
I

f

'* -

P

9

W
\

First International Conference
on Ada@ Programming
Language Applications

For The NASA Space Station

m
07

w o
'3
4 wl.4
D P U a 0 9

2 x 3 i 3 c l - s
O M -

7
University of Houston-Clear Lake 2a School of Sciences and Technologies m

High Technologies Laboratory J
NASA Lyndon EL Johnson Space Center

t

In Cooperatbn with Local Contractors

https://ntrs.nasa.gov/search.jsp?R=19890006908 2020-03-20T03:31:49+00:00Z

P R O C E E D I N G S

F I R S T INTERWATIONAL C O N F E R E N C E O N A D A * P R O G R A M M I N G

L A N G U A G E A P P L I C A T I O N S F O R T H E N A S A S P A C E S T A T I O N

Edited by

Rodney L. Bown
High Technologies L a b o r a t o r i e s

Un ive r s i ty of Houston-Clear Lake

A Conference Cohos ted by:

NASA Lyndon B . Johnson Space Center
Unfversl ty of Houston-Clear Lake

School of Sciences and Technologies
High Technologies L a b o r a t o r i e s

I n Cooperation wi th Local Con t rac to r s .

Houston, Texas
June 2-5, 1986

Copyright 1986 by
University of Houston-Clear Lake

This work relates to NASA Contract No. NAS 9-17010.
The U. S. Government has a royalty-free license to
exercise all rights under the copyright claimed herein
for Government purposes. All other rights are
reserved. However, copyright is not claimed for any
portion of this book written by a United States
Government employee as part of his or her official
duties.

National Aeronautics and t , Space Administration
Lyndon 8. Johnson Space Center
Houston. Texas
77058

of Houston
Clear Lake
Houston, Texas 77058- 1068

WELCOME TO TEXAS

The NASA space station will be the vehicle that will enable
man to have a permanent presence in space. The First International
Conference on Ada* Programming Language Applications for the NASA
Space Station has provided an opportunity for the government,
industry, and university to engage in a lively technical
discussion related to the global network of information system
resources for this new vehicle and its new world environment.

The Lyndon B. Johnson Space Center, the University of
Houston-Clear Ldke, and supporting ConLraCtors welcome all out-of-
town attendees to Clear Lake during the Texas sesquicentennial
year. The conference committee is committed to providing a
quality technical conference and a friendly Texas experience for
all attendees and their guests. The conference has been organized
to provide multiple technical sessions/panels/zctivities on a
variety of issues. In addition, the local arrangements committee
will assist all attendees to plan and schedule non-conference
activities that will provide an opportunity for everyone to enjoy
the Houston/Bay Area/Galveston attractions.

We believe the contents of this volume will provide a
valuable technical resource for future research and development
efforts directed to the support of NASA space activities. We are
proud of the organizations and their people who have contributed
to the success of t h e conference.

tbd (Ti&/ --

Jack Gar an, Deputy Director Edward T. Dickerson, Dean
Sciences and Technologies -e- Mission Support

Ed Chevers, Depiity Chief
Avionics Systems Division

NASA Lyndon B. Johnson
Space Center

P&dfl&<*
Charles W. McKav. DirKc-tor ~~

High Technologies Laboratories

University of Houston-
Clear Lake

* Ada is a registered trademark of the U . S . Government Ada
Joint Program Office

i i i

i ..
Steering Committee

Jack Garman
Ed Chevers
Edward T. Dickerson
Charles W. McKay

Conference Chair
Rodney L. Eown

Executive Coordinators
Bob MacDonald
Car91 Kasworm

Publicity
Becky Schergens

Technical Committee
Richard Kessinger
Kathy Rogers

Local Arrangements
A1 Mandelin
Ed Monteiro

NASA Exhibits

International Host

Roger Bilstein

Steve Brody

ACKNOWLEDGEMENTS

Members of the Support Team
Steve Gorman
Ken Goodwin
Piit Rogers
Cathie Duffy
Sue LeGrand
Paul Brown
Gary Barber
Mark Denson

Richard Lehman
Charlie Randall

Special Acknowlegement
The entire orsanization

Lyndon 8. Johnson Space Center
Lyndon B. Johnson Space Center
University of Houston-Clear Lake
University of Hcdston-Clear Lake

University of Houston-Clear Lake

Lyndon B. Johnson Space Center
University of Houston-Clear Lake

University of Houston-Clear Lake

Sof tech
Rockwell International and Vice-
Chairperson of the Clear Lake
Chapter of SIGAda

IBM, Federal Systems Division
McDonnell-Douglas

University of Houston-Clear Lake

Lyndon B. Johnson Space Center

Lyndon B. Johnson Space Center
Charles Stark Draper Labs.
University of liouston-Clear Lake
University of Houston-Clear Lake
Sof tech
Hikkok
Intermetrics
McDonnell-Douglas and Chairman of
the Clear Lake Chapter of SIGAda
Loc khe ed
GHG Corp.

extends a special message of
gratitude to Mss. tickie Gilliland, Mary- Ann Pollard, Karen
Gunter, Sheri Lindelsee, and Janice Fisher for their friendly
office support.

iV

t
0

TABLE OF CONTENTS

Note: Page numbers are l i s t e d i n t h e fo l lowing sequence: s e s s i o n l e t t e r .
(s e s s i o n number.) paper number. page number.

Even t/PaDer Page Number

OPENING PLENARY SESSION A . 1

SESSION 8.1 - TEST AND VERIFICATION

Ada Task Debugging With An Automated Tool
R.G. F a i n t e r , V i r g i n i a Tech,
T.E. L indqu i s t , Arizona S t a t e Un ive r s i ty

Software Uni t T e s t i n g i n a n Ada Tnvironment
Glenn Warnock, P r i o r Data Sc iences Ltd.

Formally Ver i fy ing Ada Programs Ilhich Use
Real Number Types

David SL t he r l and * Odyssey Research

Ada Tes t and V e r i f i c a t i o n System
Tom S t r e l f c h , General Research

An Ada Benchmarking Taxonomy
David Auty, SofTech, Inc .

Formal Veri f i ca t i on
Norm Cohen, SofTech, Inc .

SESSION B.2 - ENVIRONMENT ISSUES

Programming Suppor t Environment Issues in
the Byron Programming Environment

Matthew J. Larsen, I n t e r m e t r i c s , I n c .

An Ada Programming Suoport Environment
A 1 T y r r i l l , Rockwell I n t e r n a t i o n a l
A . D . Chan, Rockwell I n t e r n a t i o n a l

Software Engineer ing Environment Tool S e t
I n t e g r a t i o n

William P . S e l f i i d g e , Pockwell I n t e r n a t i o n a l

Procedures and Tools f o r Bui ld ing Large
Ada Systems

Ben tlyde, I n t e r m e t r i c s , Inc .

Rat f ona 1 ' s Exper Lence Us f ng Ada f o r Very
Large Systems

James E . Archer , J r . , Ra t iona l
Michael T . Devl in , Ra t iona l

6.1 .1 .1

B.1.2.1

B.1.3.1

B . 1 . 4 . 1

6 . 1 . 5 . 1

6.1 .6 .1

B . 2 . 1 . 1

8.2.2.1

R.2.3. 1

B.2.4.1

B.2.5.1

V

TABLE OF CONTENTS (cont inued)

Even t /Pa pe r

Using Ada on a Workstat ion f o r Large P r o j e c t s
Arra S. Avakian, Alsys , Inc.
Ben M. Brosgol , Alsys, Inc.
M i t c h e l l Cart , Alsys, Inc .

SESSION 8.3 - DISTRIBUTED ADA ISSUES

A D i s t r i b u t e d Programming Environment f o r Ada
Peter Brennan , Thomas McDonnell ,
Gregory HcFarland, Lawrence J. Timmins, and
John D. L i t k e , Gruman Data Systems

D i s t r i b u t e d Ada: Methodology, No ta t ion , and Tools
Greg Eisenhauer , Rakesh Jha, and Mike Kamrad,
Honeywell Sys tems and Research Center

An Ada Implementation of t he Network Manager € o r
the Advanced In€ormation P rocess ing System

G a i l A . Nagle, The Charles S t a r k Draper Laboratory

D i s t r i b u t e d Program E n t i t i e s i n Ada
Pa t Rogers, Un ive r s i ty of Houston-Clear Lake
Charles W. McKay, Un ive r s i ty of Houston-Clear Lake

A D i s t r i b u t e d APSE
S . Tucker T a f t , I n t e r m e t r f c s , Inc .

Implementation o f Ada P ro toco l s on MIL-STD-1553B
Data B u s

S m f l Ruhman, Weizmann I n s t i t u t e of Science
Flavfa Roscmberg, Wefzmann I n s t f t u t e of Science

SESSION B . 4 - L I F E CYCLE ISSUES I

Software Engineer ing and Ada i n Design
Don O ' N e f l l , I B M FSD

Analysis a n d S p e c i f i c a t i o n Tools i n R e l a t i o n
t o the Ada Programming Support Environment

John W . Hendricks, Systems Technology, Inc .

Some Deslgn C o n s t r a l n t s Requlred € o r the Use
o f Generlc Software i n Embedded Systems:
Packages Which Mannp,c Abs t r ac t Dynamtc S t r u c t u r e s
Without t he Ncod f o r Garbagc C o l l e c t t o n

Charles S . .Johnson, P r o d u c t i v i t y Re.search Corporat ion

A Computer-Rasctd S p e c l f l c a t l o n Methodology
Robert C,. Ylijpck, The MI'I'RF: Corporatlon

Page Number

B.2.6.1

B.3.1.1

8.3.2.1

B.3.3.1

B.3.4.1

B.3.5.1

B.3.6.1

B . 4 . 1 . 1

8 .4 .2 .1

8 .4 .3 .1

B.4.4.1

v f

TABLE OF CONTENTS (con t inued)

Even t / Pa pe 1:

Towards a Document S t r u c t u r e E d i t o r for
Sof tware Requirements Analysis

Anthony Lekkos, Un ive r s i ty of Houston-Clear Lake
Vincent Kowalskf, Universi t y of Houston-Clear Lake

DEC Ada Interface t o Screen Management
Gu ide l ines (SMG)

Anthony Lekkos, Uni ve r s f t y of Hous ton-Clear Lake
Somsak Loamanachareon, Un ive r s i ty of Hous ton-Clear Lake

A Proposed C l a s s i f i c a t i o n Scheme f o r Ada-Based
Software Products

Gary J. Cernosek, McDonnell-Douglas

SESSION C - ADA I N EUROPE

The S t a t u s of Ada i n Europe
D r . Mike Rogers, In€ormation Technologies
and Telecomms Task Force

Ada Technology Assessment: An Important Issue Within
the European Columbus Support Technology Programme

P. Vielcane t , Inf orma t i q u e In t e rna t i ona le

S t r u c t u r i n g t h e Formal D e f i n i t i o n of Ada
K u r t W . Hansen, Dansk Datamatlk Center

Recent Trends Related t o t h e Usc of Formal Methods
i n Software Engineering

Sorcn P r e h n . Dansk Datamatik Center

SESSION D. 1 - MANAGEMENT/TRAININC ISSUES

Managing Ada Development
James Green, Dalmo Victor Textron (S inge r)

Lessons Learned: Managing the Development of
a Corporate Ada Tra in ing P r o j e c t

Linda F. Blackmon, General Dynamics

Page Numher

B . 4 . 5 . 1

B.4.6.1

0.4.7.1

c.1.1

c .2 . 1

c .3 .1

c.4.1

0.1.1. 1

D. 1 . 2 . 1

Mu1 t il.anguage Sof tware Ma i n tenance D . 1 . 3 . 1
Gregory Ahnronian, Source Transla t i o n and Optimizat ion

GSFC Ada Programmlng CuIdelfncs
Danlcl M . Roy, Century Computing Inc .
Robert NLlson, Coddnrd Space F l i g h t Center

D.1.4.1

v i i

.. . . - . . . - . -

TABLE OF CONTENTS (con t inued)

Even t /Pa pe r Page Number

Ada Education i n a Software Life-Cycle Context D. 1 . 5 . 1
Anne J. Clough, The Charles Stark Draper Laboratory

P ro fes s iona l i sm
Ed Berard, EVB Software Engineer ing, Inc.

NASA T r a i n i n g Program €or Ada
J o i n t NASA JSC/UH-CL P r e s e n t a t i o n

SESSION D . 2 - CAIS

The Impact of Common Ada I n t e r f a c e S e t S p e c i f i c a t i o n s
on Space S t a t i o n Information Systems

J o r g e L. Diaz-Herrera, George Mason Unive r s i ty
Edgar H . S i b l e y , George Mason Unive r s i ty

A Risk Management Approach t o CAIS Development
Hal H a r t , Judy Kerner, Tony Alden, Frank Belz ,
and Frank Tadman, TRW Defense Systems Group

Extending t;-e G r a n u l a r i t y of Representa t i o n
and Con t ro l f o r CAIS Process Node

Kathy Rogers, Rockwell Internat ional /SSSD

Experience w i t h the CAIS
Michael F. Tighe, I n t e r m e t r t c s , Inc .

The CAIS 2 P r o j e c t
Richard T h a l l , SofTech, Inc .
S u e LeGrand, SofTech, Inc .

Transpor t ab1 1 i ty , D i s t r i b u ta h i 1 i t y , and
Rehosting Experience w i t h a Kernel Operat ing
System I n t e r f a c e S e t

F . C . Rlumberg, A . Reedy, and E. Yodis,
Planning Research Corpora t i o n

SESSION D . 7 -. R U N TIME ISSUES I

Cons t ruc t ing A Working Taxonomy of Func t iona l
Ada Software Components f o r Real-Time
Embedded A p p l l c a t i o n

Robert J . Wallace, Research T r i a n e l e I n s t i t u t e

V t s u a l i z a t l o n , Design, and V e r i f i c a t i o n of Ada
Tasking IJsing Ttming Dfagrams

K . F . V ida le , P a u l A . S z u l c w s k i , and J.B. Weiss,
T h e Char l e s S t a r k Draper Laboratory

D. 1 .6 .1

D.1.7.1

D.2.1.1

D . 2 . 2 . 1

D.2.3.1

D.2.4.1

D . 2 . 5 . 1

D.2.6.1

D.3.1.1

D.3.2.1

v i 1 1

....
-i..."*".- .

TABLE OF CONTENTS (cont fnued)

Even t / P a p e r

Ada and C y c l i c Runtime Schedul ing
P h i l i r E. Hood, SofTech, Inc .

Choosing a Software Development Me thodology
f o r Real Time Ada App l i ca t ions

James V. Wfthey, Inrermetrics, Xnc.

Implementation of a n Ada Real-Time Execut ive -
A Case Study

James D. L a i r d , Bruce A . Burton, and Mary Koppes,
I n tarme tr i c s , Inc .

Real-Time Ada i n a MC68XXX System
Dick Naedel. I n t e l l i m a c

Page Number

D. 3 .3 .1

D.3.4.1

D . 3 .5 . 1

D.3.6.1

SESSION D.4 - LIFE CYCLE ISSUES I1 (Design)

Ob jec t Or i en ted Development D . 4 . 1 . 1
Donald G . F f res rn i th , Magnavox E l e c t r o n i c Systems Co.

I n t e g r a t i n g Automated S t ruc tu red Analysis and
Design w i t h Ada Programming ouppor t Environments

Andy Simmons, Cadre Technologies Inc.
Alan Hecht, G d r e Technologies I n c .

A Software Development Envfronment
U t i l i z i n g PAMELA

R . L . Flick, Westinghouse D&EC
R . W . Connel ly , Westinghouse D&EC

The B e n e f i t s of Bottom-Up Design
Gregory McFarland, Grumman Corpora t i o n ,
Data Systems Divis ion

The Ada Objec t -Or i en ted Approach
Steve Nies, Harris Government S y ~ t - m s Div i s ion
Ray Robfnson, Harris Government Systems Div i s ion

Towards a General Object-Orlenterl Software
Development Me thodology

Ed Selrlewitz , Coddard Space F l i g h t Center
Mike S t a r k , Coddnrd Space F l i g h t Center

SESSION D . 5 - CAIS PANEL
Cha l r : Ed Chevers , NASA Johnson Space Center

D.4.2.1

D.4 .3 . 1

D . 4 . 4 . 1

D . 4 . 5 . 1

D.1.6. 1

D . 5 . 1

i x

- . -. . - I _. . . . - -

TABLE OF CONTENTS (con t inued)

Even t /Pa pe r

SESSION E.l - REUSABILITY

Page Number

Some Design C o n s t r a i n t s Required f o r t h e Assembly
o f Software Components: The Inco rpora t ion of
Atomic A b s t r a c t Types i n t o Gener i ca l ly S t r u c t u r e d
A b s t r a c t Types

Char l e s S . Johnson, P r o d u c t i v i t y Research Corporat ion

C e r t i f i c a t i o n of Ada P a r t s f o r Reuse
G.A. Hansen, General Dynamics, Data Systems Div i s ion

.Development of a n Ada Package L ib ra ry
Bruce Burton, I n t e r m e t r i c s , Inc.
Michael Broido, I n t e r m e t r i c s , Inc .

A Design f o r a Reusable Ada L ib ra ry
John D. L i t k e , Grumman Data Systems Corporat ion

Designtng Generics for Compa t ib i l i t y and R e u s a b i l i t y
D. Douglas Smith, Dalmo Vic to r Singer

Cons ide ra t ions f o r t he Design of Ada Reusable Packages
Norman S . Nise, Rockwell I n t e r n a t i o n a l Corporat ion
Chuck G i f f i n , Rockwell I n t e r n a t i o n a l Corpora t i o n

SESSION E.2 - MISSION C R I T I C A L ISSUES

Transpa ren t Ada Rendezvous i n a F a u l t T o l e r a n t
D i s t r i bu ted Sys tem

Roger Racine, The Charles S t a r k Draper Lahora t o r y

Lessons Learned i n Creat ing Spacec ra f t Computer
Sys t ems : Impl fca t fons f o r Using Ada t o r the
Space S t a t i on

James E . Tomayko, Software Engineering I n s t i t u t e

Using Ada -- The Deeper Challenges
David h . Feinherg, Boeing Aerospace Company

E. 1.1.1

E. 1.2.1

E. 1.3.1

E . 1.4.1

E.1.5.1

E.1.6.1

E.2.1.1

E.2.2.1

E . 2 . 3 . 1

An Ada Implementation f o r Fau l t De tec t ion ,
I s o l a t i o n and Reconfigurat ion Using a
Faul t-Toleran t Processor E.2.4.1

Gregory L . Grecley, The Charles S t a r k Draper Laboratory

Vec to r , Ma t r ix , Q u a t e r i o n , Array, Ampersand Ari thmetic
Packages: A I 1 HAT./S Funct tons, Implemented i n Ada E.2.5. I

, I l l an Klrirnpp, . J e t PropiilsLon l ~ b o r a t o r y

X

TABLE OF CONTENTS (con t inued)

Even t /Paper

Generic Ada Code i n t h e NASA Space S t a t i o n Command,
Con t ro l , and Communications Environment

Donald P. McDougall, Veda Inc.
D r . Thomas E. Vollman, Veda Inc.

SESSION E.3 - R U N TIME I1

Real-Time Ada
P a t Rogers, Un ive r s i ty of Hous ton-Clear Lake
Charles W. HcKay, Un ive r s i ty of Houston-Clear Lake

RT B U I L D : An Expert Programmer for Implementing
a n 2 S imula t ing Ada Real-Time Software

Larry Lehman, Steve Houtchens, Hassoud ‘Navab,
a n d S u n i l C. Shah, I n t e g r a t e d Systems Inc .

A M i l l t i compu t e r and Rea].-Time Ada Environment
Ray Naeini , F l e x i b l e Computer Corporat ion

Run-Time Implemen t a t i o n Issues for Real-Time
Embedded Ada

Ruth Haule, Boeing Aerospace Company

I n t e r e s t i n g Viewpoints t o Those Who W i l l
P u t Ada I n t o P r a c t i c e

Arne Car l s son , Saab Space AB

Comparing Host and Ta rge t Environments for
D i s tri hu t e d Ada Programs

Mark C. Paulk, S y s t e m Development Corporat ion

SESSION E.4 - EXPERT SYSTEMS

An Evaluat ion of Ada €or A I App l i ca t ions
David Wallace, I n t e r m e t r i c s , Inc.

Page Number

E.2.6.1

E.3.1.1

E . 3 . 2 . 1

E. 3. 3. 1

E . 3 . 4 . 1

E . 3 . 5 . 1

E . 3 . 6 . 1

E . 4 . 1 . 1

I n t e l l i g e n t User I n t e r f a c e Concept of Space S t a t i o n E . 4 . 7 , . 1
Kathleen G i l r o y , Software P r o d u c t i v i t y S o l u t i o n s , I n c .

An Ada In fe rence Engine for Expert Systems
David B . LaVallee, Ford Aerospace

E . 4 . 3 . 1

An Approach t o Know;cdge S t r u c t u r i n g f o r Advanced
Phases o f the Technical and Management Lnformation
S y s tem E . 4 . 4 . 1

t i . ‘ f ’ . Goranson, American Systems Engineering Corpora tion

x i

TABLE OF CONTENTS (con t inued)

Even t / Pa pe r Page Number

Ada and Knowledge-Based Systems:
Combining t h e Best of Both Worlds

A Pro to type
E.4. 5.1

David C. Rauer, HcDonnell-Douglas Aa t ronau t f c s Company

Using Ada t o Implement the Operarfons Management
System as a Community of Experts

SESSION p.1 - AVIONICS/SIMULATION

Applying Ada t o Beech S t a r s h i p Avionics
David Funk, Rockvell I n t e r n a t i o n a l

S imula t ion of the Space S t a t i o n Information
Sys tem i n Ada

James R . S p i e g e l , Ford Aerospace

Designing w i t h Ada f o r S a t e l l i t e Simulation:
A Case Study

V i c t o r E . Church, Compu t e r Sciences Corpora t i o n

Modeling, S imula t ion , and Control f o r a
Cryogenic F lu id Management F a c i l i t y

Max Turner , Un ive r s i ty o f Houston-Clear Lake
Paul Van Buskirk, Lockheed

SESSION F.2 - W E I Z M A N N INSTITUTE RESEARCH REPORT

I n t e r t a s k Communication i n Ada: A Bus
I n t e r f a c e S o l u t i o n

F l a v i a Roscmberg, Smil Ruhman, A . h u e l i ,
Weizmann I n s t i t u t e Rehovoi, I s r a e l

SESSION F.3 - LANGUAGE ISSUES

Veri f y i n g Performance Requirements
Dr. Joe Cross, Sperry Corporat ion

T h e Computer izat ion o f Programming Ada -
Lessons Learned

Dennis S t r u b l e , Zn te rme t r i c s , Tnc.

A Small Evaluat ion Suite f o r Ada Compilers
Randy Wlldc, Century Computtng
Daniel Roy, Century Computing

Paranofa - Ada: A Dinenost ic Program t o
Eva 1 ua t e Ada FI oa t i ng- Po 1 n t Ar i thme t i c

Chri . ; Iljerrnstad, PackaEc-Architects, I n c .

E.4.6.1

F . l . 1 . 1

F.1.2.1

F.1.3.1

F.1.4.1

F.2.1

F.3.1.1

F. 3 . 2 . !

F. 3.3.1

F. 3 . 4 . 1

xi 1

- - .. _,. ,

TABLE OF CONTENTS (cont inued)

Event /Paper

I n t e r f a c i n g Ado and Other Languages
P a u l B a f f e s , Intermetrics, Inc.
Br ian West, I n t e r m e t r f c s , Inc.

Defer red Binding i n t h e Ada Software
Suppor t Envi ronmen t

P a u l Brown, Unive r s i ty o f Houston-Clear Lake

Sof tware I s s u e s Involved i n Code Trans l a t i o n
of C t o Ada

Robert Hoof, Un ive r s i ty of Houston-Clear Lake
Joseph Giarra t aao , Univers i t y o f Hous ton-Clear Lake

SESSION F.4 - LIFE CYCLE ISSUES 111

Rehos t ing and Re ta rge t ing a n Ada Compiler
A Design Study

Ray Robinson, Hsrri s Government Sys tems Sec to r

Cons ide ra t ions f o r t he Task Management
Funct ion of t he NASA Space S t a t i o n F l i p h t
Elements ' Opera t ing System Software

Lar ry F i s h t a h l e r , Compu te r Sc i ence s Corpora t i on

The TAVERNS Emulator: An Ada Simula t ion of t h e
Space S t a t i o n Data Communications Network and
Software Development Environment

Dr. Norman R . Howes , Lockheed

Paec Number

F . 3 . 5 . 1

F . 3 . 6 . 1

F . 3 . 7 . 1

F . 4 . 1 . 1

F . 4 . 2 . I

F . 4 . 3 . 1

A Study of t h e Use of Abs t r ac t Types f o r t h e
Represeri ta t f o n o f E n g i n e e r h g Unf ts i n
I n t e g r a t i o n and T e s t App l i ca t ions F . 4 . A . 1

Charles S . Johnson, P r o d u c t i v i t y Research Corpora t ion

Rdesfgn:
Design C a p a b i l i t i e s i n Ada

A Data Dic t ionary w i t h R e l a t i o n a l Database

Anthony Lekkos, IJnlversf t y of Hoiis ton-Clear Lake
Ting-yin Teresa Kwok, Un ive r s i ty o f Houston-Clear Lake

F . 4 . 5 . 1

Ah! Help: A Genera l lzed On-Line Help F a c i l i t y F . 4 . 6 . 1
Anthony J x k k o s , Wong Nal Y u , Charmaine Mantooth,
and Alex Soulahakil, I h i v e r s i t y of I louston-Clear Lake

SESSION F. 5 - KEIJSARILITY PANEL
ChaIr : Delores S . Moorehead, I n t e r m e t r i c s , I n c .

F. 5 . 1

F . 6 . 1 SESSION F.IJ - DISTKIBIJTED A D A PANEL
Chal r : Roger Knclnr , The C h a r l e s S t a r k Draper Labora tory

x i i i

ABLE OF CONTENTS (cont inued)

Evan t /Pape r

SESSION C . 1 -. SOFTWARE TOOLS

Page Number

App l i ca t ion and Systems Software i n Ada:
Development Experiences

Pamela Crowley, Computer Represen ta t ive , h c .

Software Development: The PRODOC En*.:ironment
and Associa t ed Me thodology

Alice B. Scandura, Scandura I n t e l l i g e n t Systems

A Database Management C a p a b i l i t y f o r Ada
Stephen Fox, Computer Corporat ion of America
Arvola Chan, Computer Corporat ion of America

SESSION C.L - LANGU4GE ISSUES I1

A Study o f Issuea i n Extending the MAPSE
Robert Cliaret t e , SofTech, Inc .
David A u t y , !:ofTech, Inc .

Ada S t r u c t u r e Desizn Language 0 L u f t i Cheilraw; . Computer Science Corporation

Extendinz Ada f o r A r t i f i c i a l I n t e l l i g e n c e
Appl i ca t i o n s

G i l b e r t Marlowe, Rockwel.1 (RSOC)

SESSION G.3 - RUN TIME ISSUES 111

Space S t a t i o n Ada Runttme Support f o r
Nested Atomic Actions

Edward J . Monteiro, McDonnell-Douglas As t ronau t i c s Co

Reusable Software P a r t s on a Semi-Abstract
Data Type

Sandy Cohen and Dan McNfcol, McDonnell-Douglas
As t ronau t f c s Co.

Informal r e p o r t by the ARTEWG
Mike Kamrad, Honeywell Systems and Research Center

x f v

G.l.l.l

G.1.2.1

C.1.3.1

G.2.1.1

G.2.2.1

G. 2.3.1

G . 3.1.1

G.3.2.1

G.3.3.1

TABLE OF CONTENTS (con t inued)

Even t/Pape r

SESSION G . 4 - WMPUTERS FOR ADA (In fo rma l P r e s e n t a t i o n s)

Language Di rec t ed Machfne
Lawrence Greenspan, Sanders Assoc ia t e s
Ronald S i n g l e t a r y , Sanders Assoc ia t e s

Ada P o r t t o t he ELXSI System
Ralph Merkle, ELXSI

Message Pass ing Concurrent P rocess ing Archi t e c t u r e
Tony Anderson, I n t e l S c i e n t i f i c Computers

SESSION C . 5 - DIALOG WITH THE NASA SOFTWARE WORKING GROUP
Chair: Robert Nelson, Goddard SFC

Page Number

G . 4 . 1

G . 5 . 1

xv

SESSION A OPENING PLENARY SESSION
Nassau Bay Hilton Hotel
Monday Morning 9:00 to 12:OO

Welcome to the Conference
Jack Garman, Director
Mission Support
NASA Lyndon B. Johnson Space Center

Jess Moore, Director
NASA Lyndon B. Johnson Space Center

Dr. E. T. Dickerson, Dean
Sciences and Technologies

Welcome to the Johnson Space Center

Welcome to the University of Houston-Clear Lake

Welcome by the NASA Space Station Program Office

Ada Joint Program Office

Space Station Computing

Virginia Castor, Director

Ada International
Commission of European Countries
Rudy Mei er is being represented by
Pierre V 1 elcanet
Informatique International
Toulouse, France

NASA/Johnson Space Center International Office
William Rice

MONDAY EVENING SESSION
University of Houston-Clear Lake Bayou Building

Reception
Keynote Speech - Software Engineering

Dr. John Manley, Director
Software Engineering Institute
Carnegie Mellon University
Pittrburg, PA

A. 1

.. . -.

N 8 9 - 1 6 2 8 0 c 73

DEBUGGING TASKED ADA PROGRAMS

R.G. Fainter
Virginia Tech,

and
T.E. Lindquist

Arizona State University

Abstract
The applications for which Ada was developed require distributed implementations of thc

language and extensive use of tasking facilities. Debugging and testing technology as i t applies IO

parallel features of languages currently falls short of needs. Thus, the development of cnibeddcd
systems using Ada poses special challenges to the software engineer. Techniques for distriburlng
Ada programs, support for simulating distributed target machines, testing facilities for taskcd
programs, and debugging support applicable to simulated and to real targets all need t o bc

addressed. This paper presents a technique for debugging Ada programs that use tasking and i t
describes a debugger, called AdaTAD, to support the technique. The debugging techniqiic. IS
presented together with the user interface to AdaTAD. The component of AdaTAD that monitors
and controls communication among tasks has been designed in Ada and is presented through ; i n

example with a \imple tasked program.

0
3. I. 1 .

1. INTRODUCTION

Because of the distributed nature of the Space Station and its unmanned platforms, software
that the Space Station uses must be highly distributed. This implies, therefore, that the task will be
used extensively in Space Station software. Because of the difficulties associated with locating
errors in tasked programs and because of the cost of programming errors in Space Station
software, tools to aid in the production of correct programs must be developed. Such a tool is
currently under development and is described in this paper.

One view of program testing [I] indicates that a program has been tested when every
statement in the program has been executed at least once and every possible outcome of each
program predicate has occurred at least once. Considerable literature addressing techniques for
testing software reflects a view of testing that is consistent with this definition. Although this

definition does not naturally extent to tasked programs, it is indicative of the view that te+ting
occurs late in software development and is oriented toward validation.

In contrast, debuggers have traditionally had utility in earlier software development acti\.itic's.
Accordingly, debuggers are used as automated support for locating errors and determining what i \

needed to correct errors. Ideally, testing is used to identify the presence of errors and debuggsrs to

support location and correction. When tasking facilities are included in a language, however. t h ~ f

software designer is left without good testing techniques, and debugging must enter into the'

process of identifying the existence of errors.
Helmbold [2] suggests that "Debuggers for parallel programs have to be more than passi\s

information gatherers--they should automatically detect errors". When tasking errors dirrcti!,
depend on the scmantics of the language, a debugger is able to actively aid in detecting errors.
More commonly, errors are also dependent on the specific logic of task interaction and the U S C o f

the 1anguage.To take an active role in identifying this more complex type of errors, the debuggc1.
must include facilities to analyze the logic of the program. Helmbold distinguishes types of tasking

errors as "Task Sequencing Errors" and "Deadness". AdaTAD provides task information t h a t in;i!'

be used 10 detect either type of tasking errors, although it does not actively detect errors.
AdaTAD is a debugger whose capabilities are specific to the problems of conclllyc'nl

prol;rarns. The name AdaTAD is an acronym for Ada Task Debugger. Most debuggers allow tilt.

user to tiace the execuiion of a program, but the proyam remains under control of the oper;i[ir\s
system. Ada'I'AII differs from other debuggers by exxis ing direct control over the execution of ;I

Debugging Tasks with AdaTAD B.1, I .2

I

program's tasks. The user i s able to specify which tasks run when, at what rate and for how long.
Of course, to emulate morc closely the environment in which a program is to execute, the user may
defer these decisions to the runtime system, and simply monitor task synchronization and
communication. AdaTAD combines typical debugging facilities with others specific to supponing
the Ada constructs for rendezvous.

Space Station software may be configured in many different ways. One possible scenLirio
might involve an Ada program with tasks running on an Earth-based computer, on one or more
computers aboard the main station and on computers on one or more unmanned platfnrmA.
AdaTAD has the capability to allow the software engineer to debug such a program in at least o

different ways, Firstly, the software engineer may construct, solely on ground based cornputcr$,
an environment similar to that which exists on the Space Station for debugging purpnws
Secondly, because AdaTAD itself may be distributed, the program may be run under AdaTAI) i n
the actual Space Station environment. This allows the software engineer a great deal of llcxibl!lt!
in exercising the program under a variety of conditions.

A method for debugging tasked Ada programs and AdaTAD are presented jointly I n i111\

paper. Our approach to task debugging centers on removing task errors from three S L I C C C \ \ I 1 c

levels of consideration. Errors within tasks, which are principally independent of other [asks. ;ire

first addressed. Next, the communication and synchronization structure among tasks is nddrs\\cd.
and finally, any application specific concerns are addressed. AdaTAD, as i t relates io thcse IC.\ c l \ .
is discussed in the following three sections together with a discussion of our a p p ~ r ~ . l l to

debugging. A subsequent section addresses the design of AdaTAD. Ada is used in ihe dcAlgt1

allow increased effectiveness on multiprocessor applications, and to show how the r .cndc~\ O L I \

constructs can be used to control the execution of tasked Ada programs. An Ada irnpI~r~icnt~i~1011 0 1

AdaTAD would require emitting special code from the compiler for synchronization wiih ~ c 1 . 1 . l ' \ I)

2. LOGIC ERRORS WITIlIN A TASK

The first level of usage for the debugger is to address logic errors within each o f ;I p x y r ; I n i ' h

tasks. These errors are exclusive of intertask communication and synchronization. Rcmn\ lllg
them is synonomous to removing errors detected during un i t testing of software. At this level. \ve

assume that iriteractions with other tasks are correct and examine thc activities of the task iist.If.

Testing and debugging at this stagc considers a piece of software in absence of all elements of its

environment except any procedures or fiinctioiis i t calls. For example, a task may use itifonnarioii

[>chugging Taks with AdaTAD B. l 1.3
ONQIHNCaL PAGE clj
OF KH3R QUALtrV

obtained from other tasks to retrieve and update information in a database. Task logic to perform
operations on the database is considered, at this level, exclusive of synchronization with other
tasks.

AdaTAD facilities are used in conjunction with a testing strategy in which some form of code
analysis may be performed. AdaTAD is designed to aid in executing test cases and in removing
any errors subsequently found.

2.1 User's View of AdaTAD

AdaTAD provides many facilities which are common to source level debuggers in addiiion to
those specific to tasks. After introducing the manner in which AdaTAD includes common
functions, facilities specific to removing logic errors from tasks are presented.

Command Entry

In accordance with the findings of Wixon [3], AdaTAD is designed to use command driven
user input instead of either a menu or iconic input. Commands exist to control the initiation,
configuration, and completion of an AdaTAD session as well as to control the execution of the task
being debugged. Arguments to commands are entered as parameters to the command line itself.
Each task has a keyboard assigned to i t for interactive input. When a task is the ciirrent task Its

keyboard is the physical terminal to which the task has been assigned.

Information Display

Since so much information is made available to the user of AdaTAD, a well engineered
display is critical. We have designed an interface that combines textual and graphical st;ltus
information in a windowing framework. The concept of windowing has recently received much
attention. Windows allow a process to assume that i t has a dedicated output device, independcnt of
whether the window is being viewed. Assignment of screen geography can vary dynamically
under user control to allow variable presentation of information.

The Ada'TAD display consists of a set of task windows and a task interaction status display.
'J'hc user may configure windows on the screen by using the WINDOW DEFINITION
c(.)mmand. Figure I shows a task window and the panes that are included (the task interaction
\t;ittis display is presented in the next section). The panes display information about the ciirrcnt a
Debugging Tasks with Ada'TAD B.l . I .4

execution state of the task, information on designated variables, the source code context and task
output.

AdaTAD control commands manage the appearance of the debugger to the user and perfonn
basic initiation and termination of users programs. The commands include:

EXECUTE --initiate program and enable execution
DEFINE - WINDOW --specify size and location of a window
ZOOM --alter the size of a window
CURRENT - TASK --task to which taskless commands apply
ASSIGN --associate ilo device with a task
TERMINATE --complete the interactive session

Although these commands are not specific to a particular task, they are needed in tailoring :I

specific debugging session for logic errors.

Task Name: Buf-control CE - integer, local, 0
Execution Mode: NORMAL
Breakpoints at: LAB

Execution lnformatioq Ba ta In forma tioq

-> select
when CE > 0

accept INSERT (X : in out ELEMENT) do
CE := CE + 2;

,source Code Co n text Disola Y

Task Outmt A r M

Figure 1. Task Window Format.

Task Execution Information and Control

Debugging Tasks with AdaTAD B.1.1.5

TWO breakpoint facilites are provided for controlling the execution of statements within a
task. Assertion breakpoints may be placed within the a task by adding an ASSERT statement to
the program, and unconditional breakpoints may be associated with any statement of a task. Since
Several allocated tasks may have the same task body, breakpoints cause breaks to occur in all tasks
having the body.

Four modes of task execution are provided to accommodate various debugging techniques.

NORMAL --execute until encountering break
SINGLE STEP --user initiated statement execution
TIMED --execute statements at a given rate
WAIT --suspend task execution

When a task halts execution at a true or unconditional breakpoint, the task is placed in ;i

WAIT mode of execution. Execution is resumed by explicitly placing the task in another execution
mode (NORMAL, SINGLE-STEP, or TIMED).

Examination of Data.

AdaTAD provides facilities for viewing or altering the values of program objects b), thc.

object's source code name. If tasks communicate via shared variables, then AdaTAD aids i n
detecting any attempt to violate the assumptions described in section 9.11 of the Ada Languiigc.
Reference Manual i4J.

2.2 Using AdaTAD to Remove Logic Errors

Testing and debugging the logic errors within tasks can best be done by removing the

influence exerted by the task's environment. The environment must be specified by the test C;IW

and controlled by the debugger. All interactions with other tasks, such as entry calls to the tcstcd

t a j k . accepts of calls made by the tested task, or the use of shared variables are controlled duriris
rcjtttlg and debugging by AdaTAD stub facilities.

'['he test cases for this phase can be characterized as including input, environmcnt and

cxpccred results. When the task is initiated in a state satisfying the input condition and exccutcd I I I

rhc criviroriment specified then i t should exhibit h e expected results. The input condition dcsci.ibt.3

I>c b iig g i ng Tasks w i t h AdaT A D l3.1.1.6

the values of inputs to the task, These may include the initial state of a database used by the task or
of objects obtained through input.

The environment specification must describe the necessary interactions with other tasks to
carry out a test case. When selective waits or conditional or timed entry calls are contained in the
task, the specification indicates specific paths through the constructs relevant to the test. For
example, a test case that is to examine a specific delay alternative must specify i n its environment
section conditions causing that delay to be executed. Further, to obtain the information needed for
a test case it may be necessary to specify which task is to call a specific entry to the tested task.

The anticipated results of executing a test case may not be as simply expressed as an outpu t

condition to be true when execution completes. Tasks may execute indefinitely, may termindtc In

synchronization with others, or may transmit their results to other tasks through entry paramcurs.
Accordingly, the anticipated result may be a condition to be me at a specific point during exzcu[ton
of the task (possibly within an iteration).

1

AdaTAD Support

AdaTAD facilities are used to execute test cases, and debugging can be done in conjunciicm
with testing if needed. Facilities supporting the execution of test cases can be compared to thost of
other debuggers for handling procedure stubs. In AdaTAD, these facilites include commands to:

1. Cause a terminate condition to evaluate true,
2. Provide a dummy entry call to a task with specific

arguments,
3. Cause an entry call to another task to be accepted and

ou t parameters from that call to be set,
4. DeterminiTtically select an alternative in a

nondeterministic selective wait,
5 . Selectively satisfy durations on delay statements.

3. SYNC 11 R 0 N I Z A TI 0 N A hl ON(; T A S KS

After checking the logic within a task, the communication and synchronization among ir141\4

is considered. This step is analogous to integration testing i n that the cooperation arnons p o ~ > i t > I ~ ~
wvcral ta5ks is addressed. Data flow and control flow through tasks of the program are c ~ b ~ \ . c . d

at this level of testing and debugging. From the perspective of a sing!? task, this level chcckh. i n a
rxdimcntary manner, the task's tasking environment. Subtle timiq interactions and infcwctioiis
with thc operating environment are left to the final lcvel of citG;' ~ g .

Ilzbugging Tasks with AdaTAD

The scenario for testing and debugging follows the same approach as with task logic. Test
cases rn identified using source code analysis. Test cases are run using AdaTAD support, and
errors are located and removed using AdaTAD debugging facilities. Test cases focus on task
interaction. Input conditions and expected results are included, but no specific information
describing task execution constraints is included.

3.1 Task Interaction Status

AdaTAD's Task Interaction Status window depicts the state of rendezvous and consequenrly
is particularly useful for synchronization testing. Within the window a graph is used to represent
tasks of the program and relationships between tasks. Each task has a corresponding node in the
graph, and relationships such as "depends on" and "is in rendezvous with" are depicted by
directed edges from one task to another. Figure 2 shows a hypothetical program unit, called TI, a t
some point of execution, and Figure 3 is the legend for the task status area. T1 ha5 four
subordinate tasks, T2, T3, T4 and 1'5. Each of these subordinates has an underlying task type;
A2 for T2, TS and A3 for T3, T4. Arcs with solid arrow heads indicate the dependent relation
among tasks. Thus in this example, T1 has caused initiation of T2 and TS. Rendezvous and
communication status is conveyed through double-line arcs. The arc from T2 to T5, with shaded
lines, indicates that T2 is waiting at a r unaccepted entry call to TS's entry E l . E l has a single
input (IN) parameter, and for this call A is the argument.

e

Debugging 'Tasks with AdaTAD ORIGINAL PAGE ?S
OF ?OOR QUALIW

B.1, i .8

Task I n t e r a c t i on Status W i n do w

The large shaded arrowheads (without bodies) pointing at T5 indicate the task will rioi hc
immediately accepting the call to E l . T5 is waiting at a selective-wait with three opcn ; I L ~ C ~ L - ~ I S

(1 2 , E3, E4). The large solid arc from ’1‘3 to T4 indicates that these two tasks are currenil!, in

rcndezvous. ‘1’3 is the calling task and 1’4 is the accepting task, as indicated by the arrow-hc~d.
For entry E5 the argument is B, which is an IN OUT parameter.

