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‘ 1.0 INTRODUCTION

The Upper Atmosphere Research Satellite (UARS) has two definitive attitude
determination requirements: the definitive attitude of the Modular Attitude
Control Subsystem (MACS) and the definitive attitude of the gimbaled Solar-
Stellar Pointing Platform (SSPP). The onboard computer (0OBC) will compute the
MACS attitude using a Kalman filter and will transform this attitude solution
through the $SPP gimbals to calculate the SSPP attitude. The attitude ground
support system (AGSS) will compute the MACS attitude using a batch least-
squares differential corrector algorithm and will also transform this solution
through the gimbals to obtain the SSPP attitude. This paper reports the
results of a prelaunch study to predict the accuracy of the OBC attitude
solutions and the accuracy of the AGSS attitude solutions. The 0OBC and AGSS

solution accuracies are then compared to establish the relative quality.

The software that was used for both the OBC and the AGSS study is the Attitude
Determination Error Analysis System (ADEAS) Program, Release 3 (CSC, 1986;
Fang, 1983). ADEAS has the ability to estimate the accuracies of both a
Kalman filter and a batch differential corrector. The ADEAS program has not
at this time completed formal acceptance testing; therefore, while the results
presented here are considered essentially correct, they may be updated in the

future.

The attitude sensors that can be used by the OBC or the AGSS are two fixed-
head star trackers (FHSTs), the inertial reference unit (IRU), and the fine
Sun sensor (FSS) on the MACS. Normally, two FHSTs will be used for attitude
determination and control. In the event that one FHST fails, the FSS on the
MACS is to be used in conjunction with the remaining FHST. In this study, the
attitude uncertainty has been estimated for the case of two FHSTs. The IRU
drift rate bias uncertainties are always solved in addition to the attitude

uncertainties.

The stars used in this analysis are taken from the combined 0OBC primary and
secondary catalogs as presented in Sheldon (1986). Every estimate of the
attitude uncertainty was repeated for two cases of star observability: (1)
When the spacecraft is flying in an orbit such that each FHST can see the

maximum number of stars (29 stars) with minimum star separation angles, this
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represents the best-case star observability during the UARS mission. (2) When
the spacecraft is flying in an orbit such that each FHST can see the minimum

number of stars (5 stars) with maximum star separation angles, this represents

the worst-case star observability during the UARS mission. These two cases
will be referred to as the 29-star case and the 5-star case, respectively.
The timespan for all cases is one full orbit, 5796 seconds (sec). The

resulting attitude uncertainties presented are those at the end of the data

batch.

The UARS ephemeris is generated internally in ADEAS with no orbit perturba-
tions and no atmospheric drag. For the 239-star case, the spacecraft is flying
forward and the FHSTs are pitching about the axis of negative orbit normal,
which is at a right ascension (RA) of 306 degrees (deg) and a declination
(dec) of -33 deg. For the 5-star case, the spacecraft is flying backward and
the two FHSTs are pitching about the axis of orbit normal, which is at RA of
118 deg and dec of 33 deg. The Keplerian orbital elements used in the study

represent the nominal mission orbit:

Semima jor axis = 6.3978065 x 106 meters
Eccentricity = 0.001486

Inclination = 57.017788 deg

Argument of perigee = 60.9378 deg
Mean anomaly = 299. 162 deg

Right ascension

216 deg for 29-star case
of ascending node {

208 deg for 5-star case

The epoch time is not important in the uncertainty analysis, as it is only

used as a time reference in the calculation.

2.0 PRELAUNCH SENSOR PARAMETERS

This section reviews values of the sensor parameters that will be known at the
time of launch, including the prelaunch estimates for sensor noise and align-
ment uncertainties and the nominal alignments of the sensors. The nominal
orientations of the attitude sensors on the spacecraft are represented by

Euler angle rotations from the MACS frame.
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2.1 FHST

The nominal orientations of the FHSTs are given as a 2-1-3 Euler sequence.

The Euler angles and the nominal fields of view (FOVs) are given in Table 1.

Table 1. Nominal FHST Alignments and FOV Sizes

Rotation Angles (Degrees) FOV
Sensor 5 5 5 (Degrees)
1 2 3
FHST A -114.27 ~48.27 0 8 x 8
FHST B 114.27 -49.27 0 8 x 8

The prelaunch value of the FHST noise is derived from the 3¢ error budget for
an 8-degree-diameter circular FOV as presented in GE (1983). The components
of the total noise are given in Table 2. The values are given in both radians

and arc-seconds (arc-sec).

