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Abstract 

The effects of leading edge flaps on the aerodynamic characteristics of a low aspect- 

ratio delta wing are studied theoretically. As an extension of the classical cross-flow 

plane analysis and in order to include separated shear layers, an analogy between 

three dimensional steady conical and two dimensional unsteady self-similar flows 

is explored. This analogy provides a simple steady-unsteady relationship. The 

criteria for the validity of the steady-unsteady analogy are also examined. 

Two different theoretical techniques are used to represent the separated shear 

layers based on the steady-unsteady analogy, neglecting the trailing edge effect. 

In the first approach, each vortex system is represented by a pair of concentrated 

vortices connected to the separation points by straight feeding sheets. The analysis 

is carried out in the cross-flow plane by mapping the wing trace, by means of the 

Schwarz-Christoffel transformation, into the real axis of the transformed plane, 

allowing for exact satisfaction of boundary conditions. Although the model does 

not yield satisfactory comparison with experiments, the effects of leading edge flaps 

on delta wing aerodynamics are observed qualitatively. 

In the second approach, the vortex cloud method is adopted for simulating the 

flow field in the cross-flow plane. The separated shear layers are replaced with a 

cloud of discrete vortices and the boundary element method is employed to represent 
.. 
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the wing trace by a vorticity distribution. Combined with the steady-unsteady 

analogy, the vortex cloud method constitutes a numerically efficient methodology 

with good definition of separated shear layers and good prediction of surface pressure 

distribution. A simple merging scheme is used to model the core region of the 

vortical flow as a single vortex by imposing a restriction on the shear layer rotation 

angle. The results are compared with experiments and with results from 3-D panel 

calculations. 

In agreement with experimental evidence, it is found that flap deflection causes 

a decrease of lift and drag due to partial suppression of the leading edge vortical 

flow, while the lift-to-drag ratio increases due to the thrust component of the force 

acting on the flap surfaces. 
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Nomenclature 

a(x> 

ai j 

C 

D 

e 

e 

F 

f 
G 
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k 

L 

li 

M 

m 

N 

P 

R 

r 

total half span length 

geometric influence coefficient 

speed of sound 

drag 

unit vector 

total energy 

complex potential in the cross-flow plane 

wing cross-section shape function 

normalized vorticity distribution function inside core 

total head 

internal energy, J--T 
ratio of main wing span length to total span length 

lift 

length of j th vorticity panel 

Mach number 

similarity coefficients 

normal force 

static pressure 

resultant force, characteristic length scale 

radial direction in cross-flow plane 

V 
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S 

T 

t 

U 

U 

U 

X 

5 

5, ij, 2 

rl 

r 

conical coordinate, Prandtl’s similarity coordinate 

wing and vortex sheet geometry 

characteristic time scale 

time coordinate 

chordwise component of free-stream velocity 

velocity 

I 4  
disturbance velocity component 

complex conjugate of the velocity in the cross-flow plane 

vector position 

chordwise coordinate of delta wing 

stretched wing reference coordinate system through 

Prandtl-Glauert transformation 

rectangular form of conical coordinates 

angle of attack 

inside angle at the ith vertex of the polygon 

vorticity distribution function inside core 

flap deflection angle, dirac delta function 

kronecker delta function 

half apex angle of main delta wing 

spanwise component of bound vorticity 

vortex strength 
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specific heat ratio 

polygon ith vertex external angle 

viscous coefficient 

vorticity on wing surface 

vorticity 

PI 
total velocity potential 

disturbance velocity potential 

dimensionless form of disturbance velocity potential 

cross flow stream function 

density 

distance normalized with vortex core radius 

0 = y + iz, complex representation of cross-flow plane 

vortex core radius 

0 = 5 + io, complex representation of transformed plane 

transformation coefficients 

viscous stress tensor 

angular coordinate in cross-flow plane 

Subscripts 

C conical flow, core 

F flap 
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hinge vortex 

leading edge vortex 

potential 

rot at ional 

separation point, body surface 

2-D unsteady self-similar flow 

vortex position 

main wing 

wing reference coordinate system 

freest ream 

- 
( ) indicates complex conjugate 

( )’ length scale normalized with a(s) 
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Chapter 1 

Introduction 

1.1 General Remarks on the Flow Field around Flapped Delta Wings 

The flow field on the leeside of low aspect ratio delta wings at incidence is char- 

acterized by a vortical flow originating at the leading edges, as shown in Fig. 1. 

This vortical flow is very stable up to a certain angle of attack and causes an en- 

hancement of lift, called vortex lift, by inducing low pressure regions on the upper 

surface. Generating a stable vortical flow above the wing surface is an efficient 

way of obtaining additional lift,l especially during maneuvering and in take-off and 

landing. At high angle of attack, however, the vortical flow also causes the following 

problems: 

0 Large lift-dependent drag due to loss of leading-edge suction 

0 Side force due to asymmetric formation of vortical flows 

0 Pitch-up due to vortex breakdown at high angle of attack 

Fig. 2 shows typical concepts for handling these problems, as well as the basic 

functions of the concepts. 
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Leading edge flaps have been applied to the design of subsonic-transonic tactical 

delta wing aircraft, and to aircraft that require both supersonic cruise efficiency 

and high maneuverability.2 On the other hand, the flow field about a wing with 

leading edge flaps is more complex than that of a wing without flaps due to the 

appearance of an additional vortical system originating at the flap hinge, as shown 

in Fig. 3. It has been shown that the effect of these hinge vortices is negligible, 

except at small angle of attack with large flap deflection angle3 Various shapes 

of leading edge flaps have been studied experimentally in the past, in an attempt 

to optimize their influence on the aerodynamics of delta ~ i n g s . ~ - l ~  One of the 

effects of leading edge flaps is to increase the lift-to-drag ratio by reducing the 

wing drag. This augmentation occurs due to a thrust component of force acting 

on the flap surfaces. Fig. 4 shows the variation of lift-to-drag ratio in cruise for 

three different aircraft configurations: the F-16 aircraft, a precramp wing* aircraft 

of supersonic design, and a flapped delta wing, for a wide range of Mach number. 

Leading edge flaps also have the detrimental effect of partially suppressing the 

vortical flow, thereby reducing the total lift. These two phenomena have been 
observed e ~ p e r i r n e n t a l l y ~ ~ ~ ~ - ~ ~  and theoretically. 17,18 

1.2 Previous Studies 

In view of the important influence of vortical flow on wing design, numerous studies 

have been conducted on the leading edge vortices around low aspect ratio delta 

wings. 20-51 These studies were aimed at understanding the fundamental physics 

of rolled-up shear layers and the effect of the vortical flows on the aerodynamic 

characteristics of the wing. Main topics of such studies were: 

* a cranked wing planform with twist and camber 
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0 Mathematical modeling of rolled-up shear layers 

1 0 Flow field analysis of the core regions of vortical flows 

0 Three-dimensional (3-D) boundary layer calculations and prediction of sepa- 

ration lines 

0 Vortex breakdown 
I 

I 

The analysis of the core region of the vortical flow is essentially a part of the study 

of the rolled-up shear layer. The main difficulties in the study of the core region 

arise from the mathematical treatment of the tightly coiled shear layers and the 

effect of v i s ~ o s i t y . ~ ~ - ~ ~  The calculation of the 3-D boundary layer38j39 and the 

prediction of separation lines 5 1 j 5 2  can not be made until the flow field external 

to the boundary layer, a flow field composed of rolled-up shear layers, has been 

determined. A description of the core regions combined with trailing edge effects is 

also necessary for an improved understanding of vortex breakdown. In this regard 

very little progress has been made in the analysis of this problem, however. 

The first successful model for the vortical flow was a straight-feeding-sheet model 

used by Brown and Michael, as shown in Fig. 5.20321 Other attempts have used ana- 

lytical approaches, 23-29 vortex cloud methods, 30-33 and 3-D panel methods. 40-42 

More recently, with the aid of high computing power, simulations of separated vor- 

tical flows have been carried out using numerical solutions of either the Euler or 

Navier-Stokes equations. 47-50 

L 

Studies on control of vortical flow were started in late 1970’9, after some un- 

derstanding of the physics of vortical flow had been achieved. A t  the beginning, 

attempts to suppress the vortical flow were made when it was recognized that con- 

ventional control surfaces could not operate well in this type of flow. Leading 

edge flaps were found to be quite effective in providing vortical flow control, as was 

I 

l 
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* An alternative form of leading edge flaps; a second leading edge flap is attached to the main 

** Frink’s 3-D panel calculations made use of only one vortical system, existence of the hinge 

flap with different deflection angle. 

and trailing edge vortex systems being neglected. 

revealed in experiments conducted with complex-geometry delta-wing aircraft. 15,16 

Those experimental results showed that leading edge flap deflection was effective in 

promoting an attached flow configuration by suppressing the formation of leading 

edge vortices. The tabbed-vortex-flap* has also been considered to avoid asym- 

metric vortex breakdown with sideslip angle. Both plain leading edge flaps and 

tabbed-vortex-flaps caused significant increments in lift-to-drag ratio. 

In the experimental study by Rao e t  al. ’-’ various shapes of leading edge devices 

were suggested to reduce lift-dependent drag. Frink1° performed a study of the 

effects of leading edge flaps by using a 3-D free-vortex-sheet method.** Hoffler et  

al. l4 investigated the aerodynamic influence of tabbed-vortex-flaps and plain lead- 

ing edge flaps, both experimentally and using a 3-D panel method. Marchman 11,12 

performed similar experiments for different delta wing configurations in an at tempt 

to confine the vortical flow to the vicinity of flap surfaces in order to reduce drag, 

while keeping the lift almost constant. The effect of a vortex fence, which is an 

alternative form of leading edge flap, as shown in Fig. 2, has been investigated by 

Reddy using a 3-D Free Vortex Sheet Meth0d.l’ Lee3 made experiments with a 

flapped delta wing with conical geometry, including flow visualization, to observe 

the influence of the hinge vortices. 

1.3 Present Study 

In this study, two different theoretical techniques are used to assess the effects of 

leading edge flaps on the aerodynamic characteristics of slender delta wings. The 
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first technique uses the simplest vortex model in a plane normal to the wing surface 

(cross-flow plane) to explore the general trends of the aerodynamic coefficients of 

flapped delta wings. The second technique improves on the first by incorporating 

an inviscid vortex cloud simulation of the shear layers. Both approaches ignore the 

presence of the trailing edge. 

The foundation of both approaches is based on the mathematical analogy be- 

tween conical steady and two-dimensional (2-D) unsteady self-similar flows, which 

results in a simple relationship between time and space coordinates. With this anal- 

ogy (steady-unsteady analogy) a steady conical flow field can be reduced to a 2-D 

unsteady self-similar flow in the cross-flow plane. This steady-unsteady analogy 

under the conical assumptions yields more accurate results in the case of supersonic 

flow,53354 since the whole flow field is conical, whereas for subsonic flow the analogy 

ceases to be valid near the trailing edge and the apex. The maximum flap deflection 

angle for which the steady-unsteady methodology remains valid is found by using 

a simple geometrical relationship. A deflection beyond that limit would cause the 

leading edge vortex system to move under the wing surface, a situation that cannot 

be accounted for in the context of a cross-flow plane analysis. For both techniques, 

the effect on the lift-to-drag ratio of the resultant forces acting on wing and flap 

surfaces is derived to first order using a coordinate transformation. 

The two approaches are now described in more detail. The first approach consti- 

tutes an extension of the vortex model first suggested by Brown and Michael. The 

study used here simulates each vortex system by a pair of concentrated vortices 

with straight feeding sheets. The unknowns in the problem, vortex strength and 

position, are found from force equilibrium conditions imposed on the singularity 
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systems. The Schwarz-Christoffel transformation is used to allow for exact sat- 

isfaction of boundary conditions. Although the model does not give satisfactory 

results on vortex position and pressure distribution the global quantities, such as 

lift, drag and normal force, are satisfactorily calculated. Particular attention is 

paid to the following aspects: 

0 Influence on lift-to-drag ratio of forward components of the forces acting on 

the flap surfaces 

0 Variation of vortex position and strength with flap deflection angle 

0 Contribution of vortical and attached flows* to the aerodynamic forces 

In the second approach, the vortex cloud method, the steady-unsteady analogy 

plays a more explicit role. Assuming that geometric and aerodynamic slenderness 

are satisfied, this analogy reduces a conical steady flow field to a 2-D, unsteady self- 

similar flow through the relationship x = U t ,  where x is the chordwise coordinate 

and U is the chordwise component of the free-stream velocity. Using this analogy 

the vortex cloud method, an intrinsically 2-D approach originally developed to de- 

scribe separated flow past bluff b ~ d i e s , ~ ~ - ~ '  is modified to simulate a conical flow. 

