which keep the blankets
in constant tension. It is the constant tension
which supplies the structural bending stiffness to
the blankets. This configuration is illustrated in
Fig. 2.

Determining the dynamic response of the space
station requires accurate models created using the
finite element method. The position and flexibil-
ity of the photovoltaic arrays makes accurate pre-
diction of their free-vibration characteristics
particularly critical. This paper attempts to
insure that the predicted frequencies are accurate
by the following procedure. First, an exact solu-
tion of the equations of continuum mechanics for
the natural frequencies of a split-blanket solar
array is presented. The considered solar array
contains several idealizing assumptions and is
placed in a 0-g field. Second, 0-g natural fre-
quencies of that same idealized split-blanket
solar array are calculated using the finite ele-
ment approach. There are several reasons why a
check on this solution is desired. The tension
supplied stiffness of the blanket must be modeled
in the finite element method as a differential
stiffness (geometric nonlinear) effect. Further-
more, as discussed in Ref. 1, the resulting stiff-
ness matrix is grounded in the rotational degrees
of freedom. Therefore, in order to establish the



acceptability of the finite element method for
solving the 0-g split-blanket solar array problem,
calculated cantilevered frequencies are compared
to those calculated with the exact solution. In
making this comparison the primary purpose of this
paper is fulfilled. The first five natural fre-
quencies are compared, which include three bending
modes and two torsion modes.

Solution of the Continuum Mechanics Equations
for Normal Modes and Frequencies of the

Solar Array

Previous Efforts

The cantilevered modes and frequencies of a
split-blanket solar array have been studied by sev-
eral investigators. In Ref. 2 the cantilevered
modes and frequencies of a split-blanket array in a
0-q field were investigated by solving the differ-
ential equations governing the motion. This method
results in transcendental equations that can be
solved numerically for the frequencies. Refer-
ence 3 presents both a continuum mechanics approach
and a Rayleigh-Ritz approach to calculating the
natural modes and frequencies of split-blanket
solar array in a 1-g field. The detailed deriva-
tion of the following equations are also contained
in Ref. 3.

Basic Assumptions

For purposes of analysis a large split-blanket
solar array is idealized as shown in Fig. 3. This
figure shows the array consisting of three compo-
nents: a center boom that supports the array
(referred to as the extendable truss); a membrane
substrate with solar cells attached to one side
(referred to as the blanket); and a beam at the tip
of the boom that transfers a tension load, P, from
the boom to the substrate. The displacements of
the boom and blanket, normal to the plane of the
blanket, are denoted by V(x,t) and W(x,y,t),
respectively. In developing the equations of
motion for the array the following assumptions were
made:

(1) The bending stiffness of the blanket, nor-
mal to its plane, is negligible so that the blanket
behaves like a membrane in this direction.

(2) The tension distribution is uniform across
the width of the blanket (i.e., the tip piece is
rigid).

(3) Displacements are small, so that small-
displacement theory is valid.

(4) Boom weight is negligible (in regards to
the gravity gradient in a 1-g field), and the shear
center coincides with the neutral axis of the boom.

(5) The boom and the blanket lay in the same
plane.

Based on these assumptions the equations describing
the motion of the array were developed.

Equations of Motion

The forces acting on an element of the blanket
displaced an amount W(x,y,t) from its static equi-
Tibrium configuration are shown in Fig. 4(a).

Applying Newton's second law of motion to this ele-
ment yields the following equation:

2
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where b is the blanket width and pp is the mass

per unit length of blanket.

Now for a blanket hanging vertically, the ten-
sion at any point x will be a superposition of
the preload, P, transferred to the blanket from the
boom and the weight of the blanket below the point

x. That is,
W P9
T(x)=g(1+P—"‘-%x) @)

where MWy 1is the total blanket weight. In view of
Eq. (2), Eg. (1) is transformed by making the fol-
towing change of variables:

W
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From Egs. (1) and (3) then
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Equation (4) represents the desired form for the
equation of motion of the blanket.

The equation of motion in the transverse
direction, for the beam element shown in Fig. 4(b),
as given by beam theory (Ref. 4), is

v P av
X

Q(x) = -EI(——— + ——) (%)
a)(3 ET 3

In this manner it can be shown (Ref. 5) that the
equation governing the bending motion of the boom
is given by

2
a'v P 3% Pbay
7 * 7+ atz =0 (6)

In addition to the bending motion described by

Eq. (6), the boom can also experience a rotational
motion about its centerline. The equation govern-
ing this motion is developed in numerous texts on

vibration theory (e.g., Ref. 6) and is given by
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where © 1is the rotational angle of the boom cross
section, I, 1is the mass polar moment of inertia
per unit length, and JG is the torsional stiff-
ness of the boom. Equations (5) to (7) represent
the required relations for the boom.