Table 2. Prelaunch FHST Noise Sources (GE, 1983)

Value (30)

Noise Source (Radians) (Arc-Sec)
Noise Equivalent Angle 1.193 x 10'4 24.6
Quantization Error 3.394 x 10°° 7.0
Signal Lag Error (Unsynch) 3.636 x 10'5 7.5
Calibration Error 1.454 x 10°" 30.0

The noise equivalent angle and the signal lag error are assumed to be random
white noise. The quantization error listed in Table 2 is actually the quanti-
zation interval. The standard deviation of the random error generated by a
quantized process is v 1/12  times the quantization interval (Bendat, 1971).
The 3¢ value, therefore, for the quantization error should be 2.933 x 10-5

radians (6.1 arc-sec). The root-sum-square (RSS) of these four noises is
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1.933 x 10-‘ radians (40.0 arc-sec). This number is adopted for the FHST

noise.

The 30 prelaunch FHST alignment uncertainties are provided by GE (1988):
2.681 x 10-4 radians (55.3 arc-sec) for both the X- and Y-axes and
2.676 x 10-4 radians (55.2 arc-sec) for the boresight direction, the Z-axis.

2.2 IRU

If a spacecraft is moving with congtant angular velocity, the IRU misalign-
ments and scale factors are indistinguishable from the drift rate biases.
This condition is very closely met by UARS when it is in normal pointing mode.
Because both the OBC and the AGSS solve for the IRU biases as well as the
attitude, the contribution to the attitude uncertainty by the misalignment and
scale factor uncertainties is automatically taken into account. The IRU noise
does not contribute significantly to the attitude uncertainty and was,

therefore, not considered in this study.
2.3 SSPP

The SSPP is mounted on a two-axis gimbal system. When both gimbals are in
their nominal zero positions, the SSPP coordinate system aligns with the MACS
frame. The o-gimbal is fixed to the spacecraft and rotates about the MACS
Y-axis. It has a range of O to 360 degrees although, in actual use, the range
is restricted by spacecraft and Earth blockage. The B-gimbal is carried by
the x-gimbal and rotates about the SSPP X-axis. The B-gimbal has a range of O
to 90 degrees; however, in normal Sun-tracking operation, B will not exceed
80 degrees. (This is the sum of the UARS orbital inclination and the maximum
elevation of the Sun.) A more complete description of the SSPP geometry is

presented in the UARS FDSS Mathematical Background (Kast, 1987b).

The relevant uncertainties with regard to the SSPP are the alignment uncer-
tainty from the MACS to the SSPP gimbals, the uncertainties of the gimbal
measurements, the alignment uncertainty from the gimbals to the SSPP FSS, and
the noise of the SSPP FSS. The prelaunch estimates of each of these

uncertainties are given below. All values are 3o0.

The uncertainties c“ and oB in the two gimbal measurements have values of

9.696 x 10" radians (20.0 arc-sec) each (GE, 1986).
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The SSPP FSS noise uncertainty is taken from Adcole (1988). The value of the

uncertainty is crss = 1.745 x 10'4 radians (36.0 arc-sec).

The prelaunch alignment uncertainties are taken to be diagonal matrices of the

form

0o 0 2. 0 o
om 2 NB >
0 0 0 ) 0
Pam = om 2 F’NB = NB »
C 0 c 0 0 o
xm NB

where P“ and PNB are the covariance matrices of the MACS-to~gimbals and
gimbals-to-SSPP-FSS alignments, respectively. The uncertainties O om and GNB
were derived from data in Neste (1987). The values used are 6.545 x 10'4 and

2.424 x 10°* radians (135 and 50.0 arc-sec), respectively.

3.0 FHST ON-ORBIT_ALIGNMENT ACCURACY

The on-orbit alignment for the two FHSTs will be performed shortly after
launch. The algorithm presented in Shuster (1982) is used by the UARS AGSS.
This scheme minimizes the overall deviation of the sensor alignments from
their prelaunch values. The covariances of the misalignments after on-orbit
alignment for two sensors can be estimated by

G| -G P, (pre)

where

P¢post) = 6 by 6 postcalibration misalignment covariance matrix

(-2 )(% %]

(e )mxn

1

=
]

number of observations

2 . .
Oi = sensor noise for sensor i

31



WT = mth star vector observation tracked by sensor i, expressed in
! spacecraft body coordinates

Pi(pre) =3 by 3 precalibration misalignment covariance matrix for
sensor i

Because this alignment algorithm is attitude independent, it requires that the
star observations in the two sensors be simultaneous. Based on this algo-
rithm, a small program simulating the two FHSTs on UARS was developed to

estimate the uncertainties of the misalignments after on-orbit alignment.