This approach leads to a numerically efficient methodology with good definition 

of shear layers. Another motivation for the use of this approach is the parallel 

between the physics of planar shear layers and the delta wing rolled-up shear layer, 

as suggested in Fig. 6.77 

Rolled-up shear layers are replaced by discrete vortices having finite core size, 

so that all of the rotational and viscous effects are assumed to take place within 

the core, while outside the core the flow field is governed by conventional potential 

* As will be discussed later, the lift of a delta wing with separated flow may be expressed as the 
sum of a contribution that would have been caused by a wing with attached flow and a component 
due to the separated flow. 
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theory. Viscous diffusion of each vortex is taken into account through a formulation 

derived by P ~ - a n d t l . ~ ~  In conical flow the “vortex jungle )), which usually forms in 

the wake region in 2-D flow simulations, would represent the region of tightly coiled 

shear layers, or core region of the delta wing flow field. Such a representation of the 

core region as a “vortex jungle” is inappropriate in conical flow due to the appear- 

ance of the high axial velocity, which would violate the aerodynamic slenderness 

assumption and could not be modeled in a 2-D flow context.79 To improve the 

computational efficiency as well as to avoid this unphysical core representation, a 

merging scheme between neighboring vortices and near the core region is employed. 

A quasi-steady Kutta condition is imposed at leading edges and flap hinges by fix- 

ing the separation angle of new vortices generated at each computational step. If 

the Kutta condition were unsteady the new vortex strength and position would be 

coupled with the strengths and positions of other vortices in the shear layers and 

those of vortices representing the wing surface, leading to a matrix inversion oper- 

ation for computing the bound vortex strengths. 56-60 With this treatment of the 

Kutta condition matrix inversion, which requires a great computational effort, can 

be avoided at each iteration by decoupling the Kutta condition from the system of 

equations. 

In the context of the vortex cloud method, attention is focused on the following 

aspects : 

0 Distortions of rolled-up shear layer with flap deflection angle 

0 Pressure distribution 

0 Variation of vortex position and strength with flap deflection 

0 General features of trailing edge wake structure 

The last item is explored under the assumption that the conicality of the flow field 
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is sustained up to the trailing edge. These results are compared with experimental 

and other theoretical studies, including results from 3-D panel computations. 19,61 

1.4 Overview 

This work is divided into six chapters. Chapter 2 contains the derivation of the 

basic mathematical equations, including the analogy between conical steady and 

2-D unsteady self-similar flow, the range of flap deflection angle where the steady- 

unsteady analogy is valid, and the lift-to-drag ratio of a flapped delta wing to the 

first order. Chapter 3 describes the first approach together with the fundamental 

concepts of the Brown-Michael vortex model and the Schwarz-Christoffel transfor- 

mation. In Chapter 4 the basic mathematical background of the vortex cloud 

method for a 2-D unsteady flow is derived and adapted to conical flows, and nu- 

merical implementation is carried out. At the end of these chapters the results 

of each method are presented and the mathematical and numerical limitations of 

each technique are discussed. Chapter 5 shows the comparison of the results from 

the two methods with those from other analyses. Chapter 6 contains discussions 

on the relative accuracy of each of the techniques implemented here as compared 

with experiments and other methods of calculations, as well as recommendations 

for future work. 



t Chapter 2 

Basic Mat hemat ical Analysis 

The basic mathematical analysis to treat steady 3-D conical flows is derived. The 

linearized potential equation is derived from the Navier-Stokes equations, and trans- 

formed through the Prandtl-Glauert transformation. The assumption of conicality 

of the flow field around delta wings is examined for the subsonic and supersonic 

cases. Criteria for applicability of the cross-flow plane analysis are obtained through 

the mathematical analogy between a steady 3-D conical flow, which is governed by 

the linearized potential equation, and a 2-D unsteady self-similar ideal flow. The 

range of validity of the steady-unsteady analysis is examined. The fundamental 

equations for the two approaches, the straight-feeding-sheet and vortex cloud mod- 

els, are presented on the basis of the analogy. An expression for the lift-to-drag 

ratio of flapped delta wings is derived to first order. 

2.1 Linearized Potential Equation 

As described in Chapter 1, the flow field around a delta wing is composed of the 

boundary layer on the wing surface, the rolled-up shear layers originating at the 

leading edge, the secondary vortex systems originating in flow separation from the 
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upper surface, and the trailing edge wake, as shown in Fig. 1. 

governing this flow field are: 

The equations 

Conservation of mass: 
dP - at + V.(pu) = 0 

Conservation of momentum: 

+ V.(puu) = -vp + V . ?  (PU) 
at 

Conservation of energy: 

- + V.(peu) = -V.(pu) + V . ( ? - u )  
at 

(2.1.1) 

(2.1.2) 

(2.1.3) 

where ? is the stress tensor which, using Stokes hypothesis for the molecular vis- 

cosity, can be expressed as 

dui auk -bik%) 2 
rik = (az, azi 3 ax, + - -  

and e is the total energy per unit mass 

e = i + u2/2 
The boundary conditions are 

u = 0 at S (x ,y , z )  = 0 

u = U  a s x + o o  

(2.1.4) 

(2.1.5) 

(2.1.6~) 

(2.1.6b) 

where S (x, y, z )  = 0 represents the wing surface geometry. 

Usually an aircraft operates in the range of high Reynolds number, where the 

thickness of the boundary layer and the shear layer become so small that all the vis- 

cous effects are confined to thin regions. Thus, the viscous effects can be neglected 

in most of the flow field. The boundary condition on the wing surface is 

u - n  = 0 (2.1.7) 
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where n is the outward normal vector on the wing surface. 

In the absence of viscous effects the rolled-up shear layers are infinitely thin with 

boundary conditions requiring that there must be no pressure jump across them. 

These concepts lead to an inviscid model for the flow field governed by the Euler 

equations. The flow field is still rotational, in which case the velocity can be 

decomposed into two components as follows 

u = up + Up (2.1.8) 

where up and are the potential and rotational part of the velocity respectively. 

These two components have the following properties 

up = V@ or V x u p  = 0 

V x u r  = 3 

where @ is a scalar potential and i3 is the vorticity. 

Neglecting the viscous terms Eqs. (2.1.1) and (2.1.2) become 

DP - = -Pv'+ - pV.ur 
Dt 

(2.1.9a) 

(2.1.9 b )  

Assuming that the flow field is homentropic the following relationships hold 

(2.1.10) 

(2.1 SI) 

(2.1.1 2) 
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where c is the speed of sound. 

Combining Eqs. (2.1.11) and (2.1.12) there results 

(2.1.13) 

where 

(2.1.14) 

The left-hand side of Eq. (2.1.13) is exactly the same as the full potential equation 

for a compressible gas. The right-hand side can be interpreted as the source of 

rotational effects. 

Let 

ih = Ux + U t a n a y  + 4 (2.1.15) 

where a is the angle between the free-stream and the x direction and 

Assuming the flow field is steady and all the disturbance velocities are small com- 

pared to the uniform free-stream velocity Eq. (2.1.13) gives, after neglecting terms 1 
of second and higher order in cy, 4 and ur 

(2.1.17) 
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where Moo is the free-stream Mach number. 

Applying the Prandtl-Glauert transformation for subsonic flow 

(2.1.18) ? =  5, 

to Eq. (2.1.17) there results 

which is a form of the Poisson equation. 

As mentioned before, all of the rotational effects are confined to thin layers. Green's 

theorem will be applied by treating the shear layers as part of the boundaries. 

Green's theorem states that a potential function can be obtained through a suitable 

distribution of singularities on the boundaries,80-82 in this case the wing surface 

and the shear layers, as follows 

(2.1.20) 

where S represents the surface of the boundaries and n is the outward normal 

vector. 

Eq. (2.1.20) shows that the velocity potential 4 is due to a surface distribution of 

sources and doublets. The density of sources is -Vd-n per unit area. The density 

of the doublets is q5 per unit area and the doublet axis is directed along the inward 

normal to the surface. 

Once the boundaries are replaced with a suitable distribution of singularities, the 

governing equation of the flow field outside the boundaries is 

(2.1.21) 

For supersonic flow the Prandtl-Glauert transformation is 

I 

5 = 5, (2.1.22) 
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and the governing equation becomes 

In the supersonic case the confined rotational effects can also be replaced with 

suitable singularities,81!82 leading to a statement similar to Eq. (2.1.20). The 

governing equation outside the singular regions is in this case 

(2.1.24) 

Eqs. (2.1.21) and (2.1.24) show that the linearized potential equation can be 

reduced through the Prand tl-Glauert transformation to 

(2.1.25) 

which implies that the governing equation in case of subsonic flow is transformed to 

that of an incompressible flow and in supersonic flow to that of another flow with 

free-stream Mach number equal to a. 

2.2 Cross-Flow Plane Analysis 

2.2.1 Delta Wing Flow Conicality 

The steady-unsteady analogy, which will be discussed later, is conducted under 

the assumption of conicality of the flow field. The conical assumption for a flow 

field requires that the wing geometry be conical and that there should not exist 

any characteristic length scales.83 In a conical flow field, velocity and pressure are 

constant along rays emanating from the wing vertex. 

Conicality of the flow field around a delta wing is better discussed using the small 

disturbance potential equation expressed in physical space. If the shear layers are 
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treated as a part of the boundaries, Eq. (2.1.17) becomes 

(2.2.1) 

For a supersonic flow the value 1 - Moo2 becomes negative, resulting in a wave 

equation, with solutions propagating in the positive z direction. Hence, there is 

no effect of the length scale given by the trailing edge, since all of the disturbances 

as a result of the wing propagate only in the downstream direction. 

For a finite delta wing subsonic conicality is an approximation that stems from 

ignoring the presence of the trailing edge and the singular nature of the apex, and 

must be interpreted as a local solution near the wing apex region. Hence, conicdity 

for subsonic flows means that the area of interest is removed from the trailing 

edge and at some distance from the apex. 

observation. 

This is consistent with experimental 

2.2.2 Analogy between 3-D Conical and 2-D Unsteady Self-similar Flows 

In this section, as a extension of the classical slender body theory, 53154181182 which 

does not consider separated shear layers, a comparison is made between a three- 

dimensional, steady flow field governed by Eq. (2.1.25) and growing conically in 

space, and a two-dimensional, self-similar ideal flow field growing in time, as illus- 

trated in Fig. 7. 

For a conical flow field around a delta wing with incidence angle a, the equation 

expressing the velocity potential can be written 

QC(Z,r,6) = 2 U (1 + f t a n a  sin6 + c p ~ ( f , @ ) )  (2.2.2) 

where f = 

potential defined as 

r/Z, and ‘pc is the dimensionless form of the disturbance velocity 

d C  
‘pc = - U 5  

(2.2.3) 
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The geometry of the vortex sheet and the wing surface can be also written 

, 
S(S,r,B) = r - 5 fc(8) = o (2.2.4) 

where 5 fc represents the cross-section of the wing and the rolled-up shear layer 

growing linearly in the 5 direction. 

In terms of 'pc ,  f and 8, Eq. (2.1.25) becomes 

(2.2.5) 

where + and - correspond to the subsonic and supersonic case respectively. 

The condition for the boundaries, the wing surface and the vortex sheet to be stream 

surfaces is 

V@C .vs  = 0 (2.2.6) 

Combining Eq. (2.2.6) with Eqs. (2.2.2) and (2.2.4) gives 

+ fc' (tana case+ =-- r dB = 0 
f c  l d q c )  

(2.2.7) 

where V ~ / U  = 'pc - f (dpc /dF)  

The boundary condition that there be no pressure difference across the vortex sheet 

I can be formulated by invoking Bernoulli's equation 

- (tanacoso+ - 
U 

where fi is the pressure in the transformed space. 
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In terms of 'pc ,  P and 8 Bernoulli's equation can be written as 

2 
- c p  = 2$+ ($) + (g) 39 

(2.2.9) 

The value of this pressure must be the same on either side of the vortex sheet. 

