
NS9- 15943

A MULTI-SATELLITE ORBIT DETERMINATION PROBLEM
IN A PANILLEL PROCESSIN~ENVIRONMENT

M. S. Deakyne and R. J. Anderle

General Electric Valley Forge
Military and Data Systems Operations

Engineering Orbit Analysis Unit

ABSTRACT :
The Engineering Orbit Analysis Unit at GE Valley Forge had available
to it an Intel Hypercube Parallel Processor. It was decided to
investigate the performance and gain experience of parallel
processors with a multi-satellite orbit determination problem. A
general study was selected in which major blocks of complitation for
the multi-satellite orbit computations would be used as units to be
assigned to the various processors on the Hypercube. Problems
encountered or successes achieved in addressing the orbit
determination problem would be more likely to be transferable to
other parallel processors.

Our prime objective was to study the algorithm to allow processing
of observations later in time than those employed in the state
update. We would exploit our expertise in ephemeris determination
in addressing these problems and use the facility to bring a realism
to the study which would highlight the problems which may not
otherwise be anticipated.
experience of a non-trivial problem in a parallel processor
environment, explore the necessary interplay of serial and parallel
sections of the algorithm in terms of timing studies, t o explore the
granularity (coarse vs. fine grain) to discover the granularity
limit above which there would be a risk of starvation where the
majority of nodes would be idle or under the limit where the
overhead associated with splitting the problem may require more work
and communication time than is useful. We could also see the pros
and cons of local versus shared memory.

Our secondary objectives were to gain

Traditional algorithms for filtering and smoothing within the orbit
determination problem have been sequential in nature. Real time
filter algorithms imposes constraints on the implementation of the
problem on any parallel computer. The computations preceding the
state update are extensive and can be solved by small vector
processor(s). The computations, arrays and execution time of the
update are all extensive, and the third component of concern would
be the algorithmic bottleneck which occurs in the updating of the
parameters of the state when process noise is used to represent
unmodeled errors.

166

https://ntrs.nasa.gov/search.jsp?R=19890006572 2020-03-20T03:35:55+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42829763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A MULTI-SATELLITE ORBIT DETERMINATION PROBLEM
IN A PARALLEL PROCESSING ENVIRONMENT

M. S . Deakyne and R. J. Anderle

INTRODUCTION:
The Orbit Determination Algorithm is a computational intensive
problem which can be investigated in terms of increased efficiency
with vector, pipeline, and parallel processors.
the approach most intimately connected with the physics of the
problem is parallel processing. In 1987, our objective was to
decide if parallel processors could be used effectively to determine
the orbits of satellites and use the Hypercube to bring a realism to
the study which would highlight problems which may not otherwise be
anticipated.

As described below,

The first basic challenges were to become familiar with the many
intricate details of the computer architecture and operating system
and then to transfer the structure of the algorithm onto the machine
architecture of the Hypercube.
computational demands of the Orbit Determination Algorithm lent
itself to be first logically decomposed into relatively big,
computationally independent units. These units would be used as the
major blocks of computation assigned to the various processors on
the Hypercube. At this stage, we were gaining experience of the
Orbit Determination problem in a parallel computing environment.
were discovering the extent of the parallelism within the existing
traditional algorithm.

The complexity and high

We

Our next challenge and our prime objective was to study the
algorithm to allow processing of observations later in time than
those employed in the state update - 'Look Ahead Techniques'. In
this stage, we were trying to invent a new piece to the filter
algorithm, fundamentally parallel in nature to solve our problem.
Problems encountered and successes achieved on the algorithmic level
would be more likely to be transferrable to other parallel
processors.

THE ALGORITHM:
Traditional algorithms for filtering and smoothing within an Orbit
Determination problem have been sequential in nature. Real time
filter algorithms impose constraints on the implementation of the
problem on any parallel processor.
determination problem are:

The major segments of an orbit

167

1.

2.
3 .

4.

5 .

The evaluation of the accelerations of the satellites due
to the forces modeled.
The numerical integration of these equations of motion.
The calculation of the process noise representing unmodeled
forces .
The calculation of the residuals between the models and the
observation.
The update of the parameter estimates and the covariance of
the estimates.

The update is referred to as filtering when the current time
estimates of the parameters are made based on observations prior to
that time.
time are based on observations made after, as well as before, the
given time.