The final set of equations are the equations
of motion for the tip piece. The forces acting
on the tip piece are shown in Fig. 5. Applying
Newton's second law of motion for forces in the



Z-direction and moments about an axis parallel to
the x-axis and passing through the center of grav-
ity of the tip piece yields the following two
equations:

b/2
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where Mg, 1s the mass of the tip piece and It
is the mass moment of inertia about its center o?
gravity. Equations (10) and (11) can be written in
terms of displacement variables. This results in
the following form for the tip piece equations.
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Equations (10) and (11) represent the final form of
the equations of motion of the tip piece. These
equations together with Eqs. (4), (6), and (7) rep-
resent the motion equations for the complete solar
array. The displacement variables in these equa-
tions must satisfy certain boundary and compatibil-
ity relations. These conditions are given next.

Boundary Conditions and Compatibility Relations

At the fixed end of the array the displace-
ments and rotations of the array elements are all
zero. At this end, x = 0 and it follows from

Eq. (3) that Tp =+/1 + (Wp/P). Thus, the boundary
conditions at the fixed end will be as follows:

V(0,t) = 0 h

av

X 0,12 =0

Q12>
0(0,t) =0

N(Co,y,t) =0 J

At thg free end of the array the displacements and
roFat1ons of the components must be compatible. At
thIS end x = 1; and from £q. (3), ¢ = 1. In addi-
tion, the moment at the tip of the boom is zero.
Thus, the boundary and compatibility relations at
the free end are as follows:

(2, t) = « 3

W(1,0,t) = Vo,

WLy, t) = W(1,0,8) + Y a3
2
3wt =0
X S

Equations (10) to (13) represent the complete set
of relations that must be satisfied by the solu-
tions to Eqs. (4), (6), and (7).

Exact Solution to the Equations of Motion

The derivation of the characteristic equations
for the bending and torsional frequencies is
described in detail in Ref. 3. Included in this
reference are the solutions for a solar array in a
1-g ground test configuration. For the case of a
solar array in a 0-g field (i.e., an on-orbit con-
figuration), these characteristic equations are
determined by taking the 1imit of the functions in
the 1-g equations as the blanket weight Wy
approaches zero. This process is also described
in detail in Ref. 3. The characteristic equation
for the bending frequencies of the solar array in
a 0-g configuration can be shown to be:
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The parameters used in Eq. (14) have been non-
dimensionalized by the use of the following
relationships:
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The characteristic equation for the torsional fre-
quencies of the solar array can be shown to be:

- ] - = . =
cos Bt + 12(E2§ - Itht) sin Bt =0 18
tot

The parameters used in Eq. (18) have been nondimen-
sionalized by these following relationships:
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with the torsional frequency parameter defined as

(20)

It can be shown that Eqs. (14) and (18) are analo-
gous to the frequency equations in Ref. 7, which
were developed in a straightforward manner for the
0-g configuration.

Summary of Continuum Mechanics Approach

In the previous sections the equations govern-
ing the frequencies of a split-blanket solar array,
which were determined by solving the differential
equations governing the motion of the system, were
presented. The results showed that the array will
exhibit symmetric or bending modes and antisymmet-
ric or torsional modes of vibration (Fig. 6). The
frequencies of the bending modes can be found by
solving Eq. (14) for an array in a 0-g field. Sim-
ilarly, the torsional mode frequencies can be
determined from Eq. (18). In both of these cases
a highly transcendental equation involving trigono-
metric and hyperbolic functions must be solved
numerically to obtain a solution. The frequencies
of the array in a 0-g field with parameters match-
ing those for the space station solar array were
calculated and will be presented in the comparison
section.

Finite Element Approach

Finite Element Modeling

A configuration of the space station solar
array was modeled using the finite element program,
MSC/NASTRAN. There are several differences between
the space station solar array model and our ideal-
ized solar array mode! because of the assumptions
discussed in the previous section. The idealized
solar array finite element model has no local flex-
ibility or masses. In the actual space station
array model there are local flexibilities which
represent joints and masses which represent elec-
tronic packages. The idealized solar array was
modeled to match the structure solved for in the
exact solution as closely as possible.