For an unsteady, self-similar, 2-D flow, Prandtl's analysis22 showed that the 

vortex sheet has a shape that belongs to a self-similar family. Following his analysis 

with the assumption that the free-stream velocity causing separation is U t ana ,  the 

velocity potential and the geometry of the boundaries, including the vortex sheets, 

can be written 

where 

Q U ( t , r , 8 )  = U r t ana  sin8 + - ' p u ( ~ ,  e)  (2.2.10) 

= (3/($)m 

(2.2.11) 

(2.2.12) 

and 'pu is the dimensionless form of the disturbance velocity potential defined as 

(2.2.13) 

and T and R are constant reference values for time and length. m is a parameter 

which designates a particular member of the family of the vortex sheets. fu is 

the collapsed geometry of the family of the vortex sheets and the wing geometry 

when those are represented in terms of the similarity variable F. In this study the 

geometry of the wing surface is also growing with time. 
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For the 2-D unsteady case Laplace's equation can be written in terms of 'pu as 

(2.2.14) 

I The kinematic boundary conditions of the vortex sheet and wing surface are8' 

- dS + V @ i * V S  = 0 at (2.2.15~) 

as - at + vae-vs = 0 (2.2.15 b )  

where subscripts i and e represent each side of the vortex sheet, and 

vq  = vqs + - 7 
2 

(2.2.1 6u) 

V& = vq, - - T 
2 

(2.2.16 b )  

where Val8 is the value on the vortex sheet, and 7 is the vorticity intensity of the 

sheet. 

Combining Eqs. (2.2.15) and (2.2.16) there results 

dS 
at 
- + v q ~ . v s  = 0 

In terms of F and 'pu this equation becomes 

Utancrsin8+ - ai= 

(2.2.17) 

(2.2.18) 

The dynamic boundary condition on the vortex sheet is that the pressure must 

be the same on either side of the sheet. The pressure can be obtained from the 
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unsteady Bernoulli’s equation 

2 d@U 2 2 + vt - = -tan a + 2 -  P - P o 3  -cp = - 
(PU2) /2 at (2.2.19~) 

2(m-1) 
- - L ( R ) 2 ( ; )  x 

u2 T 

(2.2.193) 

All the governing equations for the two cases, Eqs. (2.2.5), (2.2.7), (2.2.9) (the 

steady case) and Eqs. (2.2.14), (2.2.18), (2.2.19b), (the unsteady 2-D case), are 

written in nondimensional form. The unknowns become the scalar functions cpc 

and vu, the collapsed form of the boundary geometry, including that of the vortex 

sheet, fc and fU for both cases. If the governing equations and auxiliary conditions 

were identical, the solutions would be the same in both cases. The conditions under 

which such is the case provide the criteria for a mathematical analogy between a 

steady conical flow and an unsteady, self-similar, 2-D flow. The mathematical 

requirements for such analogy to exist are as follows: 

Laplace’s equation for the two cases, Eqs. (2.2.5) and (2.2.14), becomes formally 

identical if 5; = 0. Hence the requirement 

7 = < 1  (2.2.20) 

The form of the boundary conditions for the vortex sheet and the wing surface, Eqs. 

(2.2.7) and (2.2.18), become the same if v,/U = O,m = 1 and R/T = U .  Hence 

the requirements 

(2.2.21) 
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m = l  (2.2.22) 
R - = u  
T (2.2.23) 

Conditions (2.2.22) and (2.2.23) also guarantee that Bernoulli’s equation on the 

vortex sheet, Eqs. (2.2.9) and (2.2.19) becomes identical. The relationship between 

2 and t is given by 

z = U t  (2.2.24) 

The analogy shows that the governing equations for a 3-D conical flow reduce to 

those for a 2-D unsteady self-similar flow if following criteria are met 

0 5 ; < 1  . V Z < U  

These conditions mean that the conical flow field must be geometrically and aero- 

dynamically slender. 

2.3 Equations for the Straight-Feeding-Sheet and Vortex Cloud Models 

2.3.1 Space-Time Transformation with Conical Flow Assumptions 

With the analogy described in the previous section, a 3-D conical flow field can 

be obtained from the results of a 2-D unsteady self-similar flow field. The two 

approaches, which will be described in the next two chapters, are formulated on 

the basis of solving a 2-D unsteady flow in the cross-flow plane instead of solving 

3-D conical flow directly. The solutions of the 2-D unsteady flow should reach a 

converged state when they are represented in terms of the similarity variable, due to 

the requirement of the self-similarity. From the relationship given by Eq. (2.2.24)) 
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the time derivative can be rewritten as 

d d - = u- 
dt  dI 

(2.3.1) 

The length scales in the cross-flow plane should be normalized with a characteristic 

length, which is proportional to t ,  or from the relationship 5 = U t ,  proportional 

to I .  In both approaches all the length scales are normalized with the total span 

length a ( I ) .  From Fig. 8 ,  .(I) is given by 

(2.3.2) 
I tan e 

k a(?) = 

where k is the ratio of the main wing span length to the total wing span length. 

Combined with the conical assumption, Eq. (2.3.1) reduces to 

c c U t an€  u ,  = 
dC u -  = 
dI X ka( 5) 

(2.3.3) 

where C stands for any quantity, growing linearly with x, associated with the 

kinematics of the flow field. As a consequence of this, E’ = Z/a(?)  = constant. 

2.3.2 Basic Equations for the Straight-Feeding-Sheet Model 

In this approach the vortex structure is specified as consisting of a straight vortex 

sheet, emanating from the leading edge and flap hinges, and concentrated vortex 

cores, as shown in Fig. 9. The steady-unsteady analogy of the previous section 

showed that the analysis can be carried out in a time dependent fashion in the 

cross-flow plane, by solving Laplace’s equation within prescribed boundaries, Eqs. 

(2.2.14) and (2.2.17). In the 

straight-feeding-sheet model Eq. (2.2.17) cannot be satisfied. This means that 

The vortex sheets are part of the boundaries. 
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the singularities representing the separated vortex sheets cannot be made force- 

free at every point. Instead of Eq. (2.2.17), a global force-free requirement for 

the vortex+sheet system is introduced. By representing the cross-flow plane with 

complex notation, the force per unit length acting on the jth vortex+sheet system, 

as represented in the unsteady cross-flow plane formulation is 85,86 

where the cross-flow plane 

(2.3.4) 

has been replaced by the complex representation a = 

y + iz. rj is the vortex strength and a,j = y v j  + iz,j is the vortex position, v,j 

is the velocity at the vortex position excluding its own induced velocity, and a s j  is 

the origin of the vortex sheet. 

The first term is the force acting on the vortex core, the second is that acting 

on the vortex sheet. The term (da,j/dt) - vvj is the relative velocity causing a 

Joukowsky force acting on the concentrated vortex core. 87 Equilibrium requires 

that this force be balanced by forces acting on the sheet. This will be imposed on 

each vortex+sheet separately. Eq. (2.2.14) is rewritten in complex notation as: 

(2.3.5) 

where F is the sum of the complex potential due to the vertical component of 

the free stream velocity, concentrated vortex and the wing trace, and S(a - aj) 

represents the dirac delta function, required to represent a singular vortex. 

The basic equations for the straight-feeding-sheet model are the global force-free 

conditions: 

f j  = 0 j = 1,2,3,4 (2.3.6) 
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2.3.3 Basic Equations for the Vortex Cloud Model 

As justified by the steady-unsteady analogy of Section 2.2.2, the approach will 

be implemented in a 2-D unsteady form. Moreover, the vortex cloud method is 

a well-established technique to simulate a 2-D unsteady separated flows. In this 

approach the shear layers are replaced with a cloud of discrete vortices. The 

governing equation and the boundary condition given by Eqs. (2.2.14) and (2.2.17) 

were derived by treating the separated shear layers as a part of the boundary. In 

contrast, in the vortex cloud method the shear layers are not considered as a part of 

the boundary, instead, the shear layers are computed by tracing a large number of 

vortices, whose intensities and positions become known as the calculation proceeds. 

If the shear layers, represented by a vorticity distribution w ,  are included in the 

field rather than in the boundaries, Eq. (2.2.14) takes the form 

V Q = - w  2 (2.3.7) 

where Q is the stream function. 

The reason for the use of a stream function instead of a velocity potential is that, 

in terms of the stream function, the boundary value problem in the cross-flow plane 

is of Dirichlet type, and hence well-posed. 

The tangency condition represented by Eq. (2.2.17) is now replaced by the 

requirement that the vorticity representing the shear layers be convected with the 

local velocity 
Dw 
Dt 
- -  - 0  (2.3.8) 

which implies that the vorticity of each particle is not changed during the convection 

and represents the conservation of vorticity. 
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In addition, the total circulation in the flow field, including the bound vortex 

due to the wing trace and the vortices distributed on the shear layers, should be 

conserved: 8o 

(2.3.9) 

where rw and rsL represent the circulation bound to the wing trace and that of 

the shear layers, respectively: 
r 

(2.3.10~) 

(2.3.10 b )  

where vs is the velocity on the wing surface, dl follows the contour around C along 

the wing trace, and S is the area including all the vortices representing the shear 

layers, as shown in Fig. 10. 

The boundary conditions on the wing trace and the far field condition in terms of 

\I, are 

\k = constant on wing surface ( 2.3.1 1 u )  

\ k = \ k m  a s r + o o  (2.3.11 b )  

Details of implementation will be presented in Chapter 4. 

The fundamental equations for the vortex cloud model are then Eq. (2.3.7) with 

boundary conditions (2.3.11), and Eqs. (2.3.8) and (2.3.9). 

2.4 Validity Range of the Cross-Flow Plane Analysis 

2.4.1 Slenderness of Flow Field around Delta Wings 

In the flow field around delta wings having half apex angle E and at angle of attack 
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a, the disturbances in the cross-flow plane, such as the rolled-up shear layers, remain 

within a region whose radius is one to two times the half span length, except when 

the angle of attack is extremely high. Thus the region of interest in this study is 

limited by a radius given by 

r N i tan E << 5 (2.4.1) 

since for a low aspect ratio delta wing the half apex angle is small. This satisfies 

the condition mentioned in Section 2.2.2 

i < < 1  (2.4.2) 

This also implies 

O(F) = O(e) (2.4.3) 

Experimental  observation^^^ have shown that the condition vz << U is also satisfied 

except in the core region of the rolled-up shear layers, where the axial velocity is 

larger than free-stream velocity. Hence, it can be assumed that the flow field 

around a slender delta wing at moderate angle of attack satisfies the geometric and 

aerodynamic slenderness conditions. 

2.4.2 Relationship between a and E 

Although the steady-unsteady analogy developed in Section 2.2.2 does not impose 

any limitations on the relative magnitude of a and e ,  as long as both are small, 

experimental observations indicate that the ratio a/e must be within certain upper 

and lower bounds for the steady-unsteady analogy to hold. 

For large a/€ the rolled-up shear layers do not form stable conical shapes but 

develop in a Karman-vortex-street pattern, thereby destroying conicality. 84 If a 

is of order smaller than that of e ,  the shear layers roll up tightly within a small 
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region, thus becoming immersed in a region of dominant viscous effects. The 

viscous effect provides the characteristic length scale d m  and as a result the 

flow field cannot be conical, which requires no characteristic length scale. Thus, 

the steady-unsteady analogy is valid if a and E are of the same order. 

2.4.3 Limit of Flap Deflection Angle 

The cross-flow plane analysis in the framework of the steady-unsteady analogy, as 

described in Section 2.2.2, implies that the significant velocity component causing 

separation along leading edges is the vertical component of the free-stream velocity 

in the cross-flow plane. The maximum flap deflection for which such analysis is 

valid is related to the velocity component normal to the flap surface. This can 

be shown by considering that, if that component were directed towards the upper 

flap surface, as shown in Fig. 11, the leading edge vorticity system would tend to 

be located under the wing. The cross-flow plane analysis cannot, by definition, 

exactly account for the actual orientation of the velocity component normal to the 

flap surface. Since the discrepancy between the actual velocity component normal 

to the flap surface and the one assumed by the cross-flow analysis increases with 

flap deflection, this method is expected to fail for flap deflection beyond a certain 

range. An assessment of that range can be made by considering the condition 

under which the velocity component normal to the flap surface vanishes (a situation 

unaccountable for in the cross-flow analysis.) This assessment is facilitated if the 

velocity component normal to the flap surface is assumed to be due to the free- 

stream velocity alone, that is, if the perturbation velocity of the wing is neglected. 

This is plausible if the angle of attack and apex angles are both small. 