Dcbugging Tasks with AdaTAD
OJYQINAf PAS€

QllALI’Fy

T 2 Task dependence -- T2 depends on T1

Task name [and its type]

"2 T 1 has queued a call to T2.E1(A)

E l I , > T 2 T2 has an open accept for El (P)
+A+

T1 T 2 T1 and T2 are in rendezvous at E l (A)

Shadings for Execution Modes

Normal Execution 0
Waiting at statement S 1 At S 1 in Delay

Throttled n 0 s e c l s t m t
At S 1 after Single Step

Legend
Figure 3. Legend for the task interaction status display

Thc main program unit , TI, is currently in a WAIT state of execution, as indicated by ~ l w
\hided task node for T I . The small s in the lower right of the task node indicates the t;rsk is

a Debugging 'Tasks with AdaTAD B.1. I ,10

waiting because it was suspended.

3.2 Execution Control For Checking Interactions

The displays generated by AdaTAD for checking task interactions are the same as those for
logic checking within a task, but the capabilities available to the user differ. When checking task
interactions, AdaTAD does not allow the user to:

1. Provide a dummy entry call to another task, or
2. Provide a dummy accept of an outstanding entry call.

Additional facilites are provided to specifically aid in debugging task interactions. 7 ' 1 ~ c . s ~

include:

1. Break at rendezvous beginningkompletion,
2. Examine the calling queue for an entry,
3. Reorder the calling queue for an entry
4. Examine/alter arguments to an entry call.

Rendezvous breakpoint. provide a means for control to return to the user at the bouridariv\ 0 1

a rendezvous.
assertions, arguments, or results to determine correct communication between tasks. Rendszwuh
breakpoints may be associated with either pairs of tasks or with entries within a task. I n C)IIC'
situation, the user may be interested in examining communication between tasks T1 and T2 c a ~ h
time they rendezvous, independ of the entry at which rendezvous occurs. In another situation, a

user may need to know parameter information each time that 2 specific entry within a task in c , r l ld .
independent of what task is calling.

When both tasks reach the synchronization point, the user may need to ex'i ' I l l I ne

4. A P P L I C A T I O N SPECIFIC USES O F A D A T A D

The final stage of' debugging considers the operating environment in which the tasks I ~ I U ~ I

C X C C U ~ ~ . For a n embedded system, thir may include operating within a set of tieterogcncous
processors. each with different resourceh and capabilities. Testing arid debugging at this levcl is

Dcbugging Tasks with AdaTAD B.l . \ . I 1

often accomplished with a simulation of the operating environment. While specific tools are
necessary to support this activity, AdaTAD provides facilities that are useful in a general manner to
the problem of addressing the operating environment.

The problems that may arise in this phase of testing include timing inconsisrewies among
tasks, space requirements of a task, or resource contention caused by task interaction. Device
interactions for special purpose input or output may be one cause. Another cause may be
constraints imposed on the program by task distribution or the interaction between the task
scheduling strategy and the operating environment.

AdaTAD provides facilities slat allow the user to monitor program elements that will reveal
these environment related problems. Ultimately, we recognize that the program under observation
may to some extent be perturbed by the debugger. Nonetheless, a certain amount of debugging can
be useful in this phase. To a large degree, testing technology is not appropriate for revealing
application specific errors. This is an area in which ad hoc stress testing has been most
successfully applied.

The capahilities that support this aspect of testing include:
1. Call Queue Display,
2. Entiy Call Frequency,
3. Accept Entry Frequency,
5 . Statement Execution Frequency,
6. Object Update Frequency.

-.le user can request that certain entry call queues be displayed automatically when modified.
This provides a monitoring ability for a service rendezvous that is used by several tasks. The
frequency displays allow the user to selectively obtain information that will show the contention
points in a program. Entry ca!l frequency may be obtained in two forms, entry call by any task and
entry call by a named task. Statement and Object frequency information is useful in determining tlie
dynamic space requirements of a task. One can observe executions of allocator statements or
updates to objects detailing the size of dynamic structures. Although these facilities do not directly
support monitoring interdctions with tlie external environment, often internal objects or statements
reflect their status.

5. ‘IIIE DFSIGN OF ADAI’AD
As with any debugger, AdaTAD requires specific modifications to the compiler and linker.

To allow the debugger itself to be designed and implemented in Ada, source code changes are made
to provide synchroniution through AdaTAD entries. AdaTAD is, itself, a set of Ada tasks. There

Debugging Tasks with AdaTAD B.l. 1.1 2

are four major cooperating tasks including:

1. AdaTAD Coordinator,
2. Data Base Monitor,
3. Command Processor, and
4. 'Terminal Communicator.

There are also two arrays of tasks, including:

1. Logical Processor Tasks and
2. Terminal Drivers.

Additionally, there is a task to handle inpuuoutput between the user's program and
non-terminal input/outyut devices. Figure 4 is a diagram of the overall structure of AdaTAD.

AdaTAD tasks communicate via the rendezvous and a shared variable. The data base store<
execution information about the user's tasks. AdaTAD effectively makes each user task pan ot a
logical processor task, which controls its exeuction. '1 ne terminal communicator is responsible for
receiving user commands and updating k .k displays. The data base monitor provides operations
that both synchronize access to the data and perform data storage and retrieval functions. The
coordinator mediates communication among logical processors whose user tasks art '

synchronizing. The coordinator is also responsible for directing parsed user commands to the
appropriate logical processor.

Debugging Tasks with AdaTAD 6.1.1 .13

Term I nal
D r Ive ts

TDO-TDn

Data Base
Monitnr

Command
Processor

...

Device Driver
for Other
Devlces

AdaTAD
Coordinator Task

0
LPO . . . LPn
~

Logical Processor
Tasks - LP1-LPn

Figure 4. Task structure of AdaTAD.

5.1
Logical processors are the most complex tasks in AdaTAD, iscause they monitor and control

the synchronization among user tasks. Synchronization with othzr AdaTAD tasks is uscd to
communicate the current state of execution to the data base maintained by the Coordinator. Logical
processors have four entries for receiving input from the command interpreter, for servicing
rendezvous requests from user tasks, for notifying rendezvous completion from servicing tasks.
and for notifying task termination from other logical processors. Three tasks are defined w i t h i n

Design of the Logical Processors

Debugging Tasks with AdaTAD 6.1 . I .14

each Logical Processor. The EXECUTOR task directly controls environment for the user task, the
TRANSMITTER task serves as a funnel for messages to the coordinator, and the
EXECUTION-AREA-MONITOR maintains the variables which reflect the current execution state
of the user task. Although the presence of three tasks complicates the Logical Processor, it allows
for maximal parallelism in the execution of the Logical Processor, and it minimizes the time spent
by the user task in synchronization with AdaTAD.

8

Receive-User - Command

Through this entry, the logical processor is called by the coordinator when a user command
is to be executed by the logical processor. A case statement within this entry selects the proper
code to implement the command. With only two exceptions, the implementation of the command5
at this level involve setting values in the execution data base. For example, if the user want, to
change the execution state of a task, the command is channeled to the appropriate logical procc\m
and the execution state variable is changed.

Receive - Rendezvous-Completion.

When a rendezvous between two user tasks completes, the calling task must be rrlrd5r.d : o i

further execution. To do this, the AdaTAD coordinator calls Receive Rendezvous-Requr5t T1:c
call indicates that a rendezvous requested by the task running on the logical processor lids hccn
completed. The entry updates the local data base so that the user task can continue executm \n!
arguments which were changed by the rendezvous exist in the argument list and are copied ro the
appropriate area.

-

The Executor Task

This task directly controls execution of the user's task. The compilation system modil'ic\ i l w

user's task to physically nest i t within the Executor. The Executor has one entry which is c.;lllc*d

when another user task has issurd an entry call to this task. Tne call is fowarded to the Eseciiror

by the logical processor's Receive-Rendezvous - Request entry when the coordinator sends an cnt1-y

c;rll. The compilation system converts rendezvous code into procedures that may be call td to

pcrform the rendezvous code. Thus, when the user task is ready to accept the call, the appropriate
procedure is called.

Dcbugging Tasks with AdaTAD B.l,I .15

Transmitter Task

The Transmitter sends messages to the AdaTAD coordinator. It is called by the user's task to
request an inputloutput service or to inform the coordinator that a rendezvous has begun or
completed. Transmitter is called by the execution area monitor to send the current state of the data
base to the coordinator.

Execution Area Monitor Task

Since the execution data base is a shared variable that must be accessed by the Executor, the
Transmitter and the Logical Processor itself, synchronization to the information is provided by the
Execution-Area - Monitor. Tasks requiring information from the data base get the information by
making an entry call to the monitor. The task services the following entries.

Sing step-rel: Called by the logical processor after the coordinator has signaled
txat the user has pressed a key to cause execution of the next statement in single
step mode. The entry enables execution of the next statement.

Set-bk-state: Called by the Logical Processor to enable or disable breakpoint
checking.

Set ex-md: Called by the Logical Processor whenever the execution mode is to
-be changed.

Set-ex-rt: Called by the Logical Processor to set the rate for timed execution.
Set-timed: Called by the Logical Processor to enter timed execution mode.
Examine-exe:

When there are no outstanding entry calls to the monitor, the current execution mode is
determined and the appropriate action is taken. If the execution mode is TIMED, the monitor
determines whether it is time to execute the next statement.

Called by the statement prologue to see whether statement
execubon is enabled.

5.2 The Coordinator Task

The AdaTAD coordinator mediates communication among AdaTAD tasks. When user t a A h

rendezvous, the coordinator handles communication among their Logical Processors. This
mediation occurs when a rendezvous is requested, when a rendezvous completes and whcn a
rendezvous begins. The Coordinator also mediates inputloutput requests for user tasks. To allow
all appropriate information regarding the execution status of tasks, all communication with the
uiidcrlying operating system must be recorded. This is done when a user's task requests service
irnd when control returns from the operating system facility. Two further functions of the

Debugging Tasks with AdaTAD B.l.l .16

Coordinator are to dispatch AdaTAD user commands to the appropriate Logical Processor and to

C O l k c t status information for data base modifications. The coordinator interactively accepts entry
C d l S to its entries in the order in which they arrive. We now describe the Coordinator in terms of
its entries.

Rendezvous-request,

When one user task requests a rendezvous with another, the requesting task's Logical
Processor makes a call to this entry of the Coordinator to initiate the rendezvous. The coordinator,
in executing the call, looks up the Logical Processor for the called task. The name of the called task
is taken from a descriptor list which also includes parameters for the call. Before making an enuy
call to the Logical Processor of the called task, Coordinator sets an indicator to show that the calling
task is awaiting synchronization.

Ren d ezvous- beg i n.

When a rendezvous begins, the called task calls this entry with the names of the I ~ O

synchronized tasks. The entry updates the synchronization information for the two tasks. I t clc.,ir\

the waiting indicator, sets the is-synchronized indicator and records the names of the c.il1r.d

and calling tasks in the synchronization data base.

Rendezvous - completion.

When the called task completes its rendezvous code, its logical procesor calls t h 1 b cnir!
This occurs when the servicing task either terminates or encounters the end of the synchwnl/cd
code of an accept statement. The entry updates the synchronization data base to wt1cL i r h c

. rendezvous has completed. Further, an entry call is made to the logical processor l u n n l n ~ tlx

served task so i t may continue execution. The single parameter for this entry is the name o f tllc i.~\l,

which has been served.

Data - base - update.

Each logical processor has local data that controls the execution of the user's task. When that

data changes, the central data base is periodically informed through calls to this entry by Logical

Debugging Tasks with AdaTAD 6.1 .J . I 7

b e s s o r s . Parameters convey the task name and its execution state. A local procedure, which the
entry uses to perform the update, blocks the data base monitor task from looking at the data base
while doing the update.

5.3 Data Base Monitor Task

The data base monitor is used to implement exclusive modification of the data base and to
drive terminal updates of task status. An AdaTAD task acquires exclusive access to the data base
through the Monitor's Hold and Release entries (p and V). For example, Hold is called by the
Coordinator prior to making data base modifications required by a user command. After
completing the modifications, Release is called.

The current state of the data base is transmitted to the Terminal Communicator task for
display when no other task is modifying the data base. This is accomplished with an else clause on
the selective wait for the Monitor's Hold entry. If no AdaTAD task has queued a call to Hold when
the selective wait is encountered, then the else clause is executed and information is sent to the 0 Terminal Communicator.

5.4 The Command Processor Task

The Command Processor analyzes the user commands. When a command is successfully
parsed, it is dispatched, along with its parameters, to the AdaTAD Coordinator for execution. Even
commands which affect information display are executed by the Coordinator. If a command is
erroneous, nothing is sent to the Coordinator, and an error message is sent back to the Terminal
Communicator. The intern91 procedure Analyte-Command does the lexical and syntactic analj,his
of the command.

Parse is the only entry into the Command Processor. Parse is called by the Terminal
Communicator when unsolicited input occurs on a terminal.

5.5 The Terminal Communicator Task

A task's terminal input and output is controlled by the logical processor, through the
mediation of the Terminal Communicator. The Terminal Communicator also provides the
inlelligence for display of the AdaTAD data base. The Terminal Communicator manages the
windowing capability of AdaTAD. The five entries in this task receive information from the

Ikbugging Tasks with AdaTAD

0
B.l .1.18

WGlNAL PAGE
or POOR QW-W.

Coordinator, the terminals, the Data Base Monitor and the Command Processor

From-Terminal and From-Coordinator

The Terminal Communicator task has two accept statements for the From-Terminal entry.
The first handles unsolicited input from a terminal. Assuming that unsolicited input is a command,
the first accept receives an information string and passes that string along to the Command
Processor. For example, when the user enters the string "set wait", the Terminal Communicator
assumes that this is a command and sends it to the Command Processor.

The From-Coordinator entry is called by the Coordinator when a user task requires input or
output. We call this solicited input or output. The second accept for the From-Terminal entry is
used for input of solicited information. From-Terminal is accepted after accepting the
From-Coordinator entry. These entries are called when a user task has requested terminal input.

From-Command-Processor

This entry is called by the Command Processor when it has detected an error in a user
command. This entry displays the error message on the terminal from which the command was
entered.

0

5.6 The Terminal Drivers

The Terminal Drivers are an array of tasks that handle the transmission of data between rhc

physical termhals and the Terminal Communicator. The Terminal Driver has four entries and o ~ i c
internal task which has no entries.

The 3utput entry is called by the Terminal Communicator to write a string on a terminiil. I t

then c.dls the Output entry in the Terminal Driver. Output accepts the string and wites i t on rhc

device through the appropriate Terminal Driver. The Input entry passes the string and the Ter~iit~i,d
Driver number to the Terminal Communicator.

Te r min a I-wa t c he r

Internal to the Terminal Driver is a task whose sole job is to wait for an input string from rhe

terminal. When a string is received, as indicated by a terminal character, the task makes a n entry

Dcbugging Tasks with AdaTAD B.l. 1.19

call to the terminal driver's input entry, passing the string. The identify entry is called by the
Terminal Communicator as soon as the driver begins execution, to assign the driver a number,
which is used in all communication.

5.7 An Example of Synchronization Among User Tasks

Controlling the synchronization of user tasks is the most complex of actions that AdaTAD
performs. AdaTAD must intervene when a rendezvous request is made, when the rendezvous
begins, and again when the rendezvous ends. To keep track of these interactions, the compiler
converts user entry calls to calls of AdaTAD task entries. The compiler also generates code to
inform AdaTAD when a rendezvous actually starts and when i t completes. In this manner,
AdaTAD can record the status of all user task synchronization. These actions occur whenever a
rendezvous request is made, but they are normally transparent to the user. The following
paragraphs describe what occurs in each case of AdaTAD intervention.

As an example of how AdaTAD controls execution, assume that two tasks (A and B) are
running. Assume that task A wants to make an entry call to task B's entry named El . Since the

example is concerned with synchronization only, we assume that no data are passed during the
rendezvous. Assume further, task A is running on logical processor one and task B is running on
logical processor two.

Rendezvous Request

Task A has an entry call statement of the form B.El. For thk call, the compiler generates
code to produce an empty argument list (alist), which consists only of the head node. This node
names the calling task, the called task and the called entry. The compiler converts the statemeni
I3.El into:

TRANSMITTER.SEND RENDEZVOUS REQUEST(a1ist); - -

The first action that takes place at execution time when task A is ready to make this

rendezvous is that the transmitter is invoked. The transmitter's send-rendezvous request entry
accepts the call and immediately sets task A's execution mode to wait. Then, the transmitter
makes an entry call to the coordinator, passing the argument list along unchanged.

The request for rendezvous arrives at the coordinator's Rendezvous-Request entry. The

-

Dcbugging Tasks with AdaTAD 6.1: 1-20

coordinator looks in the argument list, to get the name of the called task, in this example, 13, and
gets the number of the logical processor that is running the called task. The coordinator then looks
up the called entry name in the task data base. In this example, the entry is E l . The coordinator
uses the number to index the array of tasks which implement the logical processors. Next, the
coordinator makes an entry call to the Receive-Rendezvous - Request entry of the appropriate
logical processor. At this point, the synchronization information on the calling task, A , will bl:
updated to reflect that it is waiting for a rendezvous, and AdaTAD knows that a rendezvous request
has been made and that the calling task is in a wait state for that rendezvous. Further, the user
notices on the display that the calling task has entered a wait state awaiting a rendezvous. The
display also indicates the task being called, the state of the calling task and any other tasks awaiting
rendezvous.

When the Logical Processor accepts the rendezvous request, it passes the argument list to ihc
executor running task B. The Executor receives the request at its Rendezvous entry and extrac!$
the name of the called task and entry from the argument list. The name of the calling task (A) I \

used later to tell the coordinator that the rendezvous is in progress. The name of the entry allows
the executor to request the proper entry into the user's task. If appropriate, the Executor calls thc
procedure written by the compiler for the receiving task. This procedure decodes the argument list

and executes the entry call into the user's task. Assuming that the called task, B, is waiting at the
entry being called, the Executor's entry call is answered immediately and the user's task besiiis
execution.

6

0

Accepting a Rendezvous Request

The first thing that the user task's accept statement for E l does is make an entry c;ill io the
transmitter with the name of the calling task. This entry call is t o [he
Send-Rendezvous-Beginning entry. The entry sets the called task's execution data base to rctlect
that the called task is now running, and then the coordinator is informed that the rendczivus i s

beginning. The coordinator acts on this information by updating its synchronization informJrinli
data base. The user would now see that the rendezvous is in process in the display area. After rllc

user's task indicates tha! the rendezvous has been accepted, AdaTAD does not intervenc. /\ L I W I

observing the synchronized behavior of the tasks would see that they obey thc n ~ l c s ot'
synchronization prescribed by Ada.

When the rendezvous between A and n is complete, the servicing task, D, eiicoiinters a call
to the Transmitter's ,ontry Send_Rendezvous_Complelion. The servicing task remains in a ninning

Debugging Tdhks with AdaTAD 8.1 . I .21
0

. ... - .

state until it reaches a point where it must wait for another rendezvous. The Transmitter sends a
message to the coordinator that the rendezvous is complete. As far as the servicing task's logical
processor is concerned, the rendezvous is now over. However, there is still work for the
coordinator to do. Upon receiving notification of the termination of the rendezvous, the
coordinator updates its synchronization data base to reflect the end of the rendezvous. As far as the
coordinator is concerned, the rendezvous is now over, as indicated by calling
Receive-Rendezvous - Completion in the logical processor running the calling task. When the
calling task's logical processor receives this message, the calling task's execution mode is set to
run so it can proceed.

Wait for Synchronization

If the called task in the above scenario is not waiting at the entry, it would not immediately
inform the coordinator that the rendezvous had begun. Thus,
wait in its data base. The user would be able to see the called

0 calling task waiting.

the coordinator would reflect the
task executing elsewhere and the

6. SUMMARY

The problem of testing and debugging Ada programs that make extensive use of tasking
facilities has been addressed in this paper. We have considered an zyproach to debugging tasks
that is similar to the scenario in which software units are first considered. Following u n i t s ,
interactions among units are addressed. Our approach recommends a three tier approach to

debugging tasked programs. The first tier considers the logic of tasks independent of their
interactions. The second tier addresses interactions among tasks that take place through rendezvous
and synchronized access to shared data. The final tier deals with application specific concerns.
Here, the subtlities of the interactions between a tasked program and its 3perating environrrmt ;ire

considered.
We have presented the design of a debugger suitable for applying this methodology.

AdaTAD , which stands for Ada TAsk Debugger, includes facilities specific to each of thc tiers.

When used in conjunction with a testing methodology, AdaTAD supports the execution of tchi
c a w s and the process of 2rxating and fixing errors uncovered through testing. We have yrcsented
[he user interface to AdaTAD in conjunction with an explanation of the three tiered approach to
deb iiggi n g tasked programs. 0
Debugging Tasks with AdaTAD Bel,! .22

The applications for which Ada is intended require a level of technology that currently
doesn'i exist in today's Ada compilation systems. For embedded real-time systems, a compiler
must support the distribution of an Ada program across a set of possibly hetergeneous processors.
When such compilation systems appear, we will immediately be faced with the challenge of
demonstrating the reliability of Ada software. In addition to modifying existing testing and
debugging methodologies, special purpose tools such as AdaTAD will be required. To east: the
implementability of a system such as AdaTAD, we have designed the bulk of the system in Ada

While an Ada design certainly compromises execution efficiency, I t also eases implementai~cms
The final section of this paper has presented the Ada design of AdaTAD together with an example
of how synchronization can be controlled and monitored using Ada primitives.

7. REFERENCES

1. Miller, E.; et.al. Program Testing, JEEE Compum, Vol. 11 , No. 4, April 1978 p p
10-12.

2. Helmbold and Luckham, "Debugging Ada Tasking Programs," E E So ftware:, h.l.ir.cI1

1985.

3. Whiteside, J., Jones, S., Levy, P. and Wixon, D. "Usri Performance with Cornniand.
Menu, and Iconic Interfaces," in Proc. CHI '85 H m a c t o rs in . ComDuter Sv S l P m s . (sa11

Francisco, April 14-18, 1985), ACM, New York, pp. 185-191.

Debugging Tasks with AdaTAD B.l i .23

The Goals of Unit T e s t i n g :

Software Unit Testing in an Ada Environment

Glenn W ?.mock
PRIOR Data Sciences

htroduction:

PRIOR Data Sciences IS currently developing a validation procedure for the Ada
binding of the Graphical Kernel System (CKS). PRIOR is also producing its own
version of GKS written in Ada. These major software engineering projects will
provide an opportunity for PRIOR to demonstrate a sound approach for software
testing in an Ada environment.

PRIOR’s GKS/Ada validation capability will be a collection of test programs and
da ta , and test management !idelines. ‘These products will be used to assess thc
correctness, completeness, aud efficiency of any GKS/Ada implemen thtion.
GKS/Ada developers will be able to obtain the validation software for the i r o w n
use. PRIOR anticipates tha t this validation software will eventually be taken o v e r
by an independent standards body to provide objective assessments of C;I<S/Ada
implementations, using an approach similar to the validation testing currently
applied to Ada compilers. In the meantime PRIOR will, i f requested, use this vali-
dation software to assess CKS/Ada products. This project will require PRIOR to
offer a well organized, thorough, and .::actical method for high level product test-
ing.

T h e second project, PRIOR’S implementation of GKS using the Ada language, is a
conventional software engineering task. It represents a large body of Ada code and
h a s some interesting testing problems associated with automated testing of graph-
ics routines. Here PRIOR’S normal test practices which include automated regres-
sion testing, independent quality assurance, test configuration management , arid
the application of software quality metrics will be employed.

PRIOR’s software testing rri~thods c>rnphasiw quality enhancenirilt and autom;l tcd
procedures. These general mcthods apply to s d t w a r r written in a n y progr:rrlinlirig
language. Ada makes somv aspccts of t w t i n g casic.r, and iiitrodrtccs ~ 0 1 1 i t ’ t i t . \ \ I OII-

cerns. T h e w issues arc addrcsscd hcalow.

B . 1 . 2 . 1

suite will have to be carefully organized so that i t is both robust, and yet still easy
to use.

Testing of GKS/Ada provides an excellent example for our examination of Ada
unit testing. Comprehensive and sophisticated unit tests are required to test the
complex functionality. The requirements are well defined by the GKS standard,
while the design specifications are covered by the proposed standard Ada binding
for GKS. A unit test plan should test both the GKS requirements, and the
GKS/Ada binding characteristics,

Testing Techniques:

Essentially, the purpose of unit testing is to exerrise the module under test to ver-
ify that it performs correctly without producing undesirable side effects. PRIOR
has developed TESTWARE, a collection of tools which provide a standard metho-
dology to exercise and validate software modules. TESTWARE is used to initialize
the appropriate global data areas and call the module to be tested with the
appropriate input parameters. The returned parameters and results are then
verified.

The use of a tool such as TESTWARE resiilts in a suite of test cases which has
significant value for the full life of the associated software module. An additional
benefit of such a methodology is the ability to measure the degree of test coverage,
to track the progression of testing, and to schedule software projects with greater
accuracy.

0

The basic component of PRIOR'S TESTWARE is the test driver. The test driver
provides the framework necessary to r u n the tests and log the results. For each
test, the necessary initializations of global data and i n p u t parameters a re per-
formed by the test driver. The module under test is called, executes and returns.
The test driver must verify the return parameters and validate the global data.

In the course of execution of the module, some stubs may be necessary to "fezd"
the module with the necessary output parameters. It is often desirable to verify
that the correct stuhs are called arid the appropriate input parameters passed to
them. For these testing activities it woiild br very convenient to have an Ada coiii-

pilation system that treated eve ry call to air rincoriipiled subprograrn as a request
to interact with thca test operator. 'I'hc Ada systc!ni should make known the
pararnetor values p;tssetl i n , ; i r i t l pri i i i t tlic operalor LO sripply valutbs to hc
rc!tiirric:d. Wc arc! ciirrolitly w r i t i n g st.iil! ;oiitirios to do this, bu t it wori1c i 1)tl 1iiore
ctfficiont, to havct t,his c l o i i c ' ; i i i t~~ri i~t i (, ; i l ! ,~ . Ad:i wiiipilxtioii systciiis wit11 this capa-
t),jit,y will bc vory i ~ ~ ~ f i l ' i l l .

template, the test developer uses standard utilities and adds specialized code to
perform the necessary initializations and verifications.

The test driver is actually driven by the test data. Data is required for initializing
the global da ta and specifying the input parameters. Stub data is comprised of
s tub names, expected input parameters, and the required output parameters.
Additional data describes the expected output parameters and specifies expected
changes to globrii data. The separation of data from the test program eliminates
the need to recompile the software when test data must be changed. An unlimited
number of test cases can be defined in a single test data file.

Standard uti!ities are used to provide the translation from data to test case. The
greater the flexibility available in describing test data, the more powerful and easy
to use will be the testing tool. The tester should be able to easily specify
enumerated types, character strings, and floating and fixed point real numbers. A
range or allowable delta must be available for specifying expected output values
such as floating point reals.

A variety of automated test tools such as TESTWARE have been developed for
languages such as Pascal, C, and FORTRAPI. These often test for errors which
will not occur in Ada due to the stropg typing, interface checking and run time
error checking. However, additional testing difficulties arise which relate
specifically to the Ada language. Testing of tasking operations is necessary to
identify deadlock and starvation. Pn;ce.'ures for testing generic packages are
required. Run time performance must also be assesed.

The GKS/Ada validation suite poses some additional problems. GKS output is
often of a form which is most easily validated interactively. As an example, one
test case may cause a green duck to be drawn upside down in thc lower left corner.
An important aspect of effective testing is that the test itself should validate the
results. If the test procedure simply describes the correct display the operator may
not notice i f the green duck actually appears in the lower right corner. It is prcfer-
able to have the test software ask: "What colour is the duck?" (Green). "Is i t
upside down?" (Yes). "1s it in the lover left corner?" (No). It can be seen from t h i s
exhrnple that the task of supplying effective test software is a significant one.

The overall convideration in the design of TESTWARE is that the tester l \ ; \vt> I I I ~ Y
necessary tools to easily crcatt! the appropriate environment for runni r ig t l i e i i t i i t

under test arid to ht! ahlo to verify its actions ;rnd rcsults. A t ttic sari if^ I i n i c l t i t s

m u s t not he rcquired to providc tdioi is xrnoiirits of d x h which a r c not t l i r c n c t I!.
rc!lated to the tcst .

Project Management:

! i f t ~ ~ thv test, portion of a softwaro projwC is not given the attention or impor-
t,;incc i t , dest!rves. 'l'c!sting is ~isti:dly vicbwrd as something like "the process of

ORIGINAL PAGf Is
OF W O R QUALITY

B . 1 . 2 . 3

demonstrating that errors are not present' when actually errors are inherent in
software. When software is tested by the person or group which developed it, with
this attitude, it is not surprising that many errors go undiscovered.

To be successful testing should be approached with the philosophy expressed by
Glenford Meyers. 'Testing is the process of executing a program with the intent of
finding errors'. Testing is really a destructive process. The implementation
schedule should reflect this and allow the necessary time for testing and correc-
tions. The evaluation of test effectiveness s h o J d be based on the number of errors
discovered. To be most effective it is best to have an independent test team.

Significant responsibilities must rest on the test authority. Developing a unit test
for every module in the system is often not appropriate so the test authority must
determine which modules should be tested and in which combination and order.
T h e selection of appropriate test cases is critical to the success of testing.

Testing can be performed in an incremental or non-incremental manner. In the
non-incremental method, all modules are tested seperately, with calls to lower
modules replaced by stubs. When all modules have been tested, they are
integrated and tested as a system. This method allows for greater parallelism in
the unit testing process.

With incremental testing, the previously tested modules are used by the module
under test, when available, instead of stubs. This provides more test coverage as
the earlier modules are more extensively exercised. Also, integration and interface
errors are discovered earlier and are easier and less expensive to correct.

Although top down design is often the preferred method of large system design,
top down implementation and testing are not always preferrable. It is difficult to
use an incremental method of testing if top-down implementation is used, as it
becomes increasingly more difficult to provide the necessary input parameters to
drive the test cases for the lower level modules as they are added. In addition a
large number of stubs a.re required. With bottom up incremental testing, fewer
stubs are necessary and the test driver is directly calling the module under test so
that it is easier to force the test conditions.

Test cases can be generated by studying the internal logic and paths of the rr~odr~lr
(white box techniques) and by studying bouiidary conditions and cornbinat ions of
inpiit classes (black box techniques). Autorriated tools can also be helpful for this.

* . I tic rc!;il (!fJwtivenfw of ;in autoniatcd trxt environiritbnt will lw determined by i t s
dc:g r w o f in tog ral,iori i I I to t t i (8 soft w ;mi d c! v v l o p iiirii t. cn vi ron riirn t. 'I'est iiiod 11 les
tlavc to be associat.cd with thf. apptopr ia t~~ sof twar(. riiotlult~s i l l tht. library. ('0111-

rriarids shoiild be avail;hle to pt:rrriit tho library manager to autornatically retest
appropriate modulos. It is very important to track errors discovered and to have
the ability to generate statistics and status inforniation concerning the test process.

8.1.2.4

Coordination of Test Development:

A number of GKS test routines have already been written by groups in Europe and
in the U.S.A. . PRIOR intends to include these in its test suite, and then extend it
to cover new areas. By making this activity as visible as possible we hope to avoid
any duplication of effort.

.

B. 1.2.5

- 534/ ~ 8 9 - 16282

B.1.3.1

Table of CcntentS

1 Modeling Machine Arithmetic
2 Meling Program Execution
3 Error Magnitude in the W e 1
4 &Val-standard Analysis

4.1 Non-standard Models
4.2 Nan-stadard bdels of the Reals

5 Non-standard Mdels of Execution
6 Specifying Mathematical Programs
7 An Exarrple Verification
8 The Asymptotic Interpretation

1
2
4
5

6
8

0
9
10
13

8.1.3.2

We w i s h to apply formal v e r i f i c a t i o n to program whicfr use real n u h e r
arithmetic operations (hereinafter r e f e r r e d to as mathematical
F o m l verificatim of a program P consis ts of (1) c r e a t i n g a ma e m leal
d e l of P, (2) stating the desired proper t ies of P in a formal l o g i c a l
language, and (3) proving that the mathematical d e l has the desired
wowties of step 2 using a formal proof calculus. If the model f a i t h f u l l y
embodies P, and the proper t ies of s t e p 2 are a correct formalizat ion of the
desired properties of P, the formal v e r i f i c a t i o n provides a high degree of
assurance that P is correct.

EFF' -

There are two p r i n c i p a l d i f f i c u l t i e s i n formally ver i fy ing mthematical
programs:

1. Hcw to model inexac t machine arithmetic operations

2 . HOW to state the desired proper t ies of
the fact
square root program does not compute the exact square root)

mathematical programs i n View of
that such programs i n general deliver inexact r e s u l t s (e.g. a

1 W e l i n g Machine Arithmetic

Our s t a r t i n g assumption is t h a t machine arithmetic operations can be
represented as the ideal real number operations followed by rourding. The
opera t ion of rounding is modeled by a cropping funct ion, CR, f r a n the real
numbers (denoted by E) to E. The range of CR represents the machine real
numbers, sanetimes called the d e l numbers. This w a s t h e approach taken i n
[l] , [21, ard [31 and is m n s i s t e n t with the proposed I= standard for
f l o a t i n g poin t arithmetic [4 1 .

0

We will
"the cmpping funct ion axicms":

assme CR satisfies the following axians, h e r e i n a f t e r r e f e r r e d to as

- Axiom 1: The range of Qi is f i n i t e .

1 .
i n

2.
D.

3 .

Mansfield, R . , A Ccmplete Axiomt iza t ion of m u t e r Arithmetic I to appear
t h e Journal of Mathemtics and CanPuhtiOn

Holm, John, Float ing Point Arithmetic and Program Correctness Proofs, Ph.
t h e s i s , Department of Canputer Science, Cornell Universi ty , August 1980

u t a t i o n s , Realistic Mode1 of Flmt inq-Poin t Canp Brawn, W. S., A Simple but
Cmput i rq Science Technical Report No. 83, Eel1 Laboratories, Apr i l 1981

4 . A Proposed S t a d a r d for Binary Floating Point Arithmetic, Draf t 10.0 of
IEEE Task P754, Dec. 1982 0

13.1.3.3

- Axiom 3: (R (0) = 0

- Axian 4: [x <= y <= 2 & (R(x) = cR(z)l -> a R (x) = CR(y)

The f i r s t axian expresses the f a c t that there are only f i n i t e l y many machine
-1 numbers. The M axian says that the r e s u l t of a rounding opera t ion
(i.e. a machine real nmber) is unaffected by f u r t h e r murdhg. Note that the
second aian impl ies that t h e range of (R and the set of f i x e d po in t s of CR
axe the same. The third axian says that 0 is a f ixed p i n t of CR, i.e. that
0 is a machine real number. The fou r th axian says that i f x and z round to
the s a m nur33er a d y is between x and z then y r o d s 'CD the sam nunber as x
and Z. As usual when stating axioms i n f i r s t order logic t h e r e are implicit
un ive r sa l quant. if iers i n f r o n t of the formulas displayed as Axiorrs 2 through
4.

The cropping funct ion axians are cons i s t en t w i t h the four rounding nodes which
the proposed IEEE Standard would r equ i r e to be supported, namely r o u d i n g to
the nea res t m c h i n e real number, rounding towards 0, rounding towards p lus
i n f i n i t y ard r o u d i n g towards minus They are also consistent w i t h
mumling away f m zero, a d e which is not mentioned i n t h e proposed IEEE
Stardard.

i n f i n i t y .

0 We can d e r i v e sane usefu l oonsequences of the above axians:

1. a is mnotone, i.e. x <= y -> a (x) < = cR(y)

2. There is no rnachine real between x and CR(x).

Note tha t the second s t a t emen t does not imply that there is no machine rea1
that is closer to x than (3R(x). Again, we do not wish to requ i r e t h i s because
the proposed IEEE Standard would requi re o the r rounding mdes than rounding to
the nea res t machine real.

2 Modeling Program Execution

W e mst embed the above ideas about d e l i n g machine arithmetic i n t o a l a r g e r
node1 of program execution. We base cur formal d e l of execution on a simple
inform1 p i c t u r e of program execution. We think of t h e program as executing a
s t e p a t a time. A t each poin t in time, the program (cx the machine it is
running on) is completely described by (1 1 t he "point" i n t h e program w h e r e
c o n t r o l c u r r e n t l y is, a d (2) the values of each of the program va r i ab le s .
The program d e determines the r e l a t i o n s h i p between the va lues of v a r i a b l e s
a d thc p i n t of ccntrol before a given s t e p ard a f t e r t h a t step. We w i l l
assume, for the sake of s impl i c i ty , t h a t a l l va r i ab le s have a def ined va lue
i n i t i a l l y , ht this value w i l l be unspecified by the execut ion d e l . I n

B . 1 . 3 . 4

additicn, we w i l l assume that the r e s u l t of a t tempting to perfom a
o a n p u b t i o n which is undefined (e.g. d i v i s i o n by 0) has a completely
unspecified e f f e c t . Tb use the d e l , it w i l l usua l ly be necessary to Prove
that rn undefined canputations are attempted, and that the values of program
variables are no t referenced before they are assigned to.

b
How do we represent t h e above informal p i c tu re m t h e m t i c a l l y ? We w i l l
r ep resen t "time" by the non-negative in t ege r s (which we w i l l hereinafter refer
to as the natural numbers). The "points" where con t ro l can r e s i d e w i l l be
=presenteZSii$y by a f i n i t e set. The data types of program v a r i a b l e s other
than real number va r i ab le s w i l l be represented by the c o r r e s p r d i n g
mathematical objects, e.g. the data type of in t ege r s w i l l be represented as
the mathematical integers. The real data type w i l l be represented by the
range of CR.

The execut ion of t he program w i l l be represented by a c o l l e c t i o n of func t ions
g iv ing the h i s to ry of the flaw of con t ro l i n the program and the h i s t o r i e s of
the values of t h e program var iab les . Thus, t he re w i l l be a func t ion from time
(i.e. the na tu ra l numbers) i n t o the set of con t ro l p i n t s (which we w i l l
denote by PC), and f o r each program va r i ab le v , a funct ion frcm time i n t o the
data type of v.

The func t ions represent ing histories w i l l be required to s a t i s f y c e r t a i n
carditions derived fran the program. For example, i f X , Y and 2 are in t ege r
program va r i ab le s , FX, FY and FZ the corresponding h i s to ry func t ions , and a t a
certain t i m e t m n t r o l is a t a p rq ram ins t ruc t ion

X : = Y + Z

then the funct ions must s a t i s f y t h e c r t d i t i o n

FX(t + 1) = F Y (t) + FZ(t)

For real var i ab le s , a l l operations are the i d e a l real opera t ions followed by
cropping. For example, if A, B and C are real program va r i ab le s , FA, FB and
Fc t he correspondiq h i s to ry funct ions, 4 a t a c e r t a i n t i m e t cont ro l is a t
a statement

A : = B + C

then the func t ions mst s a t i s f y t h e condi t ion

B.1.3.5

3 Error K w n i t d e i n the We1

The cropping func t ion axians capture c e r t a i n q u a l i t a t i v e properties of CR.
They are not enrugh to do use fu l v e r i f i c a t i o n , however, because they
MthhJabout the s i z e o f the error introduced by CR. For example, the
croppirrg function axim are s a t i s f i e d by the z e m funct icn . Thus, any
Program W h i c h we could v e r i f y using only the cropping func t ion axians would
have to be carrect even when running on a machine whi& used the zero func t ion
as its cropping function. Very few usefu l mathematical p rogram would be
correct i n any sense on such a machine, and thus wq could not be able to
v e r i f y such programs s o l e l y on t h e b a s i s of the cropping func t ion aim. We
need saw additional axians on the s i z e of t he error introduced by CR.

It is not clear, however, w h a t kind of axioms to add. I f we add axioms which
give s p e c i f i c numerical h r d s on t h e s i z e of the error i n a c e r t a i n range,
then any v e r i f i c a t i o n w e do w i l l only apply to machines that meet these
numerical ccndi t ions . For a machine t h a t d i d not meet the corditions, any
v e r i f i c a t i o n done on the b a s i s of the condi t ions would be i n v a l i d , d e s p i t e t h e
f a c t that m y programs might still run c o r r e c t l y on the machine. On the
other hand, scme m c h i n e s which met the conditions would probably a c t u a l l y
meet much mre demadirq conditions. There could be programs which run
o o r r e c t l y on such machines which we cannot prove correct because cur axioms do
not r e f l e c t the high degree of accuracy i n t h e mchine .

One s o l u t i o n to t h i s d i l e m would be to add non-specific numerical b u n d s on
the error. I n o the r wards, add a symbol (s a y , 'le'') and add an axian l i k e ' ' the
percentage error b e t m n x and CR(x) is always less than e." One could then
v e r i f y s ta terrents a b u t the accuracy of mathemt ica l programs i n t e r n of e.
For example, if P were a program to mnpute square rmts, one might t r y to
v e r i f y a staierrrent l i k e "the percentage error between P(x) and the square root
of x is 5*e. If one then wanted a c e r t a i n degree of accuracy fm P, one
could so lve f o r the degree of accuracy i n CR that would be necessary to
achieve the des i r ed accuracy f r an P.

There are s e v e r a l problems with this apprcach. F i r s t of a l l , i t id v q
cos t ly . the problem of
genera t ing and proving statements of t h e kind mentioned above i n a mechanical
proof system is i n t r a c t a b l e i n terms of both the a m u n t of m p u t a t i o n a l mer
and t h e a m u n t of human i n p u t required. Secord, i n some s i t u a t i o n s it f o r c e s
u s to do an analysis t h a t is more d e t a i l e d than necessary. Many errors i n
mathematical programs occur a t a m c h lower l e v e l of numerical oomplexity.
For example, ZBFU!" is a Fortran subroutine f r a n the IMSL l i b r a r y which is
supposed to f i n d a zero of a user-defined func t ion F given a p a i r of endpoints
A d B such that t-he values of F a t A and B are of oppos i te I t does
this by gradual ly roving the endpoints inward, always making sure that the
values of F a t I n the process of
t h e ccmputation, i t genera tes various pairs of real va lues X and Y which it
must test to see i f F(X) and F(Y) are of omsite sign. I t does so by

With present technology i n a u t m t i c theorem proviry,

sign.

the cu r ren t endpoints are of opposite sign.

8.1.3.6
'.d

'* r m l t i p l y i r q F(X) ard F(Y) together and tes t ing whether the r e s u l t is negat ive
or not. This is an inoorrect (not to mention i n e f f i c i e n t) test, s i n c e it j s
possible to have F(X) axld F(Y) be snall n h r s of opposite sign whose product
is
T h i s muses to act as if F (X) and F (Y) are of the same s i g n , g iv ing
i n c o r r e c t r e s u l t s i n sane cases. TNS prograrrrning error is n o t "numerical" i n
M b t e , but is inherent i n the notion of inexact (although "close'')
canputa t ion.

small that underflow causes the machine to ocmpute 0 f o r their prcduct.

b

What we would l ike is a model of machine arithmetic which captures t h e idea of
"close" but inexact computation without r e f e r r i n g to s p e c i f i c numerical
Constants. I n t h e next s e c t i o n w e present such a nodel. The nodel is based
on an alternate approach to real a n a l y s i s called non-standard ana lys i s .