Smoothing is when the parameter estimates at a given

The computations preceding the state update are extensive and can
be solved by small vector processors. The computations, arrays, and
execution time of the update are extensive and can be addressed by
vector and/or pipeline processors.
is the algorithmic bottleneck which occurs in the updating of the
parameters of the state when process noise is used to represent
unmodeled errors.

The third major area of concern

Within an orbit determination process, using an extended Kalman
filter, one must integrate the equations of motion and perturbation
equations for all satellites and then compute the process noise
before a time update of the covariance can be computed. The
residual is found before the Gain is computed, and the measurement
update must await for all of the above before its calculation can be
performed. Then onto the next measurement. With a single
satellite, the force and integration can be done in parallel and the
different process noise contributions (i.e. drag, gravity, solar
radiation pressure, and clocks) can be done in parallel,
independently of each other. With a multi-satellite configuration,
the parallelism can be increased by doing all of the above for each
satellite in parallel.
the algorithmic bottleneck is the measurement update of the state
and covariance. The update works in isolation.

In the mode of the extended Kalman filter,

APPLYING THE ALGORITHM TO THE MACHINE:
The Hypercube machine is a loosely coupled 32 node multi-processor
connected together with a binary n-cube network.
own sizeable memory with no shared memory and no global
synchronization with the host.
message passing and the computation was data driven.

Each node had its

Communication was achieved by

168

For a first actack to the parallelism within the orbit determination
problem, the Hypercube was a good match to the Orbit Determination
problem since the algorithm could be decomposed naturally into
logically large and separate independent sub-algorithms. However,
the Orbit Determination problem sub-algorithms were diverse in terms
of requiring unsynchronized communicating with other pieces of the
algorithm which put a challenge on balancing the load and
interprocessor communication. Because of the amount of data
exchanged, the lack of shared memory was felt as message passing
became more and more cumbersome and stilted. And we had no
advantage with the Hypercube in terms of dealing with the intensive
computational aspect of our problem. We came to believe that the
ideal machine would be a coarse grain machine which would allow the
underlying concepts of the algorithm to be expressed via the
division of the nodes, implementation of the vector package within
each node and more efficient mode of communication among the nodes.

However, given our problem and Hypercube facility, we proceeded.
The total problem was broken into coarse large sub-problems divided
logically along physical concept boundaries. Chunks of code, each
dealing with a physical concept, had been then extracted from
various sources of standard sequential filter software. Each
sub-problem was assigned to a separate process and placed on a
separate node. The solution of each node had to be exchanged among
the different nodes as the algorithm proceeded. Message passing was
a point to point communication path. If there were no direct
communication paths between the nodes, the message was routed by
intermediate nodes. To handle these messages, a message-delivery
scheme was written - the node executive - and was placed on each
node as the control center of the flow of data and to coordinate the
various node processors.

PRELIMINARY RESULTS:
We achieved a cycling
data. Timing informa

program and began to immediately output timing
tion was difficult to interpret since a1.1 the

clocks were independent from each other.
concerning wait time, calculation time, and communication the, were
output. Reconstructing relative time was difficult. However, from
our preliminary results, we found at the end of 1986 an unexplained
difference in total run time on the host computer and the overall
wait time on each of the nodes. Also, we found that each of the
nodes was spending an unacceptable amount of time waiting for
information.
the controiler did not decrease the difficulty because no message
could be broadcast simultaneously and the handshake introduced
additional pauses.

Intervals af the,

Placing a synchronization handshake betweerr nodes aqd

1.69

During all the work of 1986, the Hypercube machine was physically
separated from the group of engineers (i.e.
in two different rooms).
were placed in the same room and we could run our program and watch
the interplay of the nodes via blinking lights. (Each node on the
Hypercube had two lights. When the red light was on, the node was
waiting for data; When the green light was on, it was in its
calculation mode.)
realize our problems and constraints of implementing this
non-trivial problem into the parallel environment. One of our
objectives was to explore the algorithm in terms of timing studies.
However, by merely observing the lights during an execution of our
software, we found that the serial sections of the algorithm were
completely dominating the time over the parallel sections. In fact,
it was so dominating that it masked completely any saving of time in
our different implementations in the parallel sections. Not only
was this discovered but also several sections we thought we
implemented in a parallel mode were being executed in a sequential
mode.

We and the machine were
In 1987, the engineers and the machine

Only then, by viewing these lights did we

These blinking lights also emphasized the newness and difference of
the parallel environment.
correlated them to the running sections of the algorithm, we
realized that to think of a certain number of processors performing
the same task in the same time interval was easy to grasp. But to
think and be logically able to handle the different tasks in
parallel requiring different intervals of time for calculation and
communication and then to tie them together in an efficient parallel
mode without reverting to standard inefficient modes of sequential
thinking was a challenge.