The outward normal vector, n,  on the flap surfaces can be obtained through 
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e,,ey,e, denote the unit 

The relationships between the unit vectors (e,) ey, e,) 
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the coordinate transformations as shown in Fig. 12. 

vectors along axis x, y, z .  

and (%lye~l,e~l), and between (e,,,eyl,e,,) and (e,,,eyz,e,,) are 

(2.4.4) 
-sin E 0 cos E 

(2.4.5) 

Identifying n with the outward normal vector on the upper flap surface, it can be 

seen from Fig. 12 that 

n = eyz (2.4.6) 

Then 
n = cos S eyl + sin 6 e,, 

(2.4.7) 
= - sin E sin 6 e, + cos 6 ey + sin 6 cos E e, 

The free-stream velocity has two components such that 

U = U e, + U tan cy ey (2.4.8) 

The component of the free-stream normal to the flap surface is then 

Un = U - n = -U sin S sin E + U tan cy cos 6 (2.4.9) 

The condition that Un > 0 is 

tan cy 

sin E 
> tan 6 (2.4.10) 

The boundary shown in Fig. 13 represents the limit where the component of the 

free-stream velocity normal to the flap surface vanishes for E = 15 deg. 
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2.5 Lift-to-Drag Ratio for Flapped Delta Wings 

In this section, a general formulation for the lift-to-drag ratio of a flapped delta wing 

is derived.  experiment^^^^^^^^^^ show significant increment of lift-to-drag ratio with 

flap deflection. The rotation of the leading edge flap about the flap hinge axis causes 

the normal vector to have a component opposite to the flight direction, as derived 

in the previous section. The first term in the last line in Eq. (2.4.7) indicates 

the forward component of the normal vector. The associated force component 

constitutes the thrust force and is of higher order than the other two, under the 

assumption that e is small. The fact that flap deflection causes suppression of the 

vortical flow6 can be interpreted as the vortical flow being confined to the vicinity 

of the leading edge flaps. Hence, most of the pressure peak region induced by the 

vortical flow is located on the flap surfaces. As a result, this higher order term can 

cause a considerable change in drag. 

On the main wing the resultant force is normal to the wing surface. From Fig. 

14 the lift and the drag components are 

L,  = R, COS CY 

D, = R, sin CY 

(2.5. la) 

(2.5.1 b) 

where R, is the resultant force on the main wing. 

On the flap surface there are all three components of force, as indicated by Eq. 

(2.4.7) 

RF, = -RF sin E sin S 

R F ~  = RF COS 6 

R F ~  = RF cos E sin S 

where RF is the resultant force on the flap surface as shown in Fig. 14. 

(2.5.2~) 

(2.5.2b) 

(2.5.2~) 
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Since the RF, component is canceled by symmetry, only R F ~  and RF, contribute 

to lift and drag as illustrated in Fig. 14. 

LF = RF cos Q - RF, sin Q (2 .5 .3~)  

DF = RF, sin cy + R F ~  cos Q (2.5.3 b )  

Y 

From Eqs. (2.5.2a) and (2.5.2b) 

RF, = -sin E tan6 RF, (2.5.4) 

From Eqs. (2.5.2),(2.5.3) and (2.5.4), the drag and lift on the flap is 

LF = RF, (cos Q + sin E sin cy tan 6) (2 .5 .5~)  

tan 6) 
sin E 

1 - - ( tan a 
DF = RF, sin Q (2.5.5 b)  

The total lift and drag are 

L = Rw COS cy + RF~(COS Q + sin E sin Q tan6) (2.5.6) 

D = sin Q (R ,  + RF, (1 - - sin E tan 6)) 
tan Q 

(2.5.7) 

For small a and E these equations reduce to 

L N h + R ~ , ( l  + e a  tan6) (2.5.8) 

D II Q R, + RF, (1 - 4 tan 6 ) )  (2.5.9) 

Eqs. (2.5.8) and (2.5.9) show the influence of the forward component of force on lift 

and drag. Due to this thrust component the lift increases by an amount of order 

a2 ,  while the drag is reduced by almost the same order as the drag itself. For 

moderate deflection angle, the lift-to-drag ratio is 

( Q 

- L = - 1 [(I + RFy f, tan 6 )  + 0(a2)] (2.5.10) 
D a R w  + R F ,  Q 

The second term within the parenthesis shows the influence of flap deflection on the 

lift-to-drag ratio. This amount is of order 1/a,  the same as that of the lift-to-drag 

ratio without flap deflection. 



Chapter 3 

S t raight-Feeding- S heet Model 

In this chapter the simplest vortex model for the delta wing vortical flow, first 

suggested by Legendre and implemented by Brown and Michael,20y21 is chosen to 

investigate the qualitative trends of the effect of a leading edge flap on the aerody- 

namic characteristics of a low aspect ratio delta wing. This model simply assumes 

that the rolled-up shear layer consists of a straight vortex sheet and a singular vor- 

tex core and requires this singularity system to be force free in a global sense. The 

analysis is carried out in the cross-flow plane based on the steady-unsteady anal- 

ogy developed in Section 2.2.2. Complex representation of the cross-flow plane 

is utilized. The trace of the wing in the cross-flow plane is transformed into the 

horizontal axis of a transformed plane by the Schwarz-Christoffel transformation. 

The advantage of the conformal mapping is that the boundary condition on the 

wing surface is satisfied exactly. 

3.1 Force Free Conditions 

As explained in Section 2.3.2 the force free condition is imposed on each vor- 

tex+sheet system. Combined with Eqs. (2.3.1) and (2.3.3), the force free equation 
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given by Eq. (2.3.4) for small E reduces to 

U €  - k @Ohj - a:j)  = V V j  (3.1.1) 

where ()' indicates the length scale normalized with a ( z ) ,  and vvj can be expressed 

as 

(3.1.2) 

where F is the complex potential in the cross-flow plane, to be derived in the next 

section, and (-j indicates the complex conjugate. 

In the present case there is a system of four vortices fed by straight vortex sheets 

emanating from the leading edges and from the flap hinges. Since only the sym- 

metrical configurations are treated, the analysis considers one half of the cross-flow 

plane, as shown in Fig. 15. Thus a: = i (k + (1 - k)e") for the leading edge 

vortex and a: = i IC for the hinge vortex. The force free conditions for both vortex 

systems are 

-@<, UE + i ( k + ( l - k ) e - " ) )  = 
k 

UE 4 - (2avh +ik) = k 

(3.1.3) 

(3.1.4) 

where subscripts I and h refer to the leading edge and hinge vortices respectively. 

3.2 Schwarz-Christoffel Transformation 

The derivation of the complex potential F is facilitated by transforming the trace 
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of the wing in the cross-flow plane, together with its line of symmetry, into the real 

axis of a transformed plane. To perform this transformation the Schwarz-Christoffel 

transformation is used. The mapping procedure is shown in Fig. 16. 

The general form of Schwarz-Christoffel transformation is 

where 0 = + id is the complex representation of the transformed plane. 

In integral form 

(3.2.1) 

(3.2.2) 

where pi = K;i/T - 1, and K ;  is the external angle of the ith vertex of the polygon, 

and 0 is the corresponding point of 0 in the mapping plane. A1 and A2 are 

complex constants. 

FromFig. 16 

then 

Riemann’s mapping theorem88 establishes that the correspondence of two arbi- 

trary points plus a far field condition can be imposed. Here two points are chosen 

arbitrarily as 

0 4  = 0 (3 .2 .5~)  

0, = 0 2  (3.2.5 b)  
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These conditions imply that the leading edge is transformed to the origin and the 

initial point of the integration is taken arbitrarily at 0 2 .  Requiring that the 

velocity in both planes be equal at infinity gives another condition as 

= 1 
d 0  u+oo 

With Eqs. (3.2.5) and (3.2.6), the transformation function becomes 

(3.2.6) 

where ( ) I  indicates the length scale normalized with a(s). 

The real constants Ob, Og, @i, 
ing points in the physical and the transformed plane 

can be obtained by matching the four correspond- 

u3 I = ik + 0; (3.2. 8u) 

ui = ik (1 +(1 - k)e")  + 0 (3.2.8 b )  

u5 I = ik + 0; (3 .2 .8~)  

0 6  I = 0 --+ 0; (3.2.8d) 

Application of Eqs. (3.2.8 a,b,c,d) to the transformation function (3.2.7) gives 
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This system is solved numerically for Ob, e;, O;, 0; using the Wolfe method,89 as 

described in Appendix 1. 

3.3 Mathematical Procedure 

From Fig. 16 the complex potential in the transformed plane is the sum of the 

potentials of a uniform velocity and that of four vortices, two of which are the 

image vortices needed to satisfy the boundary condition on the wing surface. Then 

the complex potential in the transformed plane is 

irl 0 - e,/ i r h  0 - Ovh F ( O )  = U a O  + -log ( - ) + -log ( - ) (3.3.1) 
27r 0 - 0,/ 27r 0 - Ovh 

and the complex velocity in the physical plane is 

- = [ua + ”( 1 
27F O - O v /  O-Gv/ (3.3.2) 

According to Eq. (3.3.3) the velocity becomes singular at the leading edge, 0 = 0, 

and at the flap hinge, 0 = 0 5 .  To avoid this singularity, a Kutta condition is 

imposed at these two points. The two equations for the Kutta condition are 
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With the complex potential F in Eq. (3.3.1), the force free conditions given by 

Eqs. (3.1.3) and (3.1.4) become 

UE - (2<1 + i ( k  + (1 - k 
= 

(3.3.6) 

i r l  d 
27r do U-+UVl 

+ --(log(@ - O,,) - log(o - ovl)) 

for the leading edge vortex system, and 

i r h  d 
27r do 

+ --(log(@ - Ovh) - log(o - 0 , h )  

for the hinge vortex system. 

(3.3.7) 

Combining Eqs. (3.3.6) and (3.3.7) with Eqs. (3.3.4) and (3.3.5), and normalizing 

all the length scales with a(s), the following system of two complex equations for 
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the vortex positions @,I and Ovh (or a,l and U,h)  is obtained 

36 

L- (2<1 + i (k + (1 - IC) ,-'6>) = 
kcr 

($) D - B  d - (log (0' - e;,) - log (a' - aLJ) I 
ul- - u V l  I ' C B  - AD da' u'--*u;l 

(3.3. sa) 

1 1 - 1 

- O:, @ I h  - ovI (1+ C B  D - B  - AD ( --I 

(3.3.8 b )  

where 

A =  

B =  

c =  

D =  

1 1 
--I-- 
@ V I  % 
1 1 
--I-- 
O v h  ' :h 

1 - 
og - 

1 

Ob - Gvl 

1 

(3.3. 9a) 

(3.3.9 b)  

( 3.3.9c) 

(3.3.9d) 

System (3.3.8) is solved using the Newton-Raphson method, as described in Ap- 

pendix 2. 
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In the absence of flaps the only governing parameter would be the ratio of € / a .  

In the present case two additional parameters, 6 and I C ,  are included in the group 

e / ( k  a), as indicated in Eqs. (3.3.8a,b). The flap deflection angle 6 does not 

appear explicitly but through the transformation parameters 02,03,05,@6, which 

are functions of 6 and k .  

With the vortex positions known, the vortex strengths can be obtained from 

iri D - B  - -  - 
2T C B - A D  

irl A - C  h= 
2T C B - A D  

(3.3. loa) 

(3.3.10b) 

where I?' = I ' / (Uu(z) )  

3.4 Aerodynamic Forces 

3.4.1 Resultant Force 

To evaluate the lift-to-drag ratio for a flapped delta wing, as derived in Section 

2.5, the pressure must be calculated first. For small Q and using Eq. (2.3.1)) the 

unsteady pressure coefficient given by Eq. (2.2.19b) becomes 

(3.4.1) 
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where the vy and vz components are given by 

(3.4.2) 

Thus 

1 dF 
U U du 

VZ 1 dF 
U 

(3.4.3) 

(3.4.4) 

where !R and S represent the real and imaginary part of a complex function. 

The v2 component is best obtained from the conical expression of the velocity 

potential in Eq. (2.2.2). In terms of rectangular coordinates the potential can be 

written as 

@c = X ( U  + UQC + C p C ( 6 , i ) )  

where 
c = -  Y 

2 

z 
X 

i = -  

(3.4.5) 

(3.4.6) 

Then the perturbation velocity in axial direction is 

V X  d C p C  A dCpc - = Q + Cpc - 6- - z- 
U dY dz 

(3.4.7) 
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Introducing the complex potential F this becomes 

(3.4.8) 

The presence of the feeding sheet induces a discontinuity in the vX component of 

the velocity, leading to the treatment of branch cuts, as shown in Fig. 17. 

The resultant force is given by 

R =  J P 
each surface 

(3.4.9) 

3.4.2 Normal Force 

As mentioned in the Introduction, e x p e r i m e n t ~ ~ 1 ~ ~ 1 ~ ~  have shown that the lift de- 

creases with flap deflection due to the suppression of the vortical flow. This phe- 

nomenon can be best observed by considering the lift contribution of the vortex 

systems. For small (Y and e the lift is related to the total force component normal 

to the wing surface 

L N N + R F ~  ea tan6 (3.4.10) 

where N is the total force acting normal to the free-stream and R F ~  is the y -  

component of the force acting on the flap, as illustrated in Fig. 14. 