4 Non-standard Analys is

Calculus was developed i n the eighteenth century bjsed on the not ion of
i n f i n i t e s h l s . These w e r e p o s i t i v e e n t i t i e s dx smaller than any a c t u a l
p o s i t i v e real kut not 0. F'ur themre , they obeyed the laws of ordinary real
arithmetic so t ha t one could carry o u t ordinary a l g e b r a i c m i p l a t i o n s l i k e

y = xA2

y + dy = (x + dX1-2

(x + dX1-2 = xA2 + 2 * x * dx + (dX)^2

dy = 2 * x * dx + (dxl-2

dy/dx = 2 * x + dx

I n p a r t i c u l a r the d e r i v a t i v e , dy/dx, was t h e a c t u a l q u o t i e n t of two
inf i n i t e s h l s .
Attempts i n the nineteenth century to j u s t i f y working w i t h these extendo3
reals were not successful and a d i f f e r e n t approach and proof technique i n
terms of limits was adopted instead (the so-mlled e p s i l o n / d e l t a method.)

I n the e a r l y 60's log ic ians shmxxl how to j u s t i f y working w i t h a c t u a l
inf i n i t e s i m a l s using so-called %on-standard rrPdels of t h e reals." These
d e l s are ordered a lgebra ic s t r u c t u r e s which have a l l the same a l g e b r a i c and
ordering p r o p e r t i e s of t h e standard real numbers, and which conta in the
standard rei1 numbers, b u t which also contain a d d i t i o n a l , non-standard
nwnbers. Doing real a n a l y s i s by means of such non-sk-ndard models is called
non-starrdard ana lys i s .

B . 1 . 3 . 7

4.1 Non-standard tbdels

What exactly do w8 rean by a "non-standard d e l " of sane mathematical q e c t
l ike tha real nunbers? F i r s t of all, by "mathemtical owed" we W i l l l u s t
mean a non-empty set. Before we give a precise statement of "non-standard
d e l ' ' we rmst discuss the notion of a first-der statement about a
m a d t i c a l object.

SuFpose we have a mathemt ica l object M. A term of fi is an a t p r e s s i o n Which is
of one of the folluwing forms:

An element e of M

--

1.

2. f (t l , . . . , t n) where f is an n-ary funct ion frcm M i n t o M and t l , . . . , t n

Thus, if M is t h e real numbers, then 0, 1 and 1 + exp(5) are terms on M (w h e r e
exp stands f a r the "e- to- tk-x" f u n c t i m a d + is the u s u a l additicn f u n c t i m ,
written in f ix) .

are p r e v i a s l y def ined terms of M.

A first-order statement about M is a statement of one of the following forms:

1 . p (t l , . . . , t n) where p is an n-ary predicate on M

2 . A statement b u i l t up frun f i n i t e l y many previously constructed
f i r s t - o r d e r staterrents by the use of logical connectives (e.g. "not",
"and" , "or" , "if -then-else" , etc.)

A statement of the form "for a l l x i n M, . . . ' I w h e r e ... is a previously
mnstructed f i r s t - o r d e r staternent involving the variable x.

4 . A S b t e K e n t of the form ''there exists x in M such that . . ." where . . . is
a p r e v i m s l y constructed first-order s t a t e n t involving the variable
X.

3.

The following are first-order statenw?t.s about t h e real numbers:

not (5 = 1)

f o r a l l x i n the real numbers, f a r a l l y i n the real numbers,
x + y = y + x

t h e r e e x i s t s x i n the real numbers such t h a t far a l l y in the
r a l numbers, x*y = y

t h e r e exists x i n the real numbers such that x*x = -1

B. 1.3.8

Notice that the first four statements are true of the real nunbers , whereas
the f o u r t h is f a l s e of the real numbers. A f i r s t - o r d e r statement a b u t M need
not be a true s ta tmt about M; it need merely be o f a certain form.

\

In general, there w i l l be sane f a c t s about a g iven mathematical object M which
can be expressed as f i r s t -carder s ta tenrents and some which cannot. The f i r s t
four examples above are f a c t s a b u t the real numbers which are expressible a s
first-arder statements. A f a c t a b u t t h e real nunbers which is not
expressible as a first-order s t a t emen t is t h e f a c t that eve ry non-empty set of
real nunbers w h i c h has an upper b u n d h a s a least upper baund (this prope r ty
is called c a n p l e t e n e s s) . This s t a t emen t is n o t a f i r s t - o r d e r s t a t emen t a s
w r i t t e n because it r e f e r s to sets of reals rather than j u s t i n d i v i d u a l reals.
Saw s ta tenrents which r e f e r to sets of e lements or o t h e r h igher -order
Structures t u r n o u t to be e q u i v a l e n t to f i r s t - o r d e r For example,
the statement "for eve ry bounded set s of real nunbers , t h e r e is a real number
x that is n o t i n S" is n o t i n t h e form of a f i r s t - o r d e r s t a t emen t , b u t it is
e q u i v a l e n t to the f i r s t - o r d e r s t a t emen t " f o r a l l x i n the real numbers, there
exists y i n the r a l numbers such t h a t x < y." I t can be shown that the
c a n p l e t e n e s s p r o p e r t y is n o t e q u i v a l e n t to any f i r s t - o r d e r s t a t e r r en t .

We w i l l n m d e f i n e w h a t we mean by a non-standard model.
set M (e .g . the set of real numbers). A non-standard d e l of M consists of :

s t a t emen t s .

Suppose we have sane

1. A set M'

2 . For each element e of M, a corresponding element e' of M'

3 . For each n-ary f u n c t i o n f r a n M into M, a cor responding n-ary f u n c t i o n f '
from M' i n t o M'

4 . For each n-ary p r e d i c a t e p on M, a corresponding n-ary p r e d i c a t e p ' on
M'

such t h a t eve ry f i r s t - o r d e r s t a t emen t which is t r u e of M is t r u e of 14' when
t h e e lements , f u n c t i o n s and p r e d i c a t e s i n t h e s t a t m t are i n t e r p r e t e d as the
corresponding e lements , functions and p r e d i c a t e s of M ' . For example, suppose
R ' i s a non-s ta rdard d e l of the reals. L e t + ' deno te the b ina ry f u n c t i o n on
R ' c o r r e s p n d i n g to the a d d i t i o n func t ion on the reals. S ince + is
c m u t a t i v e , ard s i n c e c m u t a t i v i t y of + is e x p r e s s i b l e as a f i r s t - o r d e r
s t a t emen t (see t h e examples above) , + ' must be m u t a t i v e on R ' . On t h e o t h e r
h a d , H' need n o t have t h e ccmpleteness p rope r ty , and t h e r e are non-s ta rdard
&els of t h e reals which a r e no t a m p l e t e .

W e w i l l ca l l t h e e lements of M ' which correspond to e lements of M t h e s t a r d a r d
e lements of M'. W e can i d e n t i f y e lements of M w i th their ocr responding
e l emen t s of M ' , and t h u s speak of M as be ing a subset of M ' . Under this
i d e n t i f i c a t i o n , f o r each func t ion f and each p r e d i c a t e p on M, the
cor responding f ' and p' on M' is ex tends f and p r e s p e c t i v e l y . We w i l l call a
non-standard d e l M' of a mathematical object M a prom n o n - s t x d a r d d e l
of M i f t h e r e is an e lement x of M' which is n o t i n M.

I t can be s h m (w e w i l l n o t g i v e t h e proof h e r e) that evsAy i n f i n i t e
mathematical object M has a proper non-standard d e l MI. The same does n o t

B. 1.3.3
0

hold for finite mthernatical objects. The reason is sinple. suppose
M = {el ,...,en), a d M' is a nm-standard d e l o f M. It is a true f i r s t - o r d e r
statement about M that "for all x i n M, or x P e 2 or .., or x = en''
(the ccnjunctian is finite). Therefore, the statement " f o r a l l x i n M',
x - el or x - e 2 ' or ... or x = en"' is t r u e of M' , b u t this says tha t the
only elements of M' are the stardard elemnts.

x = el

4.2 Ncn-standard Wels of the R a l s

What does a proper non-standard d e l of t h e reals look l i k e ? I t can be s h a m
that every proper n m - s w a r d d e l of the reals amsists of the stardard
real numbers p l u s the fo l lowing three k inds o f non-standard numbers:

1.

2.

3.

I n f i n i t e s i m a l s . These are n h r s which are n o t
than any standard non-zero real n-.

2 hu t which are smaller

I n f i n i t e NunberS . These are nunbers which are larger than any s t anda rd
real number. There a ~ s both p o s i t i v e and n e g a t i v e i n f i n i t e numbers.
Every prcpx non-stardard d e l of the reals must have i n f i n i t e numbers
as w e l l as i n f i n i t e s i m a l numbers i n order to s a t i s f y the a l g e b r a i c
p rope r ty that eve ry non-zero number has a m u l t i p l i c a t i v e inverse. The
m u l t i p l i c a t i v e i n v e r s e of a non-zero i n f i n i t e s i m a l is an i n f i n i t e
number.

F i n i t e Non-standard N u m b e r s . These are numbers of t h e form x + i where x
is a non-zero standard real and i is an i n f i n i t e s i n n l . Such numbers are
n e i t h e r i n f i n i t e s i m a l nor i n f i n i t e , b u t are n o t standard e i t h e r .

I n t h e o r i g i n a l fo rmula t ion of c a l c u l u s , i n f i n i t e s i m a l s were i n f o m l l y
thought of as non-zero real nunbers which w e r e i n sane s e n s e " a r b i t r a r i l y
small". Thus, t h e n o t i o n of i n f i n i t e s i m a l s lerds i t s e l f very w e l l to modeling
m n p u t a t i o n which is inexac t , but whose inexac tness can be tiken to be
arbitrarily small.

5 Non-standard Models of Execution

We w i l l i n c o r p o r a t e the idea of machine real operations which d i f f e r
i n f i n i t e s i m a l l y f r u n the ideal o p e r a t i o n s by us ing non-s ta rdard execu t ion
d e l s . A non-standard execu t ion model w i l l be a r e p r e s e n t a t i o n of program
execu t ion l i k e that described i n s e c t i o n 2 , b u t w i t h the standard mathematical
objects r e p l a c e d by non-standard objects. What e x a c t l y does t h i s mean?

F i r s t , t ime w i l l be rep resen ted by a proper non-standard d e l of t h e n a t u r a l
numbers. A proper non-standard d e l of the n a t u r a l numbers consists of the
s b d a r d n a t u r a l nurrbers w i t h i n f i n i t e e l e n t s added. Thus, the h i s t o r y
f u n c t i o n s w i l l be f u n c t i o n s whose dana in is a proper non-standard d e l o f the
n a t u r a l numbers.

- .

Semnd, a l l data types of program variables other than real v a r i a b l e s w i l l be
represented by proper noti-standard d e l s of the standard data types (if
proper mn-standard d e l s exist. ~ a r example, the data type "kcohm" is
finite and t h e r e f o r e has no proper non-standard models. F i n i t e data types
w i l l be represented i n non-standard d e l s of execution by the stardard
of the data type). For example, the data type oonsisting of the p o s i t i v e and
negative integers must be represented by a proper non-starrlard d e l of t h e
integers (which j u s t looks l i k e the standard i n t e g e r s w i t h both p o s i t i v e and
negative i n f i n i t e nLPnbers added).

What a b u t the data type of machine real numbers? I n s e c t i o n 2 we obtained
the machine real data type by chocsing a cropping funct ion on the ideal reals
and taking its range. We cannot replace t h i s type by a proper nrm-standard of
i t s e l f , because by t h e f i r s t c roppim funct ion axiom, this set is f i n i t e and
so has no proper non-standard models. Suppose instead that we start with a
prcper non-stardard d e l of the reals R' and a funct ion CR f r a n H' i n t o R '
s a t i s f y i n g the cropping functior. axians and the additional axiom (called the
''error axia-n") t h a t f o r a l l f i n i t e x i n R ' , CR(x) - x is i n f i n i t e s b l . This
axian f o r m l i z e s the statement t h a t on a l l numbers that are not "large" (i . e .
n o t i n f i n i t e) , the roundoff error is "small" (i.e. i n f i n i t e s i m a l) . We w i l l
use the n o t a t i o n ''x == y" to stand f o r ''x - y is inf in i tes imal . "

Unfortunately, there are no such c r o w i n g functions. I n urd= f o r the error
aXian to be met, t h e range of CR must be i n f i n i t e , which c o n t r a d i c t s t h e f irst
cropping f u n c t i m axiom.

Hm can w e reso lve t h i s inconsistency? There are d e f i n i t e cases i n which WE!

make use of the f i r s t cropping funct ion axicm i n v e r i f i c a t i a n , so w e cannot
simply -on it. What w e w i l l do instead is, r a t h e r t h n assuming t h a t CR
s a t i s f i e s the f i r s t cropping Lunction axiom, assure t h a t s a t i s f i e s all
f i r s t - o r d e r s ta tements implied by the f i r s t cropping funct-on axian. I t can
be s h a m that t h e f i r s t cropping function axian is n o t equivalent to any
f i r s t - o r d e r statement, so t h i s is a t r u e weakening of our set of axioms. I n
addi t ion , it can be shckn? that t h e r e s u l t i n g weaker set of axim is
cons is ten t . The f i r s t - o r d e r consequences of the first cropping funct ion axiom
w i l l be mre than enough to v e r i f y mst mathematical programs. I n sumary, we
w i l l r epresent t h e m c h i n e r e a l data type i n a nm-standard model of exerut ion
a s the rarqe of a function CR f r a n a rlon-standard d e l of t h e reals i n t o
i t s e l f such that CR satisfies cropping funct ion axioms 2 throuTh 4 , the error
axion given &vel d a l l f i r s t - o r d e r statements implied by t h e f irst
cropping funct ion axicm.

6 S p e c i f y i w Matheratical Proqrams

tim do w e state the proprx t ics of m t h e w t i c a l programs w e want to prove'?
s u p p o s e w e rcstrict oursclvcs to m n s i d e r i r q programs whose purpose is j u s t to
m p u t e s c m r 3 real-valued funct ion. If f is a real-values funct ion of n
arguments, and P is a prcyran to ccmpute f with parameters A1 ,...,. 4r-1, w e can
state t h e s p e c i f i c a t i o n of P i n terms of the above formalism simply as !'for

B. 1.3.11

a l l inputs xl,...,xn, p (x l , . . . , xn) == f (x1 , ..., Xn)" or, in s l i g h t l y n-ore
detail, "fur a l l i npu t s xl ,.. .,xn, i f P is executed with the i n i t i a l va lues Of
A1 t ,An beirrg XI,. . . ,xn respec t ive ly , then P w i l l eventua l ly te rmina te with
output == f (XI ,..., xn) .'I ~n terns of the above f o m l i s m , P has terminated a t
a time t if Wt) = stop w h e r e "stop" is a con t ro l p i n t a t the erd of t h e
Program.

7 A n E h n p le Ver i f i ca t ion

To i l l u s t r a t e t he use of the model, we w i l l ve r i fy a program which ccmputes
the square root function by Newton's methcd. The proof w i l l be infomlg We
w i l l denote the ideal square root of a number x by root (x) .
Newton's methcd begins with an i n i t i a l "guess" a t the square root. The guess
is then r e f ined by an i t s r a t i v e process. A t each s t e p , t h e cu r ren t guess g is
replaced by (g + (x / g)) / 2 (where x is the nunber whose square root is being
ccmputed). The only facts abou t Newton's methcd we w i l l need to know f o r the
v e r i f i c a t i o n are that i f x is non-neqative and the i n i t i a l mess is biqqer - - -
than root (x) , then:

1. All succeeding guesses w i l l be bigger than r a c (x) . 0
2. Each new guess w i l l be less than the previous guess.

PlS WE now g ive t)li! prcyrm.
for machine real operations "doubled , e.g. machine real additim w i 1 be
denoted by "++", to d i s t ingu i sh machine operations fran i d e a l opera t ions
(which w i l l be denoted by the usua l "urdoubled" symbols). The value i n R!SULT
is output when the program terminates.

We w i l l a d T t the convention of wr i t i ng t h e s

The program is:

RESULT := X ++ 1

IF R.E!3ULT ** RESULT <= X

RESULT := (RESULT ++ (X//REULT))//L

B. 1.3.12

.

Note that the conditions for leaving the loop are not the kind of oonditions
me usually sees in program of this type. The usual appraach to terminating
i terat ive processes of this type involves e i t h e r terminating when a ce r t a in
degree of accuracy is reached, or w h e n a ce r t a in bound a the number Of
iterations is reached, or both. I n SQRT, the i t e r a t i o n is t e r m i ~ t e d when the
iterative process in the machine ceases to act l i k e the ideal Newton's method
in one of the two ways mentioned above.

We will ncw ver i fy that i f SQRT is executed with the in i t i a l value of X
non-negative a d f i n i t e , then execution eventually terminates with

RESULT == root(the i n i t i a l value of x)

W e w i l l perform the ver i f ica t ion by establ ishing a series of lenmas, leading
up to the result we w a n t .

LemM: i f x an3 y are non-negative and x == y , then root (x) == r o o t (y) .

Proof: the proof breaks i n t o 2 cases:

-1: x and y are infinitesimal. The square of a n o n - i n f i n i t e s b l number
is non-infinitesimal, so root (x) and root (y) must therefore be inf ini tes imal ,
and thus the difference between them is also infinitesimal.

-

Case 2 : either x or y is not infinitesimal. Since the two numbers d i f f e r by
an inf ini tes imal , i f one is not inf ini tes imal the other is also not. Since
the square of an inf ini tes imal is inf ini tes imal , roo t (x) ard root (y) are also
non-infinitesimal. By algebra, w e have

x - y = (root (x) + r co t (y))* (roo t (x) - roo t (y))

Since the le f t side is inf ini tes imal and the first fac tor of the r igh t s ide is
not , the secord factor of the r igh t s ide rmst be infinitesimal.

Lema 1: Whenever (RESULT ++ (;1//REsuLT))//2 is ccmputed, E U L T is not 0.

Proof: S u p m e not. L e t t be the earliest t im such t h a t K (t) is a t a
statement Aere (RESULT ++ (X//WULT))//2 i s m p u t e d and RESULT = 0 a t time
t. Prior to t-, the prqram must have been executing normally, s ince d iv is ion
by 0 is the only except ioml mndi t ion that can arise (we are ignoring
exceptional cordi t ions such as STCRAGE_ERROR or overflcw which cannot be
analyzed on the basis of the prqrm's t e x t) .

The only points i n the p r q r m where (RESULT ++ (X//RESULT)) / / 2 is m p u t e d
a r e i n the second conditional i r s i d e the loop and i n the subsequent assignment
statement. Since t is the earliest tine when a d ; / i s ion by 0 is attempted,
a d program execution before t is nornul, we can conclude that:

B.1.3.13

1.

2.

Control a t time t must be a t the s e d 0 3 n d i t i O M l .

Control a t time t - 1 must be a t the f i r s t conditional with RESULT = 0.

3. X a t time t - 1 nust be negative (by cmming function a i m 3 , if
RESULT is 0 then EUSULT ** RESULT is also 0).

But X is a s s 4 to be m-nega t ive i n i t i a l l y , and since no assignrrents to X
can have taken place i n the course of n o m 1 execution pr ior to t, X must k
nm-negative a t t im t - 1 , a contradiction.

W e can therefore assune for the rest of the
normally a t a l l times.

l m s that the program executes

LemM 2: The value of X is always the same as the i n i t i a l value.

Proof: t r i v i a l , s ince there are no steps i n the program which assign to X.

LpmM 3: SaRT halts.

P r o o f : Suppose not. In t h i s case, the set of times t where the value of
RESULT decreases fran time t to time t + 1 has no upper bound (else a t saw
point control would leave the loop a t the second conditional). This f a c t can
be expressed as a first-order statement using the history function for RESULT
(call it FRESULT) as follows: "for a l l tims t there e x i s t s a tine t ' such
that t < t ' and FRESULT(t' + 1) < FRE"LT(t ') . ' ' Humere, the negation of this
statement is a f i rs t -order statemmt which is implied by the f i r s t cropping
function axiom, a contradiction.

LemM 4: After the i n i t i a l assignment to RESULT, the value of RESULT is always
>= 0 and <= x ++ 1.

P m f : The proof is by induction on t im (i .e induction on the number of s teps
tha t have been executed). Imnediately a f t e r the i n i t i a l assignment to RESULT,
RESULT = X ++ 1 so c e r t a i n l y RESULT <= X ++ 1. W e must therefore establish
that 0 < = x ++ 1 .

Since X and 1 a r e f i n i t e , X + 1 is f i n i t e and SO by the error a i m ,
X ++ 1 = CR(X + 1) == X + 1 . 1 is not an inf ini tes imal , and X is non-negative,
so X + 1 is a t least distance 1 frcm 0. Since rounding only introduces a n
in f in i tes imal error, a d the distance between X + 1 an3 0 is not
inf ini tes imal , X ++ 1 cannot be 0.

To complete the induction, w e must show that a t every step i n execution, i f
0 < = RESULT < = X ++ 1 is true before the step, then i t is h e a f t e r . For
execution steps which a r e not executions of the assignment statement ins ide
t h e low, this is t r i v i a l , s i n e no other statemcnt chancjes the value of
RESULT. Suppose a cjiven s t e p is a n execution of the assignment statement
i n s i d e the loop. F i r s t of a l l , t h i s ~ n s that control rmst lave passed
throught the preceding condi t ioml , so the next value of RESULT must be less
than the p rev ims value, so i f RESULT is <= X ++ 1 before the assignment then
the same is t rue af ter . S e c o d , as shown i n L a m 2 , i n order for control to
b v e reached t h i s s t a t a n t a t a l l , RESULT must be non-zero, so it is s t r i c t l y

B. 1.3.14

positive. The value of X is m-negat ive . Therefore, s ince CX Of a
non-negative number is non-negative, (RESULT ++ (X//RESULT))//2 N S t be
non-negative. This canpletes the inducticn.

5 : RESULT is always f i n i t e .

Prclof: S i n e 0 and X ++ 1 are f i n i t e ard RESULT is always between them, RESULT
is also f i n i t e .

When SCBT terminates, RESULT == r o o t (i n i t i a 1 value of X I .

mf: We w i l l denote the value of RESULT a t termination by R. The proof
breaks into three cases:

Case: R ** R = X. By Lermra 5 , R is f i n i t e so by the error axiom,
R * R == R ** R = X = i n i t i a l value of X and the conclusion follows by
0.

Case 2: R ** R < X. Claim: R * R < X. I f not, then R * R >= X, so by the
mnton ic i ty of CR, R ** R = CR(R * R) <= CR(X) = X, a contradiction. The
i n i t i a l value of RESULT has square > X, so the assignment statement inside the
loop must have been executed a t least once before termination, Therefore,
there e x i s t s a previcus value of RESULT, call it RP, such that
R = (RP ++ (X//RP))//2 <.W and RP ** RP > X. By the same reasoning as a h v e ,
the seoord staten-ent implies tha t RP * RP > X. Therefore o < X/RP < RP SO X/RP
is finite, so (RP ++ (X//RP))//2 == (Rp + (X/RP))/Z. But the l e f t s i d e is less
than r o o t (x) , while the r i g h t s ide is greater than r m t (x) by property of
(ideal) Newton's method. When two numbers w h i c h d i f f e r by an inf ini tes imal
are on e i t h e r s ide of a fixed nurrber, they each d i f f e r f r an that fixed number
by an infinitesimal.

0
This establish the conclusion.

use 3: R ** R > X. In this case, the prcgram mst have terminated because
R <= (R ++ (X//R))//2. The assumption of the case implies t h a t R * R X as
above, so 0 < X/R < R so X/R is f i n i t e , so (R ++ (X//R))//2 == (R + (X/R))/2.
The left s ide is >= R, while the right side is < R by property of (i d e a l)
Newton's methcd. Therefore, R - ((R + (X/R))/2) is i n f i n i t e s h 1 .
Rearranging algeht-aically, we get (R*R - X)/(2*R*R) is infinitesimal. The
denomimtor is f i n i t e , so the numerator must be infinitesimal. The conclusion
follaws frcm LmQm 0.

8 The Asymptotic Internretation

What does ver i f i ca t ion of a rri2thcnutical program executing over a non-standard
&el of the rmls tell u s a b u t actual execution m a standard machine? This
question is s j n i l a r to the question " w h a t does a proof i n non-standard
analysis involving inf ini tes imals s h w abou t a n a l y s i s i n the standard reds?"
We w i l l explain h e u r i s t i c a l l y h m non-standard analysis proofs relate to
stanriard analysis, argue by analogy that the same r e l a t ion holds between
ve r i f i ca t ion of non-standard execution and execution on a standard mchine.

a d

B.1.3.15
0

-_ . ._ . , .

It can (and has) been proved that the analogy is a c t u a l l y valid, bu t the proof
is k y d the scope of this paper.

Consider t h e non-standard a n a l y s i s proof tha t the d e r i v a t i v e of t h e xn2
f u n c t i a n is 2*x. It g ~ e s as follows: take an a r b i t r a r y i n f i n i t e s i m l i and
axnpute ((x + 11-2 - x A 2) / i . The r e s u l t is 2*x + i. n u s , the va lue of the
d i f f e r e n c e quotient far any in f in i t e s ima l is only in f in i t e s i rna l ly d i f f e r e n t
fm 2*x. This is a c t u a l l y a proof that t h e standard xn2 func t ion has
derivative 2*x i n t h e usua l sense, although it takes sane mathematical logic
to wove the connection.

What does it mean to say that the d e r i v a t i v e of xn2 is 2*x i n standard
ana lys i s? It means that the l i m i t of the expression (x + h1-2 - x n 2) / h as h
goes to 0 is 2*x. Thus, a non-standard a n a l y s i s proof about numbers being
in f in i t e s i rna l ly d i f f e r e n t e s t a b l i s h e s a standard f a c t a b u t behavior of an
express ion as a c e r t a i n quan t i ty g e t s smaller and smaller.

The same r e l a t i o n holds between ncn-stardard and stardard execution. Our
proof that i f x is non-negative and f i n i t e then SQRT(x) == r o o t (x) actually
establishes t h a t i f w e run SQRT on a sequence of machines whose CR is more and
ny>re Prec i se , the output of SQRT(x) w i l l converge to r o o t (x) . More gene ra l ly ,
i f w e have any real-valued i d e a l function f and a program F and we can prnve
i n t h e non-standard formalism that f o r a l l f i n i t e x i n t h e donain of f ,
F (x) == f (x) then this w i l l e s t a b l i s h that i f w e run F on a sequence of more
and mre p r e c i s e machines, the output of F (x) w i l l converge to f (x) . To put
it another way! ye can ob ta in any degree of prec is ion i n F (x) by ccmputing
F (x) on a s u f f i c i e n t l y precise mchine .

0

8.1.3.16

Ada@ Test and Verification System: (ATVS)

Tom Strelich

General Research Corporation
5383 Hollister Ave.

P.O.Box 6770
Santa Barbara, CA 93 1 1 1

1 Introduction

The Ada Test and Verification System (ATVS)l is an integrated set of
software tools for testing, maintaining, and documenting Ada programs.
The objectives of the ATVS are to improve the reliability and maintainability
of Ada programs. GRC performed the research and analysis leading to the
specification of ATVS requirements and its high-level design2 .
1.1 Background and Overview

Software testing, verification, validation, and certification are critical
software development problems facing NASA. To overcome these
problems, NASA has invested large amounts of time and money to correct
and certify systems only to find that, when deployed, they often behave
erratically or produce incorrect results. Spending more time and money on
exhaustive testing won’t solve the problem either since most software
programs found in mission critical systems (such as the Space Station) art. of
such size and complexity that no amount of testing can guarantee completely
correct, error-free performance. The objective then is to make the testing
process as effective as possible by providing computer-aided assistance to the
software engineer to help them discover the greatest number of errors for
every hour spent testing.

@ Ada is a registered trademark of the U.S. Government Ada Joint
Program Office (AJPO).
1 This work was performed under Rome Air Development Center Contract

2 Ada Test and Verification System (ATVS): Final Report, General
Research Corporation, CR-6- I30 1, September 1985.

F30602-84-C-0 1 1 8

6.1.4.1

'

A proven approach to software testing is the use of Automated
Verification Systems (AVS). This technology was pioneered both by NASA
and Rome Air Development Center, and GRC has participated actively in
these efforts. For NASA, GRC developed an AVS for the AED language.
For RADC, GRC developed AVS's for FORTRAN, COBOL, and JOVIAL
573 (FAVS, CAVS, and J73AVS). The ATVS represents the logical
evolution of AVS technology in support of the Ada programming language.

Ada provides a high-level programming language with advanced
capabilities addressing reliability issues (e.g., strong data typing, exception
handlers, information hiding, etc.). However, the Ada language alone
represents only a partial solution to software development problem
confronting NASA: the full benefit of Ada to Space Station Software
development will be realized through the synergistic interaction of the Ada
language, the Software Development Environment, and supporting software
tools (e.g., ATVS).

1.2 Operational Concept

Figure 1.1 illustrates the ATVS high-level operational concept:

1. Ada source code is submitted to the ATVS for Static Analysis
(e.g., package dependencies, program call tree, global symbol
information, data flow anomalies and errors, unreachable code,
potential task deadlocks, etc.). In response to the Static analysis
reports and displays, the user makes whatever corrective actions
are required and repeats the process until there are no statically
detectable errors in the source code.

2. The user's Ada source code is then Instrumented with run-
time data collection probes which capture execution information
(such as execution coverage, performance timing, and task state
activity) for subsequent analysis and reporting.

3. The instrumented Ada source code is then compiled, linked,
executed (with user supplied test data) with the ATVS
instrumentation probes collecting run-time execution
information. Assertion violations are reported to the user who
may then make corrective actions and repeat the process.

4. The run-time execution data collected by the ATVS
instrumentation probes is analyzed producing execution
coverage, timing, and task state reports. Based on these reports
the user takes corrective actions such as modifying the test data

B . 1 . 4 . 2

L 1
Instrumentation w

Compile

Test
Instrumented -b - Take --I

Program Action

Take
Action - -

Figure I . I . ATVS Operational Concept.

B.1.4.3

to effect execution covemge or modifying the source code to
improve performance, eliminate unanticipated task interactions,
and correct logic or design errors,

As suggested by the previous scenario, application of the ATVS is
focused on the coding and testing phases. Figure 1.2 illustrates the role of the
ATVS in the DOD-STD-2167 software development cycle: namely, Coding
and Unit Testing, CSC Integration and Testing, CSCI Testing, and
Maintenance Phases (while the Maintenance phase is not explicitly described
in DOD-STD-2167, we have included it since the ATVS is expected to be
used quite heavily for software maintenance).

Figure 1.2. Role of the ATVS in the Software Life Cycle,

1.3 Objectives

The objective of the ATVS is to provide a set of computer-based tools
which improve the reliability and maintainability of Ada software systems.
The. specification and design of the ATVS concentrated on the environmental
context: that is, its effective integration within an advanced software
development environment (such as NASA's SDE) and its contribution to that
environment (e.g., support for project management, change and
configuration management, test and integration, documentation,
requirements traceability, etc.). The ATVS will provide detailed program
information for software engineers and programmers and summary
information for software project managers. The ATVS can provide
management visibility by serving as a window into the software development
process.

13.1.4.4

2 Capabilities

The ATVS will provide both Static and Dynamic Analysis of user
programs. The requirements and design of the ATVS concentrated on
providing support for the unique features of the Ada language, host-target
testing issues, distributed environments, and advanced user interface
capabilities.

ATVS capabilities fall into four functional groups: Static Analysis,
Dynamic Analysis, Report Generation, and User Interface capabilities.
Table 2.1 summarizes ATVS Functional Capabilities by group. Specific
capabilities of the ATVS are described in the following paragraphs.

Table 2.1. ATVS Functional Capabilities by Group

Static
A n a l y s i s
Source Processing

StaticlStructural
Analysis

Static Task
Analysis

Programming
Standards

Dynamic
A n a l y s i s
Instrumentation

-- Coverage
-- Timing
-- Tasking

Executable
Assenions

Post-execution
Analysis

Unit Testing

Report
G e n e r a t i o n

Automated
Repom

DOD-STD-2 I67
Documentation

Prologue Insenion
& Extraction

. Software Quality
Metric Dam

User
I n t e r f a c e
Batch and
Interactive User
Interface

Interactive
Wal ki hroug h

2.1 Static Analysis Capabilities

Ada Sou rce Processing. The ATVS will process the Ada language and
perform lexical, syntax, and semantic analysis necessary for subsequent static
and dynamic analysis. I t will produce a DIANA intermediate representation
of the users program which will be used to build the ATVS database. The
ATVS database is the central repository of program information and serves
as the primary means of communication between ATVS tool components.

u . 1 . 4 . 5

and Stru-. The ATVS will provide extensive static
and structural analyses concentrating on malyses unique to the Ada language.
The analyses include:

Package Dependencies -- describes "with" and "use" context clause
dependencies and is valuable for change impact analysis

Compilatiodrecompilation Order Dependencies -- Provided by
most compilers, it is useful for maintaining system consistency
subsequent to program modification

Data Flow ErrordAnomalies -- identifies variables declared but not
used, uninitialized variables, actual output parameter not set, etc.

Global Symbol Use -- Identifiers, Types, Overloadings, Generics,
Exceptions, Interrupts

h f k Task Ana lysis. This capability identifies the set of all possible
sequences of concurreilcy in a given program. This sequence set is then used
to identify features of the program's synchronization structure such as: all
possible task rendezvous, all potential areas of concurrent execution, and
areas of potential task blockage (i.e., deadlock). This capability will utilize
the Temporal Semantic Analysis approach described by Buiir, et a13 .

source code auditing against a set of modifiable programming standards. For
example, "the maximum 4# of statements in a procedure IS 25". The ATVS
has defined a set of 46 programming standards.

2.2 Dynamic Analysis Capabilities

of the insertion of software probes into the user source code. These
instrumentation probes collect run-time program information for subsequent
analysis and reporting. The types of instrumentation include: program
execution coverage, program timing, and tasking activity. An executable
Assertion is a statement placed in the source code by the programmer to
indicate that the specific condition should exist. For example:

0

dards C h e c k . This capability provides for user

Instrumentation and Executable Assertions. Instrumentation consists

3 Buhr, R., et al. "Experiments with PROLOG Design Descriptions and
Tools in CAEDE: An Iconic Design Environment for Multitasking,
Embedded Systems," Proceedings of the 7th Int'l Conf. on Software
Engineerins JEEE Comp iter Societv. 198 0

0.1.4.6

-. assert ((velocity - v-naught) > epsilon)

m%im u i i d & d f ((i i a , d h t . a h r t r n n n n t - m w) ~ ~
execution, the Assert statement can tither display an assertion vioration
message to the user, or take some alternative action defined by the user.

kine). This i r g , and Tas
capability processes the program execution data collected at run-time by the
instrumentation probes embedded in the user's source code. Analyses
include: (1) execution coverage for programs at the subprogram, branch,
and statement level; (2) execution timing at the subprogram, named block, or
statement level; (3) task state transitions, basically a trace of the program's
tasking activity. The tasking analysis information can be used in cooperation
with the static task analysis information to determine the extent of task
sequence set coverage (task synchronization set coverage represents the
functional analog of execution coverage in sequential programs).

program executions. This capability allows post-execution analyses to reflect
incremental and cumulative execution coverage, timing, and tasking
information. This type of historical information is an essential part of
software documentation.

Post-execution AualYsis (Coverw. T1m . .

The ATVS will provide data collection for both single and multiple

Unit Testing. This capability provides for automatic (with user
direction) construction of Ada drivers and stubs. It will identify the
undeveloped portions of a program and will construct Ada driver and stub
"skeletons" which can be customized to a user's particular testing
requirements. This capability supports both top-down and bottom-up
development methods.

ATVS Dynamic Analyses will be supported for both host-resident and
target-resident Ada programs (assuming an upload/download capability
between the host and target).

2.3 Report Generation Capabilities

I t is important to note that the ATVS design has separated the process
of static and dynamic analysis from the process of report generation. The
effect of decoupling these two activities (which communicate through the
common database) is that it allows definition and incorporation of new
analyses and reports to proceed independently of one another. This approach
provides the flexibility necessary for the incorporation of new capabilities
into the ATVS allowing it to evolve over time in response the the

B.1.4.7
ORIGINAL PAGE fS
OF ?OOR Q U I T 4

environment, the user community, and advances in software engineering.
Table 2.2 summarizes ATVS automated reports.

Table 2.2. Summary of ATVS Automated Reports.

Static Analysis Repcrts

Summary Information Report
Compilation Unit Overview iteport
Compilation Order Report
SubprogramlTask Dependency Report
Subprogram Cross Reference
Task Cross Reference
Package WithKJse Dependency Report
Package Element SetNse Cross Reference
Data Dictionary Report
Global Entities Cross Reference
110 Statements Report
Type Information Report
Type Cross Refrence Report
Object Cross Reference Report
Type Derivation Report
Generic Instan!iatioa Report
Exception Handling Report
Interrupt Handling Report
Overloading Information Report
Statement Profile Report
Software Metrics Report
Target Code Cross Reference
Data Flow Anomaly Report
Programming Standards Report
Source Re-analysis Report

Dynamic Analysis Reports

Testcrse Report
Execution Coverage Summary Report
Branch Coverage Summary Report
Detailed Coverage Report
Branch Report
Reaching Set Report
Execution Timing Report 1
Execution Timing Report I I
Task State Report

DOD-STD-2167 Reports

Calling Tree Report
Functional Allocation Report
Global Data Definition Report
Input Data Report
Local Data Deitnition Report
Output Data Report
Element Utilization Report
File Description Report
Record Drscription Report

Automated Static and Dvnamic Analysis Rgports. All static and
dynamic analyses performed by the ATVS will be available to the user in
both interactive display and hardcopy forms. The ATVS will provide 25
Static Analysis Reports and 9 Dynamic Analysis Reports.

DOD-STD-2 1 67 CO mpatible Reports . The ATVS will provide nine
automated reports consistent with DOD-STD-2 167. These reports are
variants of the ATVS automated reports and are generated from database-
resident information provided by ATVS static and dynamic analyses. The
separation of analysis and report generation described above allows for the
definition of revera1 reports based on the same analysis. This will allow

0
B.1.4.8

definition of new reports (both informal and DOD-STD) without requiring
development of new analyses.

P r o l o g u e . The ATVS supports the insertion of
selected automated report information (e.g., package, subprogram, and task
dependencies, global symbol use, etc.) into a prologue (i.e,, a dcscrittive
preface to a program unit). Prologues are embedded in the user's source
code as Ada comments and can be augmented with user providell
information. Automatic insertion of prologuc infarmation ensures current
and consistent program documentation. Prologues can be automatically
extracted from the source code to generate formal documentation.

Raw Software Met ric Dau . The ATVS will provide raw software
quality metrics for analysis by other environment tools. These metrics (37
indiviuual metrics supporting l.8 software quality criteria) are consistent
with the STARS Data Collection Forms, Software Evaluation Report and
Software Characteristics Report4 .
2.4 User Interface Capabilities

-andive I Jser Interface. The ATVS will provide both a
batch and interactive user interface. The batch interface will utilize a bztch
command language to direct ATVS processing. The full complement of
ATVS capabilities (except for exclusively interactive activities such as
Interactive Walkthrough) will be accessible through the batch command
language.

The Interactive User Interface will be based on a hierarchical menu
structure providing users controlled access to ATVS functions. There wi l l
be an extensive on-line help facility providing both reference and tutorial
information. The Interactive User Interface will take advantage of advanced
terminahorkstation bit-mapped graphics capabilities such as multiple
windows, pull-down menus or palettes, and alternate input devices such as
mice.

Interactive Walkthroueh. 1nte.active Walkthrough replaces thc:
manual process of "digging" through large source listings, cross reference
reports, and other forms of documentation. It provides users with
controlled, interactive access to the source code comprising a large software
system. The user can browse the source code based on the program's call

4 Interim Software Data Collection Forms Developmen! -- Software
Evaluation Report, Softhare Technology for Adaptable, Reliable Systems
(STARS), RADUCOEE Griffiss AFB, NY, June 1985.

B . 1 . 4 . 9

tree or as directed by the user, and the multiple window capabilities of the
interactive user interface allow simultaneous access to various ATVS static
and dynamic reports.

3 Database and Workstation Issues

3.1 ATVS Database

The ATVS database was designed as an "Entity-Relation-Attribute"
(ERA) Database composed of 13 database entities and 17 associated
relationships. The ERA model was selected for its expressiveness and
flexibilty: The ATVS database contains a great deal of semantic program
information that is best represented in the ER model.

3.2 ATVS Functional Distribution to Workstations

The ATVS was designed to operate in whole or in part on either a host
machine (such as a VAX) or a microcomputer workstation (such as a SUN or
VAXStation 11). This flexibility allows program managers to relegate
certain ATVS functions (e.g., source processing, instrunentation, etc.) to the
host machine, and other functions (e.g., static analysis, post-execution
analysis, interactive walkthrough, etc.) to the workstation. Microcomputer
workstations often provide advanced capabilities (such as multitasking, bit-
mapped graphics, multiple windows, etc.) that the host cannot easily (if at
all) provide without serious degradation in system response. An additional
benefit target system testing since microcomputer workstations are often
used as embedded system development erivironments.

0

4 Current Status and Conclusion

The ATVS functional description and high-level design5 are complete
and are summarized in this paper. The ATVS will provide a comprehensive
set of test and verification capabikies specifically addressing the unique
features of the Ada language, support for embedded system development,
distributed er*;ironments, and advanced user interface capabilities. Its design
emphasis KZS on effective software development environment integration
and flexibility ?o ensure its long-term use in the Ada software development
communitv.

5 Ada Test and Verification System (ATVS); Functional Description,
General Iicsearch Corporation CR-2-1301, September 1985. 0

B. 1.4.10

a: a lhe Testabi l i ty of Ada Programs - --
b v l d Auty, SofTech, Inc.

Norman Cohen, SofTech, Inc.

Software development f o r NASA's space s t a t i o n poses a s i g n i f i c a n t
challenge; considered the most d i f f i c u l t challenge by some. 'Ihe d i f f i c u l t y is

for remote control and comnunications, software w i l l l i e a t the heart of many
essent ia l and complex systems w i t h i n the s ta t ion. "he combined requirements
f o r h i g h l y - r e l i a b l e systems exceed any sol ,dare development e f f o r t yet
attempted.

the magnitude and canplexity of the required software. With the requirements

NASA's prev ious experience w i t h software development c e n t e r s on the
assembly code and the code i n the high-level language HAVS, developed for the
space s h u t t l e . Wi th in t h e development of t h a t sof tware t h e r e was heavy
r e l i a n c e on c a r e f u l t e s t i n g and thorough m u l t i - l e v e l checkout. W i t h i n t he
HAL/S development environment, the checkout procedures could depend on the
s t ab le character is t ics of and 1 imitations on program behavior inherent i n the
language. This paper addresses the concerns r a i s e d by cons ide ra t ion o f the
requi rements for t e s t i n g and checkout procedures fo r t he space s t a t ion
software. I n p a r t i c u l a r i t addresses the use of Ada i n the development o f
w i d e l y d i s t r i b u t e d yet c lose ly coordinated processing.