In estimating the uncertainties, it is assumed that UARS will be deployed on
October 26, 1991 (an arbitrary date in late October 1931). To maximize the
period before the first yaw maneuver, it is also assumed that the spacecraft
is flying backward in an orbit whose right ascension of the ascending node is
equal to the right ascension of the Sun. The two FHSTs are assumed to be
aligned shortly after deployment using two orbits of FHST data with a total of
21 simultaneous star observations. The resultant alignment uncertainties are

given in Table 3.

Table 3. FHST On-Orbit Alignment Uncertainties

Alignment Uncertainty (3c¢)
Sensor Axis
(Radians) (Arc-Sec)
X 2.123 x 10 43.8
FHST A Y 2.468 x 10_4 50.9
P4 2.642 x 10 54.5
X 2.123 x 10 43.8
FHST B Y 2.482 x 10_4 51.2
2 2.633 x 10 54.3

Further simulation runs indicate that these accuracies are not significantly

improved by using more data.

4.0 UARS ATTITUDE DETERMINATION ACCURACY USING A KALMAN FILTER

The UARS OBC attitude determination algorithm is a Kalman filter. This filter
propagates the previous attitude solution using IRU data whenever there are no

valid star observations. when there is a valid star observation, the O0BC
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updates its estimate of the state vector, which consists of the IRU drift rate
bias and the attitude. This update occurs at intervals of 32.768 seconds.
when there are valid star observations in both FHSTs, the O0BC updates the
state vector using data from the FHST that was used Jlongest ago. This
situation produces an effective FHST sampling rate of 65.536 seconds with the

observations being taken alternately for the two sensors.

The error estimation software used in this study cannot model an alternating
sampling of the FHSTs. To estimate the effect of the alternating sampling,
the program was run for both a 32.768-second and a 65.536-second sampling
rate. The resulting variances were averaged together with a weighting propor-
tional to the fraction of time that observations overlapped, that is, the
fraction of time when there were valid observations in both FHSTs. In the
5-star case, there is no overlap; in the 28-star case, there is approximately

a 65 percent overlap.

In the 5-star case, the attitude uncertainties were taken at the end of a
three-orbit run because the Kalman filter had not converged at the end of the

first orbit.
4.1 RESULTS USING PREL.AUNCH PARAMETERS

The OBC attitude solution uncertainties using the prelaunch values of the
attitude sensor uncertainties presented in Section 2.0 are given below. For
the two cases of star observability, as discussed in the introduction, the

attitude uncertainties are given in Table 4.
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Table 4. 0BC Attitude Uncertainties Using Prelaunch Alignment
Uncertainties

Attitude Uncertainty (3c)
Case Axis
(Radians) (Arc-Sec)
X 1.572 x 107} 32.4
5-star Y 3.132 x 10_4 64.6
Z 1.584 x 10 32.7
X 1.352 x 107, 27.9
29-star Y 3.092 x 10_4 63.8
P4 1.321 x 10 27.2

4.2 RESULTS USING ON-ORBIT ALIGNMENT ESTIMATES

The AGSS attitude solution uncertainties using the on-orbit estimates of the

FHST alignment uncertainties presented in Section 3.0 are given in Table 5.

Table 5. OBC Attitude Uncertainties Using On-Orbit FHST Alignment
Uncertainties

Attitude Uncertainty (3c)
Case Axis
(Radians) (Arc-Sec)
X 1.408 x 10} 29.0
5-star Y 2.875 x 10_4 59.3
Z 1.262 x 10 26.0
X 1.195 x 107, 24.7
29-star Y 2.830 x 10_4 58.4
Z 1.036 x 10 21.4

5.0 UARS ATTITUDE DETERMINATION ACCURACY USING A DIFFERENTIAL CORRECTOR

The AGSS definitive attitude determination system is a batch least-squares
differential corrector that estimates an epoch attitude and drift rate biases
of the IRU over a batch of approximately one orbit of sensor data. This epoch

attitude is propagated to uniform time intervals using the IRU data and the
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solved IRU biases. The results given in this section are the attitude
covariances at the end of a one-orbit batch of data. It is assumed that data
from both FHSTs are available every 32.768 seconds when there are valid stars

in the FOV.
5.1 RESULTS USING PRELAUNCH PARAMETERS

The AGSS attitude solution uncertainties using the prelaunch values of the
attitude sensor uncertainties ‘presented in Section 2.0 are given below. For
the two cases of star observability, as discussed in the introduction, the

attitude uncertainties are given in Table 6.