The second term represent the contribution to the total lift of the thrust component 

of force, which is of order a2. Thus, 

L E N  (3.4.11) 
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The total normal force can be calculated by considering the momentum flux across 

the cross-flow plane 

N = - p U / /  (g - Ua) dydz  (3.4.12) 

Applying Stokes’ theorem 

N = - p U / @ d r  (3.4.13) 

The integration path is taken around the wing surface including all the singularities. 

In terms of the complex potential and the real stream function 

N = - p U O / ( F  - i \ I I ) d a  

Since the contour is a streamline 

N = - p U 3  ( F d a )  f 
Substituting for F 

(3.4.14) 

(3.4.15) 

(3.4.16) 
i r h  @-@,h d o  

+-log( 27r 
0 - - Ovh )] 

To perform the integral of the parts containing logarithmic terms, the path can be 

altered by taking a circle of infinite radius, as shown in Fig. 17, since there are no 

singularities in the far field, where d a / d 0  = 1 

(3.4.17) 
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In the transformed plane, the normal force arising from the logarithmic terms does 

not depend explicitly on the wing trace geometry, but implicitly through the vor- 

tices' positions and strengths. This equation shows that the normal force is just 

the sum of the rate change of impulse of two pairs of vortices. Then the result of 

the integration of the logarithmic terms could be simply obtained by considering 

the impulse of a pair of vortices, or by integrating along the branch lines as shown 

in Fig. 17. Following the second approach gives 

Then the normal force origlllating from the logarithmic terms is 

(3.4.18) 

This force is associated with the separated flow field about the wing. 

The component of normal force from the the first term in Eq. (3.4.16) has a 

singularity at infinity. This component could be identified with the force produced 

by the wing if the flow were attached. Integrating along the wing trace, as shown 
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in Fig. 18, there results 

42 

(3.4.20) 

where the subscript p represents the principal value (i.e., all values are calculated 

in the same Riemann surface.) 
I 
I 

Then the total normal force is 

The normal force is composed of two parts; the normal force from the equivalent 

attached flow and that from the separated flow. 

Dividing this total normal force by the dynamic pressure pU2/2 and the total 

wing area l c a ( ~ ) ~ / ~ ,  the normal force coefficient can be obtained as 

where CN, and CN, represent the contribution to the normal force of the vortex 

systems and the attached-type flow respectively. Hence 

(3.4.23) 



3. Straight-Feeding-Sheet Model 43 

Here all the values of the integrand are principal values. Eq. (3.4.24) shows explic- 

itly the effect of the flap angle on the normal force through the term cos 26 in the in- 

tegration over the flap surface, while the transformation coefficients @;, @;, @;, Oh 

depend implicitly on 6 and I C .  The region from 0 3  to 0 5  is the flap surface. 

3.5 Numerical Implementation 

3.5.1 Integration at Singular Points 

In Eqs. (3.2.9 a,b,c,d), from which the transformation coefficients 0 2 , 0 3 , 0 5 , 0 6  

are calculated, the integrands are singular at the points t = 0 2 , 0 3 , 0 6 .  To perform 

the numerical integration, the integrand is expanded to 1st order in Taylor series 

about those points. For example, at 5 = 0 2  

N - 0 2  ( 0 5  - 0 2 ) 6 ' T  
0 3 - 0 2  



Romberg integration is used on the rest of the range.g0 

3.5.2 Integration Path for Calculating Vortex Positions 

During the numerical procedure for calculating the vortex positions in the physical 

plane through the mapping function (3.2.7), by solving Eqs. (3.3.8a,b), taking the 

integration path as a straight line connecting 0 2  with the assumed vortex position, 

as shown in the broken line in Fig. 19, causes the following problem: When the 

vortex position is very close to the real axis in the transformed plane, which is the 

case when a is small or 6 is large, the integration path passes close to the singular 

points 0 3  and 0 6 .  To avoid this possible numerical singularity, the integration 

path is taken in the following way: 

0 2  + 0 2  + i 2 + assumed ?R 0, + i 2 + assumed 0, (3.5.2) 

The maximum imaginary value, taken as 2, is large enough to calculate the vortex 

positions. 

3.5.3 Velocity at the Vortex Position 

Eqs. (3.3.8a,b) contain terms of the form 

d 
da u+uu 
-(log(@ - 0,) - log(a - 0,)) 

which can be written as 

d 
d 0  
-(log(@ - 0,) - lo& -0 , ) )  

(3.5.3) 

(3.5.4) 
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In calculating this value numerically, a finite difference scheme is employed as follows 

(2A0) 0, - A 0  - 0, - 0, + A0 - 0, 
= [(log a(@, + A@) - a, log a(@, - A@) - a, 

0, - a(@, - A@) 
= ((log a(@, + A@) - uv 

(3.5.5) 

3.6 Results 

3.6.1 Conformal Mapping Parameters  

The following table shows the transformation coefficients ob, 05, 0k, Oh for varying 

flap deflection angle with IC = 0.6 and E = 15 deg. 

6 (de&) ob 
40 -0.6369 -0.5 160 0.9785 

32 -0.7091 -0.5722 0.9531 

24 -0.7824 -0.6284 0.9183 

16 -0.8558 -0.6836 0.8794 

8 -0.9286 -0.7371 0.8362 

2 -0.9822 -0.7756 0.8010 

og 
1.301 

1.251 

1.195 

1.134 

1.069 

1.018 
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The results shows that as S + 0 ,  -1 and 0; -i 1, which correspond to the 

Brown and Michael case. 

3.6.2 Aerodynamic Forces; a Comparison with Experimental Results 

To compare with the experimental results of Ref. 14 a wing with e = 15 deg. and 

k = 0.6 was chosen. The angle of attack a was varied from 0 deg. to 20 deg. 

Fig. 20 and 21 show the increment of lift on the main wing and flap respectively. 

The abrupt departure from experiments observed at about 12 deg. appears to 

suggest that the trailing edge effects begin to be significant for the experiments. 

Fig. 22 depicts the total lift change. Again, the sudden departure from the 

experimental trends may indicate that those measurements were affected by the 

trailing edge effect. 

Fig. 23 shows the drag on the main wing. It can be seen that the vortex model 

overestimates the drag, particularly at higher angles of attack. 

Fig. 24 shows the drag on the flap. Notice that this component of drag can 

reach negative values. This is due to the forward force component discussed above. 

Fig. 25 shows the evolution of the resultant drag. The negative values of drag 

arise from the conical assumptions, where no trailing vortices and associated drag 

are considered. 

Fig. 26 shows the change in the L I D .  No experimental values were available 

The no-deflection case is included for for a comparable geometry of the wing. 

comparison. 

Fig. 27 shows the positions of vortices for varying flap deflection. For flap 

The vortex deflection less than 18 deg. the hinge vortex almost disappears. 
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positions in the physical plane are shown in Fig. 28. It can be observed that 

that flap deflection causes the hinge vortex to move away from the surface and the 

leading edge vortex to approach the surface for the given conditions. 

Fig. 29 describes the strength of both vortices as functions of flap deflection. 

Flap deflection strengthens the hinge vortex and weakens the leading edge vortex. 

The strength of leading edge vortex reduces by a half for a 30 deg. flap deflection. 

Fig. 30 shows the different components of normal force. It is noticed that flap 

deflection acts primarily on the leading edge vortex component of the normal force. 

The hinge vortex has a negligible effect on the total force. 

Fig. 31 and 32 show the pressure distribution obtained from the straight-feeding- 

sheet model, compared with e~per iment .~  Experimental data are chosen at 37% 

of the chord from the apex to minimized the effects of trailing edge. Without flap 

deflection the prediction is reasonable but shows overprediction of pressure and the 

peak is shifted toward the leading edges. The pressure distribution with 15 deg. 

flap deflection angle shows unrealistic pressure peak at the leading edges. The 

unrealistic pressure peak is due to the vortex position, which is located very close 

to the wing surface. 

3.7 Summary 

Even with the crudeness of the vortex model, the two major phenomena due to 

flap deflection, increment of lift-to-drag ratio and suppression of vortical flow, are 

qualitatively observed. The leading edge vortex pair is much stronger and is re- 

sponsible for most of the lift and drag changes that take place during flap deflection. 

In agreement with experimental evidence, it is found that flap deflection causes a 
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decrease of lift and drag, and an increase of the lift-to-drag ratio. The rapid re- 

duction in drag is attributable to a thrust force component developed by the flaps, 

while the main reason for the lift reduction is the partial suppression of the leading 

edge vortical system. There is agreement with experiments in the general trends. 

This model does not yield satisfactory vortex positions, which result in inac- 

curate pressure distribution. The simplified vortex model used here leads to an 

overprediction of lift and drag forces. For better prediction of pressure distribution 

and force, a improved vortex model is required. This is the objective of the vortex 

cloud model, discussed in the next chapter. 



Chapter 4 

f 

1 
I 

Vortex Cloud Model 

Due to the crudeness of the vortex model only global quantities, such as lift and 

drag, were evaluated in Chapter 3. In this chapter a vortex cloud method is adopted 

to investigate the pressure distribution and the shear layer structures. Combined 

with the steady-unsteady analogy developed in Section 2.2.2, the vortex cloud 

method leads to a numerically efficient methodology with good definition of shear 

layers. The shear layers are replaced by a cloud of discrete vortices having finite 

core size, and the core region of the vortical flow is modeled with a single vortex. 

A boundary element method is employed to represent the trace of the wing in the 

cross-flow plane. The various aspects of numerical implementation, such as core 

modeling, merging of vortices and integration methods, are investigated. 

4.1 Vortex Model 

The vortex cloud method simulating 2-D separated flow fields consists in tracing the 

trajectories of a large number of discrete vortices. A problem facing methods of this 

type is the large velocities induced by neighboring vortices. Some researchers em- 

ploy vortices with finite core size to avoid large mutually induced velocities, 60,62-65 
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while others redistribute the vortices at each time step so as to avoid logarithmically 

infinite velocities.66 In this study vortices having finite core size are employed for 

two reasons. The redistribution of the vortices at each time step is computationally 

expensive, and causes the disappearance of the coherent structures shown in Fig. 

6. This disappearance occurs because the redistribution technique prevents the 

overriding of vortices. 

The rolled-up shear layers are replaced by a cloud of discrete vortices, each of 

which is generated from the separation point at a time step. Chorin62 first intro- 

duced the concept of vortices of finite core size in the cloud approach, so that all of 

the rotational and viscous effects can be assumed to take place in the core, while 

outside of this core the flow field is governed by potential theory. By a proper 

distribution of vorticity within the core, the infinite velocity induced by neighbor- 

ing vortices can be avoided. Using this concept, the vorticity distribution, which 

appears in the right hand side of Eq. (2.3.7), can be represented as: 

(4.1.1) 

where xi is the vorticity distribution function satisfying the normalizing condition 

(4.1.2) 

In the case of point vortices, the functions xi become the dirac-delta function 

S( Ix - xjl). Introducing a core radius C i ,  xi can be written as: 

(4.1.3) 

where G is a shape function common to all vortices. 
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I 

I 

The velocity induced by the vorticity distribution rix;((x - x j ( t ) l )  is 

(x - xi) x e, rj g ( p )  

2 u(x,t) = -- 
27r Ix - xi1 

where 

(4.1.4) 

The following vorticity distribution G and the associated velocity distribution used 

in this study were derived by SpalartS3 

(4.1.6) 

(4.1.7) 

It can be assumed that the most desirable core vorticity distribution would be of 

the form 1 - exp (-e2) , since this corresponds to an isolated vortex in a viscous 

fluid. However, the computational time and effort would be considerably larger 

than in the case of distributions (4.1.6) and (4.1.7), and as shown by A. Leonard,67 

for fixed core size, differences in the velocity representation have a small influence 

on global flow features. The distribution used here, shown in Fig. 33, resemble 

a Gaussian distribution and was chosen as a compromise between computational 

efficiency and truthful representation of vorticity diffusion. Accordingly, Prandtl’s 

relationship ‘8 for core size, 

ci 2 o<t (4.1.8) 

valid for a Gaussian distribution of vorticity, is used together with Eqs. (4.1.6) and 

(4.1.7). 
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4.2 Kutta Condition 

In this approach, a new discrete vortex is generated from the separation point 

at each time step such that the flow field including this new vortex satisfies an 

appropriate Kutta condition at the separation point. For an unsteady flow, as 

opposed to a steady flow, the vorticity is continuously supplied to the surrounding 

fluid from a separation point such that the strength and the space distribution of the 

shed vorticity allow for pressure continuity to be satisfied. 56-59 Such strength and 

space distribution are functions of the velocity on each side of the vortex sheet.57 

From Fig. 34a, Bernoulli's equation on each side of the vortex sheet is 

1 2  ad1 + P l +  p -  H1 = p u 1  at (4.2.1 a) 

(4.2.1 b)  

Here, H ,  u and p represent the total head, velocity and pressure respectively. The 

total head must be the same on each side since the whole flow is started from a 

uniform state. This requirement, together with pressure continuity, gives 

(4.2.2) 

Since the difference in velocity potential across the sheet represents the vortex 

intensity of the sheet, there results 

(4.2.3) 

The separation angle of the vortex sheet, Os, as shown in Fig. 34a, is such that the 

boundary condition on the wing surface, given by Eq. (2.3.11a), is satisfied. In 

this study the separation angle is set to zero, as shown in Fig. 34b, implying that 

vorticity going into the vortex structure is shed parallel to the lower surface. 57,60 
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This assumption makes the velocity on the upper side of the vortex sheet equal to 

zero, since the assumed streamline, as indicated in Fig. 34b, causes a stagnation 

point on the upper part of the vortex sheet. Combining Eq. (4.2.3) with the 

relationships x = Ut, the strength of a new vortex can be calculated as 

1 - ui2 At 
2 rnew = 

Normalizing with Uu(x), Eq. (4.2.4) reduces to 

(4.2.4) 

(4.2.5) 

The position of this new vortex can be obtained by considering the convection 

By definition, a vortex sheet moves with the 

Then, the convection velocity of the 

velocity at the separation point. 

average of the velocities at its two sides. 

newly shed vortex is 
1 

(4.2.6) 

The position of the new vortex is then 

where us is the position of the separation point, and e, is the unit vector tangent 

to the lower surface at the separation point, as illustrated in Fig. 34c. 