The substrate (blanket) of split-blanket
solar arrays has no inherent bending stiffness.
The bending stiffness is derived from being
stretched by a constant tension. This effect is
analogous to the stiffness achieved when a drum
head is stretched. The blanket of the space
station idealized solar array is tensioned by
applying forces directly to the end of this blan-
ket. The direction of the forces is maintained in

the plane of the blanket. There is no supporting
structure modeled at the bottom of the blanket
where the forces are applied. In the actual design
of the space station solar array there is a blanket
box that supports the bottom of the blanket and the
tensioning mechanisms. The blanket itself is rep-
resented as differential stiffness membrane ele-
ments. The membrane elements used in this analysis
are the standard MSC/NASTRAN CQUAD4 elements which
have their bending stiffness defined as zero. The
properties for these elements were derived from an
EAL finite element model which was supplied by
Lockheed Missiles and Space Company. They are
consistent with the proposal Lockheed made to the
space station project for the solar arrays

(Ref. 8).

The membrane elements which define the blanket
are connected to a top structural member. In order
to be consistent with the assumptions that were
made in defining the exact solution, this tip piece
was modeled using rigid elements and was connected
rigidly to the center boom. The center boom was
modeled using standard (CBEAM) beam elements. Nor-
mally the center beam is cantilevered at the base,
but this constraint can be removed to calculate the
rigid body modes. This finite element model is
illustrated in Fig. 7. The various structural
parameters that were used to define this model are
given in Table 1. These same parameters were used
to calculate frequencies in the exact solution.

Due to programmatic changes, there are small dif-
ferences in size between these parameters and the
current space station solar array specifications.

Finite Element Solution

For the static tensioning of the model to sup-
ply the bending stiffness to the blanket, differen-
tial stiffness capabilities must be utilized. The
differential stiffness effects in the case of the
solar array blanket are analogous to the stiffness
achieved when a drum head is stretched. In a
finite element solution the differential stiffness
terms are added to the element stiffness matrix.

In MSC/NASTRAN this can be accomplished in the
standard solution sequences.- The static tensioning
of the blanket takes place in MSC/NASTRAN's geomet-
ric nonlinear solution 64 (Ref. 9). The tension
applied to each blanket in the actual space station
solar array is 75 1b (total tension being 150 1b).
For the purposes of this study the load is varied
from 100 1b to the buckling load of the combined
system.

The geometric nonlinear solution calculates an
initial approximation for the differential stiff-
ness effects that result from the static tension-
ing. These effects are added to standard element
stiffness matrix. Through the use of additional
subcases the solution to the geometric nonlinear
static problem is iterated upon until the applied
load and the internal loading is balanced. At
every iteration the geometry, the external loading
and consequently the internal loading and the
stiffness matrix is updated. After the final iter-
ation, when the solution has successfully con-
verged, the stiffness matrix is retained. This
stiffness matrix is utilized by the normal modes
solution 63 sequence. The system natural freguen-
cies and mode shapes, using the updated stiffness
matrix which include differential stiffness
effects, are calculated in the standard normal
modes solution.



Grounding

The normal modes and frequencies, which
include differential stiffness effects, can be cal-
culated for both the cantilevered configuration and
the free-free configuration. When the normal modes
and frequencies were calculated in a free-free sit-
uation, only three rigid body modes were found to
exist. These were the three translational rigid
body modes. The three rotational rigid body modes
do not exist for this differential stiffness finite
element model. Rigid body translations and rota-
tions were also applied to the stiffness matrix of
the model. The rigid body rotations generated
large internal forces and moments. Therefore, the
stiffness matrix that results from the geometric
nonlinear solution was determined to be grounded.

An effort was made to determine the cause of
this problem. The finite element differential
stiffness matrix that was created by MSC/NASTRAN
was found to be identical to the stiffness matrix
formulated by Martin (Ref. 10). In Ref. 1 it was
pointed out that Martin's formulation of the dif-
ferential stiffness matrix would not have the rota-
tional rigid body modes. However, the grounding of
the entire model that occurs as a result of this
phenomena was not identified. Therefore, it was
concluded that the differential stiffness terms
which are added to the element stiffness matrix
when the model is statically tensioned grounds the
stiffness matrix. This effort is documented in
Ref. 171.

Generating and implementing a new element dif-
ferential stiffness matrix to include the rigid
body rotations would not be feasible as a short
term solution. Reformulating the differential
stiffness membrane finite element would be time
consuming and perhaps unneeded, if the missing
rotational rigid body modes are relatively easy to
calculate. If the cantilevered elastic modes are
calculated, the correct rigid body modes can be
appended to the matrix containing the elastic
modes. The resulting set of matrices is then
equivalent to a standard Craig-Bampton component
mode representation of the solar array. However,
this model will be correct only if the grounding
has not affected the elastic modes. To this end
the results from the finite element solution were
compared to the exact solution.

