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Abstract 

A twestep hybrid perturbation-Galerkin method is presented for the solution of a 
variety of differential equations type problem which involve a scalar parameter. The 
resulting (approximate) solution has the form of a sum where each term consists of 
the product of two functions. The first function is a function of the independent field 
variable(s) 2, and the second is a function of the parameter A. In step one the functions 
of z are determined by forming a perturbation expansion in A. In step two the functions 
of X are determined through the use of the classical Bubnov-Galerkin method. The 
resulting hybrid method has the potential of overcoming some of the drawbacks of 
the perturbation and Bubnov-Galerkin methods applied separately, while combining 
some of the good features of each. In particular, the results can be useful well beyond 
the radius of convergence associated with the perturbation expansion. The hybrid 
method is applied with the aid of computer algebra to a simple twGpoint boundary 
value problem where the radius of convergence is finite and to a quantum eigenvalue 
problem where the radiua of convergence is zero. For both problems the hybrid method 
apparently converges for an infinite range of the parameter A. The results obtained 
from the hybrid method are compared with approximate solutions obtained by other 
methods, and the applicability of the hybrid method to broader problem areas is 
discussed. 
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*Research for &e second author was supported under the National Aeronautics and Space Administration 

under NASA Contract Noa. NAS1-18107 and NAS1-18605 while he was in residence at the Institute for 
Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, 
VA 23665. 
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1. Introduction 

Perturbation solutions to differential equations type problems have been useful in a wide 
variety of applications; and it has long been realized how useful computer algebra can be in 
forming perturbation expansions. However, typically the algebra becomes more and more 
tedious as higher and higher order terms are computed; and frequently the computational 
effort rises so fast from term to term that even with computational assistance very few 
terms can be computed. Such luxuries as determining the radius of convergence of the 
expansion are rarely allowed, let alone situations where the expansion parameter can be 
modified to in effect increase the radius of convergence [l]. Thus for cases where higher 
order terms may have a significant effect it is important to make as much use of the 
information contained in the lower order terms as possible. The hybrid perturbation- 
Galerkin method described herein seems to greatly extend the power and usefulness of the 
perturbation method without adding significantly to the computational effort. 

The hybrid technique was apparently first studied by Ahmed K. Noor and collabora- 
tors. Their series of papers [8,9,10,12,13] combine the perturbation method, the Galerkin 
method [3], and the finite element method (or other discretization techniques) to attack 
a variety of structural mechanics problems. Their "reduced-basis method" allows some 
nonlinear problems requiring thousands of degrees of freedom after discretization to be 
computed using nonlinear systems of equations with only four to ten unknowns. Noor 
and collaborators have also applied the same general principles suns discretization to some 
thermal and structures problems [7,11]. We refer to the same general principle as the hy- 
brid perturbation-Galerkin technique because in using the technique without discretization 
we do not think in terms of having large bases to reduce. 

We believe the hybrid technique can be adapted to a wide variety of problem areas. 
Previous work by the present authors demonstrates applications to slender-body problems 
which result in singular perturbation expansions (41. In this paper the main problem con- 
cerns a well-known quantum eigenvalue problem, namely the perturbed one-dimensional 
harmonic oscillator. This problem in first order perturbation theory is treated or referred 
to in many different elementary quantum mechanics texts. Other work yet to be published 
involves boundary layer problems and problems in which the perturbation expansion is 
made at two or more values of the expansion parameter. 

In Section 2 we give a general description of the method. In Section 3 we analyze a 
simple two-point boundary value problem to illustrate the technique. Section 4 gives a 
treatment of the quantum anharmonic oscillator problem followed by concluding remarks 
in Section 5. 
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2. Description of the Method 

The method used in this study is a two-step hybrid analysis technique which is based 
upon a perturbation expansion technique followed by a Bubnov-Galerkin or variational 
technique. We suppose that we have a differential equation with independent variable z 

which involves a scalar parameter X and that we desire the solution to this equation for a 
particular value or range of values of A. 