T h i s a n a l y s i s i s done i n two contexts . First , an e v a l u a t i o n o f t he
language is presented , d i scuss ing how the r u l e s and f e a t u r e s of the AJa
language e f f e c t the t e s t a b i l i t y of software w r i t t e n i n i t . Second, some
g e n e r a l techniques i n sof tware development which can augment t e s t i n g i n the
developnent of r e l i a b l e software and some specific recomnendations for tools
and appropriate canpilation are presented.

?his paper is a s m a r y of a f u l l report prepared a t the conclusion of J I ~

extended s t u d y e f fo r t on t h i s topic. I t therefore does not go into d e t a i l in
e l a b o r a t i n g each point o f i n t e r e s t . An at tempt h a s been made t o cover the
breadth of the report and present its key f ind ings .

Evaluation of Ada --

We begin b y d i scuss ing how a programming language can be e v a l u a t e d f'or
t e s t a b i l i t y . For our purposes, t e 5 t a b i l i t y is the a b i l i t y t o determine, b y
tes t execut ion of sof tware , whether the sof tware w i l l funct ion c o r r e c t l y i n
operational use. Testabi l i ty measures the extent to which it is possible to
construct t e s t s such that the behavior of the software on those t e s t s r e f l e c t s

B.1.5.1

the behavior of system when deployed. brig the issues re la ted to t e s t a b i l i t y
are t h e ease of gene ra t ing comprehensive test c a s e s , t h e p r e d i c t a b i l i t y o f
resource U t i l i z a t i o n unde r a l l c i r c u a s t a n c e s and t h e d e t e r m i n i s t i c
r epea tab i l i t y of processing sequences.

This def in i t ion appl ies pr inc ipa l ly to the developed program, bu t it can
be extended to app ly t o t h e language used t o expres s t h a t program. A
programing language supports t e s t a b i l i t y to t h e extent tha t it f a c i l i t a t e s the
writing of t e s t ab le software. We have ident i f ied the following a t t r i b u t e s of a
PrOgramning language which f a c i l i t a t e t e s t ab i l i t y :

- support for modular decomposition (i.e., supporting t h e t e s t i n g of u n i t s

- existence o f i n t e r f a c e s p e c i f i c a t i o n s c o n s t r u c t s which a r e c l e a r and

- complete t y p e and program u n i t s p e c i f i c a t i o n s a 1 lowing comprehensive

- well-defined run-tine error handling, -
- support for the writing of t e s t d r ivers and hardware s t i m u l i s imulation,

- support for the creation of high-level abstractions.

independently of their use i n the system),

ccin pre hen si v e

consistency checking during program compilation,

predictable resource allocation and u t i l i za t ion ,

and

With these evaluation c r i t e r i a , we considered t h e following aspects of the
Ada language:

- Data Types and Subtypes,
- Separate Compilation and Packages,
- Subprogram k f i n i t i o n ,
- Generic Units,
- Exceptions,
- Concurrent F’rocessing and
- Storage Management.

Each a spec t was considered from the viewpoints o f conformance w i t h
e v a l u a t i o n c r i t e r i a , r i sks t o t e s t a b i l i t y and recommendations fo r reducing
those risks.

Fig. 1 shows an e v a l u a t i o n c r i t e r i a versus f e a t u r e s matr ix showing the
extent of support of t h e Ma language for t e s t ab i l i t y . The matrix shows where
a s p e c t s of t he language support t he e v a l u a t i o n c r i t e r i a , independent o f t h e
p o s s i b l e r i sks w i t h i n t h e same f e a t u r e a rea . I n g e n e r a l , t h e s t rong typ ing
r u l e s of t he language and the concept o f s e p a r a t e s p e c i f i c a t i o n and program
u n i t bodies provide excel l en t support for t e s t ab i l i t y .

B. 1.5.2

Data T y p e s and S u b t y p e s
I S e p a r a t e Compi l a t ion and Packages
I 1 Subprograms
I I 1 Generic U n i t s
I I I I E x c e p t i o n s
I I I C o n c u r r e n t P r o c e s s i n g
I 1

I-+---+---+---+---+---+---+-I
Modular Decomposi t ion 1 . ~ . ; . ; . ~ 1 . ;
C l e a r & Comprehensive 1 . 1 . ; . ; 0 1 0 1 . 1 . 1

i n t e r f a c e s p e c i f i c a t i o n s 1 . ; . 1 . ; . . 1 . 1 . 1
Compile time c o n s i s t e n c y 1 . ~ . ~ . ; . ; I

checkina l . 1 . 1 . 1 . 1 . 1 . 1 . 1

Wel l -de f ined r u n - t ime 1 . 1 I I 1 0 1 . 1 0 ;
er ror h a n d l i n g 1 * 1 ' 1 * 1 * 1 * 1 * 1 * 1

P r e d i c t a b l e r e s o u r c e u s e 1 . 1 . ; . 1 I ; o : . ;
and a l l o c a t i o n l * 1 * 1 * 1 . 1 * 1 * 1 * 1

Suppor t f o r t e s t and t e s t ; 1 0 1 . 1 0 1 . 1 0 1
d r i v e r p rograms 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1

S u p p o r t f o r c r e a t i o n of ~ ~ i e ; o ; ~ i ~ ; o ~ e ;

I

I

I I

I I
I I I
I I I I 1 1 S t o r a g e Management

I

I I
I

I I 1 I I I I I

I I

I I I I I I I I

I

I I I I I I I I

I

I I I I I I I I

h i g h l e v e l a b s t r a c t i o n s ; . 1 . ; . ; . . ; . ; .
F i g . 1 , E v a l u a t i o n C r i t e r i a v s . F e a t u r e Matr ix

Two a r e a s of p a r t i c u l a r i n t e r e s t a r e represented a s o n l y h a l f - f i l l e d
c i r c l e s i n the evaluation matrix. lhese represent qual i f ied support for t h e
evaluation c r i t e r i a . In the case of exception management, the ru l e s for the
r a i s i n g of excep t ions , i nc lud ing user s p e c i f i e d r a i s e s t a t e m e n t s , and fo r
exception propagation, a l l o w for a very concise t reatment of exception
processing. Dust when properly docunented, exception processing a s defined i r i

t he language is an important p a r t of a module's i n t e r f a c e , support ing the
requirement for c l ea r and comprehensive interface specifications. Because it
is dependent on opt ional ly included comnents, however, t h i s can be considered
on1 y q u a l i f i e d suppor t for t h e evaluation c r i t e r i a .

The second ha l f - f i l l ed c i r c l e is under generic u n i t s . lhis is a similar
s i t u a t i o n a s fo r exceptions. The r u l e s for formal gene r i c parameter
s p e c i f i c a t i o n and f o r generic i n s t a n t i a t i o n s a l l o w fo r a c l e a r and conc i se
s p e c i f i c a t i o n o f the u n i t s i n t e r f ace . However, a s w i l l be discussed under
risks, there are secondary aspects of actual parameters (which we term second
order properties) which are not docunented , such a s functional requirements on
actual procedure parameters. Because t h e s e secondary aspects can be c r i t i c a l ,
yet possibly undocunented, support i n t h i s area is a l s o qualified.

B. 1.5.3

e Testab i l i ty - Risks

I n the e v a l u a t i o n of t h e Ada language f e a t u r e s , s e v e r a l r i sks t o
t e s t a b i l i t y as well a s the above benefits were identified. These r i s k s f a l l
i n t o two broad c a t e g o r i e s o f i n e f f i c i e n c y and h i d d e n i n t e r f a c e s , p l u s one
additional concern without such convenient categorization.

The concern over efficiency is based on a simple assunption tha t features
which f a i l t o p r o v i d e a i lequate e f f i c i e n c y w i l l n o t be u s e d i n m a n y
applications. The resu l t ing program which may be more or l e s s convoluted i n
i t s avoidance o f t h i s f e a t u r e w i l l c e r t a i n l y not have bene f i t ed i n i t s
t e s t ab i l i t y . Although processing capabi l i t i es and memory s izes are increasing
d r a m a t i c a l l y , t h e requirements t o surpass the increased c a p a b i l i t i e s a r e
a l r e a d y being considered. Concerns over e f f i c i e n c y i n Ada f a l l i n t o t h r e e
areas :

- excessively expensive run-time checks,
- inappropriate or undirected instantiation of generic u n i t s , and
- excessively expensive tasking architecture.

Tnese can be col lec ted under the general concern of inefficiency i n support of
high-level abstractions. m

The second broad concern is that of hidden interfaces. Despite the strong
support i n t h e language for de ta i l ing important interface information, several
p o s s i b i l i t i e s f o r hidden i n t e r f a c e s ex is t . Hidden interfaces ex is t wherever
interact ions or dependencies ex is t which are not p a r t of the specification or
declarat ions of the u n i t . These can be c lass i f ied a s being due to:

- global var iab les (side effects of procedure and f u n c t i o n c a l l s , conten t ion

- the raising and propagation of exceptions,
- dynamic storage u t i l i za t ion ,
- dynamicall y determined t iming behavior , and
- second order properties (e.g. functional requirements on actual procedure

over access between separate t a s k s) ,

parameters) for generic instantiations.

An example o f second order p r o p e r t i e s would be the case of a gene r i c
sorting procedure. A typical implementation w i l l have the type of the objects
! I :] (I gonoric p r a m s t w , rclqirlrlng IJ flowlid ~~~lt~~lttiotor Lo bo cl rutwtllrti w l i i i ~ l l C * ~ I I I

compare v a l u e s of t h a t type and r e t u r n a boolean v a l u e on the b a s i s o f t h e
condition t t l e s s t h x P . ?he second order property of the actual function used
d u r i n g instant ia t ion is t h a t it must return a proper ordering of a l l values of
the type. In f ac t , i t is conceivable that the sorting routine may never reach m

B. 1.5.4

an exit p o i n t i f t h e function does not have t h i s p rope r ty .
is not r e q u i r e d i n any way by t h e l anguage d u r i n g i n s t a n t i a t i o n .

Yet t h i s p r o p e r t y

&e l a s t r i s k for t e s t a b i l i t y is t h e g e n e r a l non-determinism of t a s k i n g
i n t e r a c t i o n s . While n o t so much a f a u l t of t h e l a n g u a g e , a s a s y n c h r o n o u s
concurrent p r o c e s s i n g is i n h e r e n t l y n o n d e t e r m i n i s t i c , t h e p re sence of t a s k i n g
i n an Ada progran can c a n p l i c a t e t h e t e s t i n g of t h a t p r o g r m .

Recomnendations t o - Reduce Risk -
In response to t h e i d e n t i f i c a t i o n of t h e s e r i s k s , s e v e r a l recomnendat ions

for r educ ing t h e r i s k were made. Ihese f a l l under t h e g e n e r a l head ings of:

- r equ i r emen t s for a p p r o p r i a t e deve lopnent p r a c t i c e s and t r a i n i n g , - r e q u i r e m e n t s for a p p r o p r i a t e tools, and - r equ i r emen t s for a p p r o p r i a t e compi l a t ion .

The p r i n c i p l e b e h i n d t h e r e q u i r e m e n t s fo r a p p r o p r i a t e d e v e l o p m e n t
p r a c t i c e s and tools is based on t h e r e c o g n i t i o n t h a t t h e i r u se can h e l p a s s u r e
r e l i a b l e s o f t w a r e where t e s t i n g is d i f f i c u l t . T e s t i n g p r a c t i c e s c a n Se
augmented by t h e u s e d u r i n g d e v e l o p m e n t o f p r o o f t e c h n i q u e s , s t a t i c p rogram
a n a l y s i s and r u n t i m e m o n i t o r i n g . T h r o u g h o u t t h e d e v e l o p m e n t p r o c e s s ,
v e r i f i c a t i o n t e c h n i q u e s c a n be used t o i n s u r e p r i n c i p l e s i d e n t i f i e d and
v e r i f i e d e a r l y i n t h e d e v e l o p n e n t a r e h e l d true through implementa t ion .

Fo r a p p r o p r i a t e programming g u i d e 1 ines and t r a i n i n g , t h e f o l l o w i n g
s u g g e s t i o n s were made:

- For n m e r i c p r o c e s s i n g , t r a i n i n g should i n c l u d e a d i s c u s s i o n of d i g i t a l
c o m p u t a t i o n a l g o r i t h m s and t h e i r i n t e r a c t i o n w i t h u n d e r l y i n g n u m e r i c
p r e c i s i o n i n d e t e r m i n i n g t h e a c c u r a c y of t h e computed v a l u e . T h i s i s
n e c e s s a r y to p u t t h e r u l e s for nuneric p r e c i s i o n of t h e l anguage i n p roper
c o n t e x t .

- P r o g r a m i n g G u i d e l i n e s shou ld be e s t a b l i s h e d for:
- t h e j u d i c i o u s use of s u p p r e s s and i n l i n e pragmas to p r o v i d e

e f f i c i e n c y a s n e c e s s a r y ,
t h e avoidance of g l o b a l v a r i a b l e s and hidden side effects ,
t h e h i d i n g of p e r s i s t e n t v a r i a b l e s i n package b o d i e s (and t h e r e f o r e
p r i v a t e to t h e package) , and
t h e use of o u t pa rame te r s from procedures over uncons t r a ined
composite r e s u l t s from f u n c t i o n s (a 1 lowing b e t t e r s t o r a g e
u t i l i z a t i o n) .

-
-

-

B. 1.5.5

- P a i n i n g should emphasize: e
- concurrent programing concepts - the concept and significance of

parameters

and practices
second order properties of generic

- Standards (with enforcement) should be established for : - the docunentation and use of exceptions
- storage u t i l i za t ion practices

A more r e l i a b l e approach to improving t e s t a b i l i t y is through the use of
Ihe following are Sane appropriate tools to aid i n the developnent process.

t o o l s to spec i f i ca l ly address the risks for t e s t a b i l i t y ident i f ied:

- Proof systems for verifying 2nd order assertions i n generic instant ia t ions
and asser t ions about task interactions, task s t a t e systems and other
progran propert ies .
Runtime monitors for deadlock and other deadness e r rors , storage
u t i l i za t ion parameters , and other runtime properties.
S ta t ic program analysis for tasking interactions, storage u t i l i za t ion and
other program properties including adherence to the programing guide1 ines
l i s t e d above.
Expert system support such as a Veal-time assistant1# for cyclic-based
system generation.

-
-

-

Having i d e n t i f i e d program e f f i c i e n c y a s a r i s k t o t e s t a b i l i t y , i n t h a t
good f e a t u r e s of the language w i l l not be used i f they a r e not s u f f i c i e n t l y
e f f i c i e n t , s e v e r a l suggest ions for appropr i a t e compi la t ion should be
considered. I n gene ra l , a h i g h l y optimizing compi l e r , w i t h e f f i c i e n t ,
deterministic runtime support is a necessary goal. Particular a t tent ion should
be given to the following features:

-
- reduction of uncertainty i n the raising of predefined exceptions,
-

- optimization of tasking interactions wi th special support for tasking

- e f f i c i en t s ize and speed of generic instant ia t ions w i t h pragmas for user

optimization of subtype range constraint checking ,

space e f f i c i en t compilation w i t h pragmas and representation clauses for
user control of storage u t i l i za t ion ,

paradigms through pragmas or pattern recognition, and

specification of instantiation c r i t e r i a .

€3.1.5.6

S u n a r y

In summary, I t was found t h a t t h e language o f f e r e d t h e p o t e n t i a l t o
g r e a t l y improve the t e s t a b i l i t y of software, provided t h a t certain guide l ines
were followed. The language i n t r o d u c e s f e a t u r e s t o d e a l w i t h h i g h e r l e v e l
abs t rac t ions and the canplexltles of concurrent processing and dynamic storage
u t l l l z a t i o n . These features a r e cons idered necessa ry t o d e a l w i t h t h e
canplexltles o f the space s t a t ion software requirements, b u t can decrease t h e
t e s t a b i l i t y of t h a t sof tware. 'kese r i s k s t o t e s t a b i l i t y can be d e a l t w i t h
through a combination of a p p r o p r i a t e development p r a c t i c e s and t r a i n i n g ,
appropriate tool suppor t and appropriate compilation.

B. 1.5.7

Formal vet

FORMAL VERIFICATION AND TESTING:
AN INTEGRATED APPROACH TO VALIDATING ADA PROGRAMS

Norman H. Coheri

SofTech, Inc.
One Sentry Parkway, Suife 6000

Blue Bell, Pennsylvania 19422-2310

NCohen@Ada20

Fication is the use of mathematical woof to con irm that a
program will behave as specified when it is executed. Formal verification
can produce a much higher level of confidence in a program than testing.
Nonetheless, formal verification requires large amounts of skill, human time,
and computer time, so it would be impractical to verify formally an entire
Ada program for a typical embedded computer applicaGion.

We propose an integrated set of tools called a validation environment to
support the validation of Ada programs by a combination of methods. The
validation environment exploits the Ada distinction between module interfaces
and module implementations to validate large Ada programs module by module.
The proposed validation environment is called the Modular Ada Validation
Environment, or MAVEN. MAVEN does not yet exist, nor have efforts begun to
construct it. Rather, MAVEN is our vision of the context in which Ada formal
verification should be applied. A more complete discussion of MAVEN can be
found in [1 I .

Our vision of MAVEN is based on several requirements that we have
identified for the validation of’ Ada programs. These requirements are based
or1 the recognition that Ada programs for mission-critical applications ere
large, that skilled software engineers a r e in short supply, that tile

construction of a verifier is an expensive undertaking, and that the use 0:’ a
verifier may be time consuming. Our requirements are as follows:

1. Formal proofs should not be based on the behavior of a particular
implementation.

2. It should be possible to validate a large program module by module.

3 . For typical mission-critical applications, verification will have to be
integrated with other forms of validation.

4. It should be easy to request the proof of certain critical properties
which, while they do not imply correctness of a module, significantly
raise our confidence in its reliability.

See [2] for a more complete discussion o f these requirements.

U.l.6.l

-...e..,--

?

0

When software engineers use the term "validation and verification," they
Usually do not have formal verification in mind. To avoid confusion, this
Paper U L ~ S the terms validation and verification in two distinct and precise
senses:

Verification is the use of formal proof, checked by machine, to
establish properties of a program's run-time behavior.

Validation is the process of increasing onels confidence in the
reliability of a program. Formal proof is one of many methods
for validating software.

Confusipn may also arise from our use of the term environmes. Ada
Programming Support Enviroriments (A P S E ' S) already exist, and have functions
that overlap those we propose for a validation environment. We do not
envision MAVEN a s a full A P S E or as a tool set independent of an A P S E .
Rather, we view MAVEN as an integrated tool set embedded within an A P S E . It
can be thought of as a tfsubenvironment.*l Many A P S E tools, including an Ada
compiler, may be used both for validation and f'or other purposes.

1 Integration of Multiple Validation Methods

One reason for validating programs module-by-module is so that different
modules can be validated in different ways. There are many software unit
validation methods, all of which have been used successfully in the past.
These include:

- formal proof generated with machine assistance and checkea by machine

- informal proof carried out by hand

- code walkthroughs

- unit testing

- acceptance of a software component as trustworthy, based on experience
using the same component in a previous system

It is not necessary for a project to choose one of these validation methods
for use throughout a program. Given the right framework, different methods
can be combined in an effective symbiotic relationship to ensure the quality
of a system.

While formal verification is the most effective means of ensuring
consistency between a program and its specifications, it has limitations,
These include the problem of validating that the specifications themselves
specify what the customer wants; and the cost -- in both machine time aiid the
time of skilled personnel -- of developing arid checking the proof'. l'tre
manufacture of Software, like any manufacturing process, entails a tradeoff

U. 1.6.2

between cost and level of quality assurance. In some programs there are
modules fo r which any form of validation less powerful than formal proof
would be socially irresponsible. Sometimes the same program also contains
many modules for which formal proof would be a wasteful misallocation of
resources.

Furthermore, there may be some modules that cannot be verified because
they use features of the language for which there are no proof rules.
Features may be excluded from the "verifiable subset" of Ada even if there
are occasional legitimate uses for such features. Such legitimate uses can
be isolated in modules that are validated by some means other than f'ormal
proof. In particular, low-level features of the Ada language are inherently
machine dependent and thus not characterized by proof rules. Low-level
features can be Isolated in interface modules, allowing the rest of a system
to be validated by formal proof.

Many factors combine to determine the most appropriate form of
validation for a module. The cost of formal proof must be compared with the
possible impact of an error in the module. Low-level, target-dependent
interface modules might best be validated by informal proof. For certain
hard-to-specify modules, for e ample a graphics display builder whose desired
output is specified pictorially, testing might be not only the cheapest, but
also the most reliable form of validation. For modules that are not
particularly critical, arid for which test drivers would be difficult to
write, code walkthroughs might be most appropriate. Software might simply be
trusted (until integration testing) if it has been extracted from a working
system in which it has functioned reliably.

To ensure complete coverage, different forms of validation cannot be
combined haphazardly. There must be a unifying discipline. One of the
functions envisioned for MAVEN is to provide such a discipline.

2 Validation Libraries

The Ada language was designed to facilitate the construction of' tiulje
programs. A pervasive theme in the design of the language is the division of
a program into units that can be understood individually yet checked f o r
consistency with each other. If this theme is extended from unit compilation
to unit validation, one unit of a program can be changed and revalidated
without revalidating the rest of the program. This is especially important
during program maintenance.

Module-by-module validation of a large program can be achieved in the
same way as module-by-module compilation. Compilation of an Ada program unit
consists not only of code generation, but also consistency checking. A
unit's syntactic specification is compiled before either the unit's body or
any external uses of the unit. This compilation puts information about the
syntactic spccification into a Ijjram library. Later, when either the
unit's body or an external use of theynit is compiled, this information is

B.l - 6 . 3

retrieved from the program library and used for compile-time consistency
checks.

The consistency checks that occur during compilation are limited to the
information found in a unit's syntactic specification, such as the number,
types, and modes of subprogram parameters. Except for this limitation,
however, they are analogous to the checks that occur during unit validation.
Just as a unit has a syntactic specification that is checked during
compilation, it has a semantic specification that is checked during
validation, Just as syntactic specifications are recorded in a program
library, semantic specifications are recorded in a M A V E N validation library.

Semantic specifications are textually embedded in Syntactic
specifications in the form of structured comments like those found in Anna
C31. This unifies the notions of syntactic and semantic specifications.
When MAVEN is directed to compile a specification, it invokes the Ada
compiler to place the syntactic specification in the program library. If no
compile-time errors are found, the semantic specification is then extracted
from the structured comments and added to the validation library.

2.1 Validation Order

To facilitate compile-time consistency checks, the Ada language
restricts tht order in which units may be compiled. M A V E N imposes analogous
restrictions 'm the order of' validation, Specifically, a module's semantic
specification must be entered into the validation library before the
implementation or any use of the module is validated, Then the
implementation and each use of the module may be validated in any order.
Validation of' the implementation establishes that the body fulfills the
semantic specif;cation. Validation of a use of the module involves assuming,
while validating the using module, that the semantic specification is
correctly implemented. This assumption is permitted as soon as the semantic
specification is entered into the validation library, even before the body
h a s been demonstrated to fulfill the semantic specification. (This is
analogous to the .;ompilation of a subprogram call after the subprogran
declaration has bet,: compiled but before the subprogram body has been
compiled.) It implies that validation of one unit can proceed considering
only the specifications of the units it invokes, without considering their
bodies. This is the essence of nodule-by-module validation.

0

Some program units may be validated by fiat. That is, after a code
walkthrough or simply on the basis of trust, a unit may simply be decreed to
be llvalidated." This still must be done explicitly, by a request to MAVEN,
and the usual validation order rules must be obeyed. In particular, a unit
may not be decreed to be validated before the specifications it is meant t o
fulfill have been entered into the program library.

B. 1 . 6 . 4

2.2 Revalidation Order

Just as the Ada language restricts compilation order, it imposes
recompilation requirements to ensure that consistency checks have always been
performed on the latest version of a program. If a syntactic specification
is recompiled, all consistency checks based on the old syntactic
specification are rendered invalid. The corresponding body and all uses of
the unit must then be recompiled so that the consistency checks may be
repeated with respect to the new syntactic specificatior..

MAVEN imposes analogous revalidation requirements. If a module's
semantic Specification is changed, both the implementation and all uses of'
the module must be revalidated if they have already been validated. This is
Televant during program development and program maintenance.

In program development, failure to validate a body may mean either that
the body does not correctly implement the corresponding logical specification
or that the logical specification itself is incomplete. In the first case,
the body can be corrected and validated. In the second case, the logical
specification must be modified and all other units using that logical
specification must be revalidated. This may require still further
modifications and revalidations.

In program maintenance, revalidation requirements indicate which parts
of a large program are potentially affected by a change. This can reduce or
eliminate the "ripple effect" typically resulting from a change to a working
program. All possible implications of the change will be flushed out by the
ensuing round of revalidations, assuming the revalidation is sufficientlv
thorough. (If the revalidation is by unit testing, this process amounts to
regression testing. Rather than blindly repeating a!l tests, however, we use
validation dependency relationships to identify the tests that might possiuly
have been affected by the change.)

A unit validated by fiat is subject to the same revalidation
requirements as any other unit, even if revalidation consists onl) of
reissuing tile decree by which the unit was originally validated. T r i i s
encourages software engineers to consider whether the original decree is
still valid given the new specifications. For example, it may be discovered
that an off-the-shelf package originally thought to be applicable to the
current application is inappropriate given the revised specifications.

2.3 Other Information in the Validation Library

A validation library contains information besides the seroantic
specifications of program units. A validation plan can be entered into the
library in advance, stipulating how a unit will b e validated once it is
written. The validation library also records which units have been
validated, and according to which validation plans.

--

B. I .6 .5
OCPlGINAL PAGE S
OF)OOR QUALITY

Each module may hive its own validation plan, The plan Specifies the
validation method applied to the unit (testing or formal proof, for example)
and the details of the validation criteria (which files contain the test
driver or test data, algorithms for evaluating test results, or which
Properties are to be proven, for example). A validation pian may specify
several rounds of validation, all of which must succeed for th? unit t o be
considered validated. For example, a plan may call for testing to find and
eliminate obvious errors, followed by formal proof to ensure the absence of'
more subtle errors. No one round of validation need provide complete
coverage of the unit's semantic specification. Some parts of a unit's
Semantic specification may be proven valid, some valiaated by testing, and
Some simply assumed to be valid, for example.

Besides allowing MAVEN to enforce validation and revalidation order
dependencies, the data kept in the validation library allows MAVEN tools to
generate reports on the progress of system validation to date. The reports
indicate which units have been validated and how rigorously. Duririt:
development, validation of units can be tracked and compared with schedbles.
When an error arises, information about the validation methods applied to
each unit and the properties validated for each unit can t-,elp pinpoint
suspect modules. Tire revalidation implications of a proposed change can
quickly be estimated.

3 Other Components of a Validation Environment

A verifier is only one of the tools that a validation environment should
provide. We have already mentioned the need for a validation library. This
implies the need for library management tools; incluc'ns tyre
report-generation tools diacussed above. Other tools can assist in L::#>
writing of specifications, the retrieval of reusable software from A large
catalogue, and the execution and analysis of tests.

Formal specifications are at the heart, of M A V E N , but they are difficult
for the typical software engineer t o write. Therefore MAVEN must s u p p l y
tools to help the software eilgiceer express h i s intent. These tools a r e
collectiiely called the specification-writer's assistant.. One component or'
the specification-writer's assistant is a knowledge-based too; that will

construct formal specifications based on a dialogue vJith the user. The
specification-writer's azsistant also includes an interpreter for a logic
programming language, similar to PROLOG bi;t providing the higher level of
data 3bstraction found in the Ada language. Tnis t oo l can be used for rapid
prototyping, to test specifications as they dre written.

The Ada language 1s meant to encourage the reuse of general-purpose
software components. This approach can only have a significant impact or1

software development costs if there is a large xorpiq of general-purpose
software avdilable for reuse; but such a large corpus pr.esents an awesome
informdtion-retrieval problem. While software retrieval is not usua'liy
+,..ought of as a qralidatjw problem, Pl.atek [4 1 has rioted that forlilal

B.1.6.h

Specifications and verification can form the basis of a retrieval tool. In
ri

addition to a validation library, MAVEN might include a catalogue of
general-purpose, reusable software components, all of which have been
formally specified. Given the semantic specification of a module required i n
the design, a MAVEN tool would search the catalogue for reusable components
that can be proven to have compatible specifications.

c
Because testing is the most frequently used validation method, MAVEN

contains tools scecifically supporting testing. These include tools to
generqte subprogram stubs, tools to generate test drivers, tools to generate
test data, and tools to analyze test results, All of these tools can base

validation library. For embedded applications, there should be saftware
simclation tool:, and tools providing interfaces with hardware mockups. A
related tool would administer tests automatically, based on the validation
plans found in ths validation library. Such a tooi codld also revalidate
those units validated entirely by testing, whenever revalidation i s
required. In essence, this automates regression testing.

. their outputs at least in part on the semantic specifications found in the

4 MAVEN and the Software Life Cycle

MAVEN tools are primarily conceraed with unit validation. This can l e a d
to the impression that the benefits of MAVEN are primarily reaped during the
unit validation stage of the life cycle. In fact, the use of MAVEN imposes a
discipline on software development and provides benefits throughout the
software life cycle. This section walks through a typical waterfall model o f '
tile life cycle and describes the impact of MAVEN on each stage.

4.1 Requirenents Analysis

The s !ec i f rca t ion-hr i ter I s a? si s t an t supports the formal express i o f . d 1'
requirements. Requirement j can be entered into a new MAVFN validation
library as the semantic specifications of the main program and of tdsks
dcclared in library packages. These formally stated requirements can be
checked for consistency using a verifier. They may later become the bdsis
foi- design verification and code verification. An integration-testing p l a n
may be derived from the formal requirements and stored in the validatiorl
library until soft.wa;e integration time.

4.2 Design

During high-level design, the modular decomposition of a system i s
determined and the specifications of each module arc written. Algorithms fur
top-level modules may also be written. MAVEN can play four roles at this
stage -- design documentation, recording of unit validation plans,
software-component retrieval, and design verification.

B.1.6.7

Design documentation consists of entering the semantic specifications
for each design module into the validation library. The specification-
Writer's assistant again comes in handy here. The semantic specifications
entered at this staye become the basis for later verification of module
bodies. The appropriate time to formulate unit validation plans is just
after unit semantic specifications have been identified. One of the
responsibilities of an Ada designer is to look for existing software that can
be incorporated in a design. As noted tarlier, formal specifications might
provide the basis for software automated software retrieval. The top-level
algorithms of a high-level design can expressed in executable Ada code
verifiable in the same way as lower level modules, Using orrly the
specifications of the main system modules (the main program and tasks
declared in library packages), it can be proven that the top-level algorithms
correctly implement the system specifications.

4 . 3 Unit Development

There is not a clear dividing line between design validation and unit
Validation. The same techniques applied to the top-level rnodules during
design validation are applied to lower-level modules during unit validation.
The unit validation plan placed in the validation library during system
design is retrieved and applied. A round of validation is repeated until it
is successful, and then the next round specified in the validation plan is
begun. The validation plan is restarted from the first round any time a
change is made to the unit, its semantic specification, or the semantic
specifications of the modules that the unit invokes.

Validation can uncover implicit assumptions that underlie the correct
functioning of a module, especially when validation is by formal
verification. Such assumptions must be added to a module's semantic
specifications if the module is to be verified. Thus the validation process
contributes to the development of complete and up-to-date specifications.

4.4 Integration Testing

The main impact of MAVEN on integration testing will be a drastic
reduction in integration problems. The Ada compiler will already have
checked all units for syntactic consistency with each other. MAVEN will
already have checked all units for consistency with their own semantic
specifications and the semantic specifications of the modules they invoke.
The few integration problems that remain will arise from incomplete module
specifications (for example, specifications that address functional
requirements but not performance requirements) and insufficiently rigorous
unit validation (for example, use of code walkthroughs as the sole means of
validation or the use of tests that do not provide adequate coverage).

U. 1.6.8

4.5 Maintenance

MAVEN will reduce the costs and risks of program maintenance. Both the
data MAVEN collects during program development and the discipline MAVEN
imposes on program modification will help confine the "ripple effect" of a
change. MAVEN will also keep documentation up to date after changes have
been made.

The most frequent problem associated with program maintenance is a
change that violates an implicit assumption upon which a different part of
the program depends. This problem is less likely to arise when using MAVEN
for two reasons. First, the validation process applied during program
development has served to make implicit assumptions explicit. The
documentation will warn the maintenance programmer right from the start that
certain changes must be disallowed unless further changes are made in other
modules. Second, if the semantic specification of a module is changed, MAVEN
will enforce the revalidation of all modules that may be affected by the
change. The revalidation dependencies alone clarify the potential impact of
a contetiplated change. The actual revalidation, which may follow the
original unit validation plan created during the initial design, leads the
maintenance programmer to discover which potential impacts are truly
significant, to revise the affected modules, and to validate the revisions.
If the revised modules can themselves affect other modules, revalidation of
these other modules will also be required. If sufficiently rigorous,
revalidation anticipates and averts all possible ripple effects,

MAVEN keeps documentation current during program maintenance in the same
way that it does so during initial development. Every time a unit's semantic
specification changes, MAVEN records the fact. This makes the next rourid of
maintenance easier.

5 Conclusions

We have described our vision of a Modular Ada Validation EnvirollniL:it,
MAVEN, to propose a context in which formal verification can fit into t t ~ c
industrial development of Ada software. While proof of correctness i s
unquestionably the most rigorous and effective form of validation, there are
contexts in which it is inappropriate. Nonetheless, formal proof cd I be
effectively combined with other validation methods to raise confidence 1 : i 2

program's reliability.

MAVEN offers software engineers a continuum of more and less rigorous
validation methods. This continuum makes a wider variety of validation
methods available t o a larger group and applicable to a greater number of
modules. MAVEN provides a unifying framework in which different validation
methcds may be applied to the same progr'am. By exposing software engineers
t o more rigorous methods than thcje they may be familiar with, MAVEN

B.1.6.9

-

. . , _ _ - . . .

encourages learning and promotes wider use of formal methods in the
situations where they are appropriate.

MAVEN includes components that are at and beyond the state of the art.
We do not propose that construction of MAVEN in its er.+Arety should start
today. Rather, MAVEN can serve as framework for the specification, design,
and construction of individual tools, including a verifier. If such tools
are viewed as eventual MAVEN components and if the MAVEN philosophy is kept
in mind when the tools are specified, then MAVEN can be assembled over a
number of years from independently developed components.

REFERENCES

1. Cohen, Norman H. MAVEN: The modular Ada verificatinn environment.
Proceedings, 3rd IDA Workshop on Ada Verification, Re5earch Triangle Park,
North Carolina, May 1986

- - -

2. Cohen, Norrrian H. The SofTech Ada Verification Project, AIAA/ACM/NASA/IEEE
Computers Aerospace_ 1 Conference, Long Beach, California, October 1985,
399-007

3. Luckham, David C., von Henke, Friedrich W . , Krieg-Brueckner, Bernd, and
Owe, Olaf. Anna, A Language for Annotating Ada Programs: Preliminar-
Reference Manual. Technical Report 84-261, Stanford Computer Systems
Laboratory, July 1984

4. Platek, Richard. Forrnal specification. Proceedings of the First IDA
Workshop on Formal Specification and Verification - - of Ada, Alexandria,
Virginia, March '985, paper C

- --

B . 1.6.10

------.--- . *
P
r

5 7 4 /

Programming Support Environment Issues in t h e

Byron Programming Environment

Matthew J. Larsen
Intermetrics, Inc.

733 Concord Avenue
Cambridge, M A 02138

absfrocf: This paper discusses issues which programming support environments
need to address in order to successfully support software engineering. Thesc:
concerns are divided into two categories. The first category, issues of how
software development is supported by an environment, includes support of the
full life cycle, methodology flexibility and support of software reusability. The
second category contains issues of how environments should operate, such as
tool reusability and integration, user friendliness, networking and use of a
central data base. This discussion is followed by an examination of Byron, an
Ada based programming support environment developed a t Inkrmetrics.
focusing o n the solutions Byron offers to these problems, including the support
provided for software reusability and the test and maintenance phases of tho
life cycle. The use of Byron in project development is described briefly, arid
the paper concludes with some suggestions for future Byron tools and user
written tools.

1. Introduction

Over the past two decades, producers and consumers alike of software product.\
have becoiiie increasingly concerned with what has become known as thtt
”software crisis”. As computer hardware has evolved to enable the processing
of more and more data a t faster rates, the range of pra:tically solvable problems
has grown. Yet our ability to manage the growing capabili t i t~ of computer
hardware, as Djikstra 111 has stated, has lagged. In order to combat tht.
software crisis s u c h weapons as design methodologies and software support
tools have come into existence. Collections of these tools have become k~iown
a3 progranirriing support eovironmerits, and there has been a gradual realization
that such environments can be valuable. lvie 121 identifies several benctits ot’
such systenis, including commonality o f documentation, developmelit 01 ’
standards and enhanced prograrrimor mobility u i d retraiiiability.

There is much disagreement concerning exactly which tasks a programming
environment should support. The DoD has issued Stoneman [31, a documen t
specifying the requirements an Ada* programming environrnerlt mus t meet, but
Stoneman focuses primarily on how the tools are to work in general, no t o n the
needs to be fulfilled by the tools. In this paper we shall first examine issues
which programming environments, particularly A d a environments, m u s t
address. This will be followed by an examination of Byron, an A d a based
programming enviroiiment developed at Intermetrics, and how Byron deals
with these issues. We shall then examine how Byron might be applied to a
project.

2. Programming Support Environment Issues

There are two sets of issues relating to programming environments. The first
set focuses o n how the environment supports software engineering. Included
here are full life cycle support, support of software reusability and rnethodology
flexibility. The second se t is concerned with how the environment operates
internally, including issues of environment integration, flexibility and user
friendliness.

2.1 Software Engineering Issues

The purpose of a programming erivironnient is to support software engineering.
There are four concerns which must be addressed in order to do this
effectively. First, the full software life cycle must be supported. Second, the
user m u s t be able to move freely from one life cycle phase to another. Third,
the environment must not restrict the choice of riielhodologies available to the
user, and finally, the environrnent must actively support the reuse of software.

2.1.1 Full LiIe Cycle Suppor t

Frequently, the software life cycle is modeled as a discrete, linear process 1.1).
Initially requirements are drawn up, then a software system is specified.
designed, implemented, tested and finally maintained. Each phase is treated
separately, and is corriplck'd bcfore the next phase begins. If revisions mus t be
made, the process loops. For exarnplc, implementation might halt while thc
design is reworked, and then the implementation would be modified. 'l'lie
resul t of each phase is a docurnent describing the resul ts of that phase (i n
irnplernentatiori this is the actual code). Note that thcse documents are oflc3n
of vital importance to the following phases. Icor example, it is irnpossiblc to
test a software system without kriowing what it is required to do. Similarly, a
dvsigri docrirneri t rnay givc! a valriahle ovc.rvirw of a syskrn to th(3 iiiaintencnw
h*;irri.

ORiGlNAL PAGE IS
OF NK)R QUALITY

13.2.1.2

c-2.

In the past, automated support existed only for the implementation phase.
Even now, research on programming environments is mostly directed toward
the code-compile-debug cycle 151. However, errors are cheaper and easier to
flx if they are discovered earlier in the lifecycle. Also, i f the computer is only
usable for implementation, programmers will tend to concentrate on that phase.
So the need for good tools which assist with earlier life cycle phases is
paramount. A s Gutz et al. [Si report, an environment must provide support
throughout the life cycle.

2.1.2 Mobility Between Li fe Cycle Phases

Although the view of the life cycle aa a discreet process is useful, it is n o t
wholly adequate. Often an error is discovered which requires adjustments in an
earlier phase. Because of deadline pressures, tlie corrections are usually made
only in the current phase, which then bears some relation to the previous
phases, but is n o t a direct descendant. Thus, the resulting implementation is
based on an underlying design which evolved separately from the design
document. The differences are likely to be subtle and difficult to understand,
bu t are almost certainly important. If, however, there is a simple way to update
the results of a previous phase (in this case the design document), the results
of the phases are more likely to remain consistent with each other.

The essential problem, therefore, is to keep the documentation for the earlier
phases consistent wi th the current phase. Naturally the previous phases ;ire
reflected in the current phase, although the information may be implicit rather
than explicit. Fo r instance, in Ada code some portions of the design are readily
visible in the specifications of packages and the decisions concerning thc
grouping of subprograms into packages. Since the packages also con taiir
information unimportant to the design, what is needed is a tool to distill the
design o u t of the code. Dut in order to do this, the entire design must bc~
explicitly stated, as must any other information we might want to us(* iir

creating reports. One way of providing easy mobility between life cycle ph:tsos
is to introduce a programming language which permits explicit stateiiicnt of
information concerning all phaues.

2.1.9 Methodology Flexibi ldy

There are rriany differerit software eriginceririg rriethodologies, aiid new' oikt*s

appcar with frequency. Even such basic concepts m thc lift! cycle are called i r i l ~
question 171 and rc:visc:d regularly. It has become clear [81 that e n v i r o n i u e r l ~ ~
must be flexible enough to perrriit a variety of rriethodologies and the evolution
o f new methodologies, sirice dificrcnt problerns requirc! diflercnt nlc~thot!s ()I'
solritiori. I n ordcr to provide this flexibility, erlvironln(.nts must pcrlllit t , I 1 (5

oxpression of rnarly diIT(!rc:nt kinds of information and also the cakgorizatioil o f
this iriforrrr;ition i n rrr;irry tliflercirt ways . 'I'he C ~ I V ~ ~ O I I I J ~ C I I t must the11 provitlc
;L(:WSS to this i ~ i f o r r r i a l ~ i o r i , ;w w c will sc!o below. 'l'tlp i1nport;inrc oI' []lis

llcxihility can riot hc ovcrutakd.

11.2.1.3

8.1.4 So/tuare Reusability

The software industry has recognized the need to avoid continuously rewriting
various pieces of software. One of the major goals of Ada is the proliferation
of large libraries of reusable packages, in order to address this need. However,
there is a very real daiiger, even in small environments, that one programmer
might no t know what other programmers have already done. Even if code is
known to exist, it niay be difficult to determine whether the package actually
does what is necessary (and whether it has side effects), or whether it can be
easily modified. If the only way to identify the functionality and effech of a
package is to read the code, much of the advantage of reusing the code may be
10s t.

The suitability of a given package for a givcn task is best evaluated by
examining the design of the package, if that information is accurate. Therefore
we see that the design information should be explicitly stated, and extractable
from the code. Furthermore, this information must be in a concise and
standard format, so users will be able to quickly sift through the available
packages to find what they need. It is important for the environment to
support the act of finding software which could be reused.

2.2 Environment Operation Issues

Although the support of software engineering is the primary goal of
programming environments, issues concerning the operation of the
environment are also important. If the tools are too clumsy to use, the
environment will not be useful. Osterweil [91 identifies five characteristics
essential to programming environments: breadth of scope and applicability, user
friendliness, reusability of components, integration, and use of a central data
base. The first of these includes the issues we identified above as methodology
flexibility and life cycle coverage. The rest we shall consider below.