Table 6. AGSS Attitude Uncertainties Using Prelaunch Alignment
Uncertainties

Attitude Uncertainty (3o¢)
Case Axis

(Radians) (Arc-Sec)

X 1.733 x 10 35.7

5-star Y 3.143 x 10_4 64.8

2 0.800 x 10 16.5

X 1.582 x 10} 32.6

29-star Y 3.009 x 10_4 62.1

P4 1.452 x 10 28.9

5.2 RESULTS USING ON-ORBIT ALIGNMENT ESTIMATES

The AGSS attitude solution uncertainties using the on-orbit estimates of the

FHST alignment uncertainties presented in Section 3.0 are given in Table 7.
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Table 7. AGSS Attitude Uncertainties Using On-Orbit FHST Alignment
Uncertainties

Attitude Uncertainty (3¢)
Case Axis

(Radians) (Arc-Sec)

X 1.395 x 10} 28.8

S-star Y 2.900 x 10_4 59.8

2 0.679 x 10 14.0

X 1.384 x 107 28.5

29-star Y 2.763 x 10_4 57.0

2 1.156 x 10 23.8

6.0 SSPP ATTITUDE DETERMINATION ACCURACY

This section reports estimates of the SSPP on-orbit misalignment determination
accuracy and the SSPP attitude accuracies using both the estimated OBC

attitude solution accuracy and the estimated AGSS attitude solution accuracy.

The SSPP attitude is represented as a transformation from the geocentric
inertial (GCl) coordinate system to the SSPP coordinate system. This trans-

formation can be expressed as a series of rotations

Mop = MNB MB« Mam Mo

where MNI is the SSPP attitude matrix, M and Mam represent misalignments of

NB

the B-gimbal and the «-gimbal, respectively, MBa is the product of two Euler

rotation matrices about the two gimbal axes:

MBa = M1(B) Mz(a)

and Mml represents the MACS attitude. The total SSPP attitude covariance
matrix, PNI, may be calculated from the transformations in the above equations
and their corresponding covariance matrices as follows (Kast, 1987a, Section

3.1.1.7):
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= T T T
PNX - MNB[MBOL(MOLumIMO(m ¥ Potm)MBOL * PBO(]MNB ¥ PNB

me is the attitude covariance of either the OBC or the ground AGSS attitude

solution, Poun and PN are the covariance matrices for the SSPP misalignment

B

matrices, and P o is the covariance of the gimbal rotation. PBa is computed

B

from the pretaunch values for the gimbal rotation uncertainties and depends

on the measured « and B angles:

02 0 0
B
PBa = 0 02 cosZB -02 cos B sin B
o o«
2 . 2 4
0 -oa cos B sin B 0« sin B

6.1 SSPP ON-ORBIT ALIGNMENT ESTIMATION RESULTS

In solving for the on-orbit estimate of the SSPP misalignment, the misalign-

ment matrices are assumed to be small angle rotations of the form

1 83 -cz 1 53 -62
Mum = -83 1 81 , MNB = -63 1 61
22 -81 1 62 -61 1

The angles 61, 82, €3 represent small rotations about the MACS axes, and the
angles 61, 62, 63 represent small rotations about the SSPP axes. The angles
€_ and 61 are equivalent to x- and B-gimbal angle biases, respectively.

A FORTRAN program was written to estimate the misalignment covariance

Following Section 13.4 of Spacecraft Attitude

matrices, P and P _.
om NB

Determination and Control (Wertz, 1984), a single 6-by-6 covariance matrix

containing Pam and PN in the upper left and lower right, respectively, is

B
computed assuming that the misalignment matrices were computed using a batch
least squares differential corrector having the state vector (81, €0 51 61,

62, 63).
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To compute the misalignment covariances, it is necessary to assume a MACS
attitude covariance for use in constructing an observation weight matrix.
Because the SSPP misalignments will be calculated on the ground, the
covariance used was the differential corrector resuits after on-orbit
alignment of the FHSTs for the 29-star case as described in Section 5.0.