In the first step a perturbation solution is developed with X as the expansion parameter. 
The perturbation solution takes the form of a sum over terms, where each term consists a 
perturbation function (a function of z) times a gauge function (a preassigned function of 
A).  The expansion may be singular or regular. For a regular expansion the set of gauge 
functions consists simply of (1, A, A', A', . . .}. The drawbacks of the perturbation method 
are i) that frequently the radius of convergence in X is finite, ii) that even within the radius 
of convergence the rate of convergence may be slow and a large number of terms may be 
required to gain the desired accuracy, and iii) that considerable computational effort may 
be expended computing higher order terms. 

In the second step we will keep the perturbation functions but replace the gauge func- 
tions by new amplitudes which depend on A. In the Bubnov-Galerkin or variational tech- 
nique one seeks an approximate solution in the form of a linear combination of specified 
(known) coordinate functions (functions of z) with unknown coefficients (or amplitudes) 
which are functions of A. This technique can work very well if a good set of coordinate 
functions is chosen. If a large set of coordinate functions is used, the computational ef- 
fort can be large since the matrices involved tend to be full rather than sparse (as in the 
finite element or finite difference methods). The essence of the hybrid approach is that 
the coordinate functions for the Galerkin step are chosen to be the perturbation functions 
computed in the first step. This provides a basis which clearly is relevant for small values 
of A. We demonstrate that the hybrid results can be dramatically better than the pertur- 
bation results and that a set of coordinate functions can be useful far outside the radius 
of convergence for the perturbation calculation in which they originate. 

3. A Simple Example 

To introduce the method we consider the following simple two-point boundary value 
problem: The differential equation, 

i; - x v + x = 0, 

is to hold for y in the range [-1, 11 with boundary conditions 
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V(-1) = V(1) = 0. (3.2) 

The exact solution to this problem, which is 

exhibits boundary layer behavior near y = 1 for large positive values of X and near y = -1 

for large negative values of A. The center portion of the function approximates a straight 
line with slope equal to one in the limit of large absolute value of A.  Exact solutions for 
a number of values of A are shown in Figure 1. A generalization of this problem has been 
studied by Ferguson [2). 

We look for an approximate solution of the form 

j=1  

where in the first step the uj's are computed from a (regular) perturbation expansion 
about X = 0 and in the second step the Sj,n's will be computed using the Bubnov-Galerkin 
method. 

Step 1: 

To take step one first, the solution to (3.1) together with (3.2) is written in the form 

j=1  

This is substituted into (3.1), the differentiation is distributed onto the various terms, 
the left hand side is expressed in the form of a power series in A, and the coefficient of 
each power of X is set to zero. The immediate result is a set of second order differential 
equation8 independent of the parameter A. These equations plus the imposition of the 
boundary conditions on each u, serve to determine the uj'i. Each u, is a polynomial in 
y of degree J + 1, and thus they collectively span an n-dimmsional space. The first few 
terms are 

u1 = y2 - 1, 

v3 = (Y2 - l ) ( Y 2  - q p 2 ,  
~2 = Y (Y' - I)/% 

v4 = y (9' - 1)(3y2 - 7)/180, 
us = (y2 - l)(y' - 4y2 + 3)/360. 
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It is traditional to stop the calculation at  this point. If the computation has been done 
for sufficiently large values of n, an analysis using the ratio or root tests will show that the 
radius of convergence of the perturbation series is 1. This may have been anticipated from 
the exact solution since the denominator is zero for X = f m n i  for positive integer values 
of m. The convergence is limited to X in the range (-n,n) even though the singularity 
occurs on the imaginary X axis. The error of the perturbation solution may be measured 
by the L2 norm of the difference of the perturbation solution for fixed n and the exact 
solution (3.3) divided by the Lz norm of the exact solution. In Figure 2 the logarithm 
of this perturbation solution relative error is plotted vs. log(X) for several different even 
values of n. As to be expected, the higher the value of n the more abruptly the error norm 
rises as the radius of convergence is reached. 