User friendliness is a broad term, includiilg many fairly obvious poiiits. U s e r
interfaces should be consistent; help should bc on- l ine and easily accessiblc;
tools should perform obvious functions and be free from contradictory and
confusing options. A less o b v i o u s aswct of this issue is that tools should n o t
overlap i n function, w h i c h will teiid tu confuse the users in choosing which tool
is best suited to a specific task. Also, a use r who needs to perform a specific
task should be able to find tht tool which does that task without intilllately
knowing all the tools.

In order to provide a flexible methodology as discussed above, the coiiiponent
Coolset must itself ht: flexible. 'i'his holsct can tlieri be the. basis f o r ncw LOOIS
tailored to fit the projc(.t. Ilcrglantl arid Gordon IlOl comment that "if the tools
wine first, too ofkn tht: design and devclojmeiit methods end u p
;ic.corlltrlodatirig the bois ii~sk;ttl o f vice v(!rsa.n 'I'his implies, ;tiiiong otticr
t,Iiiiigs, that ;L fwility for wrrihiriing kx,ols r i i i i s t exist. 'I'hc power of this
;tpproach is well kilf)wrI f r o i l l c.xp~ricrlccs wi th the I J n i x * prograi~iiiiiilg

13.2.1.4

environment. It is, however, not well understood which tools should comprise
the toolset. Presumably, the next few years of research will begin to identify
the essential tools.

I t is also important that the tools be well integrated, that is, they should work
together to provide an abstraction which assists the user in working within a
particular development methodology, and shields the user from the delails o f
the environment. Thus the interaction of the tools should be controlled in
order to avoid hidden side effects, yet reuse operations where possible. Since
we have already acknowledged the fact that the user is expected to augment the
environment with addition;il tools, this goal can only be partially achieved.
However, the sel of reusable elementary tools should certainly abide by these
rules.

The idea of a central tl; ita bzse which contains all the information relevant to R

project is one of the most widely accepted concepts concerning programming
environmeiib Il l] . W c identified a need earlier for a language which can be
used to express all LIIC iiiforxation concerning a project. It is even mow
important that all tlliv ;iiforrrriatiori Le stored in one place. This can then be
used to maintain v:iricus versions of a project, structure and retrieve
information in managcnblc: pieces aild most importantly, maintain a single set
of documents which describe the state of the project at any given momenl.

3. The Byron Programming Support. Environment

We will n o w review the Byron Programming Support Environmenl, aiicl

examine h o w it addresses the issues identified in the previous section. TLic,
three important aspects of the environment are how the data enters tl ic.

environment, how it is stored, and what tools are available to access the stored
information. T h e prirriary means of expressing information to be entered i r i r o

the Byran crivironrneiit is the Byron program developrncnt language (P U L) .
The P D L text is analyzed and stored in a structured data base (the prograiii
library). Once stored, lhc informalion is available to the va r ious tools wliich
coin prise the Byron prograin rriirig support e n vir011 r ~ i e n t.

3.1 The Byron PDL

l'hc Byron prograrnniirig support cnvironrnent is centered around :LI~ Ada-basvcl
program development language (Dyron/Ada PD L) . Byron is compatible Lo Ad;]
since a n y legal Ada program is also legal Byron, arid vice versa. I3yroii ~)rovi(ic~s
a consisterit way of ciilcring information into the criviroiiiiient througliout the
software life cycle, and thus smooths the transition from one phase to aiiotlicr.

B.2.1.5

,Byron constructs are included with the Ada code in the form of annotated
commenta. (see [l2] and [13] for more detail). The Byron PDL is designed to
augment Ada's design language abilities by formally and efficiently expressing
information produced in the course of engineering a large software system
which cannot be expressed in Ada, Ada has many features which assist and
improve design; however, it has been recognized that there is information
which is not required by or even expressible in modern programming
languages, including Ada, but which is nevertheless important and valuable
1141, [15], [IS]. This information is mostly semantic in nature, concerning tlhe
use or purpose of data items or subprograms. Consider the following Ada
subprogram specification

function CopyLinkedList (List : in ListPtr) returns ListPtr;

This is sufficient for compilation; however, in order to use the function there
are details one needs to know, such as whether a physical copy of each list
element is made, or merely a copy of the pointer to the list. Byron permits the
methodical inclusion and retrieval of such information.

Information is expressed in Byron either as Ada code or as Byron annotations.
Annotations are formed with the prefix "--I' followed by text. In general, the
text of an annotation is associated with the Ada construct that precedes the
annotation. A n annotation may also contain a keyword which categorizes the
information. This permits the user to tailor the Byron PDL to suit many
different tasks. For exarnple, the effect of the CopyLinkedList subprograni
might be described with the effects keyword, e.g.

--[Effects: Creates an exact copy of the list passed in. A copy
--\of each element is made, so the copied list shares no elements
--I with the original.

The user may specify what keywords may be used and what Ada context they
are to be expected i n . This permils the user lo define a specific developnieiit
methodology, giving the user the rnethodology flexibility discussed above. For
instance, a methodology might require that every use clause that is placed in
code be followed I)y a Dyron annotation justifying the presence of the use
clause. A Hyron kf!yword "!Jst!~..lustification" could be used to enforce this
re q u ire men t.

One problern with rnethodologics is that it is sometimes diHicult to get
programmers to adhcrc to them. Byron attcrnpls to alleviate this problern
through the niechaiiisin of "phxqc checking," The uscr specifics what
development phase ;L givcri keyword should be used a t (keywords may also be
optional). I'rograrri source is thttn categorized within the program library
a.c:cordirig to w h a t p1i;i.w I i :w beeii rcachcd based 011 what keyword a~l~~ota t ior i s
:m: prcserit. The ;iIiaIyxcr will warn a user w h o iridicatcs that code has reacllcd
a phase wliirh it has riot; lrmls rri;ly also he written Lo report what phase any
portiori of code is ci i rre i i tly i i i . ' I l h i i Y , the "Use Justilicatioii" keyword described
;it)(> v e co I I I (I I)(! rwl i i i r c t l :it i r r i 1)lc i n e n tatiori pti;iso. W:u-iiirig rr1ess;iges wo u Id

13.2.1.8

indicate the absence of Use-Justification annotations when code w a s a~lalyzed
with a phase of implementation,

3.2 The Byron Data Base

The Byron system provides a database called the Ada program library, wliicll
provides a central repository for all the information concerning a project. 'ilk
information is primarily stored in the intermediate form known as D I A N A ,
including both the regular Ada syntactic and semantic information, and thch
Byron PDL information. Tools may be written which access either kind 01'
information, and may be independent of life cycle phase or not. The PDL code
enters the program library through the Byron analyzer. This prograin is th(5
f ront end of an Ada compiler, and provides full syntactic and semantic*
checking, as well as the checking specified for Byron annotations.

The program library permits Ada programs to be broken down into any n u r n b c r
of separate catalogs containing compilation units, which are linked together tx)
form the program library which comprises a program. Catalogs may be citlicr
read-only resource catalogs, which contain a specific release of a s e t 0 1 '
compilation units, o r modifiable primary catalogs which generaly represell t ; I

new revision under construction. Configuration management is assisted by th(.
use of different revisions of a resource catalog. Thus, two projects might tw
using different revisions of the same resource catalog, so that the project usit ig
the older revision could avoid recompilations or regressions in the re ewer
rev is ion.

3.3 The Byron Tools

1001s are an csseiitial part of a programming support erivironnient bul it is t I i (.

selection o f tools :inti ttic! relationship between them that charactcrizes the,

working details of a truly integrated system. As we saw in section two. t h c > r c
are many factors to he considered when exarniriing a prograiiiiiiiiig
environmeril,. 'The f j y r o r i tools have been designed with an eyc to\v: l rc l
flexibility and srrioo tti clisse rriination of the information c.orlccrtlilig sys t < b I I i

u n d c r de ve lo prn e n t.

As we nokd before, a prograrrirnirig support environment rnust i~rclutlc tools t o
support cacti r) h i L y c of tht: softwarc life cycle, iirid itrust sliioot]l t]le trilli~i~io11
between pt1ii.qf:s. 'l'tic Ilyron LooIs fall i n t o two broad c.;Lk.gorics: tirst, t o o l 5
w h i c h assist with rr~ethodology and the life cycle phrncs, and st.c*orld, k)ols

which assist with prograrrirnirig tasks without regard to a specific discipli~io 01'

life cyclc? phwc. Mcthodology :ind life cycle tools includc an A d a I,;~sotl
I'D I , , dewrihctl carlicr, configuration manager for sourcc arid doculllentatioIi.
design reqii i re r r i c 1 1 L.j lrawahili ty pickage, data dictionary syste 111 and 111 o re.
Of the scc011(1 type of hol, L3yroii provitlcs ;I variety of k!cllnicnl progranirliillg
koo Is for s h l i c ; L I I :tlysis. 'I'I~c!sc include ;in A d:i co 111 pilc r, l i r i kc r, reco 111 pi la tio I I

manager, global CrOss-r(!f(lrCncer, sourcc forrriiatcr, program listc r and o the rs.
Arioltier wily o f ciikgorixilig I lyror i bo lv is by t h i ? form of t l i t b t hey oper;\t41 0 1 1 .

M il.1 i y of I , l i f ~ ' x) o IS, i I I (.I I I (1 i r i g thc global cross- rc fe re I ~ C C r , tlie d a b dic ti0 11:tn.y

I .

13.2.1.7

generator and the generalized document generator, operate OII the data
available in the program library. Other tools, such as the pretty printer,
statement profiler and the compile order generator, operate directly o n A d a
source code.

In an earlier section of this paper, we pointed o u t that an environrnent m u s t
permit user constructed tools. We have seen that the Byron I'DL permits the
user to store arbitrary information in the program library. Tools are also
provided which the user may use to extract that information from the program
library, as well as Ada syntactic and semantic infomiation. The first of these
tools is a generalized document generator, which creates documents based on
user written specifications. These specifications are written using an interpreted
language, BDOC, which permits the extraction of information from the
program library and the output of that information in a forrnated form. The
second tool is the program library access package (PLAP), a se t of Ada
subprograms which provide a window into the library. The user can extract
information about his program, as it evolves, without being concerned with the
internal structure of the library. Ada programs can be written which utilize the
P L A P to query the program library and output individually tailored reports.
Using this package, it is possible to construct complex tools such as a hierarchy
chart drawer o r a program interconnectivity matrix. These two tools provide
the elementary tools spoken of in 2.2.

Also pinpointed earlier was the need to support reusability. I t is not unusual
for a programmer to duplicate the work of an associate sirnply because no one
knows that the work has been done before. This problem is especially
pronounced in a distributed computing environment. Even i f a piece of code is
available which does a similar task, it may be nearly as dificult to modify as LO
wri t e from scratch, since the programmer i r i u s l first understand h o w the
existing code works. The userman tool provitlvcl with Byron (-;1t1 assis1 i n
relieving this problem. The document created by userrt ian is a descriptio11 of
the purpose and use of package o r subprogr:un, and i s interldcd to br a
document of the design o f a package or subprogram following the desigil
methodology suggested by Liskov 1141. Other documents supporting other
design methodologies could be produced. One call then erivisioll a desigll
lihrary stored on a computer lo w h i c h prograriirricrs could refer when lookirlg
for a package to do a specific job. Another way to encourage reusability would
tw to create a user defined keyword "keywords." This keyword w o ~ l d br
Iwrrriittcd on all library u u i k , : L I I ~ the Lext followiiig i t would be ;t list of
krywords describing the functionality the unit provides. A simple prograin
roiild be written usirig thc I'lap which would extract the keyword list froill each
i i r i i t , i i i the 1)rogr;uii library. l h * l i (*Icrric*iil in ltio list would bc. cotiiparetl l~ ;L

,I r ing wIiic*)i the usor o f tIrc> prograrri would supply, and if they iiiatcIied, a11

o v c r v i c w of thc u r i i l W (J U I ~ bc printed. This would ;wsist user:, in siftilig
1 1) roug11 largc. 1il)rary.i o f sof'I,wiLr(' h find ;ippropri;ik LOOIS.

u.2. I .H

Documents of this nature also help support the software life cycle, by helping
to show the design as it currently exists, rather than as it is intended to cxist 01'

as it used to exist. Byron also offers a tool to support the tracking of'
requirements, to ensure that the final result of the project does in fact fulf i l l tltfb
needs it was intended to. The userman and requirements tracking tools help
Byron to support transitions from one phase to another, as does the fact tli;il
many of the tools are useful in multiple phases.

4. Project Use of the Byron Programming Environment

A comprehensive development system, such as Byron, is difficult to visual ize
at work. An operational view is necessary to appreciate the ability of s u c h ;L

large number b f tools to function together usefully. The following scenario is
presented as a brief illustration of how a hypothetical project might evolve
using this system.

First of all, Byron provides methods and tools to assist management with
organization, planning, tracking and reviewing of this project throughout its
entire life cycle. Since the user is permitted to decide what information ia to he
stored in Byron annotations, valuable project information such as names o f
implementors and/or designers, project progress information, pro$ct statistics
may be easily stored and accessed. Tools for computing the Halstead and
McCabe complexity metrics are included, which assist software manageme,, I in
several ways, including estimating the number of outstanding bugs and the t.ittir

needed to complctc pieces of software.

The requirements phase of this project defines the problem to be soIvctl.
defines a system design to solve the problem, and allocates the requirements 01 '
that design to hardware attd software. The desigit requireiiients traceability tool
provides the facility to relate requirements to design elemcnts and niodri 1c.s.
This is cspccially rtscful i r i lakr phares w h e r e the imp;ic-t of chaiigc ni;q' h,
quickly traced.

13.2.1 .o

bodies on the basis of annc*!ated specifications. As implementation begins in
earnest, the user can take full advantage of the PDL aspects of Ada, and whrre
Ada is dc?med inappropriate, Byron annotations may be defined to fi l l the gap.
A user defined Byron annotation "BD" or "to-be-determined" might be used ay
a general purpose annotation tn mark these comments, and p r m i t their
extraction and inchsiou in documents. Two such documents might be a repor!
on which mcdules are not yet fully implemented and what work riecds to be
done on them, or perhaps a design document of a more dctailed nature than
that produced by the userman tool. Coding and debugging are assisted by
frequent reports such as cross-references and compilation listings. Wher~
implementatioa is complete enough, the Ada compiler will generatc object code
(also stored in the program library) which may be linked for testing.
Implementation and testing are further assisted by a symbolic debugger and
performance analysis too;s.

Once the system hegins to work, it must be carefully tested. Software which
has not been adequately tested cannot be comsidered reliable. ?'he Byron tools
assist testing in several ways. First, the design requirements tracer shGws which
modules implement which requirernentu, helping to focus *sting eHorls.
Second, when a module is designed it's purpose is well understocd, and the test
which should be applied are o f t en more obvious :!,ail after implementation.
The functionality which a module is intended to provide should be tested, no t a
Ypecific implementathn. Dyron annotations provide a mean- for expressing Lhis
information at, whatever point in the life cycle it can best be specified.

Software sqstems spend the majority of their life cycle in maintenance phayc.
The cost in terms of both time and money of repairs and enhancements can be
greatly reduced by the availability of accurate docurneats which describe a
system at varhus levels, from requirements dowu to detailed design. I f :]I \

engineer must read code to undcrstarid a system, it may be a consideraLlr
amount of time before changes can be made to the system. Comments, whrll
they exist, tend to bc vagiic. nritl incomplete. Ijyrori provides a rii(.cha:iism for
specifying w h d s t r u c t u r v s sIioiiI(I b e corrirnentkhd and bvtiiit type of infornir\ t iotl
the comments should iricludr. One rnajor purpost' of Ijyron is to provide :)

series of d o c u r n ~ r n t s w h i c h descrihc the systeoi, provitllng irlsigllt a1 severa l
Icvels of corn plexity.

13.2.1 . t o 1 ORIGINAL PAGE IS
OF ? O R QUALIW

how this information can be expressed, such as the Ada framework
surrounding the information, these limitations serve lo focus the user's
attention on the purpose of the environment: to assist the creation of Ada
programs. Thus, the environment supports primarily the act of producing
programs, not the act of using that product. This is accomplished by helping
the user organize the information which would otherwisc be in some possibly
ou t of date design document, or as a series of random comments, or perhaps
not at all. The user may 'hen use this organization to extract only as much of
the information as is necessary for a specific tool to do its work, or to answer
specific questions concerning the software system.

Ack no wledg etne nts

This paper was reviewed and commented on by Michael Cordon, David
Ortmeyer and Haynes Turkle. Their suggestions and support are greatly
appreciated.

References

[11 Dijkstra, E.W. "The Humble Programmer" (Turing Award Lecture).
CommunicafiotLs of U t e A C M . vol. 15, No. 10 (October 1972) : 859-866.

121 Ivie, E.L. "The Programmer's Workbench - A Machine for Software
Development." Communications of h e ACM. Vol. 20 KO. 10 (Octobcr, 1977) :
746-753.

[31 Department of Defence. Requirements /or Ada Prograniming Supporl
Environments, 'STONEMAN'. (Washington : US Department of Defence,
1980).

14) Yourdon, E. and Constantien, L.1,. Structured Design. (N e w York :
Yourdon, Inc., 1978) : 3-9.

[51 Herideruori, P., ed. Proceedings of he ACM SfCSOk'?'/SfC'f-'LAN Sojtictcire
P i c > i v Engineering Symposium on Practical Soltware I1 clvelopnicnt I:'nvirotirric ids.

York: The Association for Computing Machinory, Iiic., IOH.1.

[61 Gutz, S., Wasverrnari, A.I., arid Spier, M.J. "Persorial Dcvelopinent Syskriis
for the Professional I'rogr:mmer." IE1:'IS Computer. Vol. 1 4 No. 3 , (A p r i l
1081) : 45-53.

[71 h4cCracker1, I1.D ., :tritl .lacksori, M.A. "Ilifc-Cyclc Concept Corisidered
JIar r r i fu l . " Software k'tryheering Nofes . Vol. 7 N o . 2, (April 1082) : 20-32.

13.2.1.1 1

Process." IBM Systems Journal. (vol. 24, No. 2, 1985) : 102-120.

191 Osterweil, L. "Software Development Environment Research: Directions for
the Next Five Years." IEEE Computer. Vol. 14 No. 4, (April 1981) : 35-43.

[101 Bergland, G.D. and Gordon, R.D. "Software Development Environments."
Tutorial - Sojtware Design Stratagics. 2nd ed. New York : IEEE, 1981 : 347-
353.

Ill] Wasserman, A.I. "Automated Development Environments." IEEE
Computer. Vol. 1 4 No. 4, (April 1981) : 7-10.

1121 Larsen, M.J., Ortmeyer, D.O., Turkle, H., and Gordon, M . "The
Byron1100 Program Support Environment." Proceedings of Use, Inc. Fall
Conference, uol. 1. Anaheim, CA, (November, 1985) : 119-134.

[131 Byron Program Development Language and Document Generator. Cam bridge
: Intermetrics Inc., 1985.

[141 Liskov, B. Modular Program Construction Using Abstartiom. M I T
Computation Structures Group Memo 184. September 1979.

1151 von Henke, F.W., Luckham, D., Krieg-Brueckner, B., and Owe, 0.
"Semantic Specification of Ada Packages." Ada in Use: Proceedings of t h e Ada
Internafional Conference. Cambridge: Cambridge University Press, 1985 : 185-
196.

0

[161 Luckham, D.C., von Henke, F.W., Krieg-Brueckner, B., Owe, Q. Anna: A
Language / o r Annolaling Ada Programs. Computer Systems Laboratory
Technical Report 84-261. Stanford University. July, 1984.

13.2.1.12

Al Tyrrill
A. David Chan

North h e r i a a n Aircraft O p e r a t i o n s
R o o h e l l I n t e r n a t i o n a l

Lakewood, California

ABSTRACT

T h i s paper describes t h e toolset of a n Ada Programming
S u p p o r t E m r i r o m e n t (APSE) b e i n g developed a t North American
Aircraft O p e r a t i o n s (NAAO) of Rockwell I n t e r n a t i o n a l . The
APSE is r e s i d e n t on t h r e e d i f f e r e n t hosts and must s u p p o r t
d e v e l o p n e n t for t h e h o s t s and for embedded targets. T o o l s
a n d developed s o f t w a r e must be f r e e l y p o r t a b l e between t h e
h o s t s .

The too lse t i n c l u d e s t h e u s u a l edi tors , c o m p i l e r s , l i n k e r s ,
debuggers , c o n f i g u r a t i o n managers and documenta t ion t o o l s .
G e n e r a l l y , t h e s e a re being . suppl ied by t h e h o s t computer
vendors . Other t o o l s , for example, p r e t t y p r i n t e r , c r o s s
r e f e r e n c e r , c o m p i l a t i o n order t o o l and management too ls have
been o b t a i n e d f ran publio-domain sources, are implemented i n
Ada a n d a re being p o r t e d t o our h o s t s .

S e v e r a l too ls b e i n g implemented in-house are of i n t e r e s t ,
these i n c l u d e a n Ada Design Language p r o c e s s o r based o n
c o m p i l a b l e Ada. A S t a n d a l o n e T e s t Environment Generator
f a c i l i t a t e s t e a t tool c o n s t r u c t i o n and p a r t i a l l y a u t a n a t e s
u n i t l e v e l t e s t i n g . A Code Aud i to r /S ta t i c Analyser permits
Ada programs t o be e v a l u a t e d a g a i n s t measures 0.” q u a l i t y .
An A d a Comment Box G e n e r a t o r p a r t i a l l y a u t o m a t e s g e n e r a t i o n
of header comment boxes.

Rockwell I n t e r n a t i o n a l North American Aircraft O p e r a t i o n s (N A A O) i s
c o n s t r u c t i n g a f a c i l i t y for t h e d e v e l o p n e n t of Ada software. The f a c i l i t y w i l l
s u p p o r t a n a v i o n i c s i n t e g r a t i o n l a b o r a t o r y where boLh s i m u l a t i o n and embedded
a v i o n i c s software are t o be developed. Ada software d e v e l o p e n t vi11 occur o n
three d i f f e r e n t hosts .

1. A supermini w i d e l y used i n t h e a e r o s p a c e and s c i e n t i f i c cornmunities.

2. Another s u p e r m i n i no ted f o r h i g h “number c r u n c h i n g ” horsepower. This
p r o c e s s o r model w i l l s u p p o r t t h e s i m u l a t i o n s and simulation developnent . 0

- 82.2-1 -

3. A prooessor &signed speoi f ice l ly fo r A d a software development, on w h i c h
a l l ay8tea software ha8 been implemented i n Ada.

Ea& of the devalopent hosts w i l l interfaoe t o a user maintenance console t h a t
supports several of the embedbd avionics processors. h e maintenance console
a n pass data between the t a rge t prooesaor memories and t h e hos ts and control
exeoution of the targets.

The avionias prooessors are conneoted t o each other, various actual a i r c r a f t
hardware and the airnulation host by means of several h igh speed data busses.
Software i n the avionics processors can be tes ted w i t h aotual hardware online
or with hardware simulated by models i n the simulation host.

The hosta are t o be networked w i t h an Ethernet l i n e so t h a t software,
associated products and developnent too ls c a n be eas i ly transported.

Roctatorell is constructing an Ada Programming Support Enviroment (APSE) for the
developuent f a c i l i t y . h e APSE cons is t s of a s e t of too ls whose object ive Is
t o suppor t the production of a vell-organized, s t ructured and maintainable
software product, i n a cost e f fec t ive manner. The APSE i t s e l f must be
constructed i n a cost e f fec t ive manner,

The cost requirement on the APSE d i c t a t e s t h a t avai lable too ls be used a s much
as possible. This reduces t h e potent ia l level of tool integrat ion, a s too ls
implemented i n i so l a t ion fran each other generally w i l l not share common
interfaces . h e in te r face tha t is shared by most of the too ls i s the Ada
language, however, and i t s r ig id standardization makes assembly of a too lse t
from disparate sources feasible .

This sect ion summarbes t h e components of the NAAO APSE and ind ica tes the
sources frcm which the tools w i l l be obtained. Section 3.0, Locally Developed
APSE Components, describes i n more de t a i l sane of t h e components t h a t a r e t o be
implemented at NAAO.

These too ls support the des ign and coding phases of t h e software development
process. They a re an Ada Design Language, text and program edi tors , compilers
a n d assemblers, a l i b r a r y of primitives and common packages, and l i n k edi tors .

The object ive of the NAAO Ada Design Language (DL) is t o provide a means of
expression f o r both control flow and data s t ruc ture and relat ionships . The Ada
language i t s e l f provides an excel lent means fo r expressing data s t ruc ture , b u t
some other means of describing control flow is necessary pr ior t o ac tua l ly
committing a design t o Ada code.

- B2.2-2 -

Aooordlngly, the A d a DL uses oanpllable Ada t o represent data s t ruc ture and a
traditional Program Design Language (p a) t o represent control flow. The PDL
stataments are embedded as ooments within the A d a specif icat ions 80 t h a t the
entire Ada DL descr ipt ion is oanpllable. Several too ls a r e avai lable to
support oonstruotion of Ada DL designs. These include a "TBD" package, the Ada
DL preprocessor, t h e prooessor f o r the t rad i t iona l Pat and an Ada body part
genera tor.

Tbe A d a DL is described, along with i ts use i n object oriented design, i n more
d e t a i l i n sec t ion 3.1, Ada Design Language.

Several too ls support t h e ed i t ing of Ada DL, Ada code and documentation fLles.

2.1.2.1 Editors - Text ed i to r s a r e provided f o r ed i t ing of docmentation
and other non-Ada f i l e s . These were obtained with the system software on each
of the hosts.

2.1.2.2 Bpa Svntax &naU,ye Editors - A syntax sens i t i ve Editor is one tha t
contains the syntax equations of the ta rge t language i n i t s database.
Templates a r e expanded t o t h e i r syntac t ic substructure. The means e x i s t s t o
t raverse between templates and de le te templates f o r optional constructs.

Two of the three hosts have Ada syntax sens i t ive ed i to r s ava i lab le f ran the
system vendor. I n one of these, i n i t i a l entry of a f i l e b e g i n s w i t h the
template [compilation], which by repeated expansion and replacement of
templates w i t h t e x t , is converted t o the desired code. The templates have t h e
same names a s the syntax equations fran the Ada LRM. When adding t o an
ex is t ing f i l e , i t is necessary t o en ter the s t a r t i n g template e .&
[later-declarative-item], [statement] manually (and one must know what they a re
ca l led) .

0

On the A d a based host, a construct is pranpted by entering an i n i t i a l keyword,
e.g. "proceduren, nlfn, and requesting t h e ed i tor format the f i l e . It
i d e n t i f i e s the construct and expands i t i n t o Its components.

2.1.2.3 Source F o r m a t t e r m &inLed. - The source formatter reformats
ex is t ing Ada source i n t o a consistent form. The level of statement indentation
i s made proportional t o the nesting depth. Spaces and l i n e breaks a r e added t o
improve readabi l i ty . Declarations and l i n e comments a r e aligned where
appropriate. The source formatter was obtained f ran a public domain source, Is
wr i t ten i n Ada and w i l l be modified t o improve funct ional i ty . On the Ada based
host , the source formatter i s in tegra l w i t h the edi tor .

Program developnent w i l l occur i n d i f fe ren t environments i n the developnent
f a c i l i t y . Native mode code w i l l be generated f o r initial program t e s t ing and
f o r tool implementation. Code w i l l be generated f o r the simulation host on
t h a t host. Ada wr i t ten f o r the simulation host must int .erface with ex is t ing
FORTRAJJ code. Ada code w i l l be writ ten f o r the embedded processors. This code
m u s t in te r face w i t h ex is t ing JOVIAL code. 0

- B2.2-3 -

2.1.3.1 - Each of the deve lopnen t hos t s h a s a
V a l i d a t e d Ada oompiler available fram the system vendor. Each h a s a n
associated library manager for c r e a t i n g and m a i n t a i n i n g Ada program l i b r a r i e s .

2.1.3.2 dQa a - Cross c o m p i l e r s for t h e
embeddad p r o c e s s o r are available or w i l l be a v a i l a b l e for a l l our deve lopnen t
h o s t s , a l t h o u g h none have been v a l i d a t e d . For two of t h e h o s t s , t h e system
vendor will be s u p p l y i n g t h e cross compi le r . for the other, one of s e v e r a l
possible t h i r d p a r t y vendors w i l l be selected.

The d i f f e r e n t ve.ndors p r o d u c t s are c u r r e n t l y b e i n g e v a l u a t e d . The selected
p roduo t w i l l hold a v a l i d a t i o n certif icate or o t h e r w i s e have been demons t r a t ed
t o c o r r e c t l y compi le t h o s e features required by t h e a v i o n i c s software.

2.1.3.3 J(mfAL Processor Cross - This c o m p i l e r w i l l
t r a n s l a t e JOVIAL t o the object code of t h e a v i o r i c s processor. The object f i l e
format w i l l be compatible w i t h t h a t g e n e r a t e d by t h e A d a compilers f o r t h e
avionics prooessors. It w i l l be possible fo r J O V I A L t o ca l l Ada and v i c e v e r a a
w i t h o u t t h e u s e of i n t e r f a c e r o u t i n e s when t h e parameter t y p e s have a n a l o g u e s
i n both languages. The JOVIAL cross compiler w i l l be o b t a i n e d from t h e Ada
cross compiler vendor.

2.1.3.4 Processor Cross - These assemblers w i l l run on t h e
h o s t s and g e n e r a t e a v i o n l c s p r o c e s s o r o b j e c t code. The object f i l e formats
w i l l be compatible w i t h t h a t gene ra t ed by t h e Ada compilers for t h e a v i o n i c s
proce ssors. The Ada cross compiler vendors each have compatble c r o s s
assembler a a v a i l able.

2.1.3.5 XQ& FORTRAN e - The n a t i v e mode FORTRAN compi l e r on
t h e s i m u l a t i o n h o s t w i l l g e n e r a t e o b j e c t f i l e s compatible w i t h those of t h a t
h o s t ' s Ada canpi ler . Such a compi le r is a v a i l a b l e fran t h e system vendor.

2-1.4 -&Primitives

The l i b r a r y of p r i m i t i v e s and common packages w i l l be a c o l l e c t i o n of commonly
used f u n c t i o n s i n t h e areas of n a v i g a t i o n , weapons d e l i v e r y and math f u n c t i o n s .
I n i t i a l l y , a s e t of p r i m i t i v e s w i l l be i d e n t i f i e d for i n c l u s i o n i n t h e l i b r a r y
and implemented when t h e y are f i rs t needed, A d d i t i o n a l p r i m i t i v e s w i l l be
developed as t h e need for them is i d e n t i f i e d .

Some t y p e of "browser" u t i l i t y t h a t w i l l e n a b l e t h e p o t e n t i a l u s e r t o
i n t e l l i g e n t l y search t h e l i b r a r y is be ing p lanned .

2.1 .5 Linb Editors

The l i n k e r s i n t h e APSE s h a l l have t h e means t o de t e rmine t h a t a l l modules
dependent on a module t h a t h a s been recompiled have a l so been r ecompi l ed , or
t h a t o t h e r w i s e t h e full set of object modules i n v o l v e d i n t h e l i n k e d i t i s i n a
consi st en t sta te.

2.1.5.1 && Link Editors - These l i n k e r s w i l l l i n k ob jec t f i l e s produced by
t h e h o s t a ' n a t i v e mode Ada compilers t o produce a n image e x e c u t a b l e on t h e
hos t . Ea& h o s t system vendor h a s a u e e n t e d i t s l i n k ed i to r t o p rov ide t h e

0
- B2.2-4 -

---..- , . _ _

r e q u i r e d cons i s t ency ohecking.

2.1.5.2 &&&a Pracessor _Cross Linker- These l i n k e r s w i l l generate
e x e c u t a b l e a v i o n i o s p rooesso r images from o b j e o t f i l e s produced by the Ada
cross compiler, the JOVIAL cross compi le r and t h e a v i o n i c s p rocesso r c r o s s
assembler. Ihe a v i o n i c s processor images CBN be executed i n t e r p r e t i v e l y by
s i m u l a t o r s o n t h e h o s t or downloaded t o a n a v i o n i c s processor .

The A d a environments on t h e hos t s w i l l be i n t e g r a t e d w i t h t h e symbolic
debuggers provided w i t h t h e h o s t s ' operating systems. Symbolic debuggers w i l l
be procured for t h e a v i o n i c s p r o c e s s o r s which w i l l s u p p o r t s t a n d a r d debugging
o p e r a t i o n s wi thou t i n c u r r i n g a d d i t i o n a l overhead i n t h e target. A t o o l w i l l
exist t o create a n environment i n which to tes t Ada compi la t ion units i n a
s t anda lone mode.

A data bus moni tor w i l l suppor t the c a p t u r e and d i s p l a y of selected b u s d a t a
and t h e s i m u l a t i o n of bus t r ansmiss ions t o f a c i l i t a t e i n t e g r a t i o n tes t ing.

The developnent h o s t w i l l have t h e s i m u l a t i o n and s u p p o r t t o o l s necessary t o
e x e c u t e t h e a v i o n i c s s o f t w a r e in a n i n t e g r a t e d mode w i t h t h e a c t u a l o r
simulated aircraft hardware or i n a so f tware e n v i r o m e n t only. This i n c l u d e s a
host s i m u l a t o r designed t o exeoute f l igh t so f tware i n n a t i v e code suppor ted by
e n v i r o m e n t programs and I/O s imula ted i n sof tware . The h o s t s w i l l have t a r g e t
p rocesso r s i m u l a t i o n i n c l u d i n g inpu t /ou tpu t and i n t e r r u p t s imula t ion .

2.2.1 WSvmbolicDebunners

These t o o l s , used f o r debugging n a t i v e mode programs on t h e h o s t s , s u p p o r t s
examinat ion and d e p o s i t , s e t t i n g of b reakpo in t s and watchpoin ts , stepllse
execu t ion and trace, all referenced t o Ada source s t a t e m e n t s or d e c l a r a t i o n s .
The debuggers are p a r t of t h e h o s t system vendors ' so f tware suppor t packages,
but each h a s been modi f ied t o suppor t t a s k i n g and o t h e r unique features of t h e
Ada language.

2.2.2 BvionicsProcessorlnterfaceandDebunner

These t o o l s s u p p o r t s downline l o a d of execu tab le images t o t h e a v i o n i c s
p rocesso r s , execu t ion c o n t r o l of t h e a v i o n i c s p r o c e s s o r s and t r a n s m i t t a l Of
s t a t u s in fo rma t ion back t o t h e hos t s . Symbolic debugging i s suppor ted frcm the
h o s t s . Symbol t a b l e informat ion is mainta ined in t h e h o s t s and n o t downloaded
t o t h e a v i o n i c s p rocesso r s . Target debugger suppor t is provided by a l l the Ada
c r o s s compiler vendors , but a d d i t i o n a l i n t e r f a c i n g t o s u p p o r t N A A O ' s part icular
test e n v i r o m e n t w i l l be required.

2.2.3 -Environment Iienerator

This t o o l de t e rmines t h e i n p u t s , o u t p u t s and e x t e r n a l e n t r y p o i n t s o f a se t o f
Ada programs under t e s t . The t o o l p r a n p t s t h e u s e r for i n p u t s , e x e c u t e s one of
t h e specified programs and d i s p l a y s t h e ou tpu t s . Pre-canned f u n c t i o n s can be
specif ied f o r t h e i n p u t s and t h e program executed r e p e a t e d l y w i t h v a r i a t i o n of
a n independent v a r i a b l e , such as time. Outputs can be p l o t t e d a g a i n s t i n p u t s

- B2.2-5 -

--....*,.I.. . *_--. ..---

o r the independent var iable ,

The Standalone Teat Environment Generator w i l l be implemented in-house a t N A A O ,
aud I S de8Wlbed i n more d e t a i l i n a subsequent section.

The bus monitor w i l l interface with the various data busses i n the avionics
int*WauOn laboratory and perform the following functions. The bus monitor
W i l l be 1mPlemented by augmenting ex is t ing capabi l i t i es .

Generate real time displays of seleoted bus data.
Generate p ro f i l e s of bus data by message type and subtype .
Generate simulated bus data f o r test stimulation.

202.5 HsULAvionicsProcessor-

Simulators f o r the avionics processors w i l l be avai lable t o support t h e t e s t ing
of avionics processor images t h a t would otherwise require the actual hardware.
A conventional simulator w i l l i n te rpre t executable images down t o the
in s t ruc t ion f i e l d level . A f a s t e r simulator i n which t h e A d a code is compiled
i n t o procedure calls on the host t ha t duplicate the computations of t h e
avionics processors without actual ly in te rpre t ing a t the b i t l eve l is a l so
being acquired. Both of t h e s e a r e avai lable f ran the Ada cros.1 compiler
vendors.

A simulator is being implemented i n Ada inhouse tha t w i l l be capable of
concurrently s imulat ing several avionics processors, w i t h interprocessor
oommunica t ions implemented a s t ransfers through common memory buffers.

2.2.6

The documentation generators w i l l construct data dic t ionar ies fran sets of Ada
programs. They w i l l construct t r ee s of c a l l s and context references (WITH'S).
A header comment box generator w i l l summarize t h a t information i n the program
headers t ha t c a n be extracted automatically fran the program source. These
processors w i l l accept a list of f i l e s , or scan a l i n k ed i to r command f i l e and
process the sources f o r all the i n p u t modules f o r t h e l i n k i n g of the executable
image. A report formatter/word processor w i l l be avai lable f o r general
do cum en t p r e pa ra t ion.

2.2.6.1 Dictionarv Generator - This tool scans a set of Ada program
source f i l e s and records the full context of declarations, recognizing Ada
scope and v i s i b i l i t y rules. It generates a data dictionary wi th locat ions of
declarat ions, s e t references and use references i n a format compatible with
required docmentation. This will be Implemented by augnenting public domain
software, implemented i n Ada.

2.2.6.2 m- - Generator - This u t i l i t y does a s c a n of a s e t
of Ada source programs. For subprograms i t constructs t r e e s of calls and
called-by references. For packages, i t oonstructs t r e e s of context clause
(WI'IH statement) references. The generated repor t s a r e i n a format compatible
w i t h required documentation. This tool will also be obtained by augnenting a n

- 82.2-6 -

..- .--_.I .

existing publ io domain program.

2.2.6.3 Header Comment B Q X m - This t oo l scans t h e source of an Ada
compilation u n i t f o r t h a t information which is requ i r ed t o be i n t h e header
comment box, such as i n p u t s and outputs , subprogrms ca l l ed and called-by,
imported d a t a structures and rou t ines , and o t h e r r e sources used. It c r e a t e s a
new header comment box or updates t h e ex i s t i t l g one. This t o o l i s being
implemented in-house i n Ada and i s described i n more de t a i l i n a subsequent
sect ion.

2.2.6.4 &.Q,QLL Formatter - These u t i l i t i e s process a f i l o of t e x t w i t h
inteP8per8ed fo rma t t ing commands. They perform word processing func t ions such
as r i g h t margln alignment, i nden ta t ion , assignment of heading nuubers, t a b l a of
con ten t s gene ra t ion and o the r s . Several of these are already i n s t a l l e d i n o w
f a c i l i t y , from various sources. They are t h e most widely used support tools i n
t h e l abora to ry .

202.7 SuDDorf

These t o o l s support t h e adherence t o software s tandards and t h e con t ro l l ed
maintenance of source and documentation Pi lea .

2.2.7.1 lzpde Q - The code a u d i t o r scans t h e source for
an Ada compilation u n i t and generates a r e p o r t of a r e a s of non-conformancb t o
software standards, a s spec i f i ed i n t he Ada S t y l e Guide t h a t was developed
j o i n t l y by seve ra l Rockwell d iv i s ions .

2.2.7.2 Confinuration Control Svstem - The configurat ion con t ro l sys teu i w i l l
c r e a t e and maintain l i b r a r i e s of control led f i l e s , which c a n be Ada DL s c w c e .
program source, documentation cr any o the r t ex tua l material. It w i l l t r ack
changes by a s s o c i a t i n g t h e m w i t h re t r ieva l and replacement of l i b r a r y elements.
It w i l l monitor access and be a b l e t o generate a h i s t o r i c a l record of t h e
accesses t o each element i n a l i b r a r y . Each h o s t h a s such software a v a i l a b l e
frun t h e system vendor.

The following s e c t i o n s deacribc i n more d e t a i l some of t h e t o o l s t h a t a r e k i n g
lnplemented in-house a t NAAO. Of' p a r t i c u l a r i n t e r e s t a r e the following.

1 . Ada Design Language processor, t h a t w i l l permit embedd ing a t r a d i t i o n a l PI ; i
w i t h i n compilable Ada s p e c i f i c a t i o n s .

2. Standalone Test Environment Ce:ierator, t h a t w i l l d e t e r m i n e t h e i n p u t s and
ou tpu t s of a program u n d e r tist, then generate i n p u t va lues , execute t h e
program and capture and display the outputs .

3 . Cade AuOitor/Static Analy3er, which w i l l permit Ada programs t o be checked
f o r conformity w i t h 3uf twdr .e s tandards, and be evaluated a g a i n s t va r ious
measures of qual i t y .

4. Ada Header Comment Box Generator, which w i l l a u t o m a t e c o l l e c t i o n of some of
the information required t o be i n t h e h e a d e r comment box of program units.

3.1 MaDesirm-

Traditioaal PDLs, l i k e those w i d e l y used i n t h e oomputing community o v e r t h e
past deoade are good a t desoribing c o n t r o l f l a t , b u t poo:. a t d e s c r i b i n g
s t r U O t L U . e , h i e r a r a h y , data r e l a t i o n s h i p s a n d i n t e r f a c e s .

A d a spec i f ica t ions are good a t d e s c r i b i n g these t h i n g s , bu t do n o t d e s c r i b e
c o n t r o l flow. Use of c o m p i l a b l e Ada to describe c o n t r o l f low is awknard, a t
best, because i t does not p e r m i t s p e c i f i c a t i o n of deta i l to be deferred.

The i d e a Of u s i n g c o m p i l a b l e A d a as a d e s i g n language i s gaining a c c e p t a n c e
because i t specifies a t d e s i g n time what t h e software p r o d u c t w i l l l o o k l i k e .
1.e. the A d a specs are a form of % o n t r a c t n f o r t h e software t h a t 13 t o be
imp1 emented.

Traditional PDLs are coming t o be regarded a s a decade o l d technology
l i t t l e more t h a n a n improvement o n flowcharts.

t h a t i s

The NAAO A d a Design Language combines couip i lab le Ada w i t h Reconfigurable Design
Language (R D L) , a t r a d i t i o n a l PDL wi th a n Ada-like s y n t a x , t o o b t a i n t h e
b e n e f i t s of each. RDL was implemented a t a n o t h e r Roche l l d i v i s i o n i n Ada a n d
c a n be i n s t a l l e d o n any host w i t h a v a l i d a t e d A d a compi le r . Aside fran t h e
s y n t a x change t o make i t more Ada-like, i t is similar i n a p y a a r a n c e and
capab i l i t i e s t o a commercial ly a v a i l a b l e PDL wide ly used i n t h e computing
community for over a decade.

0

Use of this d e s i g n language c o n s i s t s of t h e f o l l o w i n g steps.

1 . D e s c r i p t i o n of t h e s t ruc ture , o p e r a t i o n and i n t e r f a c e s o f a d e s i g n u s i n g
Ada s p e c i f i c a t i o n s .

2 . C o n s t r u c t i o n of t h e Ada bodies, s t a r t i n g w i t h t h e s p e c i f i c a t i o n s , t h e n w i t h
further d e v e l o p n e n t .