Normalizing with u(x), Eq. (4.2.7) becomes 

I I AX k U S  
unew = cr, -I- e, - - - 

x t an€  U (4.2.8) 
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4.3 Wing Cross-Section Representation 

The problem consists in solving Eq. (2.3.7) with the vorticity distribution given by 

, Eq. (4.1.1) on the rolled-up shear layer, subject to boundary conditions (2.3.11a,b) 

and the Kutta condition expressed by Eqs. (4.2.5) and (4.2.8). 

As mentioned in Section 2.1, the boundary value problem given by Qs. (2.3.7) 

and (2.3.11) can be solved in terms of a distribution of sources and doublets on the 

boundaries. The doublet distribution is replaceable by a vorticity distribution. 91 

In this study the wing cross-section is represented by vorticity panels of linearly 

varying strength. 

I If the body is divided into m - 1 vorticity panels and there are n vortices in the 

shear layers, as shown in Fig. 35, the stream function at the point i in the flow 

field can be written as 

n 1 
2.n 

+ -Crk logrib + u t ana  yi 
k = l  

(4.3.1) 

where w ( a j )  is the bound vorticity density at the jth panel, and K(ai, aj) are the 

geometric influence coefficients, which depends only on wing geometry. is the 

distance between the i point and the kth vortex. 

The first term on the right-hand side is the stream function due to the bound 

vorticity panels, and the second term represents the stream function due to the 

discrete vortices distributed on the shear layer. The last term is due to the vertical 

component of the free-stream. 
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Boundary condition (2.3.11a) gives 

- - -  

Conservation of the total circulation in the flow field as given by Eq. (2.3.9) 

implies that the total vorticity in the whole flow field must be zero 

{ w j d a j  + = 0 (4.3.3) 
J k = l  

Here there are m + 1 unknowns; m w’s for the vorticity panels and c ,  the value 

of the stream function on the wing trace in the cross-flow plane. Eqs. (4.3.1) and 

(4.3.3) are a set of m + 1 equations. Combining Eqs. (4.3.1)’ (4.3.2) and (4.3.3), 

the following system of equations results 

’ w l  
w2 

wm 
\ C  

b l  
b2 

bm 

5 rk 
\ k = l  

(4.3.4) 

The matrix aij is called the geometric influence coefficient matrix and is constant 

during time iteration. The bj’s are the stream function values induced by the vor- 

tices in the shear layers and the free stream. The last row in the matrix represents 

the integration of the bound vorticity panels. Using the trapezoidal rule for the 

integration, dj can be written as 

where lj  is the length of jth vorticity panel. 

(4.3.5) 
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4.4 Solution Procedure 

The steady-unsteady analogy developed in Section 2.2.2 shows that the solution of 

Eq. (4.3.4) (bound vortex strength and stream function at wing trace) as well as the 

the position and strength of the shear layer core (represented by a single vortex) 

must reach a converged state when expressed in terms of a similarity variable. 

Converting the time variable to the z coordinate through the relationship z = U t ,  

all the length scales can be normalized with a(z )  and the vortex strength with 

U a ( z )  . Since in this transformation the total wing span length a(z)  increases with 

time, the vortex strength, vortex position and core radius are re-normalized at the 

beginning of each time step. Only the right-hand side vector of Eq. (4.3.4) is varied 

at each time step. Such changes result from an increment in the number of vortices 

in the shear layer through the Kutta condition given by Eqs. (4.2.5) and (4.2.8), 

and from the movement of the vortices as a consequence of the induced velocities. 

The left-hand side matrix remains constant throughout the calculation procedure. 

4.5 Aerodynamic Forces 

The pressure coefficient was derived in the previous chapter as 

(4.5.1) 

The magnitude of the velocity in the cross-flow plane is numerically equal to the 

bound vortex strength per unit length, since the flow internal to the wing cross- 

section is assumed to be at rest.57 As indicated in Fig. 36, the bound vortex 

strength can be written as 

w d s  = 1 V .  m = , / G d s  (4.5.2~) 
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hence 

w = d v y 2  +v,  2 (4.5.2b) 

In this study, the bound vortex strength itself represents the outer velocity of the 

boundary layer. As a result, the magnitude of the velocity in the cross-flow plane 

can be obtained from the solutions of Eq. (4.3.4). The perturbation velocity in the 

axial direction can be obtained from the following conical relationship 

(Utana  + 4 u  - y vy - z vz) 
1 

v3: = - 
5 

(4.5.3) 

The velocity potential is given in terms of logarithmic functions and its evaluation 

requires consideration of branch cuts, as shown in Fig. 37. By integrating the load 

distribution given by Eq. (4.5.1) over wing and flap surfaces, the total resultant 

force on each surface can be obtained. 

4.6 Trailing Edge Wake 

The trailing edge wake of a delta wing, as shown in Fig. 1, has a shape different 

from that of a conventional large aspect-ratio wing. The pressure peak just below 

the leading edge vortex core reflects a vorticity distribution such that the bound 

vortex strength, as a function of spanwise location, has a maximum between the 

wing center and the wing leading edge, as illustrated in Fig. 38. Conical flow 

implies the assumption that the wing extends infinitely far downstream, namely, 

that no trailing edge exists. To study the trailing edge wake roll-up in a qualitative 

way, an artificial trailing edge is assumed to exist, from which the conical vorticity 

distribution calculated on the wing surface is released. A Kutta condition is applied 

such that there is no pressure jump at the trailing edge. 

The bound vorticity on the wing surface has two components, as shown in Fig. 
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39. These two components must satisfy the divergence free condition 

* aw a7 v . f l = -  - 0  a x + d z -  
+ 

where fl = w e, + 7 ez 

(4.6.1) 

The absence of a pressure jump at the wing trailing edge demands that the shed vor- 

ticity at the trailing edge should be aligned with the local velocity. An approximate 

form of the trailing edge Kutta conditiong2 can be written as follows 

d z  

then Eq. (4.6.1) reduces to 

au - = o  
d X  

or 

w = w(2) 

(4.6.2) 

(4.6.3~) 

(4.6.3 b )  

This indicates that w ,  which is identified with the w’s from Eq. (4.3.4), is constant 

as it moves downstream. After the trailing edge, the evolution of the wake is solved 

in a straightforward way using a 2-D time evolution technique. 

4.7 Numerical Implementation 

4.7.1 Influence Coefficients 

The stream function at a control point i due to the jth panel, having linearly 

varying vorticity intensity, and its corresponding panel at the other side of the 
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plane of symmetry, as shown in Fig. 40, can be written as 

(4.7.1) 

where Zj is the length of jth panel and 

(4.7.2~) 

(4.7.23) 

(4.7.2~) 

(4.7.2d) 

Evaluating these integrals, Pij and Qij can be written as 

Pij = Zj (log Zj - 1) - 1” IogriF ds if i = j or i = j + 1 (4.7.3~) 

The stream function value at point i due to the bound panels is 

(4.7.4) 
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Then the elements of the matrix of influence coefficients are 
1 

4.7.2 Induced Velocity 

Once strength of the bound vortex panels is obtained by solving Eq. (4.3.4), the 

flow field velocity is used to update the positions of the vortices in the shear layers. 

From Eq. (4.1.4), each component of the induced velocity outside the core is 

(4 .7 .6~)  

(4.7.6 b)  

where rj is the strength of the jth vortex. 

With 

Y - YS = Y - ( Y j  + S G j )  ( 4.7.74 

z - ZS = z - ( z j  + S 2 j )  (4.7.7 b )  

where ( G j , i j )  is the slope of the jth vortex panel, the velocity induced by the 

jth bound vortex panel can be obtained from Eqs. (4.7.6a,b) with the following 

definition of r j  

w j  s) ds r j  = l"(wj + W j + l  - 

li 
(4.7.8) 

When the point where the induced velocity to be calculated is located within the 

core, the induced velocity is obtained from the velocity distribution in Eq. (4.1.7) 

(4.7.94 

(4.7.9b) 
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t 

where 

(4.7.10) 

4.7.3 Numerical Implementation of the Kutta Condition 

Flow separation in a 2-D or a 3-D flow arises from viscous effects. An equivalent 

effect is imposed on the inviscid problem through a Kutta condition. A converged 

quasi-steady analysis requires that the shed vorticity at the wing side edges be 

convected with finite velocity. This velocity, not known a priori, is the average of 

the velocity on both sides of the wing at the side edge.59 In a 2-D case the velocity 

at the separation point can be determined from the experimentally established 

fact that the Strouhal number, when expressed in terms of the base pressure at 

the separation point, is constant.93 Experimental observations on the flow past an 

inclined flat plate have shown that this velocity is about 1.5 U .94 Under the conical 

flow assumption, the value of this velocity must be constant along the leading edges. 

Other workers have attempted to find this value experimentally and have applied it 

to the solution of delta wing problems with the vortex cloud method,31 failing to 

attain converged solutions. In this work this velocity is theoretically determined 

by recognizing the fact that, after a sufficiently large time and for given values of 

a, e and 6 ,  it must achieve a constant value. It was found that if an initial value 

for the bound vortex strength of about 327 is assumed, convergence to the final 

value of the side edge convective velocity is achieved within 300 steps. Too large 

initial values lead to oscillatory end behavior, while too small initial values require 

significantly more time steps. 
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4.7.4 Core Model 

The core region for a conical flow has large axial velocity, and the flux of vorticity 

generated along the leading edges and supplied to the core through the rolled-up 

shear layer is balanced by that convected by the axial velocity. Thus, the core 

region, usually identified with the “vortex jungle” in a 2-D vortex cloud computa- 

tion, cannot be included in this model of the conical flow since it would violate the 

condition of aerodynamic slenderness. Hence, the core region is represented by a 

single vortex through a simple merging scheme. By imposing a restriction on the 

rotation angle of the vortices, the efficiency of the numerical effort is increased and 

good definition of shear layers is achieved. Other s t u d i e ~ ~ ~ y ~ ~  have shown that the 

rotation angle of the shear layer, as long as it is set greater than 27r, has a small 

effect on overall quantities. The same conclusion is arrived at in this study. 

The vortices which rotate more than a given angle are allowed to merge into 

the core, which is then simulated by a single vortex. The position, strength and 

core size are determined such that the angular momentum before and after the 

merging is conserved. If k vortices are merged together, conservation of angular 

momentum outside the core region is expressed by the following relationships for 

the core position and strength 

b c  = 

k 
rc = ri 

i= 1 

(4.7.11) 

(4.7.12) 
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The angular momentum within the core is 

M = 12T 1' (ac + r )  u r de dr (4.7.13) 

where uc is the position of the core center, and r is a distance from the core center 

to a point inside the core. u is the velocity distribution inside the core as given by 

Eq. (4.1.7). Performing the integration, the angular momentum reduces to 

M = -rc 17 3 
24 

Then the core size after merging is 

<c = 

(4.7.14) 

1/3 

(4.7.15) 

Strength and position are independent of the vorticity distribution inside the core, 

but core size is dependent on vorticity distribution. 

