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ABSTRACT 

This paper gives an overview of a comprehensive approach to filter and dynamics 
modeling for attitude determination error analysis. The models presented include 
both batch least-squares and sequential attitude estimation processes for both 
spin-stabilized and three-axis stabilized spacecraft. The discussion includes a brief 
description of a dynamics model of strapdown gyros, but it does not cover other 
sensor models. Model parameters can be chosen to be solve-for parameters, which 
are assumed to be estimated as part of the determination process, or consider 
parameters, which are assumed to have errors but not to be estimated. The only 
restriction on this choice is that the time evolution of the consider parameters must 
not depend on any of the solve-for parameters. The result of an error analysis is an 
indication of the contributions of the various error sources to the uncertainties in the 
determination of the spacecraft solve-for parameters. The model presented in this 
paper gives the uncertainty due to errors in the a priori estimates of the solve-for 
parameters, the uncertainty due to measuremenr noise, the uncertainty due to 
dynamic noise (also known as process noise or plant noise), the uncertainty due to 
the consider parameters, and the overall uncertainty due to all these sources of 
error. 

PRECEDING PAGE BLANK NOT FILMGD 

3 

https://ntrs.nasa.gov/search.jsp?R=19890006564 2020-03-20T03:35:36+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42829771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A General Model for Attitude Determination Error Analysis 

1. INTRODUCTION 

Spacecraft attitude determination involves estimating the orientation of a spacecraft relative to inertial 
space, based on measurements from onboard sensors. Attitude determination error analysis is the 
computation of the attitude determination accuracy obtainable with sensor data of prescribed error 
characteristics, without processing real or simulated sensor data. This analysis takes into account the 
presence of certain errors in modeling the sensors and the attitude motion of the spacecraft [wertz]. 

This paper gives an overview of a comprehensive approach to filter and dynamics modeling for attitude 
determination error analysis. The models presented include both batch least-squares and sequential attitude 
estimation processes for both spin-stabilized and three-axis stabilized spacecraft. Model parameters can be 
chosen to be solve-forparameters, which are assumed to be estimated as part of the determination process, 
or consider parameters, which are assumed to have errors but not to be estimated. The only restriction on 
this choice is that the time evolution of the consider parameters must not depend on any of the solve-for 
parameters. Great freedom is also allowed in specifying sensor types and measurement scheduling. 

The result of an error analysis is an indication of the contributions of the various error sources to the 
uncertainties in the determination of the spacecraft solve-for parameters. The model presented in this paper 
gives the uncertainty due to errors in the a priori estimates of the solve-for parameters, the uncertainty due 
to measurement noise, the uncertainty due to dynamic noise (also known as process noise or plant noise), 
the uncertainty due to the consider parameters, and the overall uncertainty due to all these sources of error. 
This approach was developed as part of the mathematical specification of algorithms for the 
computer-based Attitude Determination Error Analysis System (ADEAS) [Nicholson]. 

2. DYNAMICS MODEL 

The state vector x is an N-dimensional vector of parameters that completely characterizes the system. 
For spacecraft attitude determination, the state vector includes spacecraft attitude parameters and sensor 
calibration parameters. The state vector is assumed to evolve in time according to the dynamics model 

a t )  = f ( W 1  t)  + u(t) (2- 1) 

where the dynamic noise u(t) is a Gaussian white noise process with mean and covariance given by 

E[u(t)] = 0 and E[u(t)uT(t')] = Q &r-- t') (2-2) 

with E[.  . .] denoting the expectation value. In this equation Q is the NxN dynamic noise spectral density 

matrix and 6(t - t') denotes the Dirac delta, or unit impulse, function. The state vector includes all the 
parameters needed to compute x, even though some of these parameters may have zero derivative. 

The true value of the state vector is never exactly known, but can only be estimated. The state estimate 
vector x*(t) evolves in time according to 

;*(t) = f(X*(t), t )  . 

The state error vector, given by 

h ( t )  = x(t) - x*(t) 

(2-3) 

(2-4) 
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is assumed to always remain small, so linear error analysis techniques can be used. Then, to frst order, 

A$t) = i ( t )  - i * ( t )  = f(x(t) ,  t) - f(x*(t), t )  + u(t) = (dfl&)(t) Ax(t) + U ( t ) .  

