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1 Abstract 

and space systems currently under development. The authors are applying a method of 
modeling and reasoning about deep knowledge based on a functional viewpoint. The 
approach recognizes a level of device understanding which is intermediate between a 
compiled level of typical Expert Systems, and a deep level at which large-scale device 
behavior is derived from known properties of device structure and component behavior. At 
this intermediate functional level, a device is modeled in three steps. First, a component 
decomposition of the device is defined. Second, the functionality of each device/subdevice 
is abstractly identified. Third, the state sequences which implement each function are 
specified. Given a functional representation and a set of initial conditions, the functional 
reasoner acts as a consequence finder. The output of the consequence finder can be utilized 
in diagnostic problem solving. The paper also discusses ways in which this functional 
approach may find application in the aerospace field. 

This work is one facet of an integrated approach to diagnostic problem solving for aircraft 

2 Introduction 
Over the last decade there has been a calling for deep-level reasoning capabilities [11,15] 

in knowledge-based systems. This calling has, in general, expressed two intuitions: 
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1. The first intuition is that domain experts have many layers of understanding 
about their areas of expertise, ranging from highly cornpiled knowledge to 
deep-level understanding which is not tuned specifically to a particular 
problem solving task. The ability to layer understanding has consequences 
both for problem solving and for the explanation of problem solving. 

2. The second intuition is that approaches to knowledge-based systems which 
rely solely on patterns of data to establish working hypotheses will not, in 
the final analysis, be robust enough to support large systems. Although 
there have been convincing arguments that highly compiled systems can, in 
principle, be complete [7], there nonetheless is a practical difficulty in 
endowing a system with all of the patterns it is likely to need during 
problem solving. The central issue is that problem solvers should be able to 
deal with novel situations. If pre-stored patterns of data formed the only 
cornerstone to problem solving, it would be very difficult to deal with such 
novelty. 

Although there is general agreement that deep reasoning capabilities are desirable, there 
is no apparent consensus on how to model such deep knowledge, nor on how to reason 
about it. In fact, there is no clear consensus on what the terms “deep-level understanding” 
or “deep-level reasoning” mean. 

Recently, Sticklen [22,23] developed an integrated approach to diagnostic reasoning in 
the medical domain. One component of his diagnostic architecture is a deep-level reasoner 
which acts as a adjunct problem solver to a compiled level unit. The authors of this paper 
have recently begun to apply and extend Sticklen’s approach in the domain of aerospace 
systems. In this paper, the rudiments of the methodology are described, its utility for 
aerospace problems is pointed out, and the points of contact between the research reported 
here and other lines of inquiry are described. 

3 Functional Approach 

causal net approach [16,17,18,26] and the naivephysics approach [1,9,10,12,13]. The 
causal net approach centers on representing deep knowledge via a causal net structure. 
Deep reasoning then means controlling the process of navigating the causal net. The naive 
physics approach centers on deriving the functionality of a device from the function and 
structure of its constituent subdevices. 

Prior research in deep reasoning methods have typically fallen into two broad areas: the 

On close examination, the causal net approach appears to be a compiled problem solving 
approach operating in the representation framework of a semantic net. The naive physics 
approach is aimed at deriving the behavior of a system from its components. However, 
there is a level of device understanding that is intermediate between compiled level 
understanding and the level at which composite behavior is derived. That middle ground of 
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device understanding centers on the known purpose to which a device is put; Le., on the 
function of the device and its subdevices. 

Starting from the broad framework of the Generic Task (GT) theory of knowledge based 
systems [3,4,5], and building on the initial representational framework provided by 
Sembugamoorthy and Chandrasekaran 1201, the present approach to representing and 
reasoning about devices via deep-level knowledge incorporates facets of the two other 
approaches. 

3.1 Underlying Intuitions 

where a device is defined as “a naturally occurring or artifactual assemblage whose 
purposes-goals-functions are known.” Any physical object can, in principle, be described 
in terms of its physical properties, but once the use of a device is understood, 
comprehension has progressed to a higher level. 