As we watched the interplay of lights and

At this point, we scanned the literature in terms of parallel
software techniques and re-visited the existing software package OIL

the Hypercube. Our main objectives now were to explore the
necessary interplay of serial and parallel sections of the algorithm
in terms of the timing studies, to explore the granularity.(coarse
vs. fine), and to explore the granularity limit above which there
would he a risk of starvation where the majority of nodes would be
idle or under the limit where the overhead associated with splitting
the problem may require more work and comunication time than is
useful. We were also exploring the pros and cons of local memory
versus shared memory.

Implementing changes into existing software and trying to debug the
software was horrific. Unless the debug information messages were
written to specifically isolate only certain nodes and certain
processes, the person would receive a torrent of messages from all
the nodes and the information would be lost in the deluge. A11

170

operations on the multiple processors would not necessarily occur in
precisely the same order from execution to execution and would not
even be time ordered within the same execution. All debug messages
affected the timing of the processes and had to be commented out for
timing studies.
messages in the system only to crash when the messages were
removed.
with the messages being highly restrictive to certain nodes and
certain processes.

Often the program would cycle with the debug

Debugging had to be done in a fine grain piecemeal fashion

FINAL RESULTS OF THE HYPERCUBE STUDY:
Over the course of the study, we were able to decrease the original
run time of the overall execution time by a factor of eight and we
did find a proportionate reduction in execution time with the
increasing number of nodes employed in the problem. See Table 1 and
Table 2 f o r a summary of the Four Test Cases in terms of calculation
time and wait times for 1986 and 1987, respectively. See Table 3
for a Summary of overall run time for the Four Test Cases. See the
Appendix for information and explanation of the different Test Cases
and a summary of the 1986 Results.

At this stage of experience and output, we were able to finally hone
into the new algorithmic aspects of our study.
different 'Look Ahead Techniques' to attack directly the algorithmic
bottleneck of the update. See Table 4 .

We defined four

As we began to implement these 'Look Ahead Techniques', we
continually bumped up against the machine architecture in terms of
memory allocation on the nodes, message passing, and the demands of
load balancing and inter-processor communication. To preserve the
generality of our study, we scanned the literature and established
contacts with Corporate Research Development Labs (CRD). Our
evolving approach was to bring together the estimation expertise,
the experience of the users in the parallel environment, and the
architectural expertise and computing resources of the
laboratories. If this approach was followed, it would make it
possible to review the real-time speed and numerical performance of
the orbit determination package in terms of the implementation,
independent of the particular machine architecture, while
maintaining the correct view on the algorithmic level.

Our objective now was to define a benchmark orbit determination
problem to use t o evaluate and demonstrate new improvements to the
algorithm using various mapping architectures of existing parallel
computers.
package which contained the same realistic models of the satellite
dynamics, gravity, drag, solar radiation, GW,, and ground clock
noise contained in the Hypercube program.

We developed and wrote a sequential orbit determination

171

CONCLUSIONS:
The test results finally showed an improvement in efficiency of
ephemeris computations with an increase in the number of nodes
utilized. Experimentation and experience caused us to stop our
implementation of the 'Look Ahead Techniques' on the Hypercube and
re-direct the IR&D effort to a broader baseline. The Hypercube
machine was a viable necessary tool to gain experience in parallel.
processing and bring the realism to the study. However, the
Hypercube type of machine architecture, which we used in this study,
is not the best one which matches the structure of the orbit
determination problem in terms of increased efficiency. (New
Upgrades to the Hypercube have been noted in the literature which
eases message passing.)
still a viable problem for parallel processing.

But the Orbit Determination problem is

Our experience should be expanded to machines such as the Warp 11,
Cray, the Butterfly, and the Connection Machine to determine the
efficiency of the implementation with the focus on the measurement
update.

The project should be conducted with parallel support from M&DSO and
CRD. The achievable throughput, cost, and reliability of large
scale filters in a parallel environment is a very important and
known next step to accomplish.

