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ABSTRACT : 
The Engineering Orbit Analysis Unit at GE Valley Forge had available 
to it an Intel Hypercube Parallel Processor. It was decided to 
investigate the performance and gain experience of parallel 
processors with a multi-satellite orbit determination problem. A 
general study was selected in which major blocks of complitation for 
the multi-satellite orbit computations would be used as units to be 
assigned to the various processors on the Hypercube. Problems 
encountered or successes achieved in addressing the orbit 
determination problem would be more likely to be transferable to 
other parallel processors. 

Our prime objective was to study the algorithm to allow processing 
of observations later in time than those employed in the state 
update. We would exploit our expertise in ephemeris determination 
in addressing these problems and use the facility to bring a realism 
to the study which would highlight the problems which may not 
otherwise be anticipated. 
experience of a non-trivial problem in a parallel processor 
environment, explore the necessary interplay of serial and parallel 
sections of the algorithm in terms of timing studies, t o  explore the 
granularity (coarse vs. fine grain) to discover the granularity 
limit above which there would be a risk of starvation where the 
majority of nodes would be idle or under the limit where the 
overhead associated with splitting the problem may require more work 
and communication time than is useful. We could also see the pros 
and cons of local versus shared memory. 

Our secondary objectives were to gain 

Traditional algorithms for filtering and smoothing within the orbit 
determination problem have been sequential in nature. Real time 
filter algorithms imposes constraints on the implementation of the 
problem on any parallel computer. The computations preceding the 
state update are extensive and can be solved by small vector 
processor(s). The computations, arrays and execution time of the 
update are all extensive, and the third component of concern would 
be the algorithmic bottleneck which occurs in the updating of the 
parameters of the state when process noise is used to represent 
unmodeled errors. 
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A MULTI-SATELLITE ORBIT DETERMINATION PROBLEM 
IN A PARALLEL PROCESSING ENVIRONMENT 

M. S .  Deakyne and R. J. Anderle 

INTRODUCTION: 
The Orbit Determination Algorithm is a computational intensive 
problem which can be investigated in terms of increased efficiency 
with vector, pipeline, and parallel processors. 
the approach most intimately connected with the physics of the 
problem is parallel processing. In 1987, our objective was to 
decide if parallel processors could be used effectively to determine 
the orbits of satellites and use the Hypercube to bring a realism to 
the study which would highlight problems which may not otherwise be 
anticipated. 

As described below, 

The first basic challenges were to become familiar with the many 
intricate details of the computer architecture and operating system 
and then to transfer the structure of the algorithm onto the machine 
architecture of the Hypercube. 
computational demands of the Orbit Determination Algorithm lent 
itself to be first logically decomposed into relatively big, 
computationally independent units. These units would be used as the 
major blocks of computation assigned to the various processors on 
the Hypercube. At this stage, we were gaining experience of the 
Orbit Determination problem in a parallel computing environment. 
were discovering the extent of the parallelism within the existing 
traditional algorithm. 

The complexity and high 

We 

Our next challenge and our prime objective was to study the 
algorithm to allow processing of observations later in time than 
those employed in the state update - 'Look Ahead Techniques'. In 
this stage, we were trying to invent a new piece to the filter 
algorithm, fundamentally parallel in nature to solve our problem. 
Problems encountered and successes achieved on the algorithmic level 
would be more likely to be transferrable to other parallel 
processors. 

THE ALGORITHM: 
Traditional algorithms for filtering and smoothing within an Orbit 
Determination problem have been sequential in nature. Real time 
filter algorithms impose constraints on the implementation of the 
problem on any parallel processor. 
determination problem are: 

The major segments of an orbit 
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1. 

2. 
3 .  

4. 

5 .  

The evaluation of the accelerations of the satellites due 
to the forces modeled. 
The numerical integration of these equations of motion. 
The calculation of the process noise representing unmodeled 
forces . 
The calculation of the residuals between the models and the 
observation. 
The update of the parameter estimates and the covariance of 
the estimates. 