3. D e s c r i p t i o n of t h e c o n t r o l flow w i t h i n u n i t s , u s i n g RDL s t a t e m e n t s i n
s p e c i a l l y marked comments.

3 .1 .1 .1 DevelDunent nf Asia S D e c a C a m i - The d e s i g n language u s e r first
i d e n t i f i e s t h e o b j e o t s t o be implemented. These s u g g e s t t h e t o p l e v e l package
s t r u c t u r e of t h e d e s i g n . m e n , t h e a c t i o n 8 t o be performed o n these o b j e c t s
a r e i d e n t i f i e d , t hese suggest t h e procedures and f u n c t i o n s these packages w i l l
s u p p o r t .

E x t e r n a l l y v i s i b l e data s t r u c t u r e s a re i d e n t i f i e d , t h e n Ada t y p e s a n d o b j e c t s
a r e d e f i n e d t o r e p r e s e n t these. P a r a l l e l e v e n t streams suggest c r e a t i o n of
t a sks t o suppor t then . Textua l comments a r e added t o f u r t h e r e x p l a i n t h e
purpose of t h e c o n s t r u c t s so d e f i n e d .

- B2.2-8 -

. -. -. .

I
!

3.1 *1.2 bevalorment Pt Ma BmlUa - men, usin& an Ada body part builder,body
parts for the spalfioations are areated. D a b s t ruotures not t o be v i s i b l e
external ly are defined within the bodies of the packages and subprograms. Use
of the avai lab le 'TBD" package permits the uer t o defer assigning spec i f i c
t y p e s t o Ada objeota.

3.1.1.3 BpL - h e control flow w i t h i n the
subprogram bodies is now deaigned and specif ied w i t h RDL procedures. The RDL
statements are enalosed i n apeaial ly marked Ada aomments t o keep the en t i r e

can be made by the RDL. Use of RDL permits the ex is t ing RDL rrocessor to be
used t o generate data d ic t ionar ies and ca l l i ng t rees .

Large designa may require several i t e r a t i o n s of t h i s process before the design
i s oomplete. 'Ihe completed design cons is t s of A d a specs with embedded textual
comments and Ada bodies with embedded RDL procedures and comments.

design descr ipt ion compilable. Referen- t o data defined i n the pure A d a par t

3.1.2 BdaDesl.nnLannuaneUtilities

Several too ls and u t i l i t i e s are avai lable t o a s s i s t i n the generation of hda DL
desar i ptions.

3.1.2.1 Paclcana - This TBD package, whioh is public domain software,
provides t y p e s , objects , function3 and a procedure which can be referenced in a
design when the actual type of the object or subprogram parameter is not known.
TBD v a l u e s for the quant i t ies i n package SYSTEM, such as maximum integer ,
m a l l e s t f ixed point de l ta , etc. are a l s o defined. A 3 a des ign i s evolved, t h e
TBD quan t i t i e s a r e replaced w i t h the actual objects. A l l names i n the package
contain the substring "TBD" so they can be located w i t h an ed i to r search.

0

3.1.2.2 &?&Partoeneratar- This tool generates a body part fran an Ada
specif icat ion. It is avai lable a s a primitive on the Ada based developnent
host, and also f ran a public domain source for any processor w i t h a validated
Ada compiler.

3.1.2.3 RL - plis u t i l i t y , which w l l l 1 imp lemen ted
in-house, 8caw t h e Ada Design Language descr ipt ions and records a l l the type,
objeat, subprogram and task specif icat ions. It ex t r ac t s the RDL procedures
fran t h e A d a bodies and generates RDL declarat ions for the objects declared in
the A d a and referenced i n the RDL. It formats the RDL i n t o a form acceptable
t o the RDL processor and s u h n i t s i t f o r generation of an RDL report .

3.1.2.4 BpL Prooesaor - The RDL processor, cur ren t ly i n s t a l l ed on two of our
hosta, generatea a formatted report from an RDL description. It a l s o produces
a data diotionary and c a l l i n g t r e e s fo r the segments (subprograms).

3.2

Traditionally, u n i t level tes t ing is done by implementing special purpose data
generators and data monitors, l inking everything together, running the progracr
under t e s t , then analyaing the data. The next rout ine requi res new data
generators and monltora.

- ~2.2-9 -

-- ---_- -

The Standalone T e s t E n v i r o m e n t Generator (STEQ) being d e v e l o p e d a t NAAO w i l l
a O t a8 d a b g e n e r a t o r and monitor for a large class of subprograms a n d w i l l
partially a u t u u a t e the un i t test proceas .

A un i t t o be t e s t e d i n c l u d e s a subprogram and i t s dependent u n i t s . They a re
first compiled c l e a n l y .

'he STEU w i l l s o a n t h e unit u n d e r test, i d e n t i f l t h e calling p a r a m e t e r s , t h e n
d e t e r m i n e t h o s e o b d e o t s d e c l a r e d a t a higher scope t h a t are u s e d b u t n o t set
(i n p u t s) and set b u t n o t used (o u t p u t s) . It w i l l detect those t h a t are b o t h
set a n d u s e d , as these could be i n p u t s , o u t p u t s , both or n e i t h e r .

The S a w i l l p r a n p t the tester f o r t h e names of i n p u t s and o u t p u t s n o t
i d e n t i f i e d i n t h e s c a n , It w i l l t h e n g e n e r a t e a n Ada shell t h a t s u p p l i e s t h e
program's i n p u t s a n d captures i t s o u t p u t s . This w i l l be compiled and l i n k e d
w i t h the program under test. S t u b s w i l l be p r o v i d e d f o r subprogram t h a t a r e
n o t provided .

The STMI w i l l t h e n p r a n p t fo r t h e v a l u e s of t h e i d e n t i f i e d i n p u t s and pass them
t o t h e target program. It w i l l e x e c u t e t he progrsin under t e s t , t h e n d i s p l a y
t h e v a l u e s f o r the i d e n t i f i e d o u t p u t s . E x c e p t i o n s r e t u r n e d fran t h e t a rge t
program w i l l be i d e n t i f i e d . F a c i l i t y t o g e n e r a t e a n e x c e p t i o n f r a n a s t u b w i l l
a lso be s u p p o r t e d .

An OUT parameter fran a s t u b is regarded as a n i n p u t .

A command l a n g u a g e w i l l be provided f o r r e p e a t e d l y e x e c u t i n g t h e program u n d e r
t e s t while v a r y i n g t h e v a l u e s f o r selected i n p u t s . The command language w i l l
be a s u b s e t of Ada. P l o t t i n g and data r e d u c t i o n features are t o be provided .

The purpose of t h i s t o o l is t o s u p p o r t t h e enforcement of software s t a n d a r d s
and good programming practices. It w i l l gather s ta t i s t ics t h a t may be
i n d i c a t i v e of t h e use or non-use of these s t a n d a r d s and prac t ices and p r e p a r e a
report t h a t m i g h t serve a s t h e s t a r t i n g p o i n t f o r a code rev iew or s t r u c t u r e d
walkthrough. The code a u d i t o r w i l l g a t h e r t h e following t y p e s of s t a t i s t i c s .

1 . The amount of commentary r e l a t i v e t o t h e amount of code w i l l be d e t e r m i n e d .
T e x t u a l comments w i l l be d i s t i n g u i s h e d fran d e l i m i t i n g comments (b l a n k
l i n e 3 and l i n e s of dashes, e tc .) . O f c o u r s e , i t w i l l be u n a b l e t o
d i s t i n g u i s h a u s e f u l comment f r a n something like "-- Mary had a l i t t l e
lamb".

2. Measures of program complexi ty w i l l be developed , such as nimber of nodes
i n a program's directed graph, t h e n s t a t i s t i c s w i l l be developed from our
e x p e r i e n c e w i t h implementing and m a i n t a i n i n g these programs r e l a t i v e t o
t h e i r measured complexi ty .

It is g e n e r a l l y regarded t h a t o v e r l y complex program u n i t s c a u s e
main tenance problems. However, s imp le r programs mean more program u n i t s
e r e n e c e s s a r y , and t h i s complicates t h e i n t e g r a t i o n process.

- B2.2-10 -

.

4.

.
5.

6.

7.

8 .

9 .

to .

1 1 .

12.

3 . 4

The nmber of s u b t y p e s 8nd derived t y p e s d e f i n e d a n d t h e i r f r e q u e c c y of
r e f e r e n o e versw the irequenay of r e f e r e n c e of t h e p r e d e f i n e d t y p e s , Use
of s u b t y p e s r n d derived types makes better w e of t h e s t r o n g t y p i n g
features of A d a .

For subprOgra1~8, t h e nunber of parameters passed v e r s u s t h e d i r e c t
r e f e r e n o e s t o objects declared a t a higher soope (global v a r i a b l e s) . Use
of global r e f e r e n c e s i s regarded by same as p r o d u c i n g h a r d e r t o read code.

Stat is t ics on i d e n t i f i e r l e n g t h w i l l be gathered. Average l e n g t h ,
d i s t r i b u t i o n of l e n g t h s and f r e q u e n c y of r e f e r e n c e of v a r i o u s l e n g t h s w i l l
be recorded. These s t a t i s t i o s w i l l be g a t h e r e d for v a r i o u s c l a s s e s of
i d e n t i f i e r s , e.g. scalars, r e o o r d components, FOR l o o p i n d e c e s , subprogram
formal parameters, eto. Use of o v e r l y s h o r t i d e n t i f i e r names i s r e g a r d e d
a s a poor p r a c t i c e , b u t i t i s n o t clear t h a t longer is always better.

Use of PRAGMAs, p a r t i c u l a r y PRAGMA SUPPRESS, w i l l be recorded and
s m n a r i z e d .

Placement of more t h a n o n e t y p e or object d e c l a r a t i o n o n a l i n e , or mor-e
t h a n o n e e x e c u t a b l e s t a t e m e n t on a l i n e w i l l be Slagged. Code so w r i t t e n
i s l i k e l y t o be harder to read.

Types and objects declared b u t n o t r e f e r e n c e d , ob jec ts declared a t a h i g h e r
scope t h a n n e c e s s a r y and u n i n i t i a l i z e d ob jec ts w i l l be flagged.

The number of d e c l a r a t i o n s and e x e c u t a b l e s t a t e m e n t s fo r each subprograrrj
w i l l be recorded. These v a l u e s w i l l be p r o v i d e d both i n c l u d i n g a n d
e x c l u d i n g n e s t e d subprograms. The maximum n e s t i n g d e p t h for c o n t r o l
s t r u c t u r e s , subprograms and t a s k s w i l l a l s o be d e t e r m i n e d f o r each program
unit.

The nwnber of GOTOs and jump target labels (<<LABEL>>, n o t LABEL:) will be
counted , and a mea~ure of t h e "branching complexity" of a routine will be
de te rmined .

Unlabelled blocks and loops w i l l be flagged. Use of these labels o f t e n
p r o v i d e s a v d u a b l e form of commentary.

D e c l a r a t i o n of typed c o n s t a n t s vs . u n i v e r s a l n u n b e r s w i l l be flagged when
appropriate . Use of a DELTA o ther t h a n a power of 2 fo r f i x e d p o i n t t y p e s
w i l l be detected. Use of a r a d i x other t h a n 2 , 8 , 10 or 16 w i l l a l s o be
flagged.

Software s t a n d a r d s a t NAAO specifl t h a t each c o m p i l a t i o n unit be headed by a
comment box t h a t c o n t a i n s d e t a i l e d i n f o r m a t i o n aborlt t h e u n i t .

Among o t h e r t h i n g s i t is required t h a t t h e comment box l i s t a l l s e t s and
r e f e r e n c e s t o global v a r i a b l e s (ob jec ts d e c l a r e d a t a higher scope), a l l
subprograms and tasks c a l l e d , task e n t r i e s , e x c e p t i o n s g e n e r a t e d (o t h e r t h a n
t h e usual Ada e x c e p t i o n s) and e x c e p t i o n s h a n d l e d , and a l l packages, tasks and

- 82.2-11 -

subprograms defined internal ly .

The header ocmment box generator w i l l detect the presenoe of these features a n d
Create t h e part of the header oomment box t h a t desaribes them. If already
Present, t he exlot ing comment box w i l l be revised.

Gathering t h i s information fo r the oomment box !.ti a tedious t a s k which
implmentercc do without enthuaiam, and t h u s without a t t en t ion t o correctness
and de ta i l . FVequently the information is ignored when i t is needed (say, by a
tiger team ca l led i n t o f i x a high-priority problem) because i t is asamed t o
be incor rec t an6 out of date. Automating i t s generation shoulJ great ly
increase i t s r e l i a b i l i t y and usefulness.

The A d a develoment enviroment descr ibed here meets most of the needs of our
current and near fu ture developnent requirements. The object ives of a cost
ef fec t ive APSE implementation and a ve r sa t i l e developnent environment a r e
expected t o be satisfied.

- B2.2-12 -

ABSTRACT

SOFTWARE ENGflEERINO ENVIRONMENT

TOOL BET IMTEGRATIOIO

Yilliaa P. Selfribge

Rookuell International Corporation

12214 Lakowood Boulevard

h u n e p , Califorals 90241

Telephone: 213 922-2938

Spaae Transportation ljystea Division (STSD) Enginesrlng has a
program to prorote exoellenoe within the engineering funotion.
Thii program resulted in a Oapltal funded faollity based on a VAX
oluster oalled the Rockwell Operational Software Engineering
System (ROSES). "hi6 paper ooncentrates on the second phase of a
three phase plan to establish an integrated software engineering
environment for ROSES. It discusses briefly phase one whlch
establisher the basic capability for a modern software
development environment to include a tool set, training and
st-dards.

Phase two i s tool set Integration. The tool get iS primarily
off-the-rhelf tools aoquired through vendor6 or government
agenoier (public domain). These tools were plaoed into
ostegories of softvare development. These categories are:
1) requirements, design and oonstruction support. 2) verification
and valldatlon support (1.e. quality evaluation), 3) software
nanageaent support. The integratlon of the tools set is being
performed through ooncept prototyping and development of tools
speoifloally de61gOed to support the life opole snb provida
transition fro* one phase to the next.

Tools that integrate category ! to016 a m : 1) tohe Documentation
Utility Lsokage - supports the development of software
development library products that meet DoD-STD-8167; 2) the
Software Development File Hanqt: - supports tho traoking and
reportiag of inoremental devalopueat of the software development
library yraduots;
supports the automatlo exlraction af originating requirements and
traoeabillty of propagated products through a relational data
base.

3) the Life -Ole TraOeability Hatrix Manager -

'E0018 that intogrrto ortogorp 3 toolr m e :
TrUrlatObr - supports tho rtstlc snalyrir o f roftwsr.
dev8lopaent library produotr;
Reporti* (Yhite/Blaok) - rupportt the autoostio t e a t i w of
aoitvar8 oomponent'r logic (whit. box) Mb CSCI requirements
verlfloatioa/validation (blaok b o w) .

i) r w u a t i o n

a) Autoratio Softvare Teating and

Tool8 that integrate aategory S tool8 are:
Xanapareat Utility - rupportr the control of baaaltned produoto
and devolopaent oonf iguratlon i temr :
Change Control Wansgement Syrtem
reporting of change. to oonfiguration items f r o m ohango inoeption
through releare of produot; 3) the I n f o r u t t o n Hanagereat System - rupportr user idantiflaation and aoquioitioa of reference
aaterial and reusable software oomponeots r a d their
doourentatioo: 4) the ProJeot PerforMnae Measurement System -
supports matrix management based on the earned value technique of
rchedule/oost traoking asad reporting.

Phsro three of the plan is briefly disoussed and i t applies
advanoe teohnology t o softvare development through the
appl ioat ion of A I expert system conoeptr.

1) the SOftVare

8) the Integrated Software - supportr tho tracking and

8 . 2 . 3 . 2

1) ?l

PROCEDURES AND TOOLS FOR BUILDING LARGE Ada SYSTEMS

Ben Hyde
Intermetrics Inc.

Cambridge, Massachusetts

This paper address some of the problems unique to building a very
large Ada system. We do this through some examples taken from our
own experiences. In the winter of 1985-86 Intermetrics
bootstapped the Ada compiler we have been building over the last
few years. This systems consists of about one half million lines
of full Ada.

Over the last few years we have adopted a number of procedure and
tools for managing the life cycle of each of the many parts of an
Ada system. Many of these procedures are well known to most
system builders: release management, QA testing, source file
revision control, etc. Others are unique to working in an Ada
language environment; i.e. recompilation mangement, Ada program
library management, Ada program library management, and managing
multiple implementations.

First we look at how a large Ada system is broken down into
pieces. The Ada definition leaves unspecified a number of issues
that the system builder must address: versions, subsystems,
multiple implementations, synchronization of branched devel -ent
paths, etc.

Having introduced how our Ada systems are decomposed, we then
look, via a series of examples, at how the life cycles of those
parts is managed. We lood at the procedures and tools we use to
manage the evolution of the system. It is our hope that other A d a
ststem's builders can build upon our experiences of the last few
years.

B.2.4.1

1:
yfi1.S 59

Rational's Experience Uiing Ada1 for Very Large &item

Jarhes E. k c h e r , Sr.
MicKae! T. Devkin

1. Introdoctton

creativity. !t has been described w one of the most complex activities undertaken by
Man. The risks dsociated with such an effort are increased by its size and by the
involvement of participants from different organizations, locations, and, possibly,
countries. By any measure, the software for Space Station ranks among the most
ambitious projects ever undertaken.
Considerable research effort has been devoted to solving the problems involved in the
constructioq of such large systems. Unfortunately, while puch of the resulting
technology 19 available in the literature, it b not widely used [lS]. Reducing theory to
practice is always difficult; the rate a t which this has been accomplished for software
seems particularly discouraging. These difficulties prompted the Department of Defense
to start the STARS rogram 171 and to establish the Software Engineering Institute 131 to

. The develo ment of very large software system challenges human intellect and

focus on improving t g e state of practice.

2. Mothation

In 1981, Rational2 set out to produce an interactive environment that would improve
productivity for the development of large software systems. The mission was to create
an environment that supported high-level language development of systems developed
using modern software engineering principles. This mission wm built on the belief in
recent advances in programming languages, methods, and environments.
In designing the Rational objecboriented design [4], abstraction IS],
information hiding (5 , and were important both in terms of use in our

rototyping Ill] was of particular importance design and as metho d s to
because it gave a c c w to the advantages of the environment and its component
technologies, at the earliest possible time.
The language to be sutported was Ada. This was an easy choice. Ada appeared to be
the latest and best enpee red language for budding large systems [l]. In particular, the
separation of specification from bodies appeared to offer a real advantage: it allowed the
language to be used during design, as well as implementation, and it supported a realistic
opportunity for reusability (81.

Experience with research programming environments had shown that access to a set of
integrated facilities could greatly leverage the ability of individuals to produce systems.
The most widely used of these environments EU ported interpretive or dynamically typed
languages, most notably Lisp [i3]. Researct efforts to support more appropriate,
strongly typed languages were interesting, but they centered mostly on interpretive
implementations for student subsets [2, 141. Even so, the benefits of these system

-~

'Ada is a registered trademark of the U.S. Government Ada Joint Program Oflice.

'Rational and Rational Environment are trademarks of Rational.

n . s r

suggeated the feasibility of building a compilation-brsed environment for team
development of large systems.
From the outset, it WM clear that the Environment itself waa an example of the kind of
system whose development it wm intended to facilitate. Although it would not be
possible to use the Environment early in ita construction, the other central techno10
themes,. language md methods, were still available. To support these before t e
environment was functional, a ret of tools wm constructed to rupport Ada development
in a conventional, batchsriented manner, We don’t think of the resulting tool set as an
@environment@* however, it doea constitute an APSE in the Stoneman sense 121, it

compilation system. The development of t E b tool ret involved more than 300,OOO lines
of Ada code; building it helped to improve our understanding of the problems and
opportunities associated with the evolution of the Rational Environment.

B

includes a validated compiler, urd it b com arable to other commercially availab I e Ada

8. Earhnment Churckrfstfu

The Rational Environment is the operating software for the Rational R1000, a t ime
shared computer im lementing a proprietary, Ada-oriented architecture. It is written
entirely in Ada, wit E considerably less than 1% of its statements being machine code
insertions.
The Environment fs the system interface; all users of the system use the same facilities.
Although general-purpose computing is well supported, the system is designed to be used
by projectrelated personnel with some interest in and facility with Ada and
programming language concepts.

1.1. Ada Framework

The Environment directory rtructure is hierarchically organized. Names in this
structure are Ada simple identifiers separated by periods, bs with Ada qualified names.
This rtructure contains a variety of objects of a variety of system and user-defied types.
One common object type is Iile; another is Ado. Files resemble files on any other
system. Ada objects are more interesting.
An Ada unit under development is an Ada object. The name of the object is the name
of the unit that it represents. Ada objects corresponding to library units have two parts:
visible part and body. Separate subunits or Ada units are children of their parent Ada
unit and are named tu such. As a result, the same name is used to refer to the unit
when it is edited, compiled, and executed. All of the units residing in the same directory
substructure constitute an Ada Library, and there are provisions for creating libraries,
hierarchical or otherwise, from multiple simple libraries.
The treatment of Ada units as typed objects is central to the design of the Rational
Environment. In addition to supporting an objectoriented view of the unit throu hout
the compilation process, the storage of the program object as an attributed D h A
tree [SI provides access to the program structure in a way that makes a variety of
interesting facilities available. These include Ada-specific editing operations, incremental
cornpilation, compilation ordering and interconnection facilities, and direct execution of
Ada statements.

B.2.5.2

.

8.a. Compflatfon

The traditional compilation model involves reading fides of program source into a series
of tools that produce various processed f o r m of the original program. During this
process, new objects with new names are created and the user is forced to track the
correspondence between the current program text and the current executable version. In
contrast, the Environment cornpilation model centem on Ada units m definable objects
that are transforme by editing and compilation between three principal states: source, installed, and coded. 4
A source unit has been parsed, but has yet to be compiled. It isn’t just another form of
Tie: it’s a DIANA tree sufficient to support interactive syntax checking and to perform
operations that depend on the structure of the unit. Maintaining this structure makes it
convenient to keep units syntactically consistent at all times, Featly reducing the time
lost trying to compile units with syntax errors. Ada was expkcitly designed to have a
declarative structure that facilitates the expression of complex system interaction- in a
way that can be statically checked. Installed units have passed the semantic checks
necessary to assure that they are consistent, both internally and with units that they
reference. Getting units semantically consistent and keeping them consistent is one of
the major programming activities in Ada development. Once a unit is installed, coding
is just a matter of time and computation required to get into execution; there is DO
intellectual effort involved.. Coded units are ready for execution. Programs are intended
to be executed, so this is the final state in the com ilation process, if not the most
interesting one.
compilation effort, increasing interactivity during one of the challenging parts of the
programming process.

The existence of separate installe r f and coded states reduces the

The Environment supports a spectrum of compilation paradigms:

0 Batch installation and coding with fully automatic ordering
0 Editor-based installation and coding of individual units
0 Incremental, statement/declaration-level changes to installed units

All these paradigms make use of the system’s knowledge of the structure of the units
being processed to determine correctness and compilation ordering, Incremental changes
to compiled units has an immediate intuitive appeal regardless of the language involved.
Making small changes and only recompiling what hss actually changed reduces both the
total compilation effort and the time between a change and getting the benefit from that
change. This is particularly important for Ada: getting immediate feedback on the
legality of a change makes it possible for the developer to use the declarative structure
more effectively in evolving the program. Early detection of problems minimizes wasted
effort.
Another benefit to be derived from incremental operations is the ability to add new
functionality to a specification with minimal compilation effort. The goal is to add
declarations to the visible part of a package without allowing illegal changes or requiring
clients of the package to be recompiled - all of the benefits of strong typing without the
consequences. Providing this facility was one of the more interesting technical challenges
in building the Environment 1151, but it was certainly worth the effort.
Immediate semantic information about programs under development is not limited to the
compilation process. Part of providing incremental semantics was building a database of

3Cornpilatioa for targets otbcr tbaa tbc RlOOO may involve more than tbeec thrw states.

B.2.5.3

declaration-level dependency information sufficient, in conjunction with the DIANA
trees, to determine the legality and impact of incremental changes. This information
turm out to be enerally useful. For installed Ada units, the relationships between

naming (use clauses, renaming declarations, overloading), it isn't possible, much less
desirable, to keep track of these relationships on the basis of the program text. Using
the compilation dependmcy information, these relationships can be checked
interactively.
Dciinifion is the name of an operation to show the declarations of an object that is
referencedpmewhere in an Ada unit. As typically used, the user points to the reference
of interest and presses the key to provide its definition. The declaration of the object
referenced is brought onto the screen in the context of its Ada unit. It is also possible to
r i d the implementation of the declaration. Definition is very useful in refreshing
familiar code in the user's mind; it is invaluable in understanding unfamiliar code. A
generalization of this mechanism to all system objects is the basic command for visiting
objects of any type, traversing the directory structure, and changing context.
Show Ueuge is the name of the operation that goes in the opposite direction: it provides
the s e t o f references shared by a declaration, a form of interactive cross-reference. If
only one unit references the declaration, the referencing unit is brought onto the screen
with each of the references underlined in a way that it is easy to traverse from one
marked reference to the next. Where multiple units reference the declaration, a menu of
units is present and the definition operation applied to any of the menu entries brings up
a marked image of the indicated unit. Show Usage runs in time proportional to the
number of firstlevel references, typically a second or two. It is an invaluable aid in
determining the impact of an anticipated change.

S.S. Ada Command Language

Conventional systems typically provide some sort of command shell that executes
progruma, specially prepared and loaded collections of units that can be executed from
the command shell. These procedures must either live in a simplified world without
parameter passing or understand l o w to read arguments from the command line. Then,
if a normal procedure wants to call one of these programs, it is necessary to understand
how to invoke a shell and construct the parameters as if they were being p w e d in from
the shell.
In the Rational Environment, any coded visible subprogram can be executed simply by
calling it, provided that the closure of uni ts required by Ada rules is also coded. This
hea a profound effect on the accessibility of code for execution and testing. By unifying
the shell program interface to use the normal Ada parameter mechanisms, the interface
is made 6 0 t h simpler and more powerful.
One salient improvement is the ability to use the richness of Ada semantics. This ability
to reference the declarations in Ada units isn't limited to procedures and functions; it
extends to all Ada declarations: types, objects, constants, generics. The advantages that
Ada h a s for the expression of application designs are available for the specification of the
system interface or user-written utilities. This generality has far-reaching implications
on the appearance, usage, and implementation of the system. References to procedures
with complicated parameter profiles can be expressed using the name notation,
parameter defaulting, and overloading. Interfaces to predefined packages, e.g.,

a
declarations and t % eir uses is a matter of great interest. Given the rich structure of Ada

0

'It in ab0 possible to type its name if tbere is no immediate occurrence to point to. 0
B.2.5.4

Text IO, are just easily invoked as commands to create files, using the same
interfice.
The full ower of Ada is important to making the command interface work. An Ada-
like inter P ace that is limited to normal command-style entries might seem an attractive
tradeoff between generality and implementation effort, but closer inspection reveals the
limitations of this strategy. Cutting isolated features from any language is a treacherous
undertaking. abstract

turns out to be quite useful. This usefulness, in turn, depends on the ability to rovide

The command interface is an Ada declare block into which the user typically enters a
single procedure call that is executed. In the eneral case, it is possible to write complete

is then com iled, and code is generated and executed. The completeness of the facility

interface L Ada, it is strongly typed; it benefits from detection of errors during
compilation rather than during execution; syntactic and semantic completion are
provided.

As a simple example, private types are useful for providin
interfaces to system functionality, and having private types in the comman 8; interface

function results as parameters and, in many cases, to make them default reasonab P y.

Ada programs using tasks, generics, or any ot gh er Adafonstruct in this block. The block

is often exp P oited in learning Ada and determining .what would happen if ..:. Since the

S.4. Editor-Based User Interface

All interactions with the Rational Environment are through a general, object-oriented,
multi-window editor. At one level, the editor provides familiar .what you see is what
you get. on the images corresponding to the objects being edited or viewed. The text of
the images can be modified directly using character, word, and line operations; portions
of images can be copied or moved to other locations in the same or dilferent images;
there is a general search/replace interface. All of these capabilities allow the user to
view and modify objects in a human-readable form: text.
Many of the various types of objects in tbe system, most notably Ada, are stored in more
interesting data structures than text. To support the transition from text editing to
object representation, the editor supports an incremental change, parse, pretty pr in t
cycle. Changes to the text are saved for processing by typespecific editors that
understand the syntax of the particular object. The changes are processed by the
incremental parser to create consistent object structures. As necessary, the revised data
structures are reflected onto the image with any corrections or embellishments that are
deemed appropriate by the editor for the type. A typespecific editor, called an object
editor, is available for each of the main object types. AU of these implement similar
editing cycles, but the operations, grammar, and semantics for Ada, discussed below, are
the most interesting.
The actual operations provided for editing an object are logically separated into three
classes: image operations, common object operations, and typespecific operations. Image
operations are the outer-level, character-oriented operations; these are the same for all
object types. Common operations are those that are expected to be available for all
object types, but depend on the characteristics of the type; these include edit, structural
selection, detail control, and various state transformations. Typespecific operations are
provided by some types of objects where the characteristics of the type require additional
functionality. Creating an object is typespecific.

0

5Tbere is a special fast patb provided for a common subset of known procedures for which no code L
generated. Thin covers about 80% of the command executions. Users are typically unaware of which
path a particular command takes.

B.2.5.5

A simple, but commonly used, object editor is the one provided for the subclass of files
corresponding to text. Its use with Ties, whether created by the editor or written by
programs with Text IO, is fairly conventional but benefits from tbe ability to select
text from other objec't types for inclusion in documents, mail, or bu reports. The text

for interactively executed programs. In this mode, the userhss full access to the7eatures
of the editor in providing input to programs and scanning their output, either while they
are running or long after they have completed.

One of the features of the editor interface is that it doesn't impose any particular
interaction sequence on its users. As a result, it is possible to freely switch between
objects being edited and executing programs. The input required by an executing
pro am can be provided by copying the text from another object or from a previous r u n

kept current with the values of the underlying objects, including (optionally) scrolling
windows into which program output is being generated. This makes it convenient, for
instance, to maintain a window on a long-running command to monitor its progress while
continuing to get work done on something else.

3.6. Ada EdStSng

Ada wm designed to allow the specification and construction of complex systems that
could be read, understood, and maintained. A person has to write the programs,
preferably using the expressive capabilities that will serve well throughout the life of the
code. The purpose of the Ada object editor is to make the writing m easy as possible.
By understanding the syntax of Ada, the editor is able to provide interactive syntax
checking and completion. Syntactic completion is based on the notion that many tokens
in the syntax are redundant; providing the additional tokens is only marginally harder
than detecting their absence. For instance, most of the structures of Ada syntax are
signaled by keywords or punctuation that bracket constructs; e.g., the existence of the
keyword i / implies the futurc cxistcnce of end i / and at least one statement in between.
The editor uses this information to provide the keyword structure and, if required,
prompts for the expression and statement portions of the statement. The result is
logically very similar to operations provided by syntax-directed editors, but is
stylistically similar to normal text editing and only enforces syntactic correctness at user-
specified points in the editing process. Used frequently, the program can be kept
syntactically correct; when necessary, wholesale editing can take place without incurring
checking overhead until the changes are believed to be complete. Prompts are presented
in a special font and obligingly disappear when typed over, providing convenient
reminders of code still to be written. Any attempt to execute a prompt raises an
exception.
A less frequently used, but powerful form of syntactic completion is prjvided to
construct skeletal bodies for the visible operations of a unit. Completion saves typing
the same procedure headers in both the visible part and the body. A related operation
creates a private part with prompted completions for each of the private types in the
package.
The logical extension of syntactic completion is ema an lie complefion. Semantic
completion fills out the contents of expressions, most commonly subprogram calls or
aggregates, in a manner analogous to the way syntactic completion fills in the structural
parts of the language. When making an incremental change in an installed or coded
unit, it is possible to enter part of an expression, typically a procedure or function call,
and request that the system fil l in the parameter profile with prompts for parameters

object editor is also responsible for dealing with Standard Input au ! Standard Output

of t r e same program. To support multiple concurrent activities, all visible windows are

B.2.5.6

without defaults. In doing so, the system will provide the full name-notation
presentation of the call, supporting goad stylistic use of the language without requiring
the user to do the additional typing.

SA. Debugging
The Rational Environment sup rta debugging in the same spirit as the other parts of
the programming recess. DeEgging a program is just like running it without the
debugger, except t E at a different -executem key is used. No special preparations are
required to set programs up to be debugged. Debugging is not intrusive: two people can
be debugging the same program at the same t h e without getting in each other s way.
Interaction with the debugger is at the source level. Program locations are displayed by
bringing up the Ada image of the statement and highlighting it. Variables and
parameters can be displayed by selecting them and pressing the -Put. key or by
entering a command with the name of the desired variable. The value displayed is
presented as it would appear in program source: record values are printed as aggregates
with field names; enumeration values are printed as the appropriate enumeration literal.

3.7. HostTarget Support

Although the RlOOO provides an attractive environment for the execution of Ada
programs, the system was designed to support the develo ment of programs that would
run on other targets, not to be a target itself. With t i e exception of the execution
interface, the system provides all of the facilities described for target development.
Editing and compilation appear the same for .other targets as for the R1000. Indeed, the
target being compiled for is a declarative property of the library and affects the content,
but not the form, of the basic operations. Since we don’t expect that Rational will
supply code generators for every possible target, there is a general compilation interface
that captures target dependencies in installation and coding, without user intervention.
Execution and debugging are less easily specified, but the debugger architecture includes
support for the same set of operations on targets connected by communication lines a9
for native RlOOO programs. There is also provision for targetspecific debugging
operations in a manner analogous to that used by the editor to provide typespecific
operations. A variant of this hosttarget strategy was used successfully in debugging the
Environment in its early stages.

8.8. Confignratlon Management m d Version Control

Supporting an objectoriented view of Ada units implies support for configuration
management and version control within the same integrated context. Previous
experience with research environments suggested that programs need not be files, but all
of these efforts focused on lone developers on rototype systems, not teams producing a

version control from compilation; this separation is impractical without compromising
compilation, completion, and other facilities.
A separate, but related, problem that arises in a large system is control over the
configuration to be compiled and executed. Early experience showed that the
connectivity of a large Ada system the environment itself) makes it attractive to break

before being used by another. Simply executed, this strategy provides some relief, but it
still strains compilation resources at integration points. This strain was especially
bothersome, since integration took place during a prototyping stage when long delays in
re in t egr a t ion were u n d esi r a b 1 e.

product. Conventional systems solve the pro Fl lem by separating program storage and

the system up into subsystems to alow I changes in one part of the system to be tested

B.2.5.7

The wlution to this configuration problem was to structure subsystems to have the
uivalent of visible parts and bodies. Subsystem interfaces, a subset of the vlsible units 1 the subsystem, provide the correspondent of visible parts. The complete set of units

corresponds to the body of the subsystem. As with Ada units, the contract made by the
visible art must be fulfilled by the body, but the implementation of the body can be

of incremental change of visible parts within a subs stern is that of upwardzompalible
changer. Upward-compatible changes are additiona r declarations that can be added to
the rubsystem interfaces such that references corn iled against a version of the interface
without the new declarations will continue to wor!, but new code can start to reference
them.
One very effective additio to the subsystem technology wm the ability to hide the
private parts of packages? Private parts are instrumental in providing abstract
utterfaces whose underlying implementation can be changed without rewriting
referencing code. This extension makes it possible to change the representation without
recompiling, just 89 if the completion of the type were in the body. For our code, this
capability was particularly useful. It is common to have a package that exports private
types whose completions are types exported from instantiation(s) of generics that are
only referenced for this purpose. Closing the private part makes it unnecessary for the
interface to appear to wa'fh the package exporting either the generics or the types
involved. Reducing the wifh closure reduces the size of the interface while reinforcing
the spirit of abstract interfaces.
This ability to compose a system of compatible subsystem that have not been directly
compiled together greatly facilitates integration, especially since the wurance of
semantic integrity is not lost. It does not directly address the version control problem,
but leads to a version control policy based on a series of viewe - configurations of the
entire subsystem library, each spawned from the previous version of the view.
Experience with these mechanisms and experience with the compilation system have lcd
to the construction of a more sophisticated form of view that combines the advantages of
subsystems, reservation-model .source. management, and differential storage of changes
to provide a facility that effectively combines the best of conventional version control
with the advantages of subsystems for forming configurations. By managing views for
the user, it is possible to provide support for these various forms of multiplicity in such a
way that there seems to be more than one version only when differentibting
configurations is part of the work at hand.

8.9. Llfo-Cycle Support and Extensibility

The goal of the Rational Environment is to support all of the life-cycle activities
involved in software development. The initial implementation effort has !mused on
support for detailed design through maintenance and on building an environment that is
conducive to extending these facilities into other parts of the lire cycle. Our experience
h a s been that Ada, by itself, provides a useful basis for program design, especially where
it is possible to compile the designs and trace through the dependencies.
Many of the facilities that make the Environment attractive for programming also make
it attractive for tool development and use. The access tc DLANA and semantic
information holds out the promise of building toob to analyze program and and their
deveJopment. The ability to construqt interactive, editor-based interfaces has proved

change B without recompilation of clients of the visible part. An extension to the notion

~ ~~~

GThc RlOOO architeclurc provides efficient aupport for tbia form of truly private type.

8.2.5.8

attractive and has helped in the process of providing useful interfaces for interesting
funetionolity.

4. Experience
The Rational Environment itself consists of about 800,OOO linea of Ada. Development of
the Environment also required building about 700,OoO linea of Ada to rovide cross-

(simulators, translators, analysis programs). The product was first shipped to customers

performance, increased functionality, and improved robustness) have been delivered since
then.
This development has provided considerable experience in the use of Ada with modern
software engineering practices. This experience can be summarized by the following
statements:

development tools (compilers, debuggem) and hardware/microccde rleve P opmen t tools

0 ID February of 1985. Several significant upgrades (involving greatly improved

1. Adoption of Ada and the software engineering practices referenced earlier has
been somewhat more difficult than anticipated. Significant investment in
tools, training, and experience has been required.

2. The benefits are very real. Improvements in productivity and quality have
been evident in all phases of development: design, implementation,
integration, test, and maintenance.

4.1. Early Ada Experlence

In 1981 and early 1982, a series of programs were constructed: development and
simulation tools and prototypes of high-risk components of the Environment. These
typically consisted of 50.100K lines of Ada.
Ada proved to be an excellent language for applying the concepts of information hiding,
data abstraction, and hierarchical decomposition based on levels of abstraction. The
basic package mechanism, separation of specification and implementation, and private
types allowed rapid construction and modification of large, modular programs.

Ada cannot force good design, but it does capture and clarify the decomposition and
connectivity of programs, allowing early detection and correction of architectural flaws
in the design. Ada became our primary design tool, particularly for detail design. With
experience, we were able to produce high-quality designs quite rapidly.
The interaction between sernah tic checking and modularity produced significant
improvements in productivity. Using modularity and type structure to capture design
information increased somewhat the time required to first execute the program, but it
also greatly increased the chances that the f i t execution would be productive. New
arrivals frequently complain that they aren't ever going to get the program to compile,
only to come back later amazed that it worked the f i t time. When problem did arise
at runtime, constraint checking allowed the errors to be detected early in execution. A
common, effective debugging strategy is to run the program until an unexpected
exception occurs; the problem is often evident with no additional information. Even
when this is not the cme, the modularity of most programs reduces uncertainty about
interactions and allows much more rapid isolation of errors. It is also much easier to
reason about the structure of program and predict the consequences of a change.

B.2.5.9

Early experience also showed that all these wonderful benefits were not free. Ada
semantic analysb is very expensive, increasing compilation timea significantly relative to
other languages. The early detection of interface and typesafety errors was
handicap ed by the use of batch compilation technology to report these errors. This
confirme B our belief that an interactive environment for Ada with support for
incremental compilation would greatly improve productivity.

4.B. LUgbSC818 Development and Integration

In 1983 and 1984, the development focus at Rational shifted from developing program
consisting 9f 10-100 packages to incrementally constructing and integrating a complete
system made up of 30-40 subsystems, where each subsystem wm the size of one of the
earlier programs.
The system was decomposed hierarchically into five major layers, with each layer
consisting of 5-8 subsystems. Although there were significant structural and interface
changes over the life of the project, the basic architecture w a surprisingly stable. This
architecture allowed considerable parallelism in the overall development process and was
instrumental in the evolution of our understanding of the configuration management and
version control issues in developing large Ada system.
At a very early point, the components of the system (or skeletons of the components
were integrated into a complete system.
functionality, but allowed the basic architecture to be .debugged. before the entire
system was constructed. This integration allowed system design issues such m storage
management, concurrency, and error handling to be add:essed very early in the
development process. Early integration also served to stabilize major interfaces.
Development of the individual subsystems proceeded in parallel, with periodic
integration to provide a new baseline for further development. The use of hierarchical
decomposition allowed enough independence for development to proceed in parallel,
while providing tight interface control to minimize integration problem. It was this
integration process that led to the evolution of the subsystem concepts and supporting
tools described in section 3.8.

The combination of the Ada language with objectoriented design techniques, tool
support for integrating configuration management and compilation management, and an
incremental integration strategy proved very effective for this particular project.

4.8. Maintenance

The Rational Environment has been in field use for about 16 months in multiple releases.
Supporting it has provided some limited insight into the maintenance phase of a large
Ada system. At Rational, maintenance is the responsibility of the original development
team; it was crucial that new development proceed in parallel with maintenance without
significant increase in development staffing.

Our ex erience has indicated that Ada's greatest value may be in maintenance. In this
particu P ar case, rnainfenance included bug fixes and minor enhancements, addition of
major new functionality, redesign and reimplementation of several subsystems to
improve performance, and reorganization of parts of the user interface. Since initial
product introduction, not only has it been possible to provide desired new functionality,
but reliability and robustness have improved and overall system performance has been
increased by at least a factor of 3.

Efforts to improve performance are interesting examples of both the power and the

e

This initial system had very limite d

0

B.2.5.10

.

associated dangers of modularity and abstraction. up a large system in

(Ada generics). There were several cases where performancecritical sections of w d e
were operating through generics in multiple layers of the E stem, where a much farter

completely redone and integrated into the system without major disruption, Abstraction
is not an end in itself, but used carefully, it can help produce reliable, maintainable
software to meet performance constraints.

4.4. Experience Udng the Rational Environment

Bringin
minimum time wbs greatly facilitated by abstract interfaces an B the ability to reuse code

implementation was possible. Ironical1 , the same modu T arity and abstraction that
introduced the problems contributed to t II e solution of the problems: these sections were

t

.
Our experience using the Rational Environment has confvmed those advantages we
foresaw when we started the project. Interactive syntactic and semantic information
makes a tremendous difference in the ease of constructing program and making changes
to them. The ability to follow semantic references makes it easier to understand existing
programs and the impact of changes. The integrated debukger makes it much easier to
find bugs and test l i e s quickly. Taken together, these facdities have helped greatly in
reducing the impact of ongoing maintenance on our ability to produce new code. We
anticipate similar improvements as we achieve the same level of integration and
interactivity for configuration management and version control.
The Environment has also proved useful in introducing new ersonnel to the project and
existing personnel to new parts of the system. New ersonne v benefit from the assistance

the structure of unfamiliar software. It is often possible for someone completely
unfamiliar with a body of code to use these facilities to understand it well enough to
successfully diagnose and Ti bugs in a matter of minutes.

with syntax and semantics; everyone benefits from t i e ability to traverse and understand

0
Acknowledgmenb

The design and implementation of the Rational Environment was a group effort
involving too many people to mention individually. Each member of the team
contributed invaluable ideas, effort, and experience. It haa been a challenging,
rewarding, and enjoyable process.