Integrating this formally gives 

A.x(t) = @(tl t’) AX(t’) + W(t, t’) 

where the state transition matrix @tl t’) is the solution of the differential equation 

&t, t’) = ( ? f B ) ( t )  aytl t’) 

with the initial condition 

@(tfl t’) = IN = the NxN identity matrix 

and the random excitation vector W(t, t’) is given by the integral 

W(t, t’) = /f@(tI t”) u ( f )  dt”. 
t 

It follows from equations (2-7) and (2-8) that the transition matrix obeys the group property 

@(tl t’) = @(tl t”) @(tfll t‘) 

and that the random excitation vector obeys the relation 

W(t, t’) = @(t, t,,) W(t,,, t’) + w(t, t”) . 
Equations (2-2) and (2-8) give the relationship 

E[W(t, tff)f(tff, t’)] = 0 for t 2 t” 2 t’. 

The estimation computations require the random excitation covariance matrix 
t 

D(t, t’) E E [ H t ,  t’)yT(t, t’)] = J ,  @(tl t”) Q @(t, V )  dt”, 
t 

which equations (2-10) and (2-1 1) show to obey the relation 

D(t, t’) = @(t, t”) D(t”, t’) djT(tI t”) + D(t, tff) . 
2.1 Spin-Stabilized Spacecraft Dynamics Model 

(2-5) 

(2-6) 

(2-7a) 

(2-7b) 

(2-8) 

(2-9) 

(2-10) 

(2-1 1) 

(2-12) 

(2- 13) 

For spin-stabilized spacecraft, the attitude matrix AgI(t) which transforms vectors from an inertial 
frame I to the spacecraft body frame B is given as the product 

ABIW = ABLW ALIW (2-14) 

where the subscript L denotes an intermediate frame in which the total spacecraft angular momentum 
vector L is oriented along the positive z-axis. The matrix A u ( t )  is given in terms of the right ascension 

5 



A General Model for Attitude Determination Error Analysis 

a(?) and declination &t) of the angular momentum vector as 

Au( t )  = Az(nI2 - 6) AJ(a)  (2-15) 

where Ai(0) denotes a rotation by angle 9 about axis i .  The matrix ABL(~) is parameterized by a 3-1-3 
Euler axis sequence as 

ABL(t) = A3(W) A I ( @  A3($) - (2-16) 

For torque-free motion of an axially-symmetric rigid body a(?), Kt), and e(?) are constant, and 

60) = Ol(t) (2- 17a) 
It.rt) = q ( t ) ,  (2-17b) 

where q ( t )  and wp(t) are the inertial nutation rate and body nutation rate, respectively [wertz]. 

(2-18) 

where xm is a p-dimensional vector of measurement parameters depending on the sensor complement of 
the spacecraft being modeled. We assume that the measurement parameters are constant and that any 
deviations of the dynamics from torque-free motion of an axially symmetric rigid body can be 
approximated by independent white noise processes udt ) ,  ugt), u,$t), ue(t), u@), ul(t), and up(t). The 
equations of motion for spin-stabilized spacecraft give the dynamics model 

i ( t )  = 

0 0 0 0 0 0 0 OPT 

0 0 0 0 0 0 0 OPT 

o o o o o I o o p T  

0 0 0 0 0 0 0 OPT 

0 0 0 0 0 0 I OPT 

0 0 0 0 0 0 0 OPT 

0 0 0 0 0 0 0 OPT 

OF OP OC.L OP OP OP OP OPXP 

(2-19) 

where Op is a p-dimensional vector of zeros and Opxp is a pxp matrix of zeros. Since the dynamics 

model for spin-stabilized spacecraft is linear in the state vector, the state error vector &(t) obeys an 
equation of the same form as equation (2-19). Thus the state transition matrix, as defined by equation 
(2-7), is 
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0 I O  0 0 0 0 OPT 

0 0 0 1 0  0 0 OPT 

0 0 0 0 0 1 0  OPT 

O O O O O O I O P T  

0 ,  OP OP OP OP OP OP IP  

0 0 1 0 0 - A t  0 OPT 

0 0 0 0 1 0 -A t  OPT 

.- 

ayt, t') = 

where 

r 
I 1  0 0 0 0 0 0 OPT 

0 1 0  0 0 0 0 OPT 

O O O I O O O O P T  

0 0 0 0 0 I O  OPT 

0 0 0 0 0 0 I OPT 

0 0 1 0  0 A t 0  OPT 

0 0 0 0 1 0  A t o p T  

- OP OP OP OP OP OP OP IP 

At z t - t ' .  