The update is referred to as filtering when the current time 
estimates of the parameters are made based on observations prior to 
that time. 
time are based on observations made after, as well as before, the 
given time. 

Smoothing is when the parameter estimates at a given 

The computations preceding the state update are extensive and can 
be solved by small vector processors. The computations, arrays, and 
execution time of the update are extensive and can be addressed by 
vector and/or pipeline processors. 
is the algorithmic bottleneck which occurs in the updating of the 
parameters of the state when process noise is used to represent 
unmodeled errors. 

The third major area of concern 

Within an orbit determination process, using an extended Kalman 
filter, one must integrate the equations of motion and perturbation 
equations for all satellites and then compute the process noise 
before a time update of the covariance can be computed. The 
residual is found before the Gain is computed, and the measurement 
update must await for all of the above before its calculation can be 
performed. Then onto the next measurement. With a single 
satellite, the force and integration can be done in parallel and the 
different process noise contributions (i.e. drag, gravity, solar 
radiation pressure, and clocks) can be done in parallel, 
independently of each other. With a multi-satellite configuration, 
the parallelism can be increased by doing all of the above for each 
satellite in parallel. 
the algorithmic bottleneck is the measurement update of the state 
and covariance. The update works in isolation. 

In the mode of the extended Kalman filter, 

APPLYING THE ALGORITHM TO THE MACHINE: 
The Hypercube machine is a loosely coupled 32 node multi-processor 
connected together with a binary n-cube network. 
own sizeable memory with no shared memory and no global 
synchronization with the host. 
message passing and the computation was data driven. 

Each node had its 

Communication was achieved by 
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For a first actack to the parallelism within the orbit determination 
problem, the Hypercube was a good match to the Orbit Determination 
problem since the algorithm could be decomposed naturally into 
logically large and separate independent sub-algorithms. However, 
the Orbit Determination problem sub-algorithms were diverse in terms 
of requiring unsynchronized communicating with other pieces of the 
algorithm which put a challenge on balancing the load and 
interprocessor communication. Because of the amount of data 
exchanged, the lack of shared memory was felt as message passing 
became more and more cumbersome and stilted. And we had no 
advantage with the Hypercube in terms of dealing with the intensive 
computational aspect of our problem. We came to believe that the 
ideal machine would be a coarse grain machine which would allow the 
underlying concepts of the algorithm to be expressed via the 
division of the nodes, implementation of the vector package within 
each node and more efficient mode of communication among the nodes. 

However, given our problem and Hypercube facility, we proceeded. 
The total problem was broken into coarse large sub-problems divided 
logically along physical concept boundaries. Chunks of code, each 
dealing with a physical concept, had been then extracted from 
various sources of standard sequential filter software. Each 
sub-problem was assigned to a separate process and placed on a 
separate node. The solution of each node had to be exchanged among 
the different nodes as the algorithm proceeded. Message passing was 
a point to point communication path. If there were no direct 
communication paths between the nodes, the message was routed by 
intermediate nodes. To handle these messages, a message-delivery 
scheme was written - the node executive - and was placed on each 
node as the control center of the flow of data and to coordinate the 
various node processors. 

PRELIMINARY RESULTS: 
We achieved a cycling 
data. Timing informa 

program and began to immediately output timing 
tion was difficult to interpret since a1.1 the 

clocks were independent from each other. 
concerning wait time, calculation time, and communication the, were 
output. Reconstructing relative time was difficult. However, from 
our preliminary results, we found at the end of 1986 an unexplained 
difference in total run time on the host computer and the overall 
wait time on each of the nodes. Also, we found that each of the 
nodes was spending an unacceptable amount of time waiting for 
information. 
the controiler did not decrease the difficulty because no message 
could be broadcast simultaneously and the handshake introduced 
additional pauses. 