Device level understanding is distinguishable from the “attribute description” level by the 
indexing capability gained at the device level; e.g., if a car’s purpose is understood to be 
centered around transportation, then its color attribute is irrelevant. The color attribute of a 
stealth aircraft, on the other hand, is highly relevant to its purpose, and hence would find a 
place in a functional representation. 

Intuition 2: Device Decomposition. Device complexity is managed by decomposing the 
device into a number of components until a level is reached at which one can grasp how 
subdevices at that level operate. Understanding the operation of the overall device can then 
be stated in terms of the operation of the components. 

Intuition 3: Indexing. As device decomposition proceeds, understanding of the device is 
organized in terms of the purposes of the device; i.e., in terms of its functions. It is 
important to note that in the functional approach, device functionality is given, not derived. 

Intuition 4: Composability. Intuition #2 above dealt with decomposing a complex device 
into a number of subdevices. Intuition #3 is that we organize our understanding about each 
of those subdevices in terms of their individual functions/goals. Both #2 and #3 can be 
characterized as dealing with the static representation of device understanding. Note, that 
the complexity of device understanding is managed by a process of decomposition. Thus, 
the process of reasoning about a particular device in a particular situation must have the 
ability to dynamically select those parts of device functionality which are relevant to the 
current situation. 

Intuition I :  Limitation to Devices. First, concern is limited to the world of devices, 

Intuition 5: Information Processing Task. The last intuition concerns the input-output 
relation of the task set for using the functional representation. In more formal terms, this is 
called the Information Processing Task (IPT) [ 141. The IPT for functional level reasoning 
is a focused consequencefinding in which the problem solver is given a set of initial 
conditions about either the state of the device or the nonavailability of some of the normal 
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functions of the device. The output is the consequent changes that take place in state 
variables of the device. 

r 

Function: Open of CLOTHESPIN 
ToMake: teeth-more-open 
Provided: (pressure-point-force-applied 

GreaterThan restoring-force 
B y  : OpenBehavior 

3.2 Functional Representation and Reasoning 

Building on earlier work by Sembugamoorthy and Chandrasekaran [20], Sticklen 
[22,23], developed methods of representing and reasoning about functional level 
phenomena, including a family of languages for representation and a full consequence 
finding algorithm. A description of this functional approach follows. 

3.2 .I Representation 

The functional level description of a device includes three core components: a 
description of device structure, a description of the functions of the device, and a 
description of the behaviors of the device which carry out given functions. To illustrate the 
various components of the functional representation, consider the simple device shown in 
Figure 1 and the partially complete functional description shown in Figures 2 and 3. 

r 1 

1 I 

Figure 1: Simple Device - 
A Clothespin 

Device: CLOTBESPlN 
MDN~CCJ: ( A M l  

Fwrionr: (Open, 

PIVOT] 
SPRING, ... ) 

Clore, r l  noid, ...I 

Figure 2 Part of Device Specification Figure 4: A Behavior of 
for Clothespin Device Clothspin 

The device description shown in Figure 2 includes two items: a listing of the subdevices 
which compose the current device, and a listing of the functionalities of which the device is 
capable. It is possible to conceive of a clothespin as made of many different sets of sub- 
devices. A characteristic of the functional level description is that there are many possible 
ways of decomposing a device into its components. The decomposition selected depends 
on the reasoning purposes for which the representation is constructed. 
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The function description of Figure 3 contains three items: 

1. a Provided clause which states the conditions under which the function is 
applicable. The Provided clause may be thought of as a precondition for the 
behaviors which carry out the function. 

2. a ToMuke clause which states the result(s) that will be obtained if the 
invoked function completes successfully. The ToMake clause may be 
thought of as a postcondition for the behaviors that carry out the function. 

3. a By clause which states the behavior(s) carrying out the function. 