172

E
d

173

0
c4

E!
H

174

TABLE 3

NUMBER OF NODES
UTILIZED IN TEST CASE

RUN TIME (JAN 1987)
(SEC)

RUN TIME (JUNE 1987)

EPHEMERIS PROCESSING IN PARALLEL PROCESSORS
IRGD STATUS REVIEW

2

425 408 422 503

- 21 8 5

37 33 49 94

RESULTS OF EXECUTION TIME

- PROPORTIONATE REDUCTION IN EXECUTION TIME WITH
INCREASING NUMBER OF NODES EXPECTED

175

TABLE 4

EPHEMERIS PROCESSING IN PARALLEL PROCESSORS
- IR&D STATUS REVIEW

LOOK AHEAD TECHNIQUES

METHOD 1

0

0

METHOD 2

0

0

0

0

0

METHOD 3

0
0

0

METHOD 4

0
0
0
0

(PRESENTLY EMPLOYED)

MAINTAIN STATES AT SAME EPOCH BY RESTARTING
INTEGRATION OF ALL SATELLITES AT THE TIME OF
OBSERVATION OF ANY SATELLITE
SOLUTION EXACT BUT ALL SATELLITE INTEGRATIONS ARE
STALLED FOR UPDATE CALCULATION

ALLOW STATES OF DIFFERENT SATELLITES TO HAVE DIFFERENT
EPOCHS FOR THE TIME OF UPDATE
RESTART OF INTEGRATION ONLY AT RESPECTIVE OBSERVATION
TIMES
INTEGRATION FOR EACH SATELLITE MUST AWAIT ITS OWN
UPDATE
NET RESULT MAY BE APPROXIMATE DUE TO PROCESS NOISE
CORRELATIONS
FOR TRAJECTBRYICOVARIANCE OUTPUT, RESTARTS ARE
NECESSARY DURING LONG OBSERVATION GAPS FOR ANY GIVEN
SATELLITE

BATCH SZQUENTIAL
SPECIFIED BATCH LENGTH, SAME EPOCH FOR ALL SATELLITES
RESTART AT OBSERVATION TIMES ONLY IF UPDATE PARAMETERS
EXCEED PROPOGATED STATE BY SOME TOLERANCE

BATCH SEQUENTIAL
MINIMUM AND MAXIMUM BATCH LENGTH SPECIFIED
DIFFERENT EPOCHS FOR DIFFERENT SATELLITES
MAXIMUM BATCH LENGTH DEFINED AS INTERVAL BETWEFN
OBSERVATIONS OF RESPECTIVE SATELLITES

176

APPENDIX

ALGORITHM TASKS

EPHEMERIS

OBJECTIVE
The objective of the hypercube ephemeris task was to decide if
parallel processors can be used effectively to determine the orbits
of satellites.

APPROACH
Within a satellite ephemeris computer program, there are many
vector-type operations that could be performed in parallel and,
thus, improve the throughput of the computations. However,
exploiting this capability of parallel or vector processors would
require a large number of processors; furthermore, the results of
such a study would be highly dependent on the type of computers
used. A general study was selected in which the major blocks of
computation for multisatellite orbit computations were used as the
units to be assigned to variouh processors. A multisatellite orbit
solution including observations between satellites is a challenging
problem for parallel processors, since there is a natural bottleneck
that occurs in the updating of the parameters of such a solution
when process noise is used to represent unmodeled errors. Problems
encountered or successes achieved in addressing this problem are
more likely to be transferrable to other computers.

TEST CONDITIONS
A typical multisatellite test problem was selected which consisted
of the configuration shown in Table 1. The program that was
designed has the capability of processing the iibove observations for
3 primary satellites, such as Eandsat or Topex, 3 relay satellites,
and 18 GPS satellites. The number of Doppler stations can be
greater than the 15 selected for the test, but provision was not
made for time-overlapping Doppler observationfi since it would not
have contributed to the test objectives. The process noise models
account for the statistical effects of atmospheric drag variations
and unmodeled errors in the earth's gravity field, computed effects
of solar radiation forces, and clocks aboard the primary satellites
that are used to make measurements of range to the GPS satellites or
Doppler effects seen at ground stations.

The processor modules shown in Table 2 consist of:

1. An executive f o r each node

177

2.

3.

4 .

5 .

6 .

7.

8.