Intervals af the, 

Placing a synchronization handshake betweerr nodes aqd 

1.69 



During all the work of 1986, the Hypercube machine was physically 
separated from the group of engineers (i.e. 
in two different rooms). 
were placed in the same room and we could run our program and watch 
the interplay of the nodes via blinking lights. (Each node on the 
Hypercube had two lights. When the red light was on, the node was 
waiting for data; When the green light was on, it was in its 
calculation mode.) 
realize our problems and constraints of implementing this 
non-trivial problem into the parallel environment. One of our 
objectives was to explore the algorithm in terms of timing studies. 
However, by merely observing the lights during an execution of our 
software, we found that the serial sections of the algorithm were 
completely dominating the time over the parallel sections. In fact, 
it was so dominating that it masked completely any saving of time in 
our different implementations in the parallel sections. Not only 
was this discovered but also several sections we thought we 
implemented in a parallel mode were being executed in a sequential 
mode. 

We and the machine were 
In 1987, the engineers and the machine 

Only then, by viewing these lights did we 

These blinking lights also  emphasized the newness and difference of 
the parallel environment. 
correlated them to the running sections of the algorithm, we 
realized that to think of a certain number of processors performing 
the same task in the same time interval was easy to grasp. But to 
think and be logically able to handle the different tasks in 
parallel requiring different intervals of time for calculation and 
communication and then to tie them together in an efficient parallel 
mode without reverting to standard inefficient modes of sequential 
thinking was a challenge. 

As we watched the interplay of lights and 

At this point, we scanned the literature in terms of parallel 
software techniques and re-visited the existing software package OIL 

the Hypercube. Our main objectives now were to explore the 
necessary interplay of serial and parallel sections of the algorithm 
in terms of the timing studies, to explore the granularity.(coarse 
vs. fine), and to explore the granularity limit above which there 
would he a risk of starvation where the majority of nodes would be 
idle or under the limit where the overhead associated with splitting 
the problem may require more work and comunication time than is 
useful. We were also exploring the pros and cons of local memory 
versus shared memory. 

Implementing changes into existing software and trying to debug the 
software was horrific. Unless the debug information messages were 
written to specifically isolate only certain nodes and certain 
processes, the person would receive a torrent of messages from all 
the nodes and the information would be lost in the deluge. A11 
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operations on the multiple processors would not necessarily occur in 
precisely the same order from execution to execution and would not 
even be time ordered within the same execution. All debug messages 
affected the timing of the processes and had to be commented out for 
timing studies. 
messages in the system only to crash when the messages were 
removed. 
with the messages being highly restrictive to certain nodes and 
certain processes. 

Often the program would cycle with the debug 

Debugging had to be done in a fine grain piecemeal fashion 

FINAL RESULTS OF THE HYPERCUBE STUDY: 
Over the course of the study, we were able to decrease the original 
run time of the overall execution time by a factor of eight and we 
did find a proportionate reduction in execution time with the 
increasing number of nodes employed in the problem. See Table 1 and 
Table 2 f o r  a summary of the Four Test Cases in terms of calculation 
time and wait times for 1986 and 1987, respectively. See Table 3 
for a Summary of overall run time for the Four Test Cases. See the 
Appendix for information and explanation of the different Test Cases 
and a summary of the 1986 Results. 

At this stage of experience and output, we were able to finally hone 
into the new algorithmic aspects of our study. 
different 'Look Ahead Techniques' to attack directly the algorithmic 
bottleneck of the update. See Table 4 .  

We defined four 

As we began to implement these 'Look Ahead Techniques', we 
continually bumped up against the machine architecture in terms of 
memory allocation on the nodes, message passing, and the demands of 
load balancing and inter-processor communication. To preserve the 
generality of our study, we scanned the literature and established 
contacts with Corporate Research Development Labs (CRD). Our 
evolving approach was to bring together the estimation expertise, 
the experience of the users in the parallel environment, and the 
architectural expertise and computing resources of the 
laboratories. If this approach was followed, it would make it 
possible to review the real-time speed and numerical performance of 
the orbit determination package in terms of the implementation, 
independent of the particular machine architecture, while 
maintaining the correct view on the algorithmic level. 