The function declarations within the functional description provide a means of knowing 
what can be achieved (the ToMake clause), what must be true for a given function to be 
applicable (the Provided clause), and a pointer for where to look if a more detailed 
description is needed of how the function achieves its goal (the By clause). 

in Figure 4. 
The description of behavior at the functional level contains two ingredients, as illustrated 

1. Partial state descriptions of the device. For example, teeth-more-open is a 
purtiul state of the Clothespin device. It does not represent a total state 
description of the Clothespin. 

2 .  Annotated links between states. These l i n k s  represent both the temporal 
flow of one state leading to another, and the reason that one state follows 
another. Note that the annotation could be a pointer to another function or 
behavior, or to a non-decomposable fragment of world knowledge. 

From the above discussion, the following facets of the functional description of a device 
can be seen. 

1. The functional representation of a device is a conceptual abstraction of what a 
device is and how it works. The “what it is” part is represented as a collection of 
subdevices related by a Componentof relation. The “how it works” is represented 
as the functionalities of which it is capable and the behaviors that accomplish those 
functions. 

2 .  The functional description allows a natural modularity in understanding devices. 
This modularity is important in three specific ways. First, a subdevice of the 
overall device may be replaced with another totally different subdevice which 
accomplishes the same functions. Second, in understanding from the top level how 
the device functions, one is normally led via a chain of 

device => function => behavior => sub-device ... 
to lower and lower levels of sub-devices. However, this path of understanding 
may be terminated before the lowest levels of the device are reached. Once a level 
is reached at which a particular functionality of some underlying sub-device may be 
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“assumed true,” further probing along the current path is unnecessary. This ability 
to probe only as far as needed follows directly from the modularity of 
representation adopted. 

Third, and most importantly, since the functional representation is organized around 
fragments of device understanding, the ability to dynamically compose answers is 
pivotal. Without significant modularity, such composability would not be possible. 

3.2.2 Functional Reasoning 

As noted above, the Information Processing Task of the functional approach is a type of 
consequence finding. The consequence finding is undertaken in response to a particular set 
of conditions, and amounts to building up a full state change diagram from the relevant 
fragments that exist in the behaviors of the functional representation. Sticklen [22] 
describes the operation of the consequence finding portions of the functional reasoner in 
full detail. Informally, the consequence finding steps in the functional approach can be 
described as follows. 

First, the current nondefault conditions of the device are input. The consequence finder 
uses these initial conditions to index the applicable functions of the device by examination 
of the preconditions of each function. Through a filtering operation, the highest level 
applicable functions are selected as starting points. As one of the selected functions is 
taken, each implementing behavior is retrieved. A behavior is represented as a directed 
graph structure having two types of nodes: one representing changes in device state, the 
other representing a “knowledge pointer” to the reason for the state change. The 
knowledge pointers are of two types: decomposable and nondecomposable. 

knowledge pointers. Not all functions and behaviors are applicable in a particular situation 
since all preconditions must be met before a function or behavior can be used. With that 
selectivity taken into account, the process is not unlike the process of macro expansion in 
typical computer science terms. 

Following the second step, a particularized causal net like structure for the current device 
and situation is produced. Each node in this structure represents a change in a state variable 
in the device. The overall consequences on the device are then determined by simply 
traversing the structure and “adding up the results” of all the state changes that have 
occurred. Moreover, because a record of the preconditions of applied functionshehaviors 
can be easily maintained, it is also possible to state the consequence finding results in terms 
of assumptions which must hold in order for the derived consequences to be valid. 