The inverse of the state transition matrix is 

[ l  O O O O O O O P T  

a) -qt ,  t') = 

and the random excitation covariance matrix is 

D(t, t') = 

- 
Qa 0 0 0 0 0 0 OPT 

0 Qs 0 0 0 0 0 OPT 

0 0 Q , # , + ( ~ / ~ ) Q c ( A ~ ) ~  0 0 (1 /2)Qc At 0 OPT 

0 0  0 QO 0 0 0 OPT 

0 0 (1/2)Q~At 0 0 Qc 0 OPT 
0 0  0 0 (1/2)QpAt 0 QP OPT 

- OP OP OP OP OP OP OP OPXP 

0 0  0 0 Qw+(l/3)Qp(bP 0 ( W Q p b  OpT 

(2-20) 

(2-21) 

(2-22) 

A t ,  (2-23) 
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~ 

where Qa is defined by 

E[udt)u&t')] = Qa 6(t - t') 

with similar relations for Qs, Q& Qe, Qv Ql, and Qp. 

2.2 Three-Axis Stabilized Spacecraft Dynamics Model 

For three-axis stabilized spacecraft, the attitude matrix ABI(t) is given as the product 

(2-24) 

(2-25) 
I 

where the subscript R denotes a reference frame, which can be, for example, Earth-pointing, 
Sun-pointing, or inertial. The inertial-to-reference matrix ARI(t) for any reference system is computed 
from the reference vectors defining that system. The nominal spacecraft attitude with respect to the 
reference frame evolves over time according to 

tigR(t) = - zBR(t) ABRW (2-26) 

where $BR(?) is the 3x3 antisymmetric matrix 

(2-27) 

defined from the column vector @BR(t) containing the components in the body frame of the spacecraft 
angular velocity relative to the reference frame. The nominal attitude profile is used for determining 
measurement geometry, sensor line-of-sight occultation, and related effects. 

The attitude error is defined in terms of a three-component attitude error vector AO(t), whose 
components are the small rotations about each of the spacecraft body axes that would align the true body 
axes with the estimates of these axes. In terms of the true attitude ABR(t) relative to the reference frame 
and the estimate ABR*(t) of this attitude, 

ABR*W = 113 +  pit)^ ABRW, (2-28) 
N 

where I3 is the 3x3 identity matrix and the antisymmetric matrix AO(t) is defined similarly to equation 
(2-27). 

The true attitude relative to inertial space evolves according to 
N 

ABI(t) = - @BI(t) ABI(t) , (2-29) 

where ogI(t) is the column vector of components in the body frame of the spacecraft angular velocity 
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I relative to inertial space. Similarly, the estimated attitude relative to inertial space evolves according to 

1 where UBI*(~) is the column vector of estimates of u ~ ~ ( t ) .  These equations form the basis of the attitude 
error propagation, since this is assumed to be based on information obtained from gyros, which provide 
the estimates  OBI*(^) of the angular rates relative to inertial space. The attitude estimate relative to inertial 
space is related to the estimate relative to the reference frame by the analog of equation (2-25): 

We now define the angular velocity measurement error vector by 

A@BI(~)  = @BI*(~) - @ B I ( ~ )  (2-33) 

and assume that its components are small. Then, to first order in AWBI and A 9  

d(Agldt = - z~~( t )  A g t )  + A q t )  z~~(t)  - A z ~ l ( t ) ,  (2-34) 

which is, in vector form 

A&t) = - gBI(t) AO(t) - A ~ g l ( t )  . (2-35) 

The angular velocity measurement errors arise from gyro errors, and a general model for these errors 
gives [Nicholson] 

A @ g ~ ( t )  = Ab(t) + Qt) Ak - $BI(~) At: - udt)  (2-36) 

where Ab(t) is a vector of first-order Markov processes representing the gyro drvt rate biases, Ak is a 
vector of constant gyro scale factor errors, At: is a vector of constant gyro misalignment errors, udt) is a 
vector of white-noise processes representing the gyro drift rate noise, and 

O(t) diag [@~zT( t )  3 ,  (2-37) 

which means that O(t) is the diagonal matrix with the components of UBI(~) as the diagonal elements. 
The drift rate bias vector is assumed to evolve according to 
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where z is the correlation time of the Markov processes and ub(t) is a vector of white-noise processes 

representing the gyro drift rate ramp noise. The white noise processes ue(t) and ub(t) have means and 
covariances given by 

(2-39a) 

(2-39b) 

(2-39~) 

where Qe and Qb are 3x3 symmetric, non-negative-definite matrices that are assumed to be constant. This 
gyro error model is a generalization of the model in [Lefferts] to include scale factor and misalignment 
errors. 