Our objective now was to define a benchmark orbit determination 
problem to use t o  evaluate and demonstrate new improvements to the 
algorithm using various mapping architectures of existing parallel 
computers. 
package which contained the same realistic models of the satellite 
dynamics, gravity, drag, solar radiation, GW,, and ground clock 
noise contained in the Hypercube program. 

We developed and wrote a sequential orbit determination 
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CONCLUSIONS: 
The test results finally showed an improvement in efficiency of 
ephemeris computations with an increase in the number of nodes 
utilized. Experimentation and experience caused us to stop our 
implementation of the 'Look Ahead Techniques' on the Hypercube and 
re-direct the IR&D effort to a broader baseline. The Hypercube 
machine was a viable necessary tool to gain experience in parallel. 
processing and bring the realism to the study. However, the 
Hypercube type of machine architecture, which we used in this study, 
is not the best one which matches the structure of the orbit 
determination problem in terms of increased efficiency. (New 
Upgrades to the Hypercube have been noted in the literature which 
eases message passing.) 
still a viable problem for parallel processing. 

But the Orbit Determination problem is 

Our experience should be expanded to machines such as the Warp 11, 
Cray, the Butterfly, and the Connection Machine to determine the 
efficiency of the implementation with the focus on the measurement 
update. 

The project should be conducted with parallel support from M&DSO and 
CRD. The achievable throughput, cost, and reliability of large 
scale filters in a parallel environment is a very important and 
known next step to accomplish. 
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TABLE 3 

NUMBER OF NODES 
UTILIZED IN TEST CASE 

RUN TIME (JAN 1987) 
(SEC) 

RUN TIME (JUNE 1987) 

EPHEMERIS PROCESSING IN PARALLEL PROCESSORS 
IRGD STATUS REVIEW 

2 

425 408 422 503 

- 21 8 5 

37 33 49 94 

RESULTS OF EXECUTION TIME 

- PROPORTIONATE REDUCTION IN EXECUTION TIME WITH 
INCREASING NUMBER OF NODES EXPECTED 
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TABLE 4 

EPHEMERIS PROCESSING IN PARALLEL PROCESSORS 
- IR&D STATUS REVIEW 

LOOK AHEAD TECHNIQUES 

METHOD 1 

0 

0 

METHOD 2 

0 

0 

0 

0 

0 

METHOD 3 

0 
0 

0 

METHOD 4 

0 
0 
0 
0 

(PRESENTLY EMPLOYED) 

MAINTAIN STATES AT SAME EPOCH BY RESTARTING 
INTEGRATION OF ALL SATELLITES AT THE TIME OF 
OBSERVATION OF ANY SATELLITE 
SOLUTION EXACT BUT ALL SATELLITE INTEGRATIONS ARE 
STALLED FOR UPDATE CALCULATION 

ALLOW STATES OF DIFFERENT SATELLITES TO HAVE DIFFERENT 
EPOCHS FOR THE TIME OF UPDATE 
RESTART OF INTEGRATION ONLY AT RESPECTIVE OBSERVATION 
TIMES 
INTEGRATION FOR EACH SATELLITE MUST AWAIT ITS OWN 
UPDATE 
NET RESULT MAY BE APPROXIMATE DUE TO PROCESS NOISE 
CORRELATIONS 
FOR TRAJECTBRYICOVARIANCE OUTPUT, RESTARTS ARE 
NECESSARY DURING LONG OBSERVATION GAPS FOR ANY GIVEN 
SATELLITE 

BATCH SZQUENTIAL 
SPECIFIED BATCH LENGTH, SAME EPOCH FOR ALL SATELLITES 
RESTART AT OBSERVATION TIMES ONLY IF UPDATE PARAMETERS 
EXCEED PROPOGATED STATE BY SOME TOLERANCE 

BATCH SEQUENTIAL 
MINIMUM AND MAXIMUM BATCH LENGTH SPECIFIED 
DIFFERENT EPOCHS FOR DIFFERENT SATELLITES 
MAXIMUM BATCH LENGTH DEFINED AS INTERVAL BETWEFN 
OBSERVATIONS OF RESPECTIVE SATELLITES 
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APPENDIX 

ALGORITHM TASKS 

EPHEMERIS 

OBJECTIVE 
The objective of the hypercube ephemeris task was to decide if 
parallel processors can be used effectively to determine the orbits 
of satellites. 

