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Abstract 

The size of the basins of attraction around fixed points in recurrent NNs can be modified by 
a training process. Controlling these attractive regions by presenting training data with 
various amount of noise added to the prototype signal vectors is discussed. Application of 
this technique to signal processing results in a classification system whose sensitivity can 
be controlled. This new technique is applied to the classication of temporal sequences in 
telemetry data. 

1- Jntromtior\ 

The ability to do associative retrieval and classify in the presence of of noise, plus 
their parallel nature makes NNs attractive pattern classification tools [3,5]. For the 
recurrent NNs used in this paper, pattern categories are defined by their fixed point 
attractors, and all patterns lying in the basin of attraction are classified as members of that 
category [l]. A region of attraction may be interpreted geometrically as a subspace of the 
input space containing one prototype vector, i.e. the fixed point. Researchers have been 
able to design fixed points into NNs [4,6], and to predict the minimum size of these basins 
for binary networks [7]. However, researchers have not been able to control the size of the 
basins through training. 

For a NN pattern classifier, the size of its basins of attraction determine its 
sensitivity. In some problems, it may be necessary to classify every input as member of 
some category. In other cases, it may be more appropriate to classify a fraction of the 
inputs. Thus, a good pattern classifier must learn not only the patterns, but the desired 
sensitivity associated with each category. (In fact, the ability to place decision surfaces 
through learning has lead to the preeminence of feedforward networks as pattern classifiers 
among NNs [SI.) This paper investigates the qualitative relationships between the learning 
parameters selected and the resulting sizes of the basins of attraction. 

2- - 
The pattern pattern classification technique is applied to monitoring the temporal 

behavior of a satellite telemetry point. A short sequence of consecutive telemetry points are 
measured, and the difference between adjacent points is the data given to the NN. The role 
of the NN is to decide if the telemetry sequence should be identified as a member of one of 
six predefined categories shown in Fig. 1 or not. The sensitivity of the system determines 
whether an input resembling a prototype pattern will be identified as as instance of that 
category. 
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Figure 1. Predefined Prototype Patterns 

3- The R-ion of Patterns in NNa 

3.a- The Network Model 

The network model considered here is a recurrent network of discrete value 
elements. The network is fully connected, with its connection strengths maintained in an n 
x n matrix A, where A9 identifies the strength of the synaptic connection from neuron j to 
i. The network is updated synchronously, i.e. every neuron is updated on each cycle. 
Initially, the activity of the nodes is a real number obtained from the telemetry data or 
synthetic training data. 

The subsequent activities of each node are computed in two steps. First, a 
weighted sum of nodes inputs is computed to give a 'post-synaptic potential' (PSP), Si = 
cj Aij yi. The PSP can be either a positive or a negative number, whose magnitude is 
compared to the neuron's threshold, Q. The activity, Xi, is given by 

xi = { 1 * sgn(si) if lsil2 Q 
(0 otherwise 

These three-valued neurons allow a much broader set of outputs than binary neurons. 

3.b- Placement of Category Prototypes 

each prototype vector with itself is computed, and the resulting matrices are summed over 
all prototypes. This process guaranties that the prototype vectors correspond to stable 
states, if they are mutually orthogonal [6]. For the telemetry problem six prototype vectors 
are placed in an eight dimensional space. The prototype vectors are made up of f l  values 
to place them on the outer boundary of activity space. In general, the outer product 
procedure leads to large basins of attraction around each of the prototypes. There also tend 
to be a few spurious fixed points with this approach. 

To create a connectivity matrix with particular fixed points, the outer product of 

3.c- The Learning Mechanism 

The behavior of the NN may be modified by altering its connection strength matrix. 
The performance of the system can be improved by modifying connections so that the 
difference between the observed and the desired output are reduced. A variety of learning 
algorithm which achieves this type of improvement is the Widrow-Hoff or Delta rule 
algorithm [9]. 

Delta-rule learning calculates a delta from the difference between the final state 
reached and the final state desired. Each connection coming into a neuron then has its 
strength modified by an amount equal to the product of delta and the presynaptic activity. 
Note that the final result of learning depends on both the learning rate and the order in 
which the inpuddesired-output pairs are presented. 
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. .  4- Tralnlng Des iu  

Our purpose in applying a training sequence to the telemetry network is to change 
the shape of its basins of attraction so that the correct classification is achieved. 

4.a- Approach 

Two subsets patterns makeup a full training set associated with each prototype 
vector or category: a set of 'good' patterns that lies on the desired boundary of attraction, 
and a set of 'bad' patterns that lies a little beyond the the boundary. For simplicity, both 
the good and bad patterns were placed on a hypersphere. The range of radii used for the 
bad pattern hypersphere was 1-2 times the radius of the desired basin. To obtain a point on 
a hypersphere around a prototype, a random number is added to each component of the 
prototype vector, such that the Euclidean distance between the prototype and the 
constructed point is equal to the desired radius. The random numbers for each component 
are chosen to lie between 0 and the portion of the radius not yet accounted for. An example 
of applying this procedure is given below for a desired basin radius of 0.7: 

Prototype Vector ---> Training Vector with total noise applied = 0.7 

(1  1 -1 -1 1 1 -1 -1) ---> (1.475 1.006 -.897 -.858 1.018 0.792 -.569 -.935) 

In order to apply the Delta rule, there must be a desired final state associated with 
every training vector. For the good training vectors, the desired final state is the prototype. 
However, for the bad training vectors, a reasonable desired state must be chosen. The 
method we chose for selecting the desired final state for the bad vectors was to use the 
comer closest to the input state. This approach worked better than the other two approaches 
tested: all unclassified vectors were sent to the origin, or to the compliment of the 
prototype nearest to the input (If the nearest prototype is (-l,l,l,-1), the desired output 
would be (1,-1,-1,l)). Training on bad vectors tended to destabilize the network when 
either the origin or the compliment were used as the desired state. This seemed to to occur, 
because to reach these desired states the trajectory often had to cross the basin of attraction 
of other category. 