Comparison Between Exact and Finite
Element Solutions

The lack of rotational rigid body modes in
the finite element solution does not prove that
the predicted elastic frequencies are in error. To
determine the finite element method's accuracy its
frequencies were compared to those calculated using
the exact solution. Two separate FORTRAN programs
were written to calculate the bending and torsional
frequencies predicted by the exact solution. The
equations used to calculate these frequencies were
Eqs. (14) and (18), respectively. The magnitude of
the tension in the solar array for both the NASTRAN
and the exact solution was varied up to the first
buckling load of the array. The first buckling
load of this idealized space station solar array is
2130 1b. The operating point of the actual space
station solar array, as mentioned previously, is
150 1b, or 7 percent of the critical buckling load.

The calculated frequencies from the two dif-
ferent solutions were compared for the first three
bending modes and the first two torsion modes. A
graph of the tension load versus frequency of the
bending modes is shown in Fig. 8. As the tension
load increases, the frequencies of the solar array
begin to rise due to the increased stiffness in the
blanket. As the tension continues to increase, the
compression in the center mast begins to cause the
frequencies to drop. The fundamental bending fre-
quency goes to zero at the first buckling mode of
the beam. Ffigure 9 is a graph of the percent dif-
ference between the exact solution and the finite
element solution of the first bending mode. The
reason for the increased difference between the
solutions as the load approaches the buckling load
has not been determined at this time. Figure 10
plots the frequencies of the first two torsion
modes against the tension load. Figure 11 is the
percent difference between the exact and finite
etement solutions of the first torsion mode. The
tension load was normalized to the first buckling
load of the system in all the figures.

The agreement between the finite element solu-
tion and the exact solution is excellent in the
range of interest. Several other finite element
mesh densities were also used to calculate frequen-
cies. It was found that the accuracy of this prob-
lem was not sensitive to mesh density. The overall
good correlation is not necessarily a general
result. Several cases were created where the
grounding significantly affected the elastic modes
predicted by the finite element solution. As a
general rule, a procedure such as was followed
herein, comparing an exact solution to finite ele-
ment solutions, should be utilized when using dif-
ferential stiffness.

Conclusions

In the loading range of interest, there is
excellent agreement between the finite element
solution and the exact solution. Therefore, the
elastic modes of the finite element solution are
accurate. The correct rigid body modes can be
added to the finite element calculated elastic
modes to form a Craig-Bampton component mode repre-
sentation which can then be used in subsequent
analyses. The generally good agreement between the
two solutions should not be construed to establish
that grounding caused by differential effects can
never be a problem. There could be situations
where the grounding alters the elastic modes sig-
nificantly. Whether this is the case in any spe-
cific problem would have to be determined on an
individual basis.
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- PARAMETERS WHICH DEFINE THE

IDEALIZED SOLAR ARRAY STRUCTURE

Length, in.
Width, in.
Beam EI, psi
Beam GJ, psi
Beam weight, 1b .
Blanket weight, 1b
Tip weight, 1b

Tip inertia, 1b-in2

... . 61
. 8.06x10°
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FIGURE 1. - SPACE STATION FREEDOM.
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(@) BLANKET ELEMENT SHOWING FORCES AND DISPLACEMENTS.
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(b) SOLAR ARRAY IN A SYMMETRIC (BENDING) MODE OF VIBRATION.

(b) SOLAR ARRAY IN A ANTISYMMETRIC (TORSIONAL) MODE OF VIBRATION,

FIGURE 6. - BENDING AND TORSIONAL MODES OF VIBRATION.
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FIGURE 7. - FINITE ELE-
MENT MODEL OF IDEALIZ-
ED SPACE STATION SOLAR
ARRAY,
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FIGURE 8, - BENDING FREQUENCIES VERSUS LOAD, EXACT AND
FINITE ELEMENT SOLUTION OF AN IDEALIZED PHOTOVOLTAIC
ARRAY,
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FIGURE 9. - PERCENT DIFFERENCE BETWEEN EXACT AND FINITE
ELEMENT SOLUTION OF 1s7 BENDING MODE VERSUS TENSION
LOAD.
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FIGURE 10. - TORSION FREQUENCIES VERSUS LOAD, EXACT AND
FINITE ELEMENT SOLUTION.
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