APPROACH 
Within a satellite ephemeris computer program, there are many 
vector-type operations that could be performed in parallel and, 
thus, improve the throughput of the computations. However, 
exploiting this capability of parallel or vector processors would 
require a large number of processors; furthermore, the results of 
such a study would be highly dependent on the type of computers 
used. A general study was selected in which the major blocks of 
computation for multisatellite orbit computations were used as the 
units to be assigned to variouh processors. A multisatellite orbit 
solution including observations between satellites is a challenging 
problem for parallel processors, since there is a natural bottleneck 
that occurs in the updating of the parameters of such a solution 
when process noise is used to represent unmodeled errors. Problems 
encountered or successes achieved in addressing this problem are 
more likely to be transferrable to other computers. 

TEST CONDITIONS 
A typical multisatellite test problem was selected which consisted 
of the configuration shown in Table 1. The program that was 
designed has the capability of processing the iibove observations for 
3 primary satellites, such as Eandsat or Topex, 3 relay satellites, 
and 18 GPS satellites. The number of Doppler stations can be 
greater than the 15 selected for the test, but provision was not 
made for time-overlapping Doppler observationfi since it would not 
have contributed to the test objectives. The process noise models 
account for the statistical effects of atmospheric drag variations 
and unmodeled errors in the earth's gravity field, computed effects 
of solar radiation forces, and clocks aboard the primary satellites 
that are used to make measurements of range to the GPS satellites or 
Doppler effects seen at ground stations. 

The processor modules shown in Table 2 consist of: 

1. An executive f o r  each node 
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2. 

3.  

4 .  

5 .  

6 .  

7. 

8. 

Integrator-force assignable to nodes for any groupings of 
satellites 

Residual computation assignable to nodes for any groupings 
of observation types and satellites 

Process noise for gravity assignable to nodes for any 
grouping of host vehicles and relay satellites 

Process noise for drag assignable to nodes for any grouping 
of host vehicles 

Process noise for solar radiation pressure assignable to 
nodes for any groupings of relay satellites 

Process noise for clocks assignable to nodes for any 
groupings of host satellites 

A single time and observation update module 

The controller receives input assigning the processes to nodes, 
initializes the computations, and sends extended Observation 
nessages t o  the appropriate nodes where the executive (on the basis 
of the codes contained in the observation record) determines which 
processes are to be performed on the respective node and where to 
send the results. As the current solution is performed, the update 
module sends it to the controller for output, and this signals 
readiness for another observation. An IBM 3090 program supports the 
system by generating simulated data which is down-loaded to the 
hypercube controller. 

DESCRIPTION OF TEST CASES 
The orbit computations were performed for 15 simulated observations 
using the node assignments shown in Tables 3 and 4 .  
processes were loaded on each node except for Update which was 
loaded on node 21 with no other processes (excluding the node 
executive which was common to all nodes). 
were selected to approach the computer run time expected for 
sequential processing. Tests 2 and 3 provide measures of gain to be 
achieved In parallel processing. Of course, in actual 
implementation, the processes would be decomposed into smaller 
elements in order to make maximum utilization of available nodes. 
Test 1 was designed to determine the approximate computation time 
required for each process. 
ccmputation portion of esch process was recorded, it included time 
spent during the 50-msecorid samplings of other processors. 
the exits to the node executive were included in the process times 
obtained in Test 1, the results were as Close to the actual 
computation time as could be obtained. 
requirements for processors. 