Estimates of the accuracies of only the angles ¢ , ¢ €

1 2" 3
the remaining two angles were found to have poor observability. The resulting

and 61 are made as

SSPP misalignment covariance matrices (in radiansz) are as follows:

11 11 11

3.317 x 10° -1.337 x 10~ -0.353 x 10°
P = | -1.337 x 10" 3.003 x 107" 1.494 x 107"
~0.353 x 107" 1.498 x 10"'"  3.369 x 107"
and
3.839 x 107" 0
Pag = 0 6.529 x 10°° 0
0 0 6.529 x 10°°

More information concerning the SSPP misalignment accuracy estimation is

provided by Bosl (1987).
6.2 SSPP ATTITUDE ACCURACY USING KALMAN FILTER RESULTS

Table 8 presents the SSPP attitude uncertainties using the MACS attitude
covariance of the 0BC solution and the equations presented in Section 6.1.
The values reported are after on-orbit alignment of the FHSTs. Because the
SSPP attitude uncertainty for each SSPP axis depends on the gimbal angles, a
typical gimbal position of x equal to 180 degrees and B equal to 45 degrees
was chosen for reporting the per-axis uncertainty. The RSS of the three axes

is independent of the gimbal angles and is also reported in Table 8.
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Table 8. SSPP Attitude Uncertainties Using OBC Attitude Uncertain-
ties After On-Orbit FHST Alignment

Attitude Uncertainty (3c)
Case Axis

(Radians) (Arc-Sec)

X 1.726 x 10| 35.6

5-star Y 3.434 x 10_4 70.8

Z 3.289 x 10_4 67.8

RSS 5.059 x 10 104.3

X 1.560 x 10 32.2

29-star Y 3.374 x 10_“ 69.6

z 3.232 x 107 66.7

RSS 4,926 x 10 101.6

6.3 SSPP ATTITUDE ACCURACY USING DIFFERENTIAL CORRECTOR RESULTS

The SSPP attitude uncertainties resulting from the AGSS attitude solution
covariance after on-orbit FHST alignment are given in Table 9. As in Section
6.2, these values are at gimbal angles of « equal to 1BO degrees and B equal

to 45 degrees.

Table 9. SSPP Attitude Uncertainties Using AGSS Attitude Uncertain-
ties After On-Orbit FHST Alignment

Attitude Uncertainty (3c)
Case Axis

(Radians) (Arc-Sec)

X 1.718 x 10°* 35. 4

S-star | Y 3.293 x 107} 67.9

v4 3.283 x 107, 67.7

RSS 4.957 x 10 102.2

X 1.708 x 10 35.2

29-star Y 3.387 x 10 69.9

y4 3.201 x 10} 66.0

RSS 4.963 x 10 102. 4

39



7.0 CONCLUSIONS

Comparison of the estimates of the OBC and AGSS attitude determination
uncertainties shows no significant differences. The ADEAS results indicate
that most of the uncertainty for both the OBC and the AGSS is due to the
effect of the FHST alignment uncertainties. This effect is the reason that
there is little difference between the 5-star case and the 29-star case. The
FHST alignment uncertainties given in Table 3 are not much less than the
prelaunch values. This result is due to attempting to estimate six
uncertainty values when three of the six degrees of freedom are unobservable.
There is, therefore, a strong, unavoidable dependence on the prelaunch

alignment uncertainties.

For all cases, the X- and Z-axes have 3c uncertainties of approximately
1.454 x 10°% radians (30 arc-sec), and the Y-axis has a 30 uncertainty of
approximately 2.909 x 10'4 radians (60 arc-sec). Based on the results of this
study, it is recommended that these uncertainties be used in UARS error budget

analyses.
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Maneuvering Strategies Using CMGs
H.S. Oh and S.R. Vadali
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ABSTRACT

This paper considers control strategies for maneuvering spacecraft using
Single-Gimbal Control Momentum Gyros. A pyramid configuration using four
gyros is utilized. Preferred initial gimbal angles for maximum utiiization of
CMG momentum are obtained for some known torque commands. Feedback control
laws are derived from the stability point of view by using the Liapunov's
Second Theorem. The gyro rates are obtained by the pseudo-inverse
technique. The effect of gimbal rate bounds on controllability are studied

for an example maneuver. Singularity avoidance is based on limiting the gyro

rates depending on a singularity index.
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INTRODUCTION

Control Moment Gyros (CMGs) are attractive spacecraft attitude control
devices. They require no expendable propellant, which are of limited quantity
and may contaminate the spacecraft environment. Their fixed rotor speeds
minimize structure dynamic excitations. They are also capable of rapid
slewing maneuvers and precision pointing. There are two types of CMGs;
single-gimbal and double-gimbal.