4.7.5 Merging between Neighboring Vortices 

A similar merging technique as the one used for the core model is also applied 

to the neighboring vortices such that if the distance between them is less than a 

given value two vortices are allowed to merge into one. This value is set equal to 

the mean value of the radii of the two vortices. Position, strength and the core 

radius after merging are determined from Eqs. (4.7.11), (4.7.12) and (4.7.15). The 

merging scheme allows for a reduction of the total number of vortices by almost a 

half, making the scheme much more efficient. 

4.7.6 Absorption of Vortices o n  Wing Surfaces 

In this discretization of a separated wake, vortices coming very close to the surface 
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have the tendency to penetrate the wing surface. This is observed to happen even 

with very small time step and large number of panels. A means of resolving this 

difficulty has been suggested by Lighthill,95 and consists in allowing the vortices 

that come within a thin layer on the wing surface to disappear. Another way 

consists in relocating the vortices which penetrated the surface in a preceding time 

step, to its image point outside the surface.68 Here the vortices which come closer 

than a given distance to the wing surface are made to disappear. This distance is 

set equal to 1% of the local wing span. This surface merging tends to occur when 

the angle of attack is small or when the flap deflection angle is large. 

4.7.7 Integration Method for Advancing Vortex Position 

Any 2-D discrete vortex method contains a vorticity diffusion effect due to the 

numerical error involved in time integration. The numerical diffusion effect is 

shown in Fig. 41. Some a ~ t h o r s ~ ~ ’ ~ ~  maintain that this numerical error could 

be responsible for instability of the vortex motion. O t h e r ~ ~ ~ j ~ ~  suggest that this 

numerical error simulates a turbulent diffusion rather than a viscous diffusion. In 

a conical flow the diffusion effect arising from the numerical error is less marked 

than in a 2-D flow. This may be attributed to the fact that the shear layers in 

the conical flow develop in a field of intense circumferential velocity, which allows 

for a shorter time during which numerical dissipation acts. Here both a 1st order 

Euler method and a 4th order Runge-Kutta method were used for time integration. 

These schemes are: 

1st order Eder method 

(4.7.16) 
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4th order Runge-Kutta method 

At at (t + $) = a v ( t )  + 2 vu ( t , av ( t ) )  

a;* (t + %) = a&) + g vv (t + _2,0; At (t + $)) 

At + 2 vv ( t  + 2, at* ( t  + T)) + vu (t + At, at**(t + At))]  

(4.7.17) 

4.8 Results 

4.8.1 Shear Layer Geometry and Surface Pressure Distribution 

Fig. 42 shows the convergence of the vorticity intensity at the separation point 

for an initial guess of 3 U .  Significant oscillation can be seen during the first 50 

steps. If too large an initial guess is used, the vortex strength oscillates such that 

it changes sign during some time steps, leading to nonphysical results. Given a 

and 6, a proper initial guess for each case is needed to obtain the final vorticity 

intensity at the separation point. This value decreases as the flap deflection angle 

increases and as the angle of attack decreases. 

The convergence of the present calculation can be assessed through core position, 

The core vortex core vortex strength and core radius, as shown in Figs. 43a,b. 
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strength shows some oscillation even after convergence is attained, since the vortices 

in the shear layer merge into the core at finite intervals. 

Fig. 44a shows the vortex jungle that arises when no core model is used. In 

addition, the shear layer is not clearly defined. Fig. 44b shows a case where a core 

rotation angle of 2 . 5 ~  was imposed for the same configuration and exhibits good 

shear layer definition. 

The effect of the merging scheme between neighboring vortices is shown in Figs. 

By replacing high density clouds with fewer vortices, the total number of 45a,b. 

vortices is reduced by almost a half. 

Fig. 46 shows the effect of two schemes of time integration. As anticipated in 

Section 4.7.7, the lSt order Euler scheme gives a much more diffused shear layer 

than the 4th order Runge-Kutta method. Overall flow field features do not depend 

significantly on the integration scheme. 

The data for comparison with experiments were taken from Ref. 3, where the 

model had a trailing edge thickness of 7.7% of the half span and a 22 deg. half 

apex angle with undeflected flap. The ratio of the main wing span to the total 

span was 0.6. The data used for comparison were measured at a spanwise station 

located 37% of the chord from the apex, to minimize the trailing edge effect. 

Figs. 47a,b show the rolled-up shear layer and surface pressure distribution for 

a =25 deg. and 6 = 0 deg. Agreement can be considered very good, except for a 

small region near the leading edge, where a secondary vortex may have been present 

in the experiments and would be responsible for the disagreement. 

Figs. 48 and 49 are the cases for flap deflection angle of 15 deg. and 30 deg. 

and same angle of attack as the case of Fig. 47. The pressure at the centerline 

decreases with flap angle, which indicates that the effect of flap deflection is similar 
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to a reduction of angle of attack. Although the vortex position does not move much 

with flap angle, some movement toward the surface is observed, which has also been 

reported elsewhere.17 The hinge vortex is hardly observable in the cases analyzed 

here, being quite weak and tending to be absorbed into the wing surface. Fig. 49 

shows a weak hinge vortex. The greater discrepancy between computation and 

experiment near the leading edge is attributed to the stronger secondary vortices 

at higher flap deflection. 

Fig. 50 shows the case of a = 15 deg., without flap deflection. The pressure 

distribution shows good agreement. The effect of a secondary vortex is also stronger 

than at a =25 deg. The width of the pressure peak region is less than shown by 

the measurements. 

Fig. 51 shows the case with 15 deg. flap deflection angle with a = 15 deg. This 

figure shows the same trends as the straight-feeding-model, shown in Fig. 32. 

Fig. 52 shows the rolled-up shear layer and surface pressure distribution for a = 

35 deg., without flap deflection. The shear layer shows a tendency to produce the 

type of coherent structures which have been experimentally observed, as described 

in Fig. 6, taken from Ref, 77. 

The cases of 6 =15 deg. and 35 deg. with same angle of attack are shown in 

Figs. 53 and 54. In both cases, the hinge vortices have almost entirely disappeared. 

For a flap deflection of 15 deg. the pressure peak is underpredicted. The effect of 

the secondary vortex is clearly seen in the case of 35 deg. flap angle. Calculated 

results show a strong adverse pressure gradient near the leading edge on the upper 

surface, as indicated in Fig. 54, which would cause flow separation. This separated 

flow, not resolved for in this calculation, would give rise to a strong vortical flow, 

which results in the appearance of a secondary pressure peak. This secondary peak 
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is clearly seen in the experimental data in Fig. 54. 

In Fig. 55, the calculated trailing edge wake is compared with computations from 

a higher-order panel method. 61 Reasonably good agreement is obtained. 

4.8.2 Lift, Drag, Lift-to-Drag Ratio 

The following table shows computed and measured changes in each of the force 

components and the lift-to-drag ratio as a result of flap deflection, for CY = 25 deg. 

The experimental data are sectional force coefficients taken at 37% of the chord 

from the apex. 

6 = 0  6 = 15 6 = 30 

Exp. VCM Exp. VCM Exp. VCM 

CL 3.01 3.14 2.52 2.55 2.32 1.88 

CD 1.4 1.46 1.04 1.06 0.85 0.68 

CL/CD 2.14 2.14 2.42 2.41 2.73 2.76 

While lift and drag decrease with flap deflection, the lift-to-drag ratio increases. 

For a flap deflection of 30 deg., that increment is about 30%. 

4.9 Summary 

The vortex cloud model gives satisfactory agreement with experiments in pressure 

distribution and global forces. Good shear layer definition is also obtained. 

The wing model analyzed in this work exhibited negligibly small hinge vortices, 

both in theory and experiment. The usually observed instabilities of delta wing 

shear layers are hardly found, except in the high angle of attack range, and become 

more visible if no merging scheme between neighboring vortices is implemented. 
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Use of a lSt order Euler scheme for time integration shows more clearly this kind 

of instability than a 4th order Runge-Kutta method. 

Comparison of pressure distributions with experimental measurements shows 

that the effect of the secondary vortex becomes significant in the range of small 

angle of attack and large flap deflection angle. Limitations of this model can 

be observed through comparison with experimental results for large flap deflection 

angles. The disagreement is caused partly by the effects of secondary vortices, 

and partly by the inability of the cross-flow plane analysis to resolve true velocity 

components on the flap surface. 

Leading edge flap deflection reduces the lift and drag of the wing and increases its 

lift-to-drag ratio. As was the case with the simpler model in the previous chapter, 

it is found that flap deflection is equivalent to a reduction in angle of attack. 



Chapter 5 

Comparison of Results 

In this chapter the results obtained from the two approaches analyzed in Chapter 

3 and 4 are compared with results from other analyses and experiments. Exper- 

imental data are obtained from Ref. 3, and other analyses are given by Smith’s 

theory3’ and a 3-D panel appr0ach.l’ 

Fig. 56 shows the comparison of core position and rolled-up shear layer geometry 

between Smith’s calculation and the vortex cloud model, for @ / E  = 1. Smith 

determined the shear layer core position by applying the force free condition to the 

core, which was modeled as a concentrated vortex. In this respect his core model 

differs from the vortex cloud’s, which uses a simple merging scheme by imposing a 

restriction on the shear layer rotation angle. Although the core models are quite 

different, shear layer shape and core position show good agreement between both 

met hods. 

A comparison between results from a 3-D panel analysis and the vortex cloud 

model is illustrated in Fig. 57 for the case of a leading edge fence, corresponding 

to an upward deflection of the leading edge flap of more than 90 deg. The results 

from the 3-D panel analysis were taken from Ref. 19 for E = 16 deg. and IC = 0.83, 
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and chosen at the 30% of the chord from the apex to minimize the upstream effect 

of the trailing edge. Fig. 57a shows the pressure distribution without the fence for 

Q = 20 deg. The pressure peak region calculated with the vortex cloud model lies 

closer to the leading edge than that from the panel calculation. The case of 130 

deg. fence angle is shown in Figs. 57b,c for the same angle of attack as Fig. 57a. 

The results show better agreement than without fence deflection. 

A detailed discussion of the computation between theoretical results from this 

work and experiments is carried out, and possible reasons for the disagreements 

with experiment are discussed. 

Pressure distributions for Q = 25 deg. and 6 = 0 deg. are shown in Fig. 58. 

Also shown are the results from the straight-feeding-sheet model. As mentioned in 

Chapter 3, the straight-feeding-sheet model overpredicts the pressure peak, which 

appears shifted toward the leading edge, while the pressures on the lower surface and 

in the midspan region on upper surface are well predicted. This implies that the 

straight-feeding-sheet model seem to primarily overpredict the vortex component 

of lift. The results from the vortex cloud model agree well with experiments. 

The pressure distribution for the case of Q = 25 deg. and 6 = 15 deg. is shown 

in Fig. 59. The results from the vortex cloud model show that the pressure on 

the upper surface is almost constant near the center region and rises more sharply 

to a pressure peak than the experimental results. A similar situation occurs in 

the region where the vortices are absorbed by the wing surface. This phenomenon 

can be more clearly seen in case of 6 = 30 deg., as illustrated in Fig. 49. The 

overall pressure distribution agrees well with experiments, while the pressure peak 

is slightly overpredicted. In this case, the hinge vortices are extremely weak. This 

fact was also suggested by results from the straight-feeding-sheet model. The 
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extreme closeness of the hinge vortex to the wing surface caused oscillations in the 

numerics of the straight-feeding-sheet model, such that it was found convenient to 

neglect the hinge vortex altogether. Results obtained neglecting the hinge vortex 

are shown in Fig. 59. The pressure peak is unrealistically overpredicted and the 

pressure peak region is much narrower than indicated by the vortex cloud model or 

experiments. This is explained by the position of the leading edge vortex being very 

close to the wing surface.96 Thus, the straight-feeding-sheet model exaggerates the 

vortex displacement with flap deflection. 



Chapter 6 

i 

Conclusions and Recommendat ions 

The effects of leading edge flaps on the aerodynamics of delta wings was investigated 

theoretically using two different approaches. A mathematical analogy was invoked 

to treat a 3-D conical flow field in subsonic and supersonic cases. Through the 

analogy, a conical steady flow field can be represented by a 2-D unsteady self- 

similar ideal flow, whose treatment is far simpler than that of a 3-D flow. Two 

different vortex models were used as techniques to solve a 2-D unsteady flow, and 

the results were compared with experimental data and other methods of analysis. 