All the 

Test 4 node assignments 

Although the length of time spent in the 

Although 

Refer to Table 5 for memory 
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TABLE 1 

TEST CONDITIONS 

Satellites: 

Landsat Mapping Satellite 

Topex Altimetry Satellite 

Tracking and Data Relay Satellite System (TDRSS) -1 
Relay Satellite 

TDRSS -2 Relay Satellite 

6 Global Positioning System (GPS) Satellites (Orbits 
Assumed to be Known) 

Observations: 

Ground Doppler Observations of Landsat and Topex 

Range Observations From a Ground Site to TDRSS 
Satellites 

Range-Sum Observations Through Relays to Landsat and 
Topex 

Range Observations From Topex and Landsat to GPS 

Process Noise: 

Gravity for Landsat, Topex and Relays 

Drag for Landsat and Topex 

Radiation Pressure for Relays 

GPS Receiver Clocks on Landsat and Topex 

Doppler Beacons on Landsat and Topex 

179 



180 



TABLE 3 
NODE ASSIGNMENTS - INTEGRATOR/FORCE 

Processor 

Integrator/Force 

Landsat 
Topex 
Relay-1 
Relay-2 
GPS-1 
GPS-2 
GPS-3 
GPS-4 
GPS-5 
GPS-6 
Residuals 

Processor 

Test 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

LO 
11 

Test 2 

1 
2 
3 
4 
5 
5 
6 
6 
7 
7 
3 

Test 3 

TABLE 4 
NODE ASSIGNMENTS - PROCESS NOISE 

Process Noise 

Gravity P.N. Landsal 
Gravity P.N. Topex 
Gravity P.N. Relay : 
Gravity P.N. Relay : 
Drag Noise Landsat 
Drag Noise Topex 
Rad. Noise Relay 1 
Rad. Noise Relay 2 
Clock 1 Landsat 
Clock 1 Topex 
Clock 2 Landsat 
Clock 2 Topex 

Update 

Test 1 

12 
13 
14 
14 
15 
16 
17 
18 
19 
19 
20 
20 

21 

Test 2 

1 
2 
3 
3 
6 
7 
1 
5 
4 
4 
2 
2 

21 

1 
2 
3 
3 
4 
4 
4 
4 
4 
4 
21 

Test 3 

1 
2 
3 
3 
3 
4 
1 
2 
4 
4 
3 
3 

21 

Test 4 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

21 

Test 4 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

21 
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MEMORY REQUIREMENTS FOR PROCESSORS 

Process 

Node Executive 

Integrator/Force 

Res idual s 

Gravity Noise 

Radiation Noise 

Clock (GPS) 

Clock (Ground) 

Update 

Memory Requirement (Bytes) 

IBM 3090 

N/A 

175005 

74688* 

6 7848* 

72168* 

55144* 

55984* 

Hypercube 

47769 

42251 

3185* 

26935 

34349 

14277 

14577 

231988* 
L 

* Combination of these processes in one processor would reduce the 
storage requirements f o r  these five routines from 398000 to 174000 
bytes through the use of shared subroutines and common data. 

** This figure is the memory requirement for the full computational 
Update. For test purposes, an abbreviated Update was used. The 
test version required 182825 bytes. 

RESULTS 
The execution times initially obtained for the previous test cases 
are given in Table 6. 
small reduction in run time with increase in the number of nodes was 
accompanied by large wait times (100-600 seconds) on the nodes and 
large execution time (75 seconds) for update. 
the actual computation time (as opposed to execution time, which 
includes the wait time) f o r  sequential processing is that obtained 
for Test 4, which gave a value of 211 seconds, including 75 seconds 
for Update computations, or a computation time of 135 seconds for 
all processes except Update. Using this value as a base, the 
differences in execution time for the other test cases were used to 
estimate the computation 

Supplementary timing data showed that the 

The best estimate of 
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times for those cases. The measured computation time for the 
processors in those cases could not be used because the time 
measured within each processor also included time spent in other 
processors on the same node during the 50 millisecond sequencing 
among processors. The computation time for Update was considered 
separately for the comparisons, since proportionate reduction in 
computation time with increasing number of nodes would not be 
expected for Update, which was on a separate node in each case. 