The single-gimbal C(MGs have the advantages of possessing relative
mechanical simplicity and producing amplified torques directly on the
spacecraft. However, development of control laws for their use 1is made
difficult by thé existence of internal singular states. External singular
states correspond to directional angular momentum saturation. For any system
of n CMGs and any direction in space, there exists a set of 2" gimbal angles
for which no torque can be produced in that direction [1]. For double-gimbal
CMGs in parallel configuration, Kennel's law [2] has seen wide applications.
In this paper, four single-gimbal CMGs in a pyramid configuration (as depicted
in Fig. 1) are utilized.

Margulies and Aubrun [1] present a geometric theory of CMG systems. They
characterize the momentum envelope of a cluster of CMGs and identify the
internal singular states. Yoshikawa [3] presents a steering law for a roof-
type configuration with four CMGs. His steering law is based on making all
the internal singular states unstable by providing two jumps with hystereses
around the singularities. Cornick [4] developed singularity avoidance control
laws for the pyramid configuration. His technique is based on the ability to
calculate the instantaneous Tlocations of all singularities. Hefner and
McKenzie |[5] developed a technique for maximizing the minimum torque

capability of a cluster of CMGs in the pyramid configuration. Recently Bauer
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[6] showed that it is impossible to avoid some singularities and in general,
no global singularity avoidance steering law can exist.

In the existing literature, the most commonly used steering law is based
on the pseudo-inverse technique. Neglecting the effect of spacecraft

rotation, the angular momentum H of the CMG cluster evolves as

where T is the torque demand.

This can also be written as

- = cé (2)

where C is a matrix function of the gimbal angles o. From Eq. (1) and (2), we

obtain

(3)

(@]

Q.
]

|—

Generally at least four CMGs are used for three-axis attitude control. Hence
the pseudo-inverse is utilized to obtain gimbal rate commands from the torque
command:

5 =clecch ™t (4)

Some steering laws also employ null motion, i.e. gyro rate commands that

produce no torque. Any null motion rate command oy can be expressed as
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oy = (171 - I (echy oy v (5)

where [I] is the identity matrix of the same dimension as the number of gyros
and V is any arbitrary vector of appropriate dimension. The fact that éN
commands do not produce any torques can be ver{fied by premultiplying C
throughout Eq. (5).

The basis for singularity avoidance has been to provide appropriate null
motion along with torque providing motion so that the required torques are
produced as well as singular states are avoided. Typically, at singular
states some of the gyros develop anti-parallel momentum configurations.
Thereby their full momentum capability cannot be utilized.

In this paper we present results pertaining to the following aspects of
torque generation using CMGs:

1) Investigation of the existence of preferred initial gimbal angles at
zero momentum, for given torque commands such that the maximum momentum
capability is utilized.

2) Feedback control of rotational maneuvers of spacecraft by using
Liapunov's second theorem and investigation of the effects of gimbal rate

bounds on controllability and performance.

SYSTEM EQUATIONS OF MOTION

An arbitrary asymmetric spacecraft, with the location of the ith single-
gimbal gyro, is shown in Fig. 2. Spacecraft attitude is represented by Euler
parameter vector g. The differential equations for the attitude are given by
the angular velocity vector w of the vehicle and an orthogonal attitude

matrix G(8) as follows:
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8 =% G(8) w (6)
0 BO _Bl _82 --83
w 8 8 -8 8
- X _ 1 0 3 2
where w = oy and G(B) g, 6, 8, -,

To derive the equations of motion, we follow Junkins and Turner [7]. The
detailed notation appears at the end of the paper. Ross and Melton [8]
present an alternate formulation for double-gimbal CMG systems.

Hs/c

The total angular momentum of the system about the system mass

center ¢ is composed of the vehicle's angular momentum and that of the CMGs as

follows

Each angular momentum can be expressed in vehicle frame ({v} as

Hv/c - Iv/c

H w , and
G,/c ) G,/cG,

H =m1(r1x£1)+ﬂ

G./cG,

=M, o+ H !

Then the system angular momentum can be written as
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where [ = IV/C

+ zMi, i.e. the inertia matrix of vehicle body and point-
massed gyro cluster about the ¢ in vehicle frame.
For the convenience of simulation, we assume that

1) the center of the pyramid.bottom surface coincides with the mass

center ¢ of the system.

2) the principal axes coincide with the axes of the vehicle frame

(v1.
3) Only the relative axial angular momenta of the gyros are retained.