Step 2: 

In step two, the uj for j = 1,2,. . . ,n serve as coefficient (or interpolation) functions 
for the Bubnov-Galerkin method. The approximation (3.4) with the V j ’ s  known and the 
6j,n’s unknown are substituted into the left-hand side of (3.1). We would like, of course, 
for this quantity, the residual, to be zero for all values of y in the range [-l,l]. Since 
this is impossible, we settle for n conditions which serve to force the residual to be small. 
There are many different criteria which can serve this purpose, but we choose the Bubnov- 
Galerkin criterion which says that the residual is orthogonal to each of the coefficient 
functions v i .  The result is a linear system of n equations 

j= 1 

where 

The use of computer algebra allowed us to determine that 6i,n for i = 1 through n and for 
any value of n has the form 

(3.10) 
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where 

’ .  

( 2 n  - 2 i  + l)!! LnPl 
p. = n ( n  - i - j  + 1). (3.11) An = Pi,n xZi, c,n 

( 2 i  + l)!! i!  j=1 i= 0 

We have no proof of this formula, but it has been verified through n = 15. 

We measure the error of the hybrid approximation by computing the relative L2 norm 
of the approximate solution (3.6) compared with the exact solution (3.3). In Figure 2 ,  the 
log of the error of the hybrid solution is also plotted vs. X for a number of even values of 
n. We see that n = 2 gives a reasonable approximation for ( X I  less than about 0.5. Use of 

higher and higher values of n allows reasonable results for higher and higher values of (X I .  
In comparing the errors of the hybrid solutions with those of the perturbation solutions 
we see that for given values of n the hybrid solution are always more accurate. Further, 
while the radius of convergence has a dramatic effect of the perturbation solutions, there 
is no trace of an effect on the hybrid solutions. 

It was mentioned above that the denominator of the exact solution (3.1) has zeros for 
X = fmn i  for positive integers rn. It is interesting to note that these singularities are 
reflected in the ijj,n’~. Since the 6jjln’s are rational functions of X2, their singularities must 
correspond to the zeros of their denominators, the An’s. The zeros of the An’s, which are 
all purely imaginary, are plotted in Figure 3 for several low values of n. We see that as n 
gets larger and larger the roots approach integer multiples of x i .  

For purposes of investigating convergence properties we have made extensive use of 
computer algebra. For less trivial problems, we may be forced to use numerical quadrature 
in computing the coefficients in the Galerkin equations, the ai,j’s and bj’s introduced above. 
In that case it may be appropriate also to solve the system of Galerkin equations, similar to 
(3.7), numerically. In fact, for some problems it may be necessary to discretize the system 
of differential equations and to perform even the perturbation expansion numerically. Thus 
the mix of symbolic and numerical computation is problem dependent. However, the basic 
results seem to hold that i) the perturbation results can be dramatically improved by use 
of the second step in the hybrid method, and i i )  the radius of convergence limitations of 
the perturbation method do not extend to the hybrid method. We should add that for 
this problem the perturbation step has provided very little information. The perturbation 
functions v i  all contain a factor of y2 - 1 due to the boundary conditions; and the set of 
functions 

(3.12) 

spans the same function space as the tlj’s. Moreover, the wj’s can be written upon in- 
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spection of the problem and without any computation. However, for many other problems 
the perturbation step plays a significant role in determining a small but appropriate set of 

coordinate functions to use as input for the Galerkin technique. In such problems a wild 
guess as to a set of basis functions might require a very large number of coefficients in the 
Galerkin equations to be determined in order to obtain the accuracy desired. 

4. Quantum One-Dimensional Anharmonic Oscillator 

The second problem is of a very different nature. The classical harmonic oscillator 
(mass on a weightless spring without damping) satisfies the equation 

Throughout time the sum E of the kinetic energy T = m Z 2 / 2  and the potential energy 
VO = k z 2 / 2  remains constant. 

m k 2  k z 2  T + Vo = - + = E. 
2 

Any small modification which makes the forcing term (the right hand side of (4.1)) non- 
linear results in an anharmonic oscillator. We then write the energy equation (4.2) as 

m y  k z 2  
2 2 + - + V = E .  - (4.3) 