Integrator-force assignable to nodes for any groupings of
satellites

Residual computation assignable to nodes for any groupings
of observation types and satellites

Process noise for gravity assignable to nodes for any
grouping of host vehicles and relay satellites

Process noise for drag assignable to nodes for any grouping
of host vehicles

Process noise for solar radiation pressure assignable to
nodes for any groupings of relay satellites

Process noise for clocks assignable to nodes for any
groupings of host satellites

A single time and observation update module

The controller receives input assigning the processes to nodes,
initializes the computations, and sends extended Observation
nessages t o the appropriate nodes where the executive (on the basis
of the codes contained in the observation record) determines which
processes are to be performed on the respective node and where to
send the results. As the current solution is performed, the update
module sends it to the controller for output, and this signals
readiness for another observation. An IBM 3090 program supports the
system by generating simulated data which is down-loaded to the
hypercube controller.

DESCRIPTION OF TEST CASES
The orbit computations were performed for 15 simulated observations
using the node assignments shown in Tables 3 and 4 .
processes were loaded on each node except for Update which was
loaded on node 21 with no other processes (excluding the node
executive which was common to all nodes).
were selected to approach the computer run time expected for
sequential processing. Tests 2 and 3 provide measures of gain to be
achieved In parallel processing. Of course, in actual
implementation, the processes would be decomposed into smaller
elements in order to make maximum utilization of available nodes.
Test 1 was designed to determine the approximate computation time
required for each process.
ccmputation portion of esch process was recorded, it included time
spent during the 50-msecorid samplings of other processors.
the exits to the node executive were included in the process times
obtained in Test 1, the results were as Close to the actual
computation time as could be obtained.
requirements for processors.

All the

Test 4 node assignments

Although the length of time spent in the

Although

Refer to Table 5 for memory

178

TABLE 1

TEST CONDITIONS

Satellites:

Landsat Mapping Satellite

Topex Altimetry Satellite

Tracking and Data Relay Satellite System (TDRSS) -1
Relay Satellite

TDRSS -2 Relay Satellite

6 Global Positioning System (GPS) Satellites (Orbits
Assumed to be Known)

Observations:

Ground Doppler Observations of Landsat and Topex

Range Observations From a Ground Site to TDRSS
Satellites

Range-Sum Observations Through Relays to Landsat and
Topex

Range Observations From Topex and Landsat to GPS

Process Noise:

Gravity for Landsat, Topex and Relays

Drag for Landsat and Topex

Radiation Pressure for Relays

GPS Receiver Clocks on Landsat and Topex

Doppler Beacons on Landsat and Topex

179

180

TABLE 3
NODE ASSIGNMENTS - INTEGRATOR/FORCE

Processor

Integrator/Force

Landsat
Topex
Relay-1
Relay-2
GPS-1
GPS-2
GPS-3
GPS-4
GPS-5
GPS-6
Residuals

Processor

Test 1

1
2
3
4
5
6
7
8
9

LO
11

Test 2

1
2
3
4
5
5
6
6
7
7
3

Test 3

TABLE 4
NODE ASSIGNMENTS - PROCESS NOISE

Process Noise

Gravity P.N. Landsal
Gravity P.N. Topex
Gravity P.N. Relay :
Gravity P.N. Relay :
Drag Noise Landsat
Drag Noise Topex
Rad. Noise Relay 1
Rad. Noise Relay 2
Clock 1 Landsat
Clock 1 Topex
Clock 2 Landsat
Clock 2 Topex

Update

Test 1

12
13
14
14
15
16
17
18
19
19
20
20

21

Test 2

1
2
3
3
6
7
1
5
4
4
2
2

21

1
2
3
3
4
4
4
4
4
4
21

Test 3

1
2
3
3
3
4
1
2
4
4
3
3

21

Test 4

7
7
7
7
7
7
7
7
7
7

21

Test 4

7
7
7
7
7
7
7
7
7
7
7
7

21

181

MEMORY REQUIREMENTS FOR PROCESSORS

Process

Node Executive

Integrator/Force

Res idual s

Gravity Noise

Radiation Noise

Clock (GPS)

Clock (Ground)

Update

Memory Requirement (Bytes)

IBM 3090

N/A

175005

74688*

6 7848*

72168*

55144*

55984*

Hypercube

47769

42251

3185*

26935

34349

14277

14577

231988*
L

* Combination of these processes in one processor would reduce the
storage requirements f o r these five routines from 398000 to 174000
bytes through the use of shared subroutines and common data.

** This figure is the memory requirement for the full computational
Update. For test purposes, an abbreviated Update was used. The
test version required 182825 bytes.