The state error vector for the three-axis stabilized case is 

Ax(t) = [AeT(t) ,  AbT(t), AkT, deT, dxmT(t)lT (2-40) 

where Ax, is the error in a p-dimensional vector of measurement parameters depending on the sensor 
complement of the spacecraft being modeled, as in the spin-stabilized case. The time evolution of this 
vector is given, using the above models, by 

where 03 is a 3-dimensional vector of zeros and 0j.G is a jxk matrix of zeros. The state transition matrix, 
as defined by equation (2-7) is then 

L 

opx3 
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where t 
@Ob(t, t') = - J t , @oo(t, t") exp[- (t" - t')/z] dt" (2-43a) 

(2-43b) 

(2-43~) 

The attitude error propagation matrix @&t, t') is given by the differential equation 

$Og(t, t') = - GBI(t) @@e(t, t') (2-44a) 

with the initial condition 

@oe(t', t') = I3 . (2-44b) 

The form of equation (2-44a) is identical to that of equation (2-29) for the attitude matrix ABI(t). Thus 

@&t, t') must also act as a transition matrix for the attitude: 

(2-45) 

(2-46) 

Equations (2-43) reduce to quadrature after substitution of equation (2-46), where AgI(t) is given in 

terms of the nominal attitude profile by equation (2-25). The matrix LR(t), which is needed to evaluate 
equation (2-43b), is also given in terms of the nominal profile by the following argument. The integral is 
broken up into time steps of length At, chosen to keep integration errors below a specified tolerance 
[Nicholson]. The contribution of the interval between t and t + At requires the matrix 0 At, where LR 
denotes the average value of n(t) over the time interval. This matrix has the same elements, rearranged by 
row and column, as the matrix ZBIAt ,  where ogIdenotes the time average of q I ( t )  over the interval. 
This is given in terms of the result of integrating equation (2-29) over the interval, and ignoring terms of 
higher than first order in At ; 

(2-47) 

(2-48) 
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Since the submatrix @edt,  t') is seen from equation (2-46) to be orthogonal, the inverse of the state 
transition matrix is given by 

@$eT - @$$T@$b@bb'l - @$eT@$,k I3 - @$eT 03Xp 

03x3 @bb-' 03x3 03x3 

03x3 I3 03x3 

03x3 03x3 I3 

opx3 opx3 opx3 

where the time arguments of the submatrices, which have been omitted for compactness, are the same as 
the arguments of the full matrix, and 

@bb-'(t, t') = 13 exp[(t - t')/r]. 

The random excitation covariance matrix is 

where 

(2-5 0) 

(2-5 1) 

(2-52a) 

(2-52b) 

(2-52~) 

with and Qb given by equations (2-39). 

12 



A General Model for Attitude Determination Error Analysis 

3. ESTIMATION AND COVARIANCE ANALYSIS 

A filter produces state estimates based on information obtained from measurements made at discrete 
times. Let yi be an ni-dimensional vector of measurement values obtained at time ti. Measurements are 
related to the state vector by the following measurement model: 

where vi is a Gaussian white noise process with mean and covariance given by 

E[vi] = 0 

E[ vi vir] = Ri 

E[viyT] = 0 fori # j .  

(3-2a) 

(3-2b) 

(3-2~) 

The functions gi are assumed to be known functions of imprecisely known arguments. Therefore, it is 
possible to compute predicted measurement values by 

The measurement residual between the actual and computed measurements is thefi 

and Ax is assumed to be small. 

It is usually not necessary to estimate all of the state parameters. Therefore, a filter may produce 
estimates for a set of solve-forparameters which are a subset of the state parameters. The filter does not 
account for the remaining state parameters, which are called consider parameters since they contain 
uncertainties that are considered in the error analysis. The state error vector is thus partitioned as follows: 

where &(t) E solve-for parameter error vector 
Ac(t) = consider parameter error vector. 

The random excitation vector, the state transition matrix and the random excitation covariance matrix have 
similar partitionings: 

(3-7a) 
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(3-7b) 

and 
r 

The error propagation equation (2-6) can then be rewritten as 

As(t) = as,(t, t')As(t') + OsC(t, t')Ac(t') + ys(t, t') 

Ac(t) = @Jt,  t')Ac(t') + yc(t, t') . 