B.2.5.11

References

1. ReJerenee Manual j o t the Ada Popromming Langucge. Washington, D.C., 1983. e
United States Department of Defense.

3. J.E. Archer, Jr. The Design and Implementation of a Cooperafive hogram
Devchpment Environment, Ph.D. Th., Cornell University, August 1981.

8. M. Barbacci, A. Habermann, and M. Shsw. 'The Software Engineering Institute:
Bridging Practice and Potential.. IEEE So/twore e, 8 (November 1985), 4-21.

4. 0-J. Dah1 and K. Nygaard. 'SIMULA - An Algol-Based Simulation Language'.
Comm. ACM Q, 9 (September 1966).

6. D.L. Punas . .On the Criteria to Be Used in Decomposing Systems into Modules'.
Comm. ACM I5,3 (December 1972).

8. A. Evans, K. Butler, G. Goos, W. Wulf. DIANA Reference Manual. TL 83-4,
Tartan Laboratories, Pittsburgh, Pa., 1983.

7. L. Druffel, S. Redwine, and W. Riddle. 'The STARS Program: Overview and
Rationale.. IEEE Compufcr IS, 11 (November 1983), 21-29.

8. J. Ichbiah. 'Rationale for the Design of the Ada Programming Language..
SICPtAN Nofices 14, 6 (June 1979). Part B.
0. B. Liskov, and S. Zilles. 'Specification Techniques for Data Abstractions'. IEEE
Trans. on Sojfware Eng. SE-I (March 1975).

IO. M. McIlroy. Mass-produced Software Components. In Sojfware Enpineen'ng
Concepts and Techniques, NATO Conference on Software Engineering, 1969.

11. T. Standish and T. Taylor. Initial Thoughts on Rapid Programming Techniques.
Proceedings of the Rapid Prototyping Conference, Columbia, MD, April, 1982.

12. tieqtlirerneiifo for Ada fiopra-nming Support Enw'ronmenfs (Sfoneman).
W8shington, D.C., 1880. United States Department of Defense.

13. W. Teitelman. A Display Oriented Programmer's Assistant. CSL77-3, Xerox
PARC, 1977.

14. R.T. Teitlebaum and R. Reps. The Cornell Program Synthesizer: A Syntax-
Directed Programming Environment. 79-370, Cornell University, Department of
Computer Science, 1879.

16. T. Wilcox and H. Larsen. The Interactive and Incremental Compilation of Ada
Using DIANA. Rational, Mountain View, CA.

10. R. Yeh. 'Survey of Software Practices in Industry.. IEEE Cornpuler 17, 6 (June
1084).

B.2.5.12

-... . .

k / f I S 5/0
USING ADA (R) ON A WORKSTATION FOR LARGE PROJECTS (Abstract) I

Arra S. Avakian
Benjamin M. Brosgol

Mitchell Gart

Alsys, Inc.

Waltham, Mass. 02154
1432 Main Street

Alsyrr has implemented validated Ada compilers that are hosted and
targeted on a variety of microprocessor-based workstations, including
the IBM PC/AT (*) . The availability of Ada compilers for these kinds
Of inexpensive, widely available machines considerably enhances the
development options for large efforts such as the NASA Space Station,
and we address this from both an implementation and a user
perspective. First we discuss the issue of large program development
on a workstation: how the compiler must handle this, and how an
inherently decentralized approach can be managed. Next, we focus on
code efficiency and describe the compiler and run-time design
decisions that help meet this goal. We conclude with a presentation
of benchmarks that are quite encouraging with respect to the run-time
efficiency of Ada code compared with other languages.

, Developing Large Programs

One of the principal design goals of Alsys’ compilers is the
ability to handle large programs. The technical approach combines a
host interface package that inplements a virtual memory mechanism for
compile-time data, a dynamic loader (for the 68000-based systems), and
a user option for protected mode that allows programs as large as the
f u l l m e m o r y capacity of the workstation (for the 80286-based systems).

As users of our own tools, we have 88bootstrappedn the compiler
and its supporting environment, comprising over 300,000 lines of Ada,
on ‘he PC/AT. Getting the compiler to compile itself has given us
considerable experience as users of the PC/AT compiler for a large
software project. Our development system was originally hosted on 2
Vax minicomputers, but we switched to AT’S as soon as the compiler was
sufficiently robust. Our project is now being completed on a network
of 2 Vaxes and about 10 ATs, (each engineer has an AT on his desk)
tied together with an Ethernet.

Our experiences as t8pioneer userst8 of the PC/AT compiler in a
networked workstation environment are encouraging. The main problem
in such an environment is keeping versions of source code and object
programs organized, and we will discuss in the full paper the
solutions that we have developed. The main advantage has been an
increase in productivity. The subjective perception among the
engineers who have switched from a time-sharing to a personal 0 icomputing environment has been overwhelmingly positive.

8.2.6.1

Page 2

Run-Time Efficiency

A critical compiler objective is the attainment of high quality
code. To achieve this, the compiler design includes two intermediate
languages -- one at a high level comparable to DIANA, and the other at
a low level -- and two optimization passes. Additionally, the code
generator performs machine-specific optimizations and the run time
design emphasizes efficiency of subprogram linkages and object
references.

A set of benchmarks, originally coded in Pascal by an independent
organization, were rewritten in C and Ada and run on a variety of
commmercially available compilers on 68000-based workstations and also
on the IBM PC/AT. The conclusion from these tests is that it is
possible to get efficiency with Alsys' Ada compilers at least as good
as from compilers for c and Pascal. (A more complete description of
the benchmark tests will be given in the full paper.)

Conclusions

The trend in hardware is toward decentralization, with an
increase in cheap computing power and low cost memory. The problem
has been a scarcity of software tools to take advantage of this
increased power and capacity. With the emergence of Ada compilers in
the workstation environment, such as Alsys' for the PC/AT, and
advances in techniques for managing and integrating separately
developed components, there is an opportunity to have the best of both
worlds: the benefits of Ada, and low-cost software and hardware
development environments.

I

(R) Ada is a registered trademark of the U.S. Government (Ada Joint
Program Office)

(*) Note: The PC/AT compiler has been internally prevalidated; it
w i l l be formally validated by the time of the conference.

B . 2 . 6 . 2

I

- A Distributed Programming Environment -- for M a r

Peter Brennan, Tom YcDonnell,
Gregory YcFarland, Lawrence J. Timmins and John D. Litke

Grumman Data Systems
1000 Woodbury Road

Woodbury, New York 11797

Ab et rac t --
Despite considerable commercial
exploitation of 'fault tolernnt' systems,
significant and difficult research problems
remain in such areas as fault detection and
correction. Thie paper describes a
research project to construct a distributed
computing test bed for loosely coupled
computers. The project is constructing a
tool kit to support research into
distributed control algorithms, including a
distributed Ma compiler, distributed
debugger, test harnesses, and environment
monitors. The M a compiler is being
written in Ma and will implement
distributed computing at the subsystem
level. The design goal is to provide a
variety of control mechanisms for
distributed programming while retaining
total transparency at the code level.

Introduction

Many new system designs specify a distributed architecture to
attain incremental growth or increased computational power.
These systems typically have homogeneous processors linked
either by shared memory or by a message passing system.
Concomitant with easy expandability and large computational
power, one gains some resiliance against hardware faults. That
is, if one processor fails, only the work executing on that
processor is lost, not the entire work load. If one adds the
capability to detect processor failure and to move the work
from that failed processor to other working processors, then
some tolerance for both hardware and software faults is
attained that cannot be achieved with single processor systems.

* Ada is a registered trademark of the Department of Defense,
Ada Joint Program Office.

0
B.3.1.1

-..ll.Uu- _.-.. ,*.-... - . . --.-

Further, if one can move work from a failed processor to an
active processor, rather easy extensions allow work to move
from one active processor to another, achieving a load
balancing effect for maximum output from the processor
resource.

This ability to function despite hardware failure has made
distributed, loosely coupled architectures a favored
architecture for ultra reliable systems. To make this
architecture effective, we must partition a problem into
several parts so that each part can execute relatively
independently on separate computers. The partitioning process
introduces requirements to coordinate the execution of the
several parts and to verify that each part is operating
properly so that, if a failure occurs, corrective action can be
taken. Such methods for problem coordination and control in a
distributed environment are the principal focus of this
research. We wish to assess whether, given the proper tools,
one can construct loosely coupled, distributed applications
that are cost effective, reliable, and efficient.

When a problem solution is developed for execution on a single
processor computer, the usual method is to design several
modules that jointly solve the problem. Coordination of the
solution process requires a communication channel between 0 modules, usually via shared variables or messages. Further,
any shared data must be specified and storage allocated. This
design results in intimate coupling between the several
modules, with a significant chance for error. Ada provides
extensive checking of the interfaces between modules and the
operations allowed on each data element, greatly reducing the
severity of module interface errors.

When a problem is partitioned for execution on a distributed
processing host, one designs several programs (instead of
modules) that jointly solve the problem. Interface errors may
still occur, but since a compiler can process only one program
at a time, there is no compiler support for checking and
controlling the inter-program interfaces. Hence one would like
to extend the power of Ada to distributed programs. In such an
extended language, a problem is still decomposed into
separately executing programs (Ada tasks), but data sharing and
module synchronization are implemented and checked by the
compiler. While such an extension itself presents
implementation difficulties, two additional problems are
present in a loosely coupled environment: assuring liveness
and serializability. Thus, we requf-re a test environment to
evaluate candidate implementation methods and to develop
efficient new algorithms. The Ada language was designed to
provide support for a distributed programming paradigm. Its’
visibility and synchronization rules provide a model for data
sharing, while the task and rendezvous constructs provide a
control model. Ada provides primitive mechanisms for assuring
liveness and serializability, but the attainment of these goals
is left to the programmer. To assess the viability of Ada’s

B.3.1.2

model, we require two things: a distributed host with a
validated M a compiler, and a tool kit for developing,
debugging and meaouring the performance of dietributed
progrtrmo. However, becauee M a provideo a model but not m
implementation of distributed programming constructs, we must
expect to try a variety of implementations before eettling on
one with acceptable performance. Hence w e require a compiler
that we can modify to try various implementations of M a .

1 These considerations have led to the establishment of a Fault
Tolerant Computing project at Grumman Data Systems with the
following goale:

1. To construct am Ada compiler for a dietributed architecture
host eo that the implementation of Ada’e model can be
varied eignificantly.

2. To implement several distributed programming models and
assees their viability for eerious problem solving in
realistic environments.

3. To develop models and methode for solving the liveness and
serializability probleme, and to teet these ideas on the
dietributed programming environment provided by the first
two goale.

The project began in July of 1985 with a goal of constructing
the foundation M a compiler by e w e r 1988 and providing the
first implementation of a distributed programming model by
early 1987. The remainder of this paper describes the design
and development of the foundation compiler and its supporting
environment, and concludes with an outline of a distributed
programming implementation for Ada.

Hardware Technology

The hardware base is the Eternity E-5000 computer system from
Tolerant Systems, San Jose, CA. This syctem contains loosely
coupled processors built with the National Semiconductor 32000
seri.es VLSI processors. The operating system is TX, a superset
of Unix BSD 4.2 and System V with extensions for transaction
processing, distributed file systeme, and built- in fault
detection and recovery. The hardware is targeted for the
commercial on-line transaction processing market, and so
features a particularly robust and flexible communications
capability. The fault tolerant capability is achieved with
fail fast processors, dual redundant communication paths, and
fault detection and reconfiguration software. Further,
operating system services themselves are distributed in such a
way as to support proceso migration, either to avoid faults or
to provide load balancing. This eupport for distributed 0 programming algorithms ie an important advantage; it minimizes
the infrastructure we must build.

B.3.1.3

Each processing element is actually a tightly coupled met of
32000 procomeor.. (See Fig. 1). One processor (WV) is
dedicated to umer applications, one (WU) to the operating
system, and one (CIP) to I/O m d communications protocols. The mu provide8 a UNIX compatible executing environment, while the

provideo a real-time environment, Both processors have a
cormDon system lrnguage (C) m d machine language. Although
operating system oervices differ somewhat on each processor,
one compiler can produce code that will execute on either
procamor. This permits ue to develop an .Ida compiler that
will produce code for both a time sharing aiid a real time
environment.

The file syetem is UNM compatible at its interface, but highly
modified in its implementation to provide a global name space
and a robust foundation for system operation. In addition to
traditional services, the file system provides an efficient,
guaranteed message delivery system and plexed files with
automatic restoration after failure. Thie is an essential
system service for effective implementation of Ada's
distributed programming model.

I

E-6000 Configuration Example
Figure 1

Compiler Technology

The M a compiler must be constructed in such a way that the r u n
time library can be modified. Since Ma'e model fo r
distributed computing is centered on the task construct, the

B.3.1.4
0

I

e
t inter-taak rendeavous taek schedt ing algorithms muet ale0

bo modifiable. We have chosen the retargetable compiler
technology from TeleSoft, San Diego CA as the baee on which to
build. This system providee the syntactic and eemantic
aaalysis for M a , manages am Ada library, and providee output
in a tree etructured form at approximately aeeembly language
level. Our task is to build a suitable code generator for the
E-6000 hardware. A key feature ie that eufficient information
on the Ada taek implementation is available eo that we can
modify the Telesoft implementation model if required.

\

One of our theme8 when implementing thie compiler ie program
execution efficiency. Execution efficiency not only requires
an efficient algorithm, one of the primary foci of this
reeearch, but aleo an efficient implementation of those
algorithme by the compiler. Thus code optimization becomee a
theme of the first part of the project. Because of our
implementation strategy, the potentially arduous construction
of optimization algorithme splite naturally into three parts.
We will depend on the TeleSoft front end for optimiaa.tion flow
of control, common sub-expression elimination, etc. The output
of the compiler is National Semiconductor assembly code for the
32000 processor. The aeeembler on the E-5000 implements
extensive optimizations that are effective for a C language
compiler, euch as code hoisting and instruction selection.
Thus our code generator will concentrate on optimizations such
as register allocation, minimization of bounds checks,
efficient exception propagation, and the like.

Since the compiler will produce code for a real time
environment, we must ensure that efficient programs are
possible. Further, a highly modular language like Ada could
invoke a large number of subroutine calls, making efficient
call/return mechanisms a requirement. We focus on our
implementation decisions surrounding the call/return mechanism
as an example of tradeoffe involved during the compiler
construction process.

The call/return mechanism has several basic requirements. It
must:

1. Allow passing of data into and out of a subroutine.

2. Allow saving and restoring of temporary registers.

3. Allow access to out of scope variables.

4. Allow exception propagation out of the local scope.

5.

The E-5000 uses a stack mechanism, growing down from high
memory locations, for temporary variables including frame
pointers. Thus the basic call/return paradigm is a classic
one :

Allow task switching and hence logical reentrancy.

B.3.1.6

Call: Put vrriablem on the stack
Put return address on the stack
Branch to the subroutine

(in called routine)
Save old stack baee and old frame pointer on etack
Set n e w etack base and new frame pointer

Restore old etack baee and old frame pointer
Branch back to return addreas on etack

Return:

(in calling routine)
Remove return variables from stack

To extend this model for Ada, we must decide how to allocate
stack space considering the multi-tasking M a model and how to
propagate information to/from the called routine with a minimum
of overhead. M a requires extra information be passed across
this interface to allow out of ecope variable references and to
propagate exceptione. It was a particular goal to minimize the
overhead of these latter requirements.

For the etacks, we have adapted the results from [GUPT85],
namely to use a static etorage area for module instances and a
dynamic heap for temporary variables, satisfying requirements

(This scheme is often called a Berry-heap after
!6%%8]). When allocating etacke for independent tasks, one
must account for the possibility of collision of these stacks
with each other [YEH86]. There are only two solutions, impose
a static limit on the size of the stacks, or dynamically create
room when required. In either case, the stack-full detection
mechanism provided by the hardware is no longer useful for
multiple stacks. We must implement the checks efficiently in
software .

0

We allocate an initial etack with the intent to dynamically
allocate more stack space if and when required. This approach
makes effective use of available memory even for very large
numbers of tasks, and imposes very little overhead [YEH86] .
However, we now muet check for stack overflow before every
stack usage, an unacceptable overhead. Our first solution was
to check, before every call, that parameters would fit on the
stack, and then check at every entry that local variables (the
frame) would fit un the stack. This is a two call overhead for
every original call, an unacceptable result. The final design
depends on the observation that stack requirements for local
data and parameter passing are known at compile time, so that
we can substitute one call on entry to each routine to check
for sufficient stack space. Further, since routines that
invoke no other routines typically have very small stack
requirements, by requiring a emall buffer space be present on
all stacks we can remove all stack checking overhead for such
calls. We accepted such minimal overhead for the benefits of a
highly dynamic stack allocation mechanism.

8.3.1.6

The remaining two requirements, to implement out of acope
references rsd 60 permit exception propagation to cross the
call/return interface, each require separate treatments. Out
of scope references in a multi-task environment are often
implemented by copying a 'dieplay' onto the currently active
stack before every call. This display contains the storage
offset pointer for each visible module, including the calling
module. Each out of scope reference is implemented as an
indirect reference relative to the proper pointer plus an
offset. The difficulty with this eolution ie the requirement
to set up the stack before each call. Although optimization
algorithms could avoid setting up unnecessary displays, we
would prefer to avoid the overhead altogether.

t.

Our solution requires a static display area, one per task.
Each module has a statically determinable lexical level that
serves as an index into this table. When calling any module,
we save the current value in the table at our lexical level,
and overwrite the proper frame pointer in the table. On return
from the routine, we merely copy back the original contents of
the display. This requires an overhead of one load and two
stores per call, optimizable to no action at all if we can
determine that the routine being called does not reference any
variables at our lexical level or higher and calls no other
routine.

An efficient solution to exception propagation requirements is 0 more complex. For locally raieed exceptions, we can clearly
use a direct transfer to the exception handling code. However,
if an exception must be propagated to an outer scope, we must
'unravel' the stack frames as we search for the handler. In
addition, w e require that the cause and location of the
exception raising be determinable in case a handler is not
found. For real time programming, we would like such a
mechanism to be swift. Further, if the exception could not be
handled at any level, for debugging purposes we should not
unravel the entire stack before we determine that the exception
is unhandlable. Otherwise, essential debugging information is
lost.

Our solution requires no overhead at call time and uses a
binary search to identify the relevant exception handler before
unraveling the stack. At compile time, each exception is
uniquely identified as to raiee location and reason, and every
exception handler is uniquely identified as to the exceptions
it handles, permitting identification of exceptions in a user
friendly way should a handler not be found. The identification
information, together with the addresses of the scope of each
exception handler, is stored in a table in static memory. An
initialization routine sorts this table before the program
runs. If an exception must be propagated, the propagation code
follows the stack pointer chain backwards, searching the common
exception table for exception handlers that apply to the
address given by each instance of the stack pointer chain until
a handler is found. The table can be searched quickly for

B.3.1.7

rapid exception propagation. When a handler is found, the
stack is quickly unraveled in one operation to the proper point
and the handler invoked.

While not an exhaustive list, these items illustrate some
directions we a r e taking in the development of an efficient M a
compiler. Maay of our efficiency oriented algorithms are
heavily parameterized so that we cam vary their effect and
study the resulting program behavior. This approach will allow
UB to tune the compiler for best effect under realistic
conditions. Results of these efforts will be reported at 1%

future conference,

Distributed Programming Model

When implementing an M a compiler for a distributed programming
host computer, there are three levels of capability to be
considered, namely:

1. Minimum capability that satisfies the M a Language
Reference Manual [ANSI83].

2. Permit advice from the programmer to influence the
implementation or execution of the model.

3. Enhanced functionality within the requirements of thc Ada
Language Reference Manual.

The remainder of this section addresses some issues pertinent
only to the minimal capability implementation.

The execution of parallel, distributed processes under one
computational model introduces such complexities that few
practical systems today are entirely transparent to the user.
The mark of a successful implementation is correctness, general
applicability, and the capability to simplify the task of
programming parallel execution paths. In contrast, Ada seeks
to achieve two different goals: a simple inter-process
communication paradigm and the efficacy of a complete semantic
check of the entire collection of processes, viewed as a whole.
Whether these goals are necessary or sufficient for a
successful implementation is to be determined.

Ada defines a task model that provides a set of primitive
communication mechanisms (accepts/entry calls) to implement
parallel tasks. Although use of these requires explicit
programmer cognizance, the programmer's task is simplified
somewhat. The price for thie simplification is that the
compiler writer must implement correct interpretations for
three shared elements: data, control via exceptions, and
program state. Each of these olements is considered separately
below.

B.3.1.8

wmw
I? ,.

To provide L background for this discussion, some fundamental
deoign decisions must be noted. The first version of the
distributed compiler will produce an executable image that
executes on each distributed host unaltered. In other words,
the inetaatistion of any module will execute on only one host,
though its code image is present on all hoete. This decision
meane that the code on each host ie larger than the minimal
required, but that addresses not on the stack and not
dynamically allocated are universally correct from host to
host. Further, our hardware is a segmented, virtual memory
machine, so that physical memory is not significantly wasted by
this decision.

A eecond design decision is to use the operating eystem message
passing facility for all intertask communication. Since we
have compiled the program as a whole, targeted for one uniform
processor, this communication need not incur the overhead of
formatting/unformatting data, and BO it can be used for
co-located tasks as well as distributed tasks.

A third decision is that only tasks will be considered for
distribution during the first implementation. (While this ie
not strictly true as we shall see, this provides the primary
focus when designing the implementation model.) Further, to
ease initial implementation efforts, no access variables can be
referenced acrose a distributed interface. Now let us return
to a discussion of how we intend to share data, control via
exceptions, and program state information.

Data sharing between two asynchronous tasks takes several
forms. The first is via data that is visible to two different
tasks by operation of the scope rules of M a . The Ada Language
Reference Manual specifies that two tasks can ' s e e ' the effects
of updating shared variables only at synchronization points
such as those associated with a rendezvoue or by pragma
'SHARED', allowing every access of a variable to be a
synchronization point. However, the Ada Language Reference
Manual does not require that the compiler detect erroneous
programs that violate these rulee. A second, indirect way to
share data is by the common invocation of library routines that
reference static data. For example, a terminal 1/0 routine in
a library package might reference static data to define the
current line number on the screen; every call to this routine
m:by alter the data.

Motivated by these two concerns, we have decided that the
pragma 'SHARED' will not be allowed for two tasks that are not
co-located within one host process. To addrese the indirect
aharing of variables via library packages, we define three
classes of objecte (functions and procedures): idempotent,
serially reusable, and re-entrant. The first class will
execute correctly without any historical information. Any
routine that does not acceas static data or any 'state of the
world' is in this class. The second class indicates routines
that access some static data, but that can accept successive

B.3.1.8

call. once the first call is complete, Most library routines
are in thio class. The third class, while they may depend on
static data, may also be called by another routine the
first request is complete. These routines, such as I/O
drivers, usually depend on a separate temporary data etore
(stack) per task to achieve their re- entrancy.

before

If a routine is declared idempotent, then we may execute any
available local copy of the relevant code, taking no care to
share etatic data among distributed tasks. This is the default
nature for procedures and functions. If the routine is
declared serially reusable, then we will execute the call on
the one host that contains the inetantiated version of the
routine, and all calls will be queued in a FIFO manner. If the
routine is declared re-entrant, then we will execute the call
on the local host and broadcast any updated etatic data at the
completion of the call. It is the programmer’e responsibility
to eneure that the specification of the proper behavior model
matches his or her intent.

Another information sharing between two concurrent taeks is via
the exception propagation structure. Since the colocation of a
taek and any exception handlers that it may invoke are not
guaranteed, we must provide both a fast means to determine the
location of the exception handler and a means to propagate the
exception to that handler. Our decieion to use a common
program image allows the exception propagation logic to execute
ae a idempotent routine, determining the location of the
handler before invoking any communication overhead. The
communication required to pass control to a remote eite is
reduced to the identification of the raised exception.

Global etate information is shared among distributed processes
by the Ada requirement for taek termination. When a task h a s
an open terminate alternative, it must consider the state of
all dependent tasks, sibling tasks, and the state of the p a r e n t
task before entering the terminated state. In turn, thie means
that one must achieve a globally consistent picture of the
state of all such tasks so that a correct decision can be made.
There are only two solutions to thie requirement. One solution
electe or appointe a master controller to determine the state
of the world, while the other eolution requires periodic
broadcasting of all etates to achieve a consensus on a
consistent state. The latter approach ie often called a
coneietent checkpoint method, and often entails significant
overhead waiting for all taske to achieve a stable state. F J r
thie reason, wo have elected to use the first method, by
electing a ’controller’ task as that task that dominatee the
immediate terminadtion decieion. By polling meane, outlined in
[JAH85:, this one taek (actually the local run time system
attached to that task) will calculate the termination condition
for all subordinate tasks.

B .3.1.10

Our general direction for implementation of the M a distributed
programming model has been decided. Our next step is to
consider meano to debug distributcd proceeses and to measure
the effectiveness of our initial implementation. This effort
will result in a test suite of distributed programs, designed
especially to teat distributed control algorithms rather than
just the computational advantage of parallel computation. The
euite will be then used to evaluate the effectiveness of
various distributed programming models.

.
References

[ANSI833 ANSI/MIL-?TD 1816A, Reference Manual for the Ada
Programming Language; January 1983

[BERR78] D. Berry, L. Chirica, J. Johnston, D. Martin, and
A Sorkin, "Time required for reference count management in
retention block- structured languages, part l,I1, Int. J.
Comput. Inform. Sci., 7(1), pp.91-119 (1978)

[GUPT85] Rajiv Gupta and Mary Lou Soffa, "The efficiency of
storage management schemes for M a programs", M a Letters, Vol
5, 2, pp.164- 172, (1985)

[JAH85] Rakeeh Jha and Dennis Kafura, "Implementation of Ada
Synchronization in Embedded, Distributed Systems", Virginia
Tech report TR-85-23, 1985.

[YEH86] D. Yun Yeh and Toehinori Munakata, "Dynamic Initial
Allocation and Local Reallocation Procedures for Multiple
Stacks", Comm. ACM, Vol 28, 2, pp.134-141, February 1986

3.3.1.11

. .

Distributed Ada :
Methodology, Notation, and Tools

Greg Eisenhauer
Rakesh Jha

J. Micheal Kamrad, I1

Honeywell Systems and Research Center

Abstract

The task of creating software to run on a distributed system brings with it many problems
not encountered in a uni-processor environment. The designer, in addition to creating a
solution to meet the functional requirements of the application, must determine how to dis-
tribute that functionality in order to meet the non-functional requirements such as perfor-
mance and fault tolerance. In the traditional approach to building distributed software sys-
tems, decisions of how to partition the software must be made early in the design process
so that a separate program can be written for each of the processors in the system. This
design paradigm is extremely vulnerable to changes in the target hardware environment, as
well as being sensitive to poor initial guesses about what distribution. of functionality will
satisfy the non-functional requirements. The paradigm is also weak in that no compiler
has a cornplete view of the system. Many of the advantages of using a powerful language
system are lost in a one-program-per-processor environment. This paper will present
another approach to the development of distributed software systems, Honeywell's Distri-
buted Ada program.

Our Approach

The goal of Distributed Ada is to develop methodology and tools which will significantly
reduce the software design complexity for reliable distributed systems. We believe that
the functional specification of a system (what it will do) can and should be separated from
its non-functional specification (how it will be mapped onto the underlying system). The
functional specification can be developed and expressed in Ada. To this is added the
specification of the non-functional at'xibutes of the system. Separating the problem space
into two smaller problems means that the designcr can concentrate on solving each of
them in turn rather than attacking them together. It also allows software development to
proceed before hardware final design is complete and enhances the portability of the func-
tional specification.

'Ada is a rcRiclercd trademark of the U.S. Govcmmcol Ada Joint h g n m Office.

B.3.2.1

...-_..-.

The software development paradigm we advance is described by the following scenario.
The designer develops a functional solution to the problem in Ada using uni-processor
development tools. With a functional solution in hand, she then creates a specification of
the non-functional characteristics of the solution (more details on the nature of this
specification will be given later). Using the tools being developed under our program,
these two specifications can be used to create the distributed solution incorporating the
non-functional attributes. At this point, the distributed solution can be tested for accepta-
bility according to non-functional criteria and modified if necessary to meet non-functional
requirements.

The advantages of this and similar approaches over the traditional approach of up-front
distribution dezisions are self-evident. When non-functional specification is separated
from functional specification, software development can proceed with limited knowledge
of final hardware configuration and will be little impacted by changes in the underlying
system. We believe, however, that the granularity of distribution and the mechanism of
specification employed in our approach separate our work from that done by other
researchers.

As opposed to other projects which limit the unit of distribution to the Ada library uni t
and limit remote access to tasks and subprograms in the visible part of remote units [Inv
85, Sch 81, Sof 84, Vol 851, we believe that an effective and extensible non-functional
specification should allow distribution of all subprograms, packages, tasks and objects in
the Ada specification. A narrower stand on the objects of distribution requires the
designer to be more conscious of the non-functional requirements while searching for the
functional solution. While i t can be argued that a designer who is aware of all the

requirements of an application will produce a more efficient solution, we believe that the
tools he uses to produce the distributed solution should impose as few constraints as is
possible. Constraints imposed at this level directly impact portability and robustness of a

given functional solution in the face of a changing hardware environment.

Many researchers argue that the PRAGMA construct in Ada should be used for non-
functional speciC, ations such as distribution of entities [Inv 85, Vol 851. We have chosen
another approach for several reasons. One concern is that an approach involving PRAG-
MAS will not be extensible to specification of non-functional attributes such as dynamic
relocation of objects or fault tolerance strategies. Pragma-based schemes for specifying
distribution are complicated already, attempting to extend these schemes to additional
domains might prove unwieldy. We also consider it a disadvantage that the pragmas
would be embedded in the source and scattered throughout the Ada specification, This

B.3.2.2

.

makes sharing of library units between applications difficult or impossible. It also
impedes manipulation of the specification of distribution. If this specification were con-
centrated in one location rather than dispersed throughout the code, it would be easier to
form a global picture of system distribution. We also observed that the function to be per-
formed by these notations was to establish a structuring hierarchy distinct from that of
Ada. This led us to create a separate specification notation, the Ada Program Partitioning
Language (APPL) [Cor 84, Hon 85, Jha 861.

Ada Program Partitioning Language (APPL)

The goal of the APPL design process was to produce a compact, convenient notation for
specifying the non-functional attributes of a program. APPL addresses issues of distribu-
tion of Ada entities, and dynamic relocation and replication of those entities. Extensions
to APPL to cover fault tolerance specification are under consideration. For brevity, this
discussion will consider only APPL in general and static distribution in specific. The
reader is referred to the APPL Reference Manual for a more detailed and formal descrip-
tion.

It is useful at this point to introduce some terms.
A FRAGMENT is a user-specified collection of entities, such as packages, subprograms,
tasks and objects, from the Ada source program. Every entity belongs to one and only
one fragment. Membership in a fragment is attained either implicitly, as a result of de-
fault rules, or explicitly, as a result of inclusion in an APPL fragment declaration.

A STATION designates a computational resource in the underlying system. Typically,
this is a node in a distributed system.

MAPPING a fragment to a station causes all entities in that fragment to reside on that sta-
tion at runtime.

A PROGRAM CONFIGURATION refers to a specific partitioning of a program into a
collection of fragments, and the specific mapping of the resulting fragments onto stations.

An APPL specification completes a Program Configuration and consists of two parts. The
first of these, the configuration specification, specifies the fragmentation of the Ada pro-
gram, while the latter, the configuration body, specifies the mapping of fragments to sta-
tions.

The configuration specification provides a mechanism for specifying Ada entities to be
bundled together as a fragment. With a few exceptions, such as within unnamed blocks,
these entities can be selected from within any declarative region in the program. As a
convenience, APPL semantics implicitly declare a fragment for every library unit which
make up a program. It also provides a mechanism for further bundling fragments into

B.3.2.3

fragment groups. Fragment groups, like fragments, arc mutually exclusive and are treated
like fragments in mapping.

The configuration body is a simple section specifying a conespondcnce between fragments
and stations.

AS an example to illustrate the use of APPL, consider the following Ada text.
with TEXT-IO, REAL OPERATIONS; use REAL-OPERATIONS;
package EQUATION SOLVER is

procedure QUADRATIC EQUATION;
procedure LINEAR-EQUATION;

end;

package body EQUATION-SOLVER is

end EQUATION-SOLVER;

with EQUATION SOLVER;

begin
procedure MAIN is

end MAIN;

Also consider the following configuration specification.
with MAIN, EQUATION-SOLVER, REAL-OPERATIONS;
configuration PROTOWE is

fragment QUAD-EQUATION is
use EQUATION SOLVER;
procedure QUA~RATIC-EQUATION;

end QUAD-EQUATION;
end PROTYPE;

Recall that APPL implicitly declares a fragment for each library unit involved. Thus the
implicitly declared fragments are: MAIN, EQUATION-SOLVER, TEXT - IO, and
REAL - OPERATIONS. QUAD-EQUATION is an explicitly declared fragment containing
the procedure QUADRATIC-EQUATION from the library unit EQUATION - SOLVER.
An example configuration body is shown below.

B.3.2.4

configuration body PROTOTYPE is
map EQUATION-SOLVER, MAIN, TEXT-IO onto !3TATION-1;
map QUAD-EQUATION onto STATION 2;
map REAL-OPERATIONS onto STATIO%-3;

end PROTOTYPE;

An APPL specification, together with the Ada source, constitute a description of a distri-
buted software system. It is the function of the tools we are developing to actually pro-
duce this system.

Distributed Ada Tools

In order to avoid spending a large amount of development time on issues not strictly
related to distributed systems, we have chosen the approach of modifying an existing Ada
language system rather than creating one from scratch. Two major tools in any Ada
language system are the compiler, which maintains the Ada program library and produces
object code for strings of compilation units, and the linker, which must determine and gen-
erate code for library unit elaboration and actually assemble the final executable image. In
the compilation environment, these tools are the most drastically affected by retargeting to
a distributed environment.

Modifications to the compiler are perhaps the most dramatic. Obviously, the compiler
must be made aware of the fragmentation and mapping specified by APPL. Therefore, the
first phase of distributed compilation consists of modifying the intermediate representation
(DIANA, for our purposes) of the Ada library units and their secondary units by adding a
"fragment" attribute to the DIANA nodes. This allows the compiler to determine the sta-
tion of residence for that entity.

From the modified DIANA representation of a compilation unit, a linearizer generates
intermediate language (IL) code for the compilation unit. This linearizer, in particular,
must be significantly more complex than i t is required to be in a uni-processor compiler.
It must now produce an IL code module for each of the stations to which fragments of the
compilation unit have been mapped. Of even more significance, is the fact that it must
generate proper code to reference entities on remote stations. This task is simplified
somewhat, because the problems associated with distributed Ada tasking will be dealt with
by the runtime environment (discussed in the next section) and will be invisible to the
compiler. However, most every other aspect of IL generation is affected. Fetches and
stores to remote variables, for example, will require calls to special runtime primitives for
remote data access.

B.3.2.5

As another example of the issues involved in this stage, consider the problem of parame-
ters to a remote subroutine call. In a uni-processor system, it is efficient to pass large
parameters by reference rather than by value. A pass-by-reference mechanism could be
employed in remote subroutine calls bj adding a station address to the parameter address.
But this would mean that every reference to the parameters of a procedure that could be
called remotely would involve the remote data access mechanisms. Since parameters are
likely to be heavily utilized in computation, this appears to be an undesirable situation.
Our solution to this problem involves the generation of local 'stubs' whose purpose is to
package the parameter values and L msmit them to the remote system. The runtime
environment on the remote station will disassemble the package and call the procedure in
question. Since this call looks just like any purely local call, the code generated for the
called procedure is unchanged. (Note: This mechanism cannot be applied to access types.
They must be handled by a reference mechanism similar to that mentioned above.)

Once these multiple intermediate code modules have been produced, object code. genera-
tion on each of them should continue in a fairly normal manner and the final object files
can be passed on to the linker. In the Distributed Ada environment, our scenario involves
the production of multiple executable images, one for each station in the system. This
will require modifications to the linker, which will have to resolve symbols between multi-
ple executable images, something which no uni-processor linker would ever have to do.
Fortunately, these linker modifications are not conceptually difficult and represent only an
engineering problem.

Run time Environment

The execution environment considered consists of a network of stations and a copy of the

runtime system on every station. The runtime system makes the underlying hardware
appear to the distributed application as an Ada virtual machine.

There is a minimum set of facilities that must be provided by the distributed runtime sys-
tem, independent of the granularity with which an Ada program is partitioned. It must pro-
vide reliable inter-station communication and synchronization, a consistent view of distri-
buted state information at each station, a globally consistent view of time, and means to
deal with partial failures in the underlying system.

The overall complexity of the distributed runtime system depends on the support i t pro-
vides for binding the application fragments together dynamically, for making the applica-
tion fault-tolerant by masking station and network faiiures from it, and for representation
conversion between heterogeneous stations.

0
B.3.2.6

There is a spectrum of possible binding times. If binding is done statically before execu-
tion time, it is not possible to reconfigurc an application during execution by remapping
one or more of its fragments. Dynamic binding is the most flexible. The mechanism can
bc used effectively by the runtime system to reconfigure an application as a means of pro-
viding fault-tolerance, or of changing the configuration as resource requirements change
during execution. If the underlying system is heterogeneous, the binder must also insert
representation conversion filters for values that an passed between the remote fragments
that it binds together.

The complexity of the runtime system is only marginally affected by the choice of the set
of Ada entities that can be distributed. The apparent similarity between concurrency in
Ada tasks and concurrency of execution on a network of processors may initially suggest
that tasks be made the unit of distribution. However, a close examination will quickly
show that this restriction does not really simplify the runtime support needed.

The allowed granularity of partitioning has a greater impact. For the sake of an example,
consider the case where Ada library units are the unit of distribution. The runtime system
must support calling of remote subprograms, reading and writing remote data, and tasking
operations on remotely located tasks. Since Ada task dependencies do not cross library
unit boundaries, the semantics for task termination can be implemented in a manner that
gainfully uses the knowledge that the task dependencies cannot cross station boundaries.
This simplification is not available if a finer granularity of partitioning is allowed. I n
application areas where the size and efficiency of the runtime system are critical, we think

that the specific requirements of the application domain shodd be taken into consideration
when deciding the granularity of program partitioning.

Project Status and Plans

Honeywell’s Distributed Ada project was started in 1982. A preliminary version of APPL
was defined in 1983 [Cor 841. A prototype implementation based on source-to-source
transformation and an unaltered uni,,processor compiler was built during the following
year. i n 1985, the structure of APPL was changed and the language revised and forrnal-
ized won 85, Jha 861. Current development focuses on creating the specialized tools and
runtime environment described above. In order to manage the implementation, we have
divided its development into several stages. Phase 1, which we are currently working
under, calls for a fully functional system, limited to homogeneous systems and static dis-
tribution of objects declared in the visible portion of library units (and the units them-
selves). We hope to complete this phase of development by the end of 1986. We are

B.3.2.7

using the VERDIX Ada Development System (VADS*) as the baseline compiler from
which to create the Distributed Ada system and arc operating in a simulated network

e n h n m e n t using processes under Unix3. Future development phases call for support for
heterogeneous systems, dynamic reconfiguration, object replication and fault tolerance.

References
[Cor 841 D. Cornhill, "Partitioning Ada Programs for Execution on Distributed SyS-

tern," IEEE 1984 Proceedings of the International Conference on Data
Engineering.
"Honeywell Distributed Ada Project," 1985 report.
P. Inverardi, F. Mazzanti, and C. Montangero, "The use of Ada in the design
of distributed systems," Ada in Use Proceedings of the Ada International
Conference, Paris, 14-16 May, 1985.

[Jha 861 R. Jha, J.M. Kamrad, D. Cornhill, "Ada Program Partitioning Language: A
Notation for Distributing Ada Programs," submitted for publication.

lLRM 831 "Reference Manual for the Ada Programming Language," ANSUMIL-STD-
1815A, U.S. Department of Defense, 1983.

[Sch 811 S. Schuman, E.M. Clarke, and C. Nikolau, "Programming distributed applica-
tions in Ada: A first approach," Proceedings of the 1981 International
Conference on Parallel Processing.

Softech, "Programming distributed applications in Ada," December 1984.

R.A. Volz, T.N. Mudge, A.W. Naylor, and J.H. Mayer, "Some problems in
distributing real-time Ada programs across machines,'' Ada in Use Proceed-
ings of the Ada International Conference, Paris, 14-16 May, 1985.

Won 851

Dnv 851

[Sof 84)

Wol 851

*VADS and VERDIX r n regisled lrademarkd of the VERDIX Corponlion.
'Unix in I registered lndcmrk of ATkT Dell Labs.

0

B.3.2.8

*

An Ada1 Implementation of the Network Manager for the
Advanced Information Processing System

Gail A. Nagle
Technical Staff

The Charles Stark Draper Laboratory
555 Technology Square

Cambridge, Massachusetts 02 139
(617) 258-2238

Introduction

Tile Advanced Information Processing System (AIPS) is a data processing architecture
designed to mre: the reliability requirements of space vehicle applications. The Charles Stark
Draper Laboratory is presently building an AIPS proof-of-concept prototype*. Ada was selected as
the programming language in which major system services would be implemented. One part of thc
ALPS architecture is a fault tolerant input/output network which is under the control of a software
module called thc Network Manager. Ada provides a user with a significant number of options for
implementing ii given aspect of a design. During the development of the prototype Network
Manager, some language constructs were found to be particularly well suited for certain types of
situations. In one case the language did not provide a desired feature. Experience with Ada ah a
programming language for this application will be described here.

Background

UsinP Ada
Training in Ada was accomplished by a combination of viewing a subset of video taped

tutorials prese;itc:d by Jean lchbiah, Robert Firth, and John Barnes, participation in an in-house
course in Ada 1 ,,ins the Chdy Booch text Sofhvare Engineering h h and a lot of "learning b!,
doing". Inifir-illy rhe work in the in-house course and the "learning by doing" were somewhar
impeded by the absencc of a reliable in-house compiler which supported full Ada. This problcm
was greatly red!lccd by thc timely arrival of the Digital Equipment Corporation's (DEC) Ad;i
compiler and daciopmcnt systeiii for the VAX3.

'I'he iiii:roprocessor used in the prototype system is the Motorola 68010. Since a compilcr
which handled l u l l Ada was not available for this machine, i t was decided that initial design a r i d
development of programs would be done on the V A X using the DEC Ada compiler. This St r i l lCS !
was based in large part on the portability of Ada code and the fact that Ada compilers which targcl
the 68000 microprocessor were expected to be available well within the development time o f ~ l i c

1 Ada i h ;I regihtcrcd trademark of h e US. Covernmcnf (Ada Joint Progr;tni Office).
2'1'1iis work is supprkd by NASA under JSC contract NAS9-17560.