The quantum one-dimensional anharmonic oscillator satisfies the non-dimensionalized 
S chriidinger equation 

with 

We assume that z 2 / 2  + V ( z )  goes to positive infinity as I z 1 becomes infinite. Then, the 
only solutions are bound states with 

t L ( f 4  = 0, ( 4 4  

and E has a discrete spectrum. 
For purposes of our sample problem we choose the case 

V(z) = Xz' with X > 0. (4.7) 
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, -  

The solutions consist of energy eigenvalues Em and their corresponding wavefunc tions 
(eigenfunctions) $m(z) for m = 0, 1,2,. . .. For the harmonic oscillator, X = 0, the solutions 
are 

+m(z) = 4 m ( ~ )  = hm(z) 

where the Hermite polynomial of degree m, hm(z), is given by 

The $m alternate between being even and odd functions of x. It can easily be shown that 

(4.10) 

where 6m,n, in this equation only, represents the Kronecker 6 function. 
For A # 0, we believe that closed form solutions do not exist. Many elementary 

quantum mechanics textbooks discuss procedures for quantum perturbations and apply 
them to this problem for sake of illustration. Step one follows a standard procedure. 

Step 1: 

Let 

with 

and let 

Then substitute (4.11) and (4.13) 

1 d 2  
(-2= 

i =O 

into the differential equation 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

expand in powers of A, set the coefficients of Ai to zero, and solve for Em,i and $m,j(z). 

cient of A' in the expansion is 
More specifically, the computation of the perturbation terms is as follows: The coeffi- 
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(4.15) 

Multiply both sides of (4.15) by &(z), integrate over all z, use the normalization condition 
on &,(z) to get 

J --oo 
(4.16) 

Now multiply both sides by &(z) where n # m, integrate over all x, use the completeness 
conditions on the &,(z), and use (4.12) to get 

(4.17) 

To compute higher order terms in the perturbation expansion, note that setting the 
coefficient of At in the expansion of (4.14) to zero results in 

1 d 2  zz i- 1 

( - 2 s  2 j =2  
+ --Em,o)+ m,i = (-z4+E,,1)IClm,i-l(s)+C Em, j  IClm,i-j(z)+Em,i +m,~(z) (4.18) 

which can be written as 

(4.19) 

where fm,i is at this stage a known quantity given by 

i- 1 

fm,i(z) = (-z4 + Em,l)+m,i-l(z) + 1 Em,j  +m,i-j(?)* (4.20) 

Multiply both sides of (4.20) by &(z) and integrate over all z. The left hand side vanishes 
and, consequently, 

j=2 

The quantity $m,i(s) evaluates to 

(4.22) 

The summations indicated in this procedure, while nominally over an infinite number 
of terms, are in practice all finite. For this reason, and since all the integrals cited above 
can be evaluated in closed form, the calculations can, in principle, be carried out to any 
order without any loss of accuracy. With the use of a computer algebra system such as 
MACSYMA (61 or Mathernatica [14] it is relatively easy to get eight or ten terms. However, 
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by itself a high order perturbation computation is not very useful for this problem since 
the expansion has a radius of convergence in X which is zero! 

The fact that the radius of convergence is zero can be demonstrated by performing 
ratio and root tests on the series E,,i ( i  = 1,2,. . .). But this situation may have been 
anticipated by observing that for any value of X less than zero the solutions to (4.4) and 
(4.5) change drastically. We suddenly have all continuum states and no bound states. 

Before proceeding with step two it should be noted that the total wavefunction $,,,(z) as 
computed by this procedure has not yet been normalized (see (4.5)). The renormalization 
can be carried out as the last step in the perturbation calculation. However, it is not 
needed a t  all if we go on to step two of the hybrid method. 