(3-7c) 

The partitioning used in equations (3-6) to (3-9) is not the same as the partitioning of the state vector 
used in section 2. The two partitionings are related by row and column interchanges, depending on the 
selection of solve-for and consider parameters. The zero in the state transition matrix in equation (3-7b) 
reflects an assumption that the time evolution of the consider parameters does not depend on any of the 
solve-for parameters. This restriction assures that solve-for parameter errors do not induce additional 
consider parameter errors during propagation. In the case of the three-axis stabilized case discussed in 
section 2.2 this means that it is impossible to solve for any gyro parameters without also solving for the 
attitude. Work is continuing on removing this restriction from the model. 

There are four basic contributions to the total solve-for parameter error: 

where h a ( t )  = the error at time t due to an a priori error at the epoch time to 

As,(t) = the error due to measurement noise 

h,(t) = the error at time t due to consider parameter errors at time to 

As,(t) = the error due to dynamic noise. 

Substituting equation (3- 10) into equation (3-8), and using equation (3-9), gives 

(3-10) 

(3-lla) 

(3-1 lb) 

(3-llc) 

(3-1 Id) 
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The function of a full estimation system is to determine an estimate s*(t) given measurements yi. 
Error analysis, however, does not require the actual computation of an estimate, but determines how good 
an estimate would be if it were produced in a given situation. This is done by computing the estimation 
covariance matrix defined by 

P(t) = E[As(t)AsT(t)]. (3-12) 

The covariance matrix P(t) provides a statistical measure of how good an estimate could be produced at 
time t of a given scenario. We assume that at the epoch time to the solve for error As(to) and the consider 
error Ac(to) are uncorrelated. If all the various error sources are also initially uncorrelated, then by 
equations (3-1 1) they remain uncorrelated at all times. Thus, substituting equation (3-10) into equation 
(3-12) gives 

P(t) = Pa(t) + Pn(t) + Pdt)  + Pdt)  (3-13) 

(3-14a) 

(3-14b) 

(3-14~) 

(3- 14d) 

In addition to providing a solve-for parameter estimate, an estimation system will generally also 
compute an estimate P* of the estimation covariance P. Since the true a priori error and noise covariance 
matrices may not be known, the estimation system must use assumed values for the covariances of these 
error sources. Further, the estimation filter, by definition, does not account for consider parameter errors. 
Therefore, there are three basic contributions to P*: 

P"(t) = Pa*(t) + Pn"(t) + PU"(t) (3-15) 

where Pa*(t) = the covariance contribution at time t induced by the assumed a priori covariance 

Pn*(t) 3 the covariance contribution induced by the assumed measurement noise covariance 

Pu*(t) E the covariance contribution induced by the assumed dynamic noise covariance 

If the assumed covariances do not reflect the actual values (the filter is rnistuned) then there will be some 
covariance contribution due to residual a priori error, measurement noise and dynamic noise. Thus 

P(t) = P*(t) + Pc(t) + APa(t) + APn(t) + AP,(t) (3-16) 

(3-17a) 
(3-17b) 
(3-17~) 

Note that these matrices may not be non-negative-definite. 
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3.1 Batch Filter Covariance Analysis 

A batch filter produces an estimate s*(to) at an epoch time to, based on a single batch of measurements 
y that may have been made at various times. Thus 

y =  [ y . ! ] ,  Y m  
y * . [ y ! . : ]  Y m  and A y = [ A y l ] .  AYm (3-18) 

The batch fdter produces an estimate s*(to) that gives the computed measurement y* which minimizes the 
cost function 

V I AyTWAy + As0*TWoAsO* (3-19) 

with Aso* = s*(to) - so* = s*(to) - s(to) + s(to) - so* = As, - As(to) (3-20a) 

AS, S ( t 0 )  - SO* (3-20b) 

where W = positive-definite symmetric measurement weight matrix 
so* = a priori estimate of s(to) 

Wo = non-negative-definite symmetric a priori weight matrix. 

Since the batch filter determines s*(to), it is necessary to relate Ay to As(to). Substituting equation 
(2-6) into equation (3-4), and using the partitioning of equations (3-6) and (3-7b), gives 

Then 

where 

Ay = Fds(to) + de 

Ae = CAc(to) + U + v 
(3-23) 

(3-24a) 

(3-24b) 

with C, U and vdefined similarly from Ci, Vi and V? 