The desired final state of a bad pattern is calculated in the following way: 
Find k such that (IkI - IXOkl) = max(ItiI - IqiI). 
Reverse the sign of bit k of the closest prototype to obtain a desired vector 

Fig. 2 shows a bad input vector in R3 and its respective prototype and desired final states. 
that is Hamming distance one from the prototype. 

<--' - 3 e--- 
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The input vector C to be 
rejected is derived from 
the vector to comer A, 
and has desired final state 
of the next closest 
comer B. 

Figure 2. Selecting the Desired Final State for Rejected Vectors 

5- Test inP Network Perfor man ce 

were studied using several different learning rates. For each set of parameters, the final 
matrix of connection strengths was stored for performance testing. 

The connection matrices from the various learning sessions were tested by applying 
a set of test input vectors. The test data were chosen at random, and were constrained to lie 
at particular distances from the prototype vectors. Each trained network is scored on the 
number of correct classifications it achieves on the test data. The inputs are created to 
provide two different methods of estimating the attractive regions of a network. The first 
method uses test vectors whose distance from the prototype is normally distributed. One 
can then count the number of correct classification of a large number input points. The data 
shown in Fig. 3 agrees with the intuitive notion that training data lying on a larger 
hypercube around a prototype vector leads to a larger basin of attraction. It illustrates that 
the fraction of points converging to the prototype does increase as the size of the trained 
radius increases. 

To study the effects of training, training data for three different basins of attraction 

The second method measures the number of classifications made at randomly 
selected point lying on a sphere at a particular distance (eg. from 0.3 to 0.9 at intervals of 
.2), and demonstrates the fall off of attractive strength with distance. If a spherical basin of 
attraction is created by the training procedure then any points outside of the desired radius 
would not be classified and all of those within the radius would be classified. Fig.4 clearly 
shows that this does not happen. Instead one finds a significant drop in the percentage of 
test patterns classified as the radius of the test patterns falls below the desired radius. This 
implies that the resulting basin of attraction is not spherical, but that on the average it is 
approximately the right size. 

The rates for both connections and thresholds have a significant effect on the 
performance of these networks. The threshold learning rate seemed to have a destabilizing 
effect as shown in Fig. 5. The majority of the patterns end up converging on the origin. 
Learning rates for connections have an optimal range in which learning can take place. 

6- Discussion 

There are several directions in which this work should be expanded. First, one 
needs to try more sophisticated learning algorithms than the Delta rule. The Delta rule 
involves the difference of two terms. The first is essentially an outer product of the input 
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and the desired output. The second is an outer product of the input and the actual output. 
However, the distance to where a trajectory actually ends up has more to do with where the 
nearby prototypes are rather than how large a change in the connection matrix must be 
made. One alternative is to scale the product of input and desired output by the following 
two factors: the initial rate of change away from the correct prototype, and divide by the 
difference between the input and the desired output. 

Another direction of improvement involves making use of context information. The 
desired sensitivity of the telemetry classifier varies with time of day, season, and spacecraft 
activity. Thus, a more sophisticated NN pattern classifier would be able to select the 
desired sensitivity from input data. One approach is to construct a pair of NNs where the 
first NN identifies the sensitivity category based on context information, and use this 
information to set the parameters of the second NN which would actually classify the 
telemetry data, 

A satellite diagnostic system, for example, could identify a telemetry point as showing a 
steady increase if the network identifies this behavior several times in a row. Thus, 
repetition could partially overcome the fuzziness of the basin of attraction boundaries. 

In its current form, the network can provide useful information to an expert system. 

Although some ability to control basins of attraction has been demonstrated, the 
refinement in constructing decision surfaces through learning found in some feedforward 
networks [8] is a long way off. However, the pursuit of classification in recurrent 
networks remains an important goal. The brain makes use of processes running on several 
different time scales. For example, edge detection, allocation of attention, and learning are 
examples of processes whose temporal scale are at least an order of magnitude apart [2]. If 
NNs are to be used in producing cognitive capabilities, then the ability to use processes at 
different temporal scales is critical. At present, fixed points provide the only way of this 
type of communication. 

This work was done in part at the Mathematics and Computer Science Department, Drexel 
University as an independent study project. 
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Figure 2. Effects of Training on Basin Size 
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Figure 5. Effect of Threshold Learning Rate 
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Figure 4b. 
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Figure 4c. 
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Figure 4. Basin Behavior of 3 Networks with 
Input on Increasing Spherical Boundaries 
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