With these assumptions, the system angular momentum in vehicle frame can

be expressed as

K/ = 1w+ 2] h, (7)

where C; is the direction cosine matrix of each gimbal frame (G} with respect

~

to vehicle frame {i} si.e. {Gy) = Ci{i}.
The time derivatives of the total angular momentum of the system with
respect to inertial frame {ﬁ} is equal to the external torque L. exerted on

the system about the mass center c:
d s/c
= 4 w9, (8)

L=

The above equation can be rewritten as
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T T T,
hy + Cj oshyd + 2 G5 hy

L. = lo + ol + (& C.h

0 -w, w _ 0 -0y 0
where w = w 0 Wy and o5 = 9y .
-w wy 0 0

In the absence of external torques and when the spin rate of wheel is

constant, L. = 0 and ﬁi= 0. Thus the system equations of motion are

o= -1 1w -1 @ clh ¢ clong (9)

SYSTEM CONFIGURATION
In this paper, the pyramid configuration for four CMGs is considered as
depicted in Fig. 1. With this configuration, the CMG angular momentum in Eq.

(7) can be written as

-Cé8So, - Co, + C6503 + Co,

2
h. =h Co, - C8S0, - Co, + CéSo, (10)

$8Sa, + $8S0, + S8S0, + S&So,

where h is the magnitude of each CMG's angular momentum and = C1 61h1 in Eq.
(9) can be written as
-Cé8Co, So, CéCo, -So, g,
AN . -So -céCo $8 cécCo %,
r C; o,h. = (o = 1 2 3 4
. i T = .
i=1 O,
LSGCG1 sécCo, Sé8Co, séCo,, éu
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We select § = 54.740 in this configuration to minimize the angular
momentum requirements as recommended by Meffe [9]. With this configuration,
we consider the preferred initial gimbal angles for some known torque

profiles.

Determination of Preferred Initial Gimbal Angles

Perhaps the most severe demand on the CMGs is a unidirectional torque.
Bauer [6] shows that for the present CMG configuration and pseudo-inverse
steering law, if the torque demand is 1 unit about the x-axis, the CMG cluster
encounters an internal singularity at a momentum value of 1.15h. This
corresponds to an antiparallel situation. The initial gimbal angles are

6 o o oT R .
[0 0 0 0] and the angles at the singularity are

o
o = [—900 0" 90" OOIT. From Eq. (10), it can be observed that the CMG
angular momentum distribution at the singularity is H = [2hcs O OJT. To
utilize the maximum momentum capability, we calculate the desired final
angular momentum corresponding to saturation. At saturation, all the momentum

vectors should point along the x-axis, i.e. g = [—900 180O 900 00]T

and H=(h(2cs +2) 0 0] =(3.1545h 0 o] .

With the desired final gimbal angles (perturbed slightly) and a torque
demand of (-1 O O]T, we integrate Eq. (4) backward until the zero angular
momentum stage is reached. The preferred set of gimbal angles is obtained as
o= [-60° 60° 120° -120°]". Similarly, several initial gimbal angles are
obtained for other desired torques as shown in Table 1. It should be noted
that the set [-1200 -60° 60" 1200] is also good for a torque demand of
[1 0 OlT. During our experimentation, we found this gimbal angle set could

avoid singularities for torquwes constrained to the x, y directions. However,

we did not experiment with time varying torques.
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TABLE 1. Preferred Initial Gimbal Angles

Torque Demand Initial Gimbal Angles
(1 0 O] [ -60° 60° 120° -120°]
[0 1 0] [-120°  -60° 60° 120°]
[0 0 1] [ ©° 0° 0° 0°]
(1 1 1] [ ©° 0° 0° 0°]
(4 2 0] [ -60° 60° 120° -120°]
[2 4 0] [-120° -60° 60° 120°]

FEEDBACK CONTROL

Feedback control 1laws can be determined using the Liapunov stability
theory. Vadali and Junkins [10] developed the feedback control laws for
spacecraft maneuvers with external torques and reaction wheels. In this
section we derive a feedback control law for a sliewing maneuver of a
spacecraft with CMGs when no external torques exist.

The general equations for attitude and dynamics of the system are given
by Equations (6) and (9). Let the target orientation gl =[1 0 0 0] and
the final target angular velocity of vehicle g} = [0 0 0]. The error
vectors e;, and e, which represent the departure of the instantaneous states

from the desired terminal states can be written as

il
|
1
w™
-

]

€ T -weTw

Let V(e) be a trial Liapunov function defined as
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V(e) =RQI§1+%§;I§.2

where k is a positive constant. The time derivative of V is given by

V(e)

T . T. .
2k ey &) * &l g

T

lo

2k(s' - 8) b+ u

Using the identities

|
[o
"
o
-

% G{8)w , and

oo
ft

. . T T
v = -0 lw - Z(w Ciﬂi + C‘i oih‘i) ,

V(e) can be written as

T

U(e) = -k 8] 6(8)a + u'(-alu - Z(aCih; + C] 6:h.))