16 



A General Model for Attitude Determination Error Analysis 

Substituting equations (3-20a) and (3-23) into equation (3-19) for the cost function gives 

V = AsT(to) (Wo + FTWF) &(to) + AsT(to) ( F w A e  - WoAso) 

+ (AeTWF - AsoTWo) &(to) + AeTWAe + AsoTWoAso 

= [&(to) + Wn-'(FTWAe - WOASO)]~ Wn [&(to) + Wn-I(FW& - Wodso)] 

- (FTWAe - WoAso)T Wn-1 (FTWAe - WoAso) + AeTWAe + AsoTWodso (3-25) 

where W n  Wo + FTWF . (3-26) 

The matrix Wn is known as the normal matrix. The final equality in equation (3-25) is valid as long as Wn 
is nonsingular. The singularity (or ill-conditioning) of the normal matrix indicates a lack of observability 
of the solve-for parameters from the measurements y. 

If Wn is nonsingular, then it is clear from the form of equation (3-25) that V is minimized when 

(3-27) 

(3-28a) 

(3-28 b) 

(3-28~) 

(3-28d) 

The estimate s*(to) at the epoch time to may be propagated to any other time using equation (2-3). The 
solve-for parameter errors at these other times are given by equations (3-1 l), with t' = to and with 
equations (3-28) as initial conditions. 

Using equations (3-1 la) and (3-28a) in equation (3-14a) gives the apriori error induced contribution to 
the solve-for covariance: 

with Po = E[AsoAs0T] (3-3 1) 

Using equations (3-1 l b )  and (3-28b) in equation (3-14b) gives the measurement noise induced 
contribution to the solve-for covariance: 
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(3-32) 

(3-33) 

with R = E [ d ]  . (3-34) 

Using equations (3-1 IC) and (3-28c) in equation (3-14c) gives the consider parameter induced contribution 
to the solve-for covariance: 

Pc(t) = (dsl&)(t) E[dc(to)dcT(to)] (dsldc)T(t) (3-35) 

where (dSl&)(t) - @ss(t, to) Wn-lF'WC + @sect, to) . (3-36) 

The computation of the dynamic noise contribution P, is complicated by the fact that the U in equation 

(3-28d) is correlated with the ys(t, to) term introduced by the propagation equation (3-lld). Using 
equations (3-1 Id) and (3-28d) in equation (3-14d) gives 

where P,  (to) = Wn-'FTWE[UUT]WFWn-' . 

From equation (3-22) we have 

r 1 

(3-37) 

(3-38) 

(3-39a) 

(3-39b) 

The last equality on the first line of equation (3-40) indicates a partitioning of D'(ti, 5) into submatrices 
D>(ti, 9) and D'c(ti, t$, and the equalities on the last two lines follow from equations (2-9) to (2-1 1). 
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A minimum variance batch estimator produces solve-for parameter estimates with minium covariance 
due to noise sources known to the filter [Sorenson, Wertz]. The weights for such a filter are chosen as 
follows: 

W = R*-1 and Wo = Po*-I 

R* = an assumed value for the measurement noise covariance 
Po* E an assumed value for the apriori error covariance. 

where 

(3-41) 

The estimated covariance at the epoch time P*(to) is obtained by substituting equations (3-41) into 
equations (3-30) and (3-33), and assuming that R = R* and Po = Po*, giving 

(3-43a) 
(3-43b) 

Note that the Pu*(to) = 0 because the batch filter does not account for dynamic noise at all. The covariance 
estimate is propagated to other times by using equations (3-29) and (3-32), which give 

Using equations (3-30), (3-33), (3-41) and (3-43) in equations (3-17) gives the residual covariance 
contributions: 

(3-45a) 

(3 - 45c) 
(3-45b) 

The matrices propagate in the same manner as Pa, Pn and P,, respectively. 

3.2 Sequential Filter Covariance Analysis 

A sequential filter produces an estimate s*(t) based on measurements taken at discrete times ti I t .  
Between the measurement times ti, the state estimate x*(t) is propagated using equation (2-3). At each 
time ti, the solve-for parameters are updated based on the propagated state x*(ti) and the measurements yi. 
Typically, this update has the following form: 

 ti) = s*(ti-) + KiAyi (3-46) 

where s*(ti) and s*(ti-) denote estimates of the solve-for parameters immediately after and immediately 
before incorporating the information contained in the measurements at time ti. The gain matrix Ki 
determines how much the propagated state is corrected, based on the measurement residuals Ayb 
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The estimation error immediately after an update is 

AS(ti) = S( t i )  - S*(ti)  = S( t i )  - S*(ti-) - KiAyi = ds(ti-) - KiAyi (3-47) 

since the true state is continuous at ti. Substituting equation (3-4) for Ayi and using the partitioning of 
equation (3-6) gives 

where Gj has been partitioned as 

(3-48) 

(3-49) 

Substituting equation (3-10) into equation (3-48), and using equation (3-9), gives update equations for 
each of the contributions to the total solve-for error: 

(3-50a) 

(3-50b) 

(3-50~) 

(3-50d) 

Each of these error contributions may be propagated individually between measurement times using 
equations (3-1 l), with the initial conditions: 

(3-51a) 
(3-5 1 b) 

I where Aso is defined in equation (3-20b). 