6.1 Conclusions 

6.1.1 Straight-Feeding-Sheet Model 

While this simple model leads to poor agreement in pressure distribution with exper- 

iments, some of the the effects of leading edge flaps on the delta wing aerodynamics 

are suggested. The wing’s geometric parameters, such as e ,  6 and I C ,  together with 

the angle of attack appear explicitly in the equations for the vortex positions and 
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the normal force components. From Eq. (3.4.23)) which shows the normal force 

arising from the vortex system, it can be predicted that the normal force component 

reduces with flap deflection, since the leading edge vortex strength and the distance 

between the vortex and its image vortex in the transformed plane reduce with flap 

deflection. Also Eq. (3.4.24)) which is the normal force component corresponding to 

an attached flow situation, shows the explicit effects of flap deflection, resulting in a 

decrement of the normal force component with flap deflection. This model indicates 

that the increment of lift-to-drag ratio during flap deflection is more significant in 

the low angle of attack range, as observed in experimental  result^.^ The straight- 

feeding-sheet model exaggerates the vortex displacement and leading edge suction 

arising from flap deflection. 

6.1.2 Vortex Cloud Model 

This model provides a good definition of shear layers and good agreement in surface 

pressure distribution with experiments and 3-D panel calculations, as long as the 

validity criteria derived in Chapter 2 are respected. The effects of flap deflection are 

properly represented. The non-appearance of hinge vortices in the range of angle of 

attack analyzed in this approach is confirmed by experimental observation. Cases 

of low angle of attack and large flap deflection angle would violate the conicality 

and slenderness criteria and are consequently not expected to be predicted well by 

this model. 

6.1.3 Effects of Flap Deflection on Delta Wing Aerodynamics 

A decrement in vortex strength, caused by flap deflection, delays vortex breakdown 

by reducing the adverse pressure gradient around the trailing edge. Lift and drag 

decrease with flap deflection, while the lift-to-drag ratio increases. The reduction 
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of lift and drag arises from the partial suppression of the vortical flow, and the 

increment of the lift-tedrag ratio derives from the thrust component of force acting 

on the flap surfaces. 

6.2 Recommendations 

The vortex cloud model gives good definition of shear layers, which current Navier- 

Stokes solvers cannot provide since an impractically fine grid distribution would be 

required to capture such discontinuity surfaces. This work can provide some insight 

in supplying initial grid distributions to Navier-Stokes solvers, thereby reducing 

computational cost. 

This study could also be extended to moderately supersonic flows where the Mach 

cone angle is closer to the wing apex angle. In such cases the approach as developed 

here would fail, since the far field boundary conditions would be altered by the Mach 

cone. A mapping function, the so-called Tschaplygin transformation, 82 has been 

developed to account for the Mach cone trace in the cross-flow plane. Combined 

with the Tchaplygin transformation, the steady-unsteady analogy developed in this 

study would provide a scheme to treat a moderately supersonic conical flow. 

In this study the comparison between the results from experiments and calcu- 

lation based on the steady-unsteady analogy is made only for the incompressible 

case. For compressible flows, application of a similarity rule for the pressure co- 

efficient would be required, since the wing geometry and the free-stream condition 

are distorted as a result of applying the Prandtl-Glauert transformation. Such a 

similarity rule for the pressure coefficient for a slender wing is given in Appendix 

3. 
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(b) View from the trailing edge 

Fig. 1 Overall flow field past a plane delta wing 
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Core blowing: 
Delays vortex breakdown 
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Spanwise blowing: 
Increases vortical lift 

Tangential blowing: 
Stabilizes vortical flow 
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Spoiler effect ?9 
(b) Leading Edge Flap 

Fig. 2 Concepts for controlling the vortical flow 
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Fig. 3 Simplified flow field past a flapped delta wing 

4 : Supersonic configuration 
+ : Plane delta wing with deflected flap 
-D- : F-16 with deflected flap 

Mach number 

Fig. 4 Comparison of L/D for three different wing configurations, taken form Ref. 2 
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(a) Assumed flow field 

. 
(b) Approximated flow field 

Fig. 5 Brown and Michael’s approximation of the vortical flow, taken from Ref. 21 
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91 Figures 

(a) Leading edge vortices, taken from Ref. 77 

(b) Plane mixing layer, taken from Ref. 98 

Fig. 6 Characteristics of the shear layer structure of leading edge vortices 

compared with the plane mixing layer 
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(a) 3-D Conical vortex sheet 

(b) 2-D unsteady self-similar vortex sheet 

Fig. 7 Conical and 2-D unsteady vortex sheets 
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Figures 93 
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Geometry of flapped delta wing Fig. 8 
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Fig. 10 Integration contours for the definition of circulation 



Figures 95 

(a) Below limit angle (b) Above limit angle 

Fig. 11 Shear layer location for different flap angle 
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(a) Rotation about the centerline 

(b) Rotation about the hinge line 

Fig. 12 Coordinate transformation procedure for vector normal to flap surface 
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Fig. 13 Boundary of flap deflection angle, e = 15 deg. 
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Fig. 14 Force components on wing and flap surfaces 
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Fig. 15 Approximated flow field singularities in the cross-flow plane 
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Fig. 16 Mapping procedure 
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Fig. 17 Integration path for vortex+sheet systems 
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Fig. 18 Integration path along the wing trace 
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Fig. 22 Total lift increment, 6 = 40 deg. 
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Fig. 23 Drag on main wing, 6 = 40 deg. 
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Fig. 24 Drag on flap, 6 = 40 deg. 
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Fig. 25 Total drag, 6 = 40 deg. 
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Fig. 30 Normal force components for CI! = 10 deg. 
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Fig. 31 Surface pressure distribution for Q = 25 deg., 6 = 0 deg. 
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Fig. 32 Surface pressure distribution for 01 = 25 deg., 6 = 15 deg. 
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Fig. 33 Spalart's vortex model 
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(a) Generalcase 

(b) Fixing the separation angle 

(c) New vortex position 

Fig. 34 Flow around the separation point 
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Fig. 38 Chordwise vorticity distribution 
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Fig. 39 Bound vorticity components 
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Fig. 40 Stream function induced by body panels 
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(a) Initial state (b) After some time steps 

Fig. 41 Numerical diffusion illustrated by discrete simulation of Rankine vortex, taken 
from Ref. 65 
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Fig. 42 Convergence of the vorticity intensity at the separation point, initial guess is 3U 
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Fig. 43 Calculation convergence 



Fimres 117 

(a) Without core model 

(b) With core model, 2 . 5 ~  rotation angle 

Fig. 44 Effects of shear layer core model, a = 25 deg. 
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(a) Without merging scheme 
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Fig. 45 Effects of merging scheme between neighboring vortices, cy = 25 deg. 
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Fig. 46 Effects of integration scheme on shear layer geometry, a = 35 deg. 
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Fig. 47 Shear layer geometry and surface pressure distribution, 
cr = 25 deg., 6 = 0 deg. 
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Fig. 49 Shear layer geometry and surface pressure distribution, 
a = 25 deg., S = 30 deg. 



Figures 123 

-CP 

2. 

1. 

0. 

-1. 

I D  
I 

t 

Fig. 50 Shear layer geometry and surface pressure distribution, 
a = 15 deg., 6 = 0 deg. 
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Fig. 51 Shear layer geometry and surface pressure distribution, 
a = 15 deg., 6 = 15 deg. 
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Fig. 52 Shear layer geometry and surface pressure distribution, 
CY = 35 deg., 6 = 0 deg. 
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(b) Higher order panel method, 
taken form Ref. 6 1. 

Fig. 55 Trailing edge wake evolution for a plane delta wing 
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Fig. 56 Comparison of shear layer geometry with Smith’s calculation for cr/e = 1 
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Fig. 57 Comparison with 3-D panel analysis 
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Appendix 1. 

Wolfe Method 

Appendices 

Eqs. (3.2.9a,b,c,d) are solved numerically using Wolfe method. Wolfe’s method is 

a variation of the secant method for a system of nonlinear equations. This method 

has the advantage that as the solution becomes closer to the root, the convergence 

speed is much faster than that of Newton-Raphson method.89 For a single equation 

the secant method is equivalent to solving the following two equations, with two 

initial guesses 

( A .  1 Sa) 

( A .  1.1 b)  

The solution is updated as 

.n+l 3 = Pl x? + P2 xi! (A.1.2) 

For a system of n equations a set of n + 1 equations must be solved with n + 1 
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vectors of initial guesses, 

n+l  
CPj 
j= 1 

(A.1.3~) 

I 

For the solution update we ignore the vector xj, which gives the maximum residue. 

where xi = ( z 1 , z 2 , . . . , z n )  i j  j 

This procedure is repeated until the maximum residue becomes smaller than a given 

value. 

I 

Appendix 2. 

Newton-Raphson Method for Complex Functions 

Eqs. (3.3.8a,b) are solved using the Newton-Raphson Method. Since these are 

complex equations, the conventional Newton-Raphson method is modified accord- 

ingly. 

For the system of real equations 

fi(x) = 0 i = 1,2,-.-,n 

the general form of the Newton-Raphson method is 

Xn+l - - xn - J-' jj(xn) 

(A.2.1) 

(A.2.2) 
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where J is the Jacobian of fi(x) at Xn. 

In the case of a system of complex equations 

x = (y1 + izl, y2 + iz2, * * ,  Yn + izn) (A.2.3) 

Applying the scheme to the real and imaginary parts of f ,  there results 

Y1 

Y2 

Y n  

with 

J =  

- - 

n+l 

Y1 
Zl 
Y2 
22 

Y n  
. rn 

- J-l 

n 

fl 
9 fl 
3 f2 
9 f2 

'fn 
9 fn 

(A.2.4) 

n 

(A.2.5) 

r2 

For the present. problem there are two complex equations for the vortex positions, 

resulting in a 4 x 4 matrix. The reason why the Newton-Raphson method is 

preferred over the Wolfe method in this case, is that the latter needs a very accurate 

initial guess in order to converge. 

Appendix 3. 

Similarity Rule for Pressure Coefficient in Compressible Flow 

Gothert's similarity analysisg7 is modified and applied to a general slender body at 

angle of attack. 



I Appendices 136 

The pressure coefficient for a compressible flow using the small disturbance as- 

sumption is 

v 1  2 2 2 
Cp = - 2 r  - (1-Mm2) (5) - ($) - (5) (A.3.1) 

The analysis consists in considering two flow fields characterized by Mach num- 

bers M1 and M2, with body shapes identified by the functions F1 and F 2 .  Using a 

cylindrical coordinate system, the small disturbance potential equation for the flow 

I 

field having free-stream Mach number M1 and velocity U1 with incidence angle a1 

can be written 

(A.3.2) 

The boundary shape is given by 

F1 = r - blc fl(x/c,O) = 0 (A.3.3) 

where b and c represent the aspect ratio and chord length of the wing respectively. 

The boundary condition on the wing surface given by Eq. (2.1.7) can be written as 

V(b1Is.VF1 = 0 (A.3.4) 

where s indicates that 041 is evaluated at the body surface. 

Using Eqs. (A.3.2) and (A.3.3), Eq. (A.3.4) reduces to 

Invoking the slender body assumption8' 

(A .3.5) 

(A.3.6) 



Appendices 137 

Eq. (A.3.5) reduces to 

= - u l t a n a l s i n 8  + Ulblc - dr s ax I s 
(A.3.7) 

+ 2 
blcf; 

and the pressure coefficient given by Eq. (A.3.1) becomes 

Next consider another flow field having Mach number M2 and velocity U2 with 

The velocity potentials of the two flow fields are related as incidence angle a 2 .  

follows 

(A.3.9) 

where A is a constant to be derived later. 

The new coordinates are 

(A.3.10) 

Substituting Eqs. (A.3.9) and (A.3.10) into Eq. (A.3.2) the latter reduces to 

The body shape for the second flow field is defined by 

F 2  = ? - b2c f2 (5 /~ ,8” )  

(A.3.11) 

(A.3.12) 
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Accordingly, the boundary condition is 

I 

= - U2 tanapsine + U2b2c 

(A.3.13) 

and the pressure coefficient 

(A.3.14) 

Using the relationship given by Eq. (A.3.9) there results 

(A.3.15) 

Comparing boundary conditions (A.3.7) and (A.3.13) with relationships (A.3.9) and 

(A.3.10), under the assumption f i  = f 2 ,  there result 

1 - M i  
1 4 ;  

A =  

Hence, the pressure coefficients are related as follows 

which also implies that 

(A.3.16) 

(A.3.17) 

(A.3.18) 

(A.3.19) 

(A.3.20) 