The reduction in estimated computation time from Test 4 to Test 3 to 
Test 2 is within a factor of two of that expected for the increase 
in number of nodes. Proportional reduction in execution time is not 
expected for Test 1, since the processor assignments required that 
several of the nodes operate in sequence in this case; however, the 
increase in execution time is anomalous. 

Although the estimated reduction in computation time with increase 
in number of nodes was satisfactory, the excessive wait time for the 
nodes is not acceptable. The second major concern was the extent of 
the time required for update processing. The time was particularly 
disappointing because the matrix operations required for an actual 
update were bypassed during these tests to expedite test results 
which were more pertinent to the objectives of the test. The 
initial test results were obtained while a significant amount of 
debug data was being transmitted from the nodes to the system log. 
They were also made without the benefit of the use of the Flick 
command which prevents 

TABLE 6 
NODE LOADING COMPARISONS 

~ ~ ~ ~ 

Test 1 Test 2 Test 3 Test 4 -- 
1. Observed Results 

Number of Nodes Used 21 8 5 2 

Execution Time (Seconds) 425 408 422 502 

2. Estimated Calculation Time 
Excluding Update 

Number of Nodes Used 20 7 4 1 

Estimated Calculation Time 58 41 55 135 

(Seconds 1 

c - 3  
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an unnecessary 40-millisecond wait time in a processor that is 
awaiting information each time the node sequences through the 
processor. 
communication deleted and with the Flick command installed in the 
node executives (but not in the processors, which were thought to be 
of lesser concern). The execution time was nearly halved with these 
modifications, and the cornputation time reduced to a third of the 
original value for Test 4. The computation time for Update was 
reduced in order of magnitude to about 7 seconds. However, the 
computation time did not decrease with an increase in the number of 
nodes; in fact, the execution time increased slightly. 

A rerun of the test was made with the debug 

The cause of the failure of the execution time to decrease 
significantly with increase in number of nodes has not been 
specifically identified. The timing data accumulated to date fails 
to account for more than half the wait time recorded by the 
processors. In addition to the difficulty of interpreting timing 
results for a sequencing node, reruns of the same test case 
occasionally gave different results. A rerun of the test cases with 
the revised INTEL operating system would resolve that question, or 
additional timing data installed in the processors would identify 
the source of the unexpected wait time. 

There are two modifications to the existing hypercube ephemeris 
program that would have a dramatic effect on the efficient 
utilization of the processors, even after the cause of the current 
anomalous results is identified: 

1. The integration/force computations can be separated and 
performed in different processors. 
and force computation for a given satellite are essentially 
sequential operations, the nodes with either an integration 
or force processor must also be assigned other processes, 
in order that the gain in efficiency can be realized. 

Since the integration 

2. Computations for some satellites can proceed ahead of the 
update computations, which would allow additional parallel 
computations to be performed. This modification would 
require some revision of the update algorithm and some 
additional logic in the controller and node executive. 
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CONCLUSIONS 
The test results failed to show an improvement in efficiency of 
ephemeris computations with an increase in the number of nodes 
because of unexplained wait times occurring during execution. 
expected that additional testing would reveal the cause of the 
unexpected wait times, and tests with a modified program would 
demonstrate that ephemeris programs could be run efficiently on 
parallel processors. 

It is 

RECOMMENDATIONS 
It is recommended that: 

1. 

2. 

3 .  

4. 

5. 

The test cases be rerun with the latest INTEL operating 
sys tern 

Test 1 be rerun with additional timing data recorded to 
determine the cause of the unidentified wait times 

The current processor modules be further subdivided, 
particularly by separating the integration and force 
computations 

The update and integrator processors be modified to hold 
the epoch of the states fixed for scheduled periods of 
time, and the controller and node executives be modified to 
allow observation to be processed at controlled intervals 
ahead of the observation time for the last update 

Studies and tests be conducted to develop an algorithm for 
automatic assignment of processors to nodes as a function 
of the available number of nodes and the nature of the 
ephemeris task 
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