Using equation (3-1 la) in equation (3-14a) gives the propagation equation for the a priori error 
induced contribution to the solve-for covariance: 

where Pa(t0) = Po (3-53) 

with the a priori covariance Po defined in equation (3-31). Substituting equation (3-50a) into equation 
(3-14a) gives the update equation: 

Pa(ti) = (I - KgGsi) Pa(ti-) ( I  - KiGsi)T * (3-54) 
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Using equation (3-llb) in equation (3-14b) gives the propagation equation for the measurement noise 
induced contribution to the solve-for covariance: 

Pn(t) = aSs(t, ti) Pn(ti) QSsT(t, ti) for ti St  < ti+l 

where Pn(t0) = 0 

Substituting equation (3-50b) into equation (3-14b) gives the update equation: 

Pn(ti) = (I KiGsi) Pn(ti-) ( I  KiGsJT + KiRiKiT 

with Ri defined by equation (3-2b). 

(3-55) 

(3-56) 

(3-57) 

The consider parameter induced contribution to the covariance can be most easily expressed in terms of 
the partial derivative (&l&)(t) implicitly defiied by 

Substituting this into equation (3-1 IC) gives the propagation equation: 

Substituting equation (3-58) into equation (3-5Oc) gives the update equation: 

(dsl&)(ti) = ( I  - KiGsi) (asl&)(ti-) - KiGciQcc(ti, to) .  (3-61) 

From equations (3-14c) and (3-58), the consider parameter contribution to the solve-for covariance is then 

Pc(t) = (as/dc)(t) E[Ac(to)AcT(t0)] (&l&)T(t) . (3-62) 

As in the case of a batch fdter, the dynamic noise contribution is more complicated to compute than the 
other contributions. Substituting equation (3-1 Id) into equation (3-14d) and using equation (2-1 1) gives: 

for ti I t  < ti+], where 

(3-64) 

(3-65) 

and the random excitation covariance D is partitioned as in equation (3-7c). It follows from equations 
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(2-lo), (3-7a) and (3-7b) that 

~ c ( t , t o )  = @cc(t)ti) Wc(ti,to) + Wc(t)ti) * (3-66) 

Using this and equations (2- 11) and (3-1 Id) in equation (3-65) gives the equation for propagating Puc(t); 

for ti I t  < ti+], where 

PUC(t0) = 0 ' (3-68) 

From equations (3-14d), (3-50d) and (3-65), the update equations for Pu(t) and Puc(t) are: 

Pu(ti) = ( I  - KiGsi) Pu(ti-) (I  - KiGsi)T - ( I  - KiGsi) Puc(ti-) GciTKiT 
- KiGci PucT(ti-) (I - KiGsi)T + KiGci Dcc(ti,to) GCiTKiT (3 - 69a) 

Puc(ti) = ( I  - KiGsi) Puc(ti-) - KiGci Dcc(ti)to) (3-69 b) 

A Kalman filter is a sequential filter which produces solve-for parameter estimates with minimum 
covariance due to noise sources known to the filter [Gelb, Lefferts]. In addition to the solve-for parameter 
estimates, a Kalman filter maintains an estimate P* of the solve-for parameter covariance, and uses this to 
compute an optimal gain Ki at each time ti. The covariance estimate P* is given by algorithms similar to 
those for P, with the full state error vector replaced by the solve-for parameter error vector. The resulting 
propagation equation for P* is 

where the matrix Dss* is the estimate of the random excitation covariance used by the filter. It is based on 
an assumed spectral density e,,* of the dynamic noise on the solve-for parameters: 

t 
Ds,*(t, ti) 5 J Oss(t, tpt) e,,* OssT(t, t") dt". 

ti 
The update equation for the covariance estimate is 

P*(ti) = (I  - KiGsi) P*(ti-) ( I  - KiGsi)T + KiRi*Ki* 

Ri* = an assumed value for the measurement noise covariance where 

(3-7 1) 

(3-72) 

and the Kalman gain is given by [Gelb, Lefferts] 

Ki = P*(ti-) GiT[GiP*(ti-)GiT+ €?,*I-' . (3-73) 