Step 2: 

Despite the lack of convergence, we proceed to step two. For n terms in the approxi- 
mation let the wavefunction which is a perturbation of dm(z) be 

(4.23) 
j = O  

and let its associated energy eigenvalue be &,,n. The Galerkin orthogonality condition 
becomes 

(4.24) 

which may be written in the form 

where 

Nontrivial soldtions are allowec only for 

(4.26) 

(4.27) 
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where B, C and D are symmetric n-by-n matrices. Consider first the case of n = 1. Then 
the matrices B, C and D are all 1-by-1 matrices. The quantity B evaluates to e,,,; D 
is unity because of the normalization of the 4m; and C evaluates to i(1 + 2m + 2m2), 
resulting in 

.. 1 + 2m 
2 

3 X (1 + 2 m  + 2m2) 
4 

+ Em,1 = (4.28) 

For n = 2 the left hand side of (4.27) evaluates to a polynomial in m, A, and E,,,,,, 
which is of total degree 2 in X and &. There are two solutions, but the one which is of 
interest is the one which passes through &, = m + f at X = 0. The form of &,,,Z is 

(4.29) 

where a(m), b(m), ~ ( m ) ,  d(m) and c(m) are all polynomials in m with integer coefficients. 
See the Appendix for further details. 

For higher values of n the left hand side of (4.27) evaluates to a polynomial of total 
degree n in X and k&. Thus (4.27) defines n curves in the X-B,,, plane. However, the 
only curve of interest is the one which passes through the point (O,em). Examination 
of a number of specific cases indicates that the Taylor series of Em,n as a function of X 
agrees with the first 2n terms of the perturbation solution. This is gratifying though 
not completely surprising, because it is known that the first n wavefunctions from the 
perturbation expansion can be used to determine an energy value which is correct to the 
first 2n terms in the energy expansion [SI. Thus the hybrid and perturbation methods give 
the same number of correct terms in the energy power series expansion. 

Once the energy eigenvalue a,,,,,, has been determined, we may find the eigenvector 
G,,,,,,(X) from which the wavefunction &m,n(~,X) may be constructed. As the last step the 
normalization is determined by requiring that 

m 1- I $m,n(Z, A) I* d z  = 0. (4.30) 

While the Taylor series of the energy eigenvalues as a function of X may agree, there is 
a vast difference in the usefulness of the perturbation and hybrid results. The perturbation 
results, indeed, are virtually useless for the computation of energy eigenvalues and wave 
functions for any value of A, while the hybrid results seem to converge to the exact solutions 
as the number of terms increases. As in the previous problem we do not yet have a 
mathematical proof, but the empirical evidence in favor of convergence is strong. 

Consider first the energy eigenvalues. Figure 4 shows the results of the perturbation 
and hybrid approaches in computing the ground state (m = 0) energy level as a function 
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of A. The perturbation result for n = 2 is the same as the hybrid result for n = 1. Using 
higher perturbation terms seems to be counterproductive for almost all values of X on 
the scale shown, since at  best only asymptotic convergence is exhibited. One the other 
hand, the hybrid results appear to be converging well for all X to the numerically obtained 
solutions. 

The numerical results were obtained by a shooting method and are presumed to be 
accurate to plotting accuracy. The initial point for the shooting method was a relatively 
large value of x with the requirement that the slope at  the initial value of z be adjusted 
such that either the slope of 9 (in the case of even m) or T/J itself (in the case of odd rn) 
be zero at the origin. 

Figure 5 compares the hybrid results for the first four energy levels with numerical 
results. The errors always seem to diminish as the order is increased; and our work gives 
no hint of any limit to the range of convergence as A is increased. It may be noted, however, 
that the number of hybrid terms needed for a given level of accuracy does increase with 
energy. 

Convergence of the wavefunctions is considerably slower. Some representative cases are 
shown in Figures 6 and 7. 

While we are not able to predict how many hybrid terms are needed to gain a given 
level of accuracy for a given value of A, the convergence is monotone and the difference in 
the results for n - 1 terms and n terms seem to be a good indication. 

5. Concluding Remarks 

In this study we have treated two sample linear problems to  exhibit some of the behavior 
of the hybrid method. The first is a simple two-point boundary value problem with a known 

exact solution. The perturbation method exhibits a radius of convergence equal to T .  The 
hybrid method converges faster and appears to converge for all values of A. In common 
with the perturbation method, accurate solutions can be achieved with a small number of 
t e r m  for small A. However, as the magnitude of A increases, more and more t e r m  must 
be used to achieve a given level of accuracy. Use of computer algebra has allowed us to 
give an algebraic formula for the solution of the resulting Galerkin equations for any order. 
Thus, a proof of convergence may not be difficult to obtain. 