Next, the consequence finder recursively expands each one of the decomposable 

4 Functional Reasoning in Diagnosis 

[2,6,2 1,22,24], each diagnostic hypothesis is represented by a classification specialist. 
For diagnostic systems based on compiled classificatory problem solvers 
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Each of these specialists must be able to establish its own viability, given the particular 
device/situation under consideration. One way of establishing this hypothesis is to rely on 
compiled associations in one way or another. To depend solely on such compiled 
knowledge assumes that novel situations will not be encountered. In general, this 
assumption is not valid. 

derive associational links that can be used for hypothesis establishment, and the 
assumptions that must hold for the links to be valid. In order for a compiled level 
diagnostic hypothesis to make use of a functional level consequence finder, the diagnostic 
hypothesis needs one additional knowledge structure - a representation of what the 
diagnostic hypothesis means in functional terms. Given such initial conditions, the 
functional reasoning process derives the consequences for the device. At the diagnostic 
level, results of the functionally based consequence finding can be used as patterns which 
should be present if a particular diagnostic hypothesis is valid for the current case. Sticklen 
has described this interaction between a deep problem solver and a compiled level problem 
solver in detail [22]. 

The Function Level Consequence Finding strategy, as outlined above, provides a way to 

5 Functional Reasoning in Aerospace Applications 
To date, the functional approach described has been applied primarily in the medical 

domain. However, a preliminary examination of several typical aerospace systems 
(electronic, hydraulic, and a fuel system) indicates that this approach is also applicable to 
engineered systems, especially as a aid to the desigdredesign process, as well as in trouble 
shooting situations. 

During the design stage, an engineer will initially define the high-level functionality of a 
device. Then the device design is refined by specifying subdevice functionality. When 
sufficient detail has been developed, specific components and interconnections are chosen 
to implement the low-level functionality. This process is fully supported by the functional 
approach described. In addition, the functional approach appears to support specific 
implementation requirements: 

1 .  The ability to handle systems that exhibit both steady-state and dynamic 
behaviors (example-both the operation of a fuel system under constant 
demand conditions as well as the conditions that occur. when the engine 
being supplied goes from 50% to 100% power). Many diagnostic 
procedures assume a system that is operating under steady-state conditions. 
Although many failure conditions can be detected using that assumption, 
other failures occur only during device transients. 

2. The ability to identify situations that produce both “hard” failures and also 
situations where a device fails to perform “to specifications.” Many 
diagnostic systems assume that a failure will occur in a distinct manner. 
This assumption is incorrect in some instances. Instead, the system may 
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malfunction by failing to perform to desired specifications or by producing 
symptoms which are not distinctive. 

3. The ability to explicitly address device connectivity. Aerospace systems are 
often constructed by assembling a large number of interconnected 
components. The representation of connectivity should be explicit. This 
representation allows the designer to quickly wire together functional units. 
It also provides the ability to perform quick reconfigurations for design 
modifications. 

To be successful, the approach must be able to interface with design and test 
environments. It is anticipated that the functional approach will allow considerations of 
testability to enter in the design process much earlier. 

6 Discussion 

of devices has been described, and a method to use the results of functional reasoning in 
diagnostic problem solving has been sketched. Recently, several other lines of research 
have been reported which attempt diagnostic problem solving from first principles, for 
example, see Reiter [ 191. This recent body of work is largely an extension of the 
diagnostic outlook taken by Davis [8] and others who set out to perform diagnostic 
problem solving directly from a deep level. On the other hand, the functional approach 
described here integrates both a compiled level and a deep-level problem solver into a single 
composite unit in which the compiled level problem solver can play the important role of 
focusing the deep-level problem solver. 

approach can also be applied to some of the problems associated with the issue of design 
knowledge capture [25]. Design knowledge capture is the process of organizing design 
knowledge in a machine-interpretable form. Design knowledge is composed of the specific 
design solution description together with the underlying rationale for the solution. The 
design description defines what the solution does and why it does so. The rationale 
includes the information used by the designers, the analyses that were performed, and the 
decisions that were made to produce the solution. Because the central aspect of the 
functional approach is the organization of knowledge about how a device works, it directly 
provides a description of what the device does and how it performs its function. It also 
provides an active representation which can be used in the future to simulate the operation 
of the device or to perform diagnostics. 

In this report, a functional approach to representing and reasoning with deep knowledge 

Beyond its uses in diagnostic problem solving for aerospace systems, a functional 
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