Substituting equation (3- 15) into equation (3-70), gives the following propagation equations for the 
component contributions to P*: 
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(3-74a) 

(3-74b) 

(3-74c) 

for ti I t  c ti+l, with initial conditions 

Pa*(to) = Po* = an assumed value for the a priori error covariance. (3-75a) 
Pn*(to) = Pu"(t0) = 0 .  (3-75 b) 

Substituting equation (3-15) into equation (3-72), gives the corresponding update equations: 

(3-76a) 
(3-76b) 
(3-76~) 

A Kalman filter will produce an estimate with the minimum covariance P* due to the assumed 
covariances Po*, Ri* and Qss*. If the filter is mistuned, the true covariance will not be minimized. Using 
equations (3-52), (3-55), (3-63) and (3-74) in equations (3-17) gives propagation equations for the 
residual covariance contributions: 

for ti I t  c ti+], where 

&,(to) = Po - Po* 
AP,(to) = @,(to) = 0 .  

(3-78a) 
(3-7 8 b) 

Using equations (3-54), (3-57), (3-69a) and (3-76) in equations (3-17) gives update equations for the 
residual covariance contributions: 

APa(ti) = (I - Kic,i) AP,(ti-) (I - KiGsi)' (3-79a) 
APn(ti) = (I - KiGsi) APn(ti-) (I - KiGsi)T + Ki (Ri - Ri") KiT (3-79b) 

(3-79c) 
Du( t i )  = (I - KiGsi) AP,(ti-) (I - KiGsi)T - (I - KiGsi) Puc(ti-) GciTKiT 

- KiGci PucT(ti-) (I - KiGsi)T + KiGci Dcc(ti,to) GciTKiT. 
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4. CONCLUSIONS 

Error analysis can be crucial during mission design, providing assistance in the specification of a 
sensor complement and a calibration plan, possibly requiring a set of scheduled attitude maneuvers, to 
deliver the pointing accuracy necessary to satisfy the mission objectives. Error analysis is also necessary 
to determine what level of ground-based processing will be needed to meet high-accuracy attitude 
determination requirements. Thus, to ensure the achievement of mission objectives, it is critical that the 
analyst produce accurate estimates of determination uncertainties, especially the often-underestimated 
contributions of process noise and consider parameter errors. In this paper we have presented a general, 
comprehensive approach to filter and dynamics modeling for spacecraft attitude determination error 
analysis. 

The model is general in that it allows great freedom in specifying orbit geometry, sensor types, 
measurement scheduling and parameter selection. Further, it covers both spin-stabilized and three-axis 
stabilized spacecraft, with process noise appropriate to the two types of stabilization, and both batch 
least-squares and sequential attitude estimation processes. This paper does not include models of sensors, 
with the exception of a model for strapdown gyros used for dynamics model replacement in the three-axis 
stabilized case. However, the only restriction on sensor modeling is that the measurement noise must be 
additive. 

The model is comprehensive in that it considers all the major sources of error in the determination 
process. The model gives the separate contributions to the solve-for parameter uncertainty arising from 
errors in the a priori estimates of the solve-for parameters, from measurement noise, from process noise, 
and from consider parameter uncertainties, as well as the overall uncertainty due to all these sources of 
error. This allows the analyst to judge the importance of various sources of error, and make informed 
recommendations to reduce the effect of the largest contributors. 

The analysis of the effect of dynamics errors in the batch estimation case is particularly important, 
since batch filters generally do not account for this source of error. Indeed, for both the batch and the 
sequential cases, the model carefully separates the estimation covariance based on true sources of error 
from the estimation covariance based on sources of error assumed by the filter. This gives the analyst the 
ability to study mistuned filters. While the concept of tuning is primarily associated with sequential filters, 
the presentation here makes it clear that it may also be an important consideration in the batch case. 

The model for attitude determination error analysis presented here was developed as part of the 
mathematical specification of algorithms for the computer-based Attitude Determination Error Analysis 
System. This software system incorporates the dynamics model presented in this paper for three-axis 
stabilized spacecraft, a simplified dynamics model for spin-stabilized spacecraft, slightly simplified batch 
and sequential filter models and a wide variety of sensor models, including digital and analog sun sensors, 
scanning and fixed-head star trackers, gimballed line-of-sight sensors, horizon sensors, and 
magnetometers. The Attitude Determination Error Analysis System is currently undergoing acceptance 
testing, and will be an important component of the institutional flight support software of the Goddard 
Space Flight Center Flight Dynamics Division when this testing has been successfully completed. 
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