The second problem is an eigenvalue problem where the eigenvalues and eigenfunctions 
are perturbed. This problem has simple solutions for A = 0, but the perturbation method 
exhibits a zero radius of convergence. Empirical evidence suggests that the hybrid solutions 
converge for all positive values of A. Once again, accurate answers can be achieved with a 
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small number of terms for small A, and more and more terms are needed as X increases. 
A future publication will demonstrate that a numerical solution can be found valid in the 
limit of large A, and that this solution can be coupled with the expansion at  X = 0 to give 
much improved convergence properties. Again computer algebra has allowed us to work 
without round-off error and thus to get more “pure” comparisons. 

Computer algebra has been used here primarily to investigate convergence properties. 
However, computer algebra can be expected to play a major role in more practical calcu- 
lations, particularly in the perturbation step. 

The improvements brought about by step two of the hybrid method are considerable, 
and yet the computational effort of step two typically is not as great as for step one. 
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Appendix 

For the second order hybrid solution for the quantum anharmonic oscillator problem 
of Section 4, we record the following results: 

bm,1,1 = w ( 8 2 8  + 966m + 1031m2 + 1 3 h 3  + 65m'), 

cm,o,o = s(1+ 4 2m + 2m2), 

l+2m 
Cm,O,1 = Cm,l,O = - 9 ( 2 1  + 17m + 17m2), 

Cm,1,1 = s ( 3 7 0 8  5 12 + 11838m + 16747m2 + 9948m' + 5299m' + 3 9 h 5  + 130m6), 
( A 4  

dm,0,0 = 1, 

- 156 + 422m + 487m2 + 1 3 h 3  + 65m' 
128 dm,1,1 - 

It follows that k'm,2 has the form (4.29) with 

a = 2(1+ 2m)(492 + 694m + 759m2 + 130m' + 65m4), 

b = 3(1932 + 6286m + 9195m2 + 5948mS + 3299m4 + 3 9 h 5  + 65ms), 

c = 32(1+ 2m)(21+ 17m + 17m2), 

d = 48(111+ 347m + 472m2 + 250m' + 125m'), 

e = 4(156 + 422m + 48?m2 + 130mS + 65m'). 

The Taylor series expansion of (4.29) about X = 0 is 

- a - c  b -dX C d + - - -x2 + -AS + o(x4) 
e e 256 256 Em,2 = - 

which is in agreement with (4.28) since 
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FIGURE CAPTIONS 

1. Solutions of the simple two-point boundary value problem for several values of the 
parameter A. 

2. Comparison of errors for the perturbation and hybrid techniques showing the depen- 
dence on the number of terms n and the parameter A. The radius of convergence, 
R,, of the perturbation expansion equals T ,  

3. Roots of the denominator of the (approximate) hybrid solution as dependent on the 
number of terms n. This shows that for large n that the singularities are located at 
f m r i  for positive integer m. 

4. Comparison of hybrid results for the ground state (m = 0) energy with perturbation 
and numerical results. The number of terms used in the expansion is n. Hybrid 
results - solid lines; perturbation results - dashed lines; numerical ("exact") results 
- circles. Perturbation and hybrid results are the same for n = 1. The perturbation 
results have zero radius of convergence. 

5.  Comparison of the hybrid results with numerical results for the four lowest states. 
The accuracy Hybrid results - solid lines; numerical ("exact") results - circles. 

becomes less as the energy level increases. 

6. Comparison of the ground state (rn = 0) wavefunctions for X = 1 as computed by 
the perturbation method (dashed lines), the hybrid method (solid lines) and by a 
numerical shooting method (circles). Perturbation and hybrid results are the same 
for n = 1. 

7. Comparison of the wavefunctions for the four lowest energy states for X = 1/2 as 
computed by the hybrid method (various dashed and solid lines) and by a numerical 
shooting method (circles). 
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