However, QT& = 0 and —kelG(g)E = -ET(—kE)
where B' = [8, 8, 8,]. Hence V(e) can be simplified as

T

R et T
V(e) = -w'(-ks + zC; osh.).

For V(e) to be negative definite, we can choose a linear feedback control as
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- T .
k8 + £ C; o:hy = Ka

where K is a positive definite constant matrix

K, 0 0
K=]0 «k, o0
0o 0 ,

T - . . . .
z Ci osh;, can be written as Co where C is a matrix whose rows compose of

first row of directoin cosine matric C; of each (MG gimbal frame with respect

to {Q}. Then the feedback control law becomes
Cé= K2+ kE.

Usually the number of CMGs cluster is more than three. Then we can choose the

minimum norm solution for a rate control o as
. + —
o = C (K(_n. + kB) (11)

where C* is a pseudo-inverse of C.

Thus we have the same form for o as Eq. (4).
Simulation

Equations (6), (9) and (11) are a complete set of equations which are

needed for a simulation. With a pyramid configured CMG cluster as depicted in
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Fig. 1, we present a simulation of a slewing maneuver. For critical damping,

the gains K and k are chosen as [10]

The numerical data and boundary conditions are shown in Table 2 and Table 3.
Near a singularity, the determinant of CCT becomes almost zero. The required
magnitude of control rate Iéilrincreases,enormously and exceeds the control
limit |6‘11mit‘ To avoid a singularity, Cornick [4] suggests a method using
the "null" motion. However, in this paper we choose the determinant test to
avoid a singutarity. That is, when det. (CCT) is less than Det.yjnits We
simply hold o at its most previous value. After escaping from a singularity,
we use the pseudo-inverse technique again. The selection of Det.yjpi¢ 1
based on the required Ié]imitl'

The simulation results show that without any method of avoiding
singularity, the determinant of CCT becomes almost zero many times as depicted
in Fig. 3. When using the determinant test method, many would-be singular
points are passed through with reasonable gyro rates although during the
passages there are some fluctuations in gyro rates as depicted in Fig. 4 and
Fig. 5. However, the feedback control law works very well as shown in Figs. 6
and 7. The gimbal angles are shown in Fig. 8 and the demanded torques in Fig.

9. The maneuver takes about 170 sec.
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TABLE 2. Numerical Data

Item Values

I 86.215 kg-m?

x . g-m

I, 85.07 kg-m?
I, 113.565 kg-m?
h 1.8  kg-m?
kq 13.13 N-m-sec
kz 13.04 N-m-sec
k3 15.08 N-m-sec
k 1.0 N-m

B 54.74°

Det]imit 0.1

TABLE 3. Boundary Conditions

State Initial Conditions Final Conditions
B 0.7071 1
B, 0.7071 0
B, 0 0
B, 0 0
W 0.01 r/sec 0
wy 0.05 r/sec 0
w 0.001 r/sec 0
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CONCLUSION

Rotational maneuvers of spacecraft with single-gimbal CMGs is treated.

The fact that some sets of initial gimbal angles avoid singularities for

unidirectional and planar torgue demands is observed. The feedback control

law based on Liapunov theory works well with the single-gimbal CMG system.

Avoidance of large fluctuations in ¢ needs further study.
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NOMENCLATURE

Hs/c .

v/C

G./c

j=
.

Gi/CGi

|

IV/C'

cé :

S8 2

|E

angular momentum of system about mass center c in vehicle frame
{v}

angular momentum of vehicle about mass center c in ({v}
angular momentum of gyro about mass center ¢ in {v}
angular momentum of gyro about gyro mass center cGi in {i}

inertia matrix of vehicle about ¢ with respect to vehicle frame
{v}

inertia matrix of vehicle and point-massed gyro clusters about ¢
with respect to (v}

ith gyro point-massed inertia matrix about ¢ with respect to

(V).

jth gyro relative angular momentum in gimbal frame,

hi = (0 h o]
ith gyro mass

cos(s)

sin(s)

configuration angle of pyramid

spacecraft angular velocity, QT = [w w w_]
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VECTOR

Fig, 1. CMG Configuration

Fig. 2, System with ith gyro
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