RESULTS
The execution times initially obtained for the previous test cases
are given in Table 6.
small reduction in run time with increase in the number of nodes was
accompanied by large wait times (100-600 seconds) on the nodes and
large execution time (75 seconds) for update.
the actual computation time (as opposed to execution time, which
includes the wait time) f o r sequential processing is that obtained
for Test 4, which gave a value of 211 seconds, including 75 seconds
for Update computations, or a computation time of 135 seconds for
all processes except Update. Using this value as a base, the
differences in execution time for the other test cases were used to
estimate the computation

Supplementary timing data showed that the

The best estimate of

182

times for those cases. The measured computation time for the
processors in those cases could not be used because the time
measured within each processor also included time spent in other
processors on the same node during the 50 millisecond sequencing
among processors. The computation time for Update was considered
separately for the comparisons, since proportionate reduction in
computation time with increasing number of nodes would not be
expected for Update, which was on a separate node in each case.

The reduction in estimated computation time from Test 4 to Test 3 to
Test 2 is within a factor of two of that expected for the increase
in number of nodes. Proportional reduction in execution time is not
expected for Test 1, since the processor assignments required that
several of the nodes operate in sequence in this case; however, the
increase in execution time is anomalous.

Although the estimated reduction in computation time with increase
in number of nodes was satisfactory, the excessive wait time for the
nodes is not acceptable. The second major concern was the extent of
the time required for update processing. The time was particularly
disappointing because the matrix operations required for an actual
update were bypassed during these tests to expedite test results
which were more pertinent to the objectives of the test. The
initial test results were obtained while a significant amount of
debug data was being transmitted from the nodes to the system log.
They were also made without the benefit of the use of the Flick
command which prevents

TABLE 6
NODE LOADING COMPARISONS

~ ~ ~ ~

Test 1 Test 2 Test 3 Test 4 --
1. Observed Results

Number of Nodes Used 21 8 5 2

Execution Time (Seconds) 425 408 422 502

2. Estimated Calculation Time
Excluding Update

Number of Nodes Used 20 7 4 1

Estimated Calculation Time 58 41 55 135

(Seconds 1

c - 3
183

an unnecessary 40-millisecond wait time in a processor that is
awaiting information each time the node sequences through the
processor.
communication deleted and with the Flick command installed in the
node executives (but not in the processors, which were thought to be
of lesser concern). The execution time was nearly halved with these
modifications, and the cornputation time reduced to a third of the
original value for Test 4. The computation time for Update was
reduced in order of magnitude to about 7 seconds. However, the
computation time did not decrease with an increase in the number of
nodes; in fact, the execution time increased slightly.

A rerun of the test was made with the debug

The cause of the failure of the execution time to decrease
significantly with increase in number of nodes has not been
specifically identified. The timing data accumulated to date fails
to account for more than half the wait time recorded by the
processors. In addition to the difficulty of interpreting timing
results for a sequencing node, reruns of the same test case
occasionally gave different results. A rerun of the test cases with
the revised INTEL operating system would resolve that question, or
additional timing data installed in the processors would identify
the source of the unexpected wait time.

There are two modifications to the existing hypercube ephemeris
program that would have a dramatic effect on the efficient
utilization of the processors, even after the cause of the current
anomalous results is identified:

1. The integration/force computations can be separated and
performed in different processors.
and force computation for a given satellite are essentially
sequential operations, the nodes with either an integration
or force processor must also be assigned other processes,
in order that the gain in efficiency can be realized.

Since the integration

2. Computations for some satellites can proceed ahead of the
update computations, which would allow additional parallel
computations to be performed. This modification would
require some revision of the update algorithm and some
additional logic in the controller and node executive.

184

CONCLUSIONS
The test results failed to show an improvement in efficiency of
ephemeris computations with an increase in the number of nodes
because of unexplained wait times occurring during execution.
expected that additional testing would reveal the cause of the
unexpected wait times, and tests with a modified program would
demonstrate that ephemeris programs could be run efficiently on
parallel processors.

It is

RECOMMENDATIONS
It is recommended that:

1.

2.

3 .

4.

5.

The test cases be rerun with the latest INTEL operating
sys tern

Test 1 be rerun with additional timing data recorded to
determine the cause of the unidentified wait times

The current processor modules be further subdivided,
particularly by separating the integration and force
computations

The update and integrator processors be modified to hold
the epoch of the states fixed for scheduled periods of
time, and the controller and node executives be modified to
allow observation to be processed at controlled intervals
ahead of the observation time for the last update

Studies and tests be conducted to develop an algorithm for
automatic assignment of processors to nodes as a function
of the available number of nodes and the nature of the
ephemeris task

185