3 V A X is ;I registered trademark or tlic Digital Equipment Corporation.

I3.3.3.1
ORlClNAC PAGE tS
CIF ?OOR QUALlTll

PrOt?tyF system. Thus progress in designing and programming the various modules could
contmue ununpeded by artificial constraints in the language.

mmSvstem
The AIPS architecture is highly modular. The needs of a specific application can be met

by selecting components from a set of hardware building blocks and software system services.
One such building block is a fault and damage tolerant inputloutput network which allows

a data processing element (typically a Fault Tolerant Processor or FIT) to communicate senally
with YO devices. The network consists of a number of full duplex links that are connected by
circuit switched nodes to form a conventional multiplex bus. In steady state, the network
configuratipn is static and the circuit switched nodes pass information without the delays
associated with packet switched networks. Since not all pathways are enabled, the network has a
set of spare links which allow it to be reconfigured in response to a failure. A network may serve
only one processing element or it may be shared by several processing elements which contend for
access to the network. In the case of a network dedicated to one processing element, a unique
network configuration is possible. Such a network may be divided into subnetworks which allow
an application to conduct simultaneous I/O operations with redundant, parallel devices from each
subnetwork. Network organization and operation is completely transparent to an application
running on the system.

The system service which is responsible for the reliable operation of an YO network is the
I/O Network Manager. The Network Manager can be run in any processing element connected to
the physical network to be managed. It performs network initialization, fault detection and
isolation, reconfiguration to a fault free state, testing for latent faults and status reporting.

High level design objectives of the network manager software for the prototype include
transparency to network users, adaptability to dynamically changing system configurations,
portability within the system, and modularity. Ada language constructs have been found which
support these design goals. A full Ada version of the design has been compiled and run on a
VAX 8600 using DEC's Ada compiler. To facilitate testing on the VAX, an Ada simulation of the
network has also been developed. Installation of the full Ada version on the AIPS Fault Tolerant
Processor must await the release of a compiler which targets the Motorola 68000. However, a
modified version of the network manager has been compiled on the VAX using the Telesoft 1.5
cross compiler and is awaiting system test and integration.

'
Implementing the Network Manager in Ada

Overview
The number of Network Managers which a system needs depends on the number of

physical networks in use. This number can vary from system to system and within a system over
time. However, the number of networks which can be managed from a given processing site is
bounded by the number of physical 110 interfaces it has. For the prototype system this upper limit
is six. Furthermore, when a network is partitioned into subnetworks, each partition requires its
own I/O interface. Thus a given processing element could manage at most six networks and/or
subnetworks. From the point of view of the Network Manager, there was no functional distinction
between the control of a network and the control of a partition .

The Network Manager is a system service which would be provided on demand of the
System Manager. The System Manager is another software module which coordinates all other

B.3.3.2
OMlNAL P A T rS
OT:)OOR QUALlrY

System Services. The software for an active Network Manager process would consist of two
major parts: a data store describing the toplogy of the network to be managed and the coded
algorithms to provide the functions descnbed above. Specific information about the network
topology (e.g. the number of nodes and links in the network) would not be available until run time.
Thus two factors motivating the design were the need to be able to start and stop the process on
demand, and the ability to manage a network topology which is to be determined at run time.

The fact that several networks could be managed in parallel from a given processor
required a non-reentrant module to coordinate the starting and stopping of the various manager
processes. However, each manager was itself an atomic unit, requiring only information about
the topology to be managed for it to be off and running on its own. Thus the Ada package was
used to implement the system service of network management on a particular processor. The Ada
task type was chosen to conduct the lcgic of managing a particular network. Other Ada packages
were used to coordinate access to irlformation about the various network topologies in the system
and to encapsulate the data format required for communication with the prototype network nodes.
Finally, the need for keeping die System Manager apprised of the status of network components
was met by another tx ' : type which provided mutually exclusive read/write operations to a
protected object containing current status information. The relationship among these various
components is graphically depicted in Figure 1.

package IO - NETWORK - MANAGER
This package provides the capability to manage the fault tolerant network defined by the

A P S architecture. A user, in this case the System Manager, can then start or stop management of
any network in the system. The software for this module would need to be resident in each
processing site which could in fact manage a network.

The visible interface to this package is composed of two procedure calls, START and STOP.
The calling process first designates the dcfinition (Le. the topology) of the network to be managed
through its interface to the data base package. It then calls the START procedure. When this call
completes, network management is underway and network status is available. The call to STOP is
also preceded by a call to the database to designate the network to be stopped. When the call to
STOP completes, management of the indicated network is terminated and all resources allocated to
that process are restored to the system. Thus network status is no longer available for that network.

0

task type N E W 0 R K - M M A G ER
A task object is created in the body of IO-NEIWORK-MANAGER for each VO network to be

managed from a particular FTP. If a network is partitioned into a number of subnetworks, each
subnetwork will be allocated its own manager task.

The concept of a partitioned network was devised to allow applications to conduct I/O
operations with redundant, parallel devices resident in separate partitions. Within each subnetwork
arc a certain number of spare links which allow failures to be repaired intrapartition. While such a
repair is taking place, communications on the other subnetworks can operate normally. To support
this feature, management of the 110 networks is not conducted synchronously. Each partition i s
under thc control of its own task object which performs its functions independently of the other
su bnetworks.

Since the number of possible networks which a given processor can manage is known in
advance and is a relatively small number (currently six), a table of access types to these task objects
is declared within the package body. The .START and STOP procedures described above have
access to this table. The task object has three entry calls. Not surprisingly they are a

B.3.3.3

start, stop and sfurt status. During the srart rendezvous, the task object makes a local copy of its
network d e f d t i o n . h r i n g the start-srarus rendezvous, the network manager task initializes the
protected status object. This rendezvous is also used to synchronize the two processes which can
access this shared status object; i.e. the status reader will not be able to read until the status writer
has written at least once. The task proceeds to "grow" a network. It then enters a loop whereby i t
will either accept an entry call to srop or will periodically monitor the network for faults. If faults
are detected during monitoring, fault isolation and reconfiguration logic is activated. An alternate
approach to the monitor-maintain cycle currently under consideration would provide this activity on
demand when communication erron are detected in communications conducted on the network for
application functions. The call to srop causes the process to exit its loop and come to its natural
end at which time its resources are explicitly deallocated.

package IO-DATA-BASE, package NOD E-MESSAGE-FORMATTING
and other &a structure considerutions

The numbers of various network elements , i.e. nodes, links, YO devices,etc., can vary
from network to network, but within a given network topology, they are static. The fist approach
to the data abstraction process focussed on defining types to contain network topology
information. The basic connecting unit of a network is a node. The AIPS prototype node has five
ports. Each port may be connected to another node, a processor interface unit or an 110 device
interface unit Hence infonnation about the element adjacent to a given port could be contained in
a discriminated record where the information stored would depend on the type of that element. Five
such records grouped as an array could make up one field of a larger record containing other
information about the given node. Finally, a collection of these node records would define a
topology for a given network. This collection was also housed in a discriminated record where the
discriminant was the number of nodes (which was given a default value) and the other field was an
array containing that number of node records. This structure has the additional feature that objects
of this type could be declared within the network manager task type and would upon allocation of
the task object have the default value number of nodes. Later this object could be updated to reflect
the actual number of nodes in the network to be managed. A major wcngth of this approach was
that of run time reliability. The compiler generated checks will e n u r e the correct usage of this
structure, Le. the user cannot access a portion of the structure where values are meaningless. A
simple array that is large enough to hold data for any case could be misused in this way. However,
the major drawback to this design was that each object so declared was allocated enough memory
to hold as many members as the maximal value of the type of the discriminant.

A second design solved this problem of wasted memory space while retaining the ability to
dynamically create array objects with the correct number of cells. This design used an access t y p e
to an unconstrained array type. A variable of this type is declared in the body of the task type. The
number of nodes and a pointer to an array of node records are passed as rendezvous parameters to
the activated task. During the rendezvous, the object accessed by the local pointer is allocated with
as many cells as there are nodes in the network. These cells are assigned values by applying the
'.all' construct to the local access variable and the rendezvous parameter. The only feature that is
lost with this solution is the ability to later change the number of cells in the object. Since this
network topology is constant for the lifetime of the task, this feature is not necessary here.

'The discriminated record array structure did prove useful in another application. Sincc thc
network is a shared resource, the various processing elements using the network must contend for-
access. To reduce the overhead of the contention processing, a set of messages are grouped
together in what is called a "chain". Messages are sent to nodes in chains. However, the number
of messages to be sent to the nodes will vary with the reason for the communication. Thus thc
number of messages in a given chain will vary. For example, when monitoring the netwo:k, all 0

B.3.3.4

the nodes are sent messages. When growing the network, only one or two nodes are sent
messages. When reconfiguring the network or testing spare links, it may be necessary to send
messages to several nodes in one chain so as not to leave the network in an inconsistent state for

other network users before completion of the reconfiguration or test. Thus objects containing node
messages will vary in length during the life of the task. Rather than create an object for each
possible length chain, an object of the discriminated record m a y type was used. In this
situation,the cost in extra memory is relatively small since each node message is only six bytes
long and the prototype network may contain at most thirty-two nodes; however, the extra flexibility
facilitates processing.

An operation provided by the data base package allowed a significant reduction in the
memory needed to store topology data as well as the need to ensure that multiple copies of data
remain consistent. Any FlT connected to a network can manage that network. The definition of the
network used by a manager is the same regardless of the processing site except for the particular
nodes (called root nodes) which connect the site to the network. Given the array of node records
described above and the identity of the FTP, it is possible to derive the root node information.
Thus network definitions can be stored centrally without regard for local variations which are
derivable on demand.

A final Ada feature which proved useful in the data abstraction process was the
representation clause. The prototype node expects to receive a message containing six bytes of
data. Each byte in turn contains one or two bit wide fields which the node decodes to obtain its
control informatiox Rather than having to remember that bits zero and one of byte three control
whether or not a ?lode is permanently reconfigured or only reconfigured for the next transmission,
the representation clause allowed a type called CONFIGURATION-LIFETIME to be given two values,
ONCE-ONLY and P E R M A N E N T , with specific base two representations. The representation clause
further allowed the node message type to be assigned to a specific two bit wide field for the lifetime
information. Other fields in this record were named and positioned in a similar fashion. The
programmer need not be concerned with masking and shifting to set up a node message. Code
using these messages could be written more quickly and more reliably. Furthermore, the code
becomes self-documenting and therefore easier to test. When the message needs to be stored in a
general area of memory, unchecked conversion would allow the safe transfer cf the byte organized
information. This is the case when the message is written to a dual ported memory just prior to
transmission on the network. Finally, this node dependent information was packaged as a u n i t
which would shield the rest of the software from any necessary design changes in node hardware
or protocol.

Ada currently does not allow a function to accept 'in out' parameters. While this makes
sense in the context of a mathematical function, in the context of a computer program, T. broadcr
definition of 'function' can be supported. In this context, a function is a language construct t h a ~
does something and returns a value as part of its call. In the network manager such a language
feature would have been a great asset in conjunction with the short circuit 'and then' construct.
During growth of a network, a node is subjected to a series of tests before i t is forma!ly added IO
h e network. These tests are sequential i n nature. I f a node fails a test in the sequence, thc
rcmaining tests are doomed to fail and therefore need not be performed. A very elegant w a y of
coding this testing sequence was:

B.3.3.5

if PASS-TEST-1
and then PASS-TEST-2
and then PASS-TEST-3
and then PASS_TE!j"-4

then ACTION;
else OTHER-ACI'ION;

end if;

where the PASS-TEST-NS are boolean functions, This code is easy to read and understand; i t is
also self-documenting.

The problem m s e because each test needed to log error detection information as it was
discovered. Since a global object was not desired here, other designs were examined. These
included procedure calls for the tests within nested if then else statements and the calling of these
procedures from functions declared locally within each subprozram performing the tests.
However, none of these designs were so simple, straightfonvard or self-documenting as the
original. It is hoped that this example will provide some additional motivation for a change in this
restriction. Perhaps another type of subprogram would be the most acceptable solution.

Conclusions
From an implementation standpoint, the Ada language provided many features which

facilitated the data and procedure abstraction process. The language supported a design which was
dynamically flexible (despite strong typing), modular, and self-documenting. Adequate training of
programmers requires access to an efficient compiler which supports full Ada. When the
performance issues for real time processing are finally addressed by more stringent requirements
for tasking features and the development of effir.ient run-time environments for embedded systems,
the full power of the language will be realized.

0

B.3 .3 .6

.

. package

IO-NETWOW<_MANAGER

.START

f packrgo \
IO-D ATA-BAS E

WRIT€ READ

\
System
Manager

1

4

task typo

NETWORK-STATUS

task type
N-K-MANAGER

FIGURE 1 : SOFIWARE COMf'ONEMS FOR MANAGING NETWWKS

B.3.3.7

DISTRIBUTING PROGRAJ4 ENTITIES I N Ada1

.
P a t r i c k Rogers

C h a r l e s W. McKay
High T e c h n o l o g i e s L a b o r a t o r y

U n i v e r s i t y of Houston
a t C l e a r L a k e

Introduction

I n any d i s c u s s i o n of d i s t r i b u t i n g programs and e n t i t i e s
of programs w r i t t e n i n a h i g h o r d e r i a n g u a g e (H O L) , c e r t a i n
i s s u e s n e e d t o b e i n c l u d e d b e c a u s e t h e y a r e g e n e r a l l y
independen t o f t h e p a r t i c u l a r l anguage i n v o l v e d and have a
d i r e c t impact o n t h e f e a s i b i l i t y of d i s t r i b u t i o n . O f s p e c i a l
i n t e r e s t is t h e d i s t r i b u t i o n of Ada program e n t i t i e s , b u t
many o f t h e i s sues i n v o l v e d a r e n o t s p e c i f i c t o Ada and
would requi re r e s o l u t i o n whether w r i t t e n i n P a s c a l , PL/1 ,
C o n c u r r e n t P a s c a l , H A I , / S , or a n y l anguage w h i c h p r o v i d e s
s i m i l a r f u n c t i o n a l i t y . T h e f o l l o w i n g sect ions w i l l enumera te
some o f t h e s e i s sues , and w i l l show i n what ways t h e y r e l a t e
t o Ada. Also , some (b u t by n o means a l l) of t h e i s s u e s
i n v o l v e d i n t h e d i s t r i b u t i o n of Ada programs and program
e n t i t i e s w i l l b e d i s c u s s e d .

J u s t i f i c a t i o n

B e f o r e i n t r o d u c i n g s u c h a s u b j e c t , i t 1s p e r h a p s
r e a s o n a b l e to p r o v i d e a r a t i o n a l e f o r d i s t r i b u t i n g a named
r e s o u r c e of a HOI, program i n the f i r s t p l a c e . T h r e a s o n s
a r e s t r a i g h t - f orward.

F i r s t , and p r o b a b l y most i m p o r t a n t , i s t h e i s s u e of
r e l i a b i l i t y . Computers a r e i n c r e a s i n g l y used i n apr i i c a t i o n s
which r e q u i r e h igh r e l i a b i l i t y , b e c a u s e t h e y impac. l i f e and
p r o p e r t y (sometimes l i t e r a l l y) . Embedded a p p l i c a t _oris w h i c h
p r o v i d e l i f e s u p p o r t , control g u i d a n c e and n a v i g a t i o n , o r
m a n a g e w e a p o n s a r e e x a m p l e s . A f a i l u r e o f s u c h a n
a p p l i c a t i o n c a n b e d i s a s t r o u s . By d e c e n t r a l l z i n g t h e
s o f t w a r e (a n d o f c o u r s e , t h e h a r d w a r e) , w e c a r . p r o v i d e
s y s t e m s t h a t n o t o n l y d o n o t have s i n g l e p o i n t s of f a i l u r e ,
b u t t h a t a r e f a u l t - t o l e r a n t . Such s y s t e m s can r ecove r from

1 Ada is a r e g i s t e r e d t rademark of t h e U . S . Government
(A J P O)

B.3.4.1

ORiQlNAL PAGE Is
of)OOR QUALITY

failures once they are detected. (This approach should not
be confused with fault-avoidance, which attempts to prevent
failures from impacting the system in the first place.)

The second reason is that of the decreasing cost of
hardware, especially with respect to the ever-increasing
Cost Of software. In order to make the most, economically,
of the power of software, utilization of multiple processing
resources is desirable. Parallel processing is an example.

The third reason is extensibility, in the domains of
performance and functionality. When the software system 1s
designed with distribution as a design criteria, the
resulting modularity provides a design that does not
necessarily have to be radically changed for increases in
processing power (for performance) or for the addition of
new modules (for additional functionality). In a system
intended to have a long, evolving life cycle, this is a
major issue.

Fourth, given limited resources of operational costs,
hardware , communi c a t ions , and in f (j. r ma t i on, w h e n t hose
resources are themselves distributed (as in Space Station) ,
resource sharing implies that only those elements that
require direct access and are to be held accountable for the
integrity of the resource should be located in proximity to
that resource. In this case, distribution of the software
allows only that part which interacts with the resource to
b e p r e s e n t (w i t h potential b e n e f i t s of reduced
communications costs and localization of accountability).

T h e f i f t h reason is the issue of the fidelity of
modelling solutions to real world problems that are
distributed in nature. Such problems are complex enough
without adding additional complexity by distorting t h e
solution model to fit a non-distributed HOL with no support
for cooperating, parallel activities, or for recognizing
both exceptions to normal processing and the context in
which the exceptions occur (s o thit appropriate fault
tolerance and fail-soft activities can be supported). For
example, the Space Station Program will eventually involve
ground support stat ions , f ree-f ly ing plat forms , the Stat ion,
orbital transfer vehicles, and other components. These
components are intended to interact in an integrated, end-
to-end information environment. (Put simply, any asthorized
user at any component of the environment who desires to
access entities should be given timely access to such
entities without regard for the location, replication,
number of processors supporting the access, or means of
providing fault tolerance.) Obviously, a model of the
solution to these challenges involves a high degree of
distributed parallel processing activities which must evolve

B . 3 . 4 . 2 0

.

kh 'k&k't-&f&tXve, adaptable, and sa fe f a s h i o n .

F i n a l l y , t h e issue of p e r f o r m a n c e s h o u l d b e a d d r e s s e d .
I t , too, is s t r a i g h t - f o r w a r d . When t h e a p p l i c a t i o n demands
t h e a d v a n t a es and b e n e f i t s of d i s t r i b u t i o n , t h e p r i c e O f

however , t h a t d i s t r i b u t i o n w i l l n o t a u t o m a t i c a l l y mean poor
p e r f o r m a n c e . I n f a c t , d i s t r i b u t i o n w i l l i n some c a s e s
imp;rove p e r f o r m a n c e b y d e c r e a s i n g c o m m u n i c a t i o n c o s t s ,
t a k i n g a d v a n t a g e of remote ha rdware resources , and so on.

The above r e a s o n s s h o u l d b e s u f f i c i e n t f o r i l l u s t r a t i n g
t h e n e e d f o r d i s t r i b u t e d s o f t w a r e . T h e g e n e r a l i s s u e s
i n v o l v e d i n d i s t r i b u t i o n w i l l f o l l o w .

decreased e s f i c i e n c y mus t be p a i d . I t s h o u l d b e u n d e r s t o o d ,

V i s i b i l i t y

One of t h e p r i m a r y u n d e r l y i n g c o n c e p t s i n d i s t r i b u t i n g
a HOL program is t h a t of " v i s i b i l i t y " . I n t h i s c o n t e x t ,
v i s i b i l i t y m e a n s " t h e s e t of o b j e c t s w h i c h may b e
p o t e n t i a l l y r e f e r e n c e d a t a n y p a r t i c u l a r p o i n t i n a
proqram". T h e s e o b j e c t s i n c l u d e b o t h da t a and c o d e modules ,
s u c h a s v a r i a b l e s a n d s u b r o u t i n e s . D e p e n d i n g o n t h e
d i s t r i b u t i o n scheme, t h e s e objects may or may n o t b e l o c a l l y
a v a i l a b l e . I n t h o s e i n s t a n c e s where t h e o b j e c t i s r e m o t e ,
t h e Run T i m e S u p p o r t Envi ronment (RTSE) w i l l b e r e q u i r e d to
h e l p f u l f i l l t h e s e m a n t i c r e q u i r e m e n t s o f a g i v e n r e f e r e n c e .
F o r e x a m p l e , t h e p r o g r a m may h a v e some of i t s v a r i a b l e s
d i s t r i b u t e d a c r o s s r e m o t e s i t e s . A r e f e r e n c e t o s u c h a
remote object w i l l r e q u i r e c o o p e r a t i o n among t h e t w o R T S E s .
T h e c a l l i n g RTSE w i l l h a v e t o c o n t a c t t h e RTSE of t h e
p r o c e s s i n g s i t e a t w h i c h t h e v a r i a b l e i s l o c a t e d , w i t h a
r e q u e s t for t h e c u r r e n t v a l u e of t h e v a r i a b l e . T h e r e m o t e
(c a l l e d) RTSE m u s t l oca t e t h e v a r i a b l e , g e t i t s v a l u e , and
send back a message c o n t a i n i n g t h a t v a l u e . (The r e c o v e r y of
a f a i l u r e of one of these messages is non-trivial.)

As c a n b e s e e n , t h e v i s i b i l i t y of o b j e c t s p l a y s a
c o n s i d e r a b l e p a r t i n d e t e r m i n i n g t h e c o m p l e x i t y of t h e RTSEs
i n v o l v e d .

D i s t r i b u t i o n Scheme

A d i s t r i b u t i o n scheme may o f t e n be d e s c r i b e d i n t e r m s
of t h e v i s i b i l i t y r u l e s of t h e i m p l e m e n t a t i o n l a n g u a g e .
T r a d i t i o n a l b l o c k - s t r u c t u r e d l a n g u a g e s , s u c h a s ALGOL and
P a s c a l , u s e n e s t i n g t o c o n t r o l v i s i b i l i t y of l o c a l l y
d e c l a r e d d a t a and s u b r o u t i n e s . T h e v i s i b i l i t y r u l e s of t h e s e
l a n g u a g e s a r e s u c h t h a t t h e i n n e r d e c l a r a t i o n s o f
s u b r o u t i n e s and d a t a a r e v i s i b l e to f u r t h e r n e s t e d u n i t s i n

8 . 3 . 4 . 3

the same declarative region, but not to outer units at the
same nesting level. A global section of data is directly
visible, and of course outer-level subroutines are visible
to Successively declared subroutines at the same level, in a
linear manner.

A S previously shown, the visibility rules directly
impact the complexity of the required RTSE by determining
the set of entities that may be referenced at a particular
point. This complexity represents a major factor in
determining the feasibility of a distribution scheme itself.
Those schemes which reflect visibility rules that restrict
the size of the name space are easier to implement.

The distribution schemes form a spectrum based on the
visibility rules and the constructs of the source language
involved. For example, if the distribution is to be at the
individual statement level, (representing one extreme) , then
any object referenced may be remote, including components of
complex expressions. (The resulting RTSE requirements would
be extensive. The instance discussed under "Visibility"
above is an example.) If distribution is to be at the
compilation-unit level, (the other extreme) , then the set of
all entities that may be referenced is reduced to globally
visible entities, such as subroutines and their
parameters. In effect, the distribution scheme controls the
size of the distributable name space, and therefore the
complexity of the RTSE.

Time

Another important concept is that of time, either
expressed in the program directly, or in the underlying
RTSE. The basic problem is that in order to provide correct
semantic execution, distributed program units require the
same effects as a consistent, unified version of time that
would be provided in a non-distributed environment.

As an example of directly expressed timing, if one
module requests a service of another remote module, with a
specified amount of time allowed for the request to be
fulfilled, the two modules must have a common view of time
for the request to have any meaning. Note that this does not
mean that the two modules' clocks are necessarily
synchronized, only that they be mutually consistent while
the request is being served.

In the underlying RTSE, certain operations and actions
often need to be synchronized with respect to each other for
correct operation and support of a source program. This will

8 . 3 . 4 . 4

a l s o be r e q u i r e d i n a c o o p e r a t i v e manner among t h e RTSES
s u p p o r t i n g d i s t r i b u t e d programs.

Semantic Integr i ty

A c r i t i c a l c o n c e p t is t h a t of s e m a n t i c i n t e g r i t y , w h i c h
m e a n s t h a t t h e m e a n i n of c o n s t r u c t s a n d program u n i t s m u s t
be m a i n t a i n e d w i t 7;-9 out r e g a r d for d i s t r i b u t i o n . F o r i n s t a n c e ,
a c a l l t o a s u b r o u t i n e m u s t h a v e t h e same s e m a n t i c e f f e c t ,
or m e a n i n g , r e g a r d l e s s of t h e r o u t i n e ' s a c t u a l l o c a t i o n w i t h
respect t o t h e c a l l e r . Note t h a t t h i s does n o t mean t h a t t h e
b e h a v i o r i s t h e same, e s p e c i a l l y w i t h r e s p e c t t o t e m p o r a l
p e r f o r m a n c e . (I n o t h e r w o r d s , i t h a s to work t h e same, b u t
n o t n e c e s s a r i l y w i t h t h e same t i m i n g and s p a c e p r o f i l e .)

A s p e c i f i c a s p e c t o f s e m a n t i c i n t e g r i t y i s t h a t t h e
s e m a n t i c s o f a g i v e n c o n s t r u c t a r e t o b e i n v a r i a n t o v e r
f a i l u r e s of t h e p rocesso r s e x e c u t i n g t h e c o r r e s p o n d i n g
object c o d e . F o r e x a m p l e , t h e s e m a n t i c s o f a s u b r o u t i n e c a l l
a r e s u c h t h a t , o n c e t h e c a l l e d r o u t i n e is c o m p l e t e d ,
e x e c u t i o n r e s u m e s i n t h e c a l l i n g module . I i i a d i s t r i b u t e d
c o n t e x t , i n w h i c h t h e c a l l e d r o u t i n e is remote f r o m t h e
c a l l e r , i f t h e c a l l e d m o d u l e ' s processor f a i l s , t h e c a l l i n g
m o d u l e w i l l be s u s p e n d e d i n d e f i n i t e l y . T h e s e m a n t i c s w o u l d
t h u s b e (i . n c o r r e c t l y) d i f f e r e n t i n t h e d i s t r i b u t e d
e n v i r o n m e n t . S e m a n t i c i n t e g r i t y , i n t h i s case, means t h a t
t h e c a l l e r m u s t n o t b e allowed to p e r m a n e n t l y s u s p e n d , s i n c e
t h e s e m a n t i c s o f a c a l l d o n o t i n c l u d e t h a t s i t u a t i o n .
(O b v i o u s l y , i f t h e c a l l e d r o u t i n e i s d e s i g n e d t o n e v e r
c o m p l e t e , d u e f o r e x a m p l e t o a n i n f i n i t e loop, t h e n t h e
c a l l e r w i l l n e v e r resume. However, t h a t i s n o t a r e s u l t of
t h e s e m a n t i c s o f a s u b r o u t i n e c a l l .) S i m i l a r l y , i f t h e
p r o c e s s o r (s) e x e c u t i n g o u t e r - l e v e l u n i t s i n a n e s t e d
s t r u c t u r e f a i l , t h e i n n e r - l e v e l u n i t s m u s t n o t b e a l lowed to
p r o c e e d n o r m a l l y s i n c e t h e y depend o n t h e o u t e r - l e v e l scopes
f o r t h e i r e x e c u t i o n c o n t e x t . T h i s is, a g a i n , a n i s s u e t h a t
may b e p a r t i a l l y a d d r e s s e d b y t h e d i s t r i b u t i o n s c h e m e , b v
c o n s t r a i n i n g t h e u n i t s t h a t may b e d i s t r i b u t e d t o t h o s e a c
t h e o u t e r - l e v e l .

Resource Manaaement

A more o b v i o u s i s sue t h a n t h o s e a b o v e is t h e manaqcment
of resources. T h e s e r e s o u r c e s i n c l u d e s t o r a g e , p r o c e s s o r s ,
a n d i n f o r m a t i o n (a m o n g o t h e r s , s u c h a s d e v i c e h) .
S p e c i f i c a l l y , s t o r a g e management i n v o l v e s d y n a m i c , s t a t i c
and t e m p o r a r y d a t a , a s w e l l a s t h e management of c o d e (w h i c h
may a l s o b e d y n a m i c) .

8.3.4.5

P roces sor management involves dispatching potent i a1 ly
remote processors to processes, as well as scheduling, which
determines the units that are to be able to execute at a
given moment. Both are, of course, requirements of the RTSE.

Information management involves the maintenance Of
consistent, current status information regarding individual
modules' contexts, processing status and workloads, the
global program state for each executing program, descriptive
information about data and code, and so on.

Different languages have varying degrees of resource
management requirements, as well as varying degrees of
programmer-level control over them. Thus the amount of RTSE
support required varies. For instance, languages which allow
the allocation and deallocation of dynamic objects from a
heap will require different RTSE support from those
languages which have no such capabilities (often
intentionally, such as in HAL/S). Some languages have only
static data, and thus require different storage management
techniques that those which are stack-oriented. In a
distributed context, where heaps may be effectively
distributed and/or shared, the management of dynamic objects
Will require specialized RTSE capabilites.

ISA Homogeneity

The Instruction Set Architectures (ISA) of the
processors that comprise the target environment are also an
issue. If these processors are potentially heterogeneous,
target dependencies become a problem. One such dependency is
of course impjicit in the object code itself, since the
machine code was generated for a particular ISA. A l s o , the
source C O ~ ? may contain explicit target dependencies. These
could include references to absolute addresses and specific
devices, a s well as specific data representation requests,
and so on.

Furthermore, the defdult representation of data may
vary among I S A ' s with different capabilities. T h i s
difference in representation will be a problem when objects
are visible to (two or more) remote modules on non-
homogeneous ISAs, as well as when objects are passed as
parameters between such modules.

Changes In Situ

I n systems which are intended to have a very long,
evolving life-span, such as Space Station, changes to the
software are inevitable. These changes will occur as a

B.3.4.6

r e s u l t o f u p g r a d e s i n t e c h n o l o g y , a n d a s a r e s u l t O f
chang ing r e q u i r e m e n t s i n f u n c t i o n a l i t y . T h e d e s i g n of t h e
s o f t w a r e m u s t , i n i t s i n i t i a l fo rm, p r o v i d e fo r s u c h
changes . (A l t e r a t i o n s t o t h e d e s i g n a f t e r - t h e - f a c t present a
m u c h more d i f f i c u l t s i t u a t i o n .) C u r r e n t l y a c c e p t e d
c o m p l e x i t y - c o n t r o l m e t h o d s o f m o d u l a r i t y and i n f o r m a t i o n
h i d i n g , a l o n g w i t h t h e r e q u i r e m e n t f o r chang ing a sys t em
w i t h o u t f i r s t h a l t i n g t h a t s y s t e m , d i c t a t e t h a t s e p a r a t e
p r o g r a m s be employed i n t h e c o n s t r u c t i o n o f t h e s o f t w a r e .
Each program is to b e d i s t r i b u t e d as n e c e s s a r y , o r n o t a t
a l l . T h i s approach is i n c o n t r a s t to one i n w h i c h a s i n g l e ,
m o n o l i t h i c program is d i s t r i b u t e d a c r o s s t h e n e t w o r k (s 1 .

Q

I s s u e s in D i s t r i b u t i n g Ada Programs h Program E n t i t i e s

J u s t i f i c a t i o n for S e l e c t i n g Ada

P r o v a b l y Correct C o n s t r u c t s

O lde r HOLs were d e s i g n e d i n an e r a o f s i n g l e m o n o l i t h i c
p r o c e s s o r s t h a t were t y p i c a l l y e x p e c t e d to e x e c u t e programs
t h a t w e r e s m a l l (b y c u r r e n t s t a n d a r d s) , and t h a t w e r e
deve loped by one programmer. T h e t h r e e o l d e s t h i g h o r d e r
l a n g u a g e s , F O R T R A N , L I S P , and COBOL, were d e v e l o p e d (i n
1 9 5 7 , 1958 , and 1 9 5 9 , r e s p e c t i v e l y) b e f o r e t h e deve lopmen t
a n d w i d e r e c o g n i t i o n o f t h e c o n c e p t s o f b u i l d i n g
" s t r u c t u r e d " s o f t w a r e from a s m a l l set of p r o v a b l y c o r r e c t
c o n s t r u c t s . T h u s i t i s u n d e r s t a n d a b l e t h a t n a t u r a l
r e e n f o r c e m e n t f o r c o n s i s t e n t use o f s u c h c o n s t r u c t s i s
l a c k i n g . I n f a c t , those who u s e e a r l y l a n g u a g e s i n b u i l d i n g
s o l u t i o n models for many of t o d a y ' s complex problems often
f i n d t h e m s e l v e s p e n a l i z e d for such u s e . I n c o n t r a s t , t h e Ada
l anguage p r o v i d e s d i r e c t s u p p o r t f o r d e v e l o p i n g s o l u t i o n s t o
l a r g e , c o m p l e x p r o b l e m s t h a t a r e d e m o n s t r a b l y c o r r e c t ,
ma i n t a i n a b l e and a d a p t a b l e .

S u p p o r t for P a r a l l e l A c t i v i t i e s w i t h F a u l t T o l e r a n c e

These e a r l y l a n g u a g e s a r e c a l l e d s e q u e n t i a l b e c a u s e
t h e y h a v e n o s u p p o r t f o r mode l l ing c o n c u r r e n t o r p a r a l l e l
a c t i o n s . A d d i t i o n a l l y , t h e y p r o v i d e s u p p o r t for n o r m a l
p r o c e s s i n g o n l y , w i t h n o means f o r e x p r e s s i n g t h e r e s p o n s e
t o run - t ime e r r o r s . Again, T h e Ada l anguage p r o v i d e s d i r e c t
s u p p o r t f o r s u c h a c t i v i t i e s . T o d i s t o r t t h e s o l u t i o n model
w i t h s u c h a l a n g u a g e a s F O R T R A N o r P a s c a l would r e q u i r e
e x t e n s i v e p rogramming i n a s s e m b l y l a n g u a g e and u s e of
o p e r a t i n g s y s t e m c a l l s i n o r d e r t o c o m p e n s a t e f o r t h e
i n a d e q u a c i e s of t h e language . T h e r e s u l t i n g s o f t w a r e s y s t e m

B.3.4.7

would b e too expensive to build, much more difficult to
maintain and operate, and far more difficult to adapt to
changing requirements, Similarly, to distort the solution
model by failing to support distributed program entities, as
Well as distributed programs (when appropriate), would be to
add rather that to reduce complexity, since the resulting
model would be far less representative of the problem.

D i 8 tr ibu tion Scheme

The central theme in the following discussion is that
Of the distribution scheme. As demonstrated, its control
over visibility has a considerable impact on the complexity
Of the underlying RTSE, and thus the feasibility of
distribution. In Ada, the spectrum of distribution begins
with constants and variables, continues to nested program
units (blocks, Subprograms, packages and tasks), and ends at
the other extreme of compilation units. (It should be noted
that Ada provides greater control over the name space via
packages.) Compilations units in this case would be Ada's
"library units": specifically, subprograms and packages. At
this level, the only visible entities are these library
units, parameters for these units when they are subprograms,
and declarations in the visible parts of library unit
packages. Distribution at this level is the easiest to
support. Distribution at the nested program unit wouid limit
some visibility, (i.e., the declarations local to nested
units), but not globally visible data and routines. Thus it
would not result in less RTSE complexity. Obviously, the
simpler the requirements for the RTSE the better, since the
implementation of distribution support is simpler.

However, other factors besides RTSE complexity must be
considered in the choice of distribution level support.
Specifically, the amount of fault-tolerance required must b e
seriously considered. If little fault-tolerance is required,
the system may be allowed to deal with it transparently (i n
very deterministic ways), such that the programmer is not
directly involved with the response to failures. A s such,
the programmer has n o need to e x p r e s s a s p e c t s of
distribution dynamically in the source language. However, in
some applications only the programmer can know what is to be
done in response to failures. The appropriate response may
be a specific reconfiguration of the program units involved.
Since the only dynamic program unit is the task, the
distribution scheme may have to support distribution of
tasks in order for the programmer to s p e c i f y the
reconf igur a t ion.

0 . 3 . 4 . 8

The concept of time in Ada may be expressed explicitly
in several ways, based on the delay statement. An example of
the need for consistency across remote units is, of course
the timed entry call, which requests a service to be
provided to the caller in a specific amount of time. If the
server is to respond meaningfully, it must perform the
request for rendezvous in the amount of time indicated by
the call. However, since the clocks of the two processors
w i l l n o t b e synchronized, and there will b e an
indeterminable communication lag, difficulties will exist.
Specifically, the server may respond too late, such that the
caller will have timed-out and continued on as if the
service was never provided. If not handled by the RTSE, the
program would then be in a logically inconsistent state.

An example of timing issues in the underlying RTSE is
the activation of remote tasks. The parent task must not
begin execution until all tasks declared in its declarative
region are successfully activated. If one or more of these
activations fail, then Tasking Error must be raised in the
parent. 2

-

Another example is the elaboration of the library units
named in the context clauses of a main (sub)program. These
must be elaborated in an order that is consistent with the
transitive dependencies. As a result, distributed library
units cannot simply be elaborated when the remote host site
is ready. Rather, there must be communication and
cooperation among the sites.

Semantic Integrity

Ada subprogram calls will exhibit the behavior
described under the general section on "Semantic Integrity"
with respect to failure of the called unit (i.e., they too
will not return). Furthermore, an entry call will exhibit
those same characteristics when the processor supporting the
called entry fails. Conditional and timed entry calls can
protect the caller from permanent suspension prior to the
start of the rendezvous. However, these calls do not protect
the caller once the rendezvous has begun. -

Note that in a distributed context, the activation
status messages may be lost. The resulting indefinite
suspension of the parent would be an example of failed
semantic integrity.

B . 3 . 4 . 9

It should be noted that in a distributed execution
environment, the conditional entry call is not the same as a
timed entry call with a zero delay. The reason is as
follows. In the Language Reference Manual (LRM)3, the phrase
"immediately possible" in the discussion of the conditional
entry call refers to the readiness of the called task to
accept the call, (not to an amount of time). The conditional
caller is dependent upon the called task to indicate whether
or not it can accept the call. If not, the caller will
resume under the "else" part of the call. If the called task
indicated that it could perform the rendezvous (resulting in
the caller being suspecded), and then failed, the caller
would be indefinitely suspended (unless fault tolerant
programming techniques are applied). This is not the case
with a timed entry call. Under a timed call, the caller is
not dependent on the called task. (The caller does the
timing.) If the call is not performed in the specified
delay, then the caller continues on, without reqard for the

-

statbs of the called task. Thus, the semantics-are not the
same.

-

Resource Management

0 Distributed Ada will require all the resource
management activities outlined in- the general section on
resource management, and specifically those for a stack-
oriented language. One aspect that has received attention is
the subject of dynamic data, supported in Ada by the "access
type". Some implementations of distributed Ada restrict
parameters such that values of access types are not passed
between remote program units.4 This is an expedient
approach, but not an absolutely necessary one. In Ada,
dynamic objects are referenced as abstractions, which is why
they are called "access" types rather than "pointer" types.
The value gives "access" to the dynamically allocated
object. This is of course typically implemented (on
uniprocessors) as an actual address. The common reaction to
distributing access types is then that such distribution is
not possible. However, in keeping with the abstraction
concept, in passing an access value to a remote site, rather
than passing an address which will be meaningless to the
remote site, a ''token" should be passed which uniquely
identifies the dynamic object. The identifier will have to

Ada Language Reference Manual, ANSI Mil-Std-l815A,

A Feasibility Study to Determine the Applicability of
Ada and APSE in a Multi-microprocessor Distributed
Environment (Final Report, March, 1983) TXT, C I S E , SPL

Section 9 .7 .2

0.3.4.10
0

.

be u n i q u e o v e r t h e e n t i r e t a r g e t env i ronmen t , and may b e
p a s s e d a t w i l l among d i s t r i b u t e d u n i t s .

I S A Homogeneity

Ada p r o g r a m s w i l l h a v e t h e same p r o b l e m s of d a t a
r e p r e s e n t a t i o n t h a t a n y HOL p r o g r a m w o u l d , when t h e
p r o c e s s o r s c o m p r i s i n g t h e t a r g e t e n v i r o n m e n t a r e
h e t e r o g e n e o u s . These problems w i l l be e x h i b i t e d when g l o b a l
o b j e c t s a r e r e f e r e n c e d by two or more remote program u n i t s
on d i f f e r e n t I S A s , and when p a r a m e t e r s a r e p a s s e d b e t w e e n
s u c h p r o g r a m u n i t s v i a s u b p r o g r a m and e n t r y c a l l s . The
s p e c i f i c i n c a r n a t i o n o f t h e p r o b l e m is p a c k a g e S t a n d a r d ,
w h i c h l o g i c a l l y enc loses t h e u n i t s compr i s ing a program.
(P a c k a g e S y s t e m i s a l s o a p r o b l e m t o a l e s s e r e x t e n t .)
Package S t a n d a r d d e f i n e s t y p e I n t e g e r , F l o a t , C h a r a c t e r and
so o n , f o r a n e n t i r e p r o g r a m . The q u e s t i o n t h e n i s h o w
d i f f e r e n t I S A s c a n e f f i c i e n t l y r e p r e s e n t t h o s e common t y p e s .

O n e a p p r o a c h i s t o r e s o r t , i n - a l l c a s e s , t o
r e p r e s e n t i n g p a s s e d d a t a a t t h e l e v e l o f t h e c o m m o n
d e n o m i n a t o r : t y p e S t r i n g . T h i s is c o n s i d e r e d too e x t r e m e ,
s i n c e n o t a l l c o m m u n i c a t i n g p r o g r a m u n i t s w i l l b e o n
h e t e r o g e n e o u s p r o c e s s o r s . However, t h e c o n c e p t of a common
f o r m a t , a " c a n o n i c a l d a t a fo rma t" , may b e t h e most e x p e d i e n t
approach . A promis ing a l t e r n a t i v e is t h e c o n c e p t of " s e l f -
d e f i n i n g d a t a s t r u c t u r e s " , i n which t h e p a s s e d d a t a i n c l u d e s
a d e s c r i p t i o n of i t s r e p r e s e n t a t i o n .

Changes I n S i t u

A s s t a t e d i n t h e g e n e r a l s e c t i o n , c h a n g e s t o t h e
s o f t w a r e i n a s y s t e m w i t h an l o n g , e v o l v i n g l i f e c y c l e w i l l
be r e q u i r e d . I t may o f t e n b e t h e c a s e o n Space S t a t i o n t ! ia t
t h e s u b s y s t e m b e i n g c h a n g e d i s c r i t i c a l and c a n n o t b e
s t o p p e d i n o r d e r f o r t h e changes t o be i n s t a l l e d . A l s o , good
d e s i g n , m a i n t e n a n c e a s p e c t s , a n d t h e s h e e r v o l u m e o f
s o f t w a r e i n v o l v e d m a n d a t e s t h a t m u l t i p l e Ada programs b e
u t i l i z e d i n t h e c o n s t r u c t i o n of t h e s o f t w a r e sys t em. T h i s i s
n o t i n c o n f l i c t w i t h t h e L R M , a l t h o u g h a c a s u a l r e a d i n g
might imply t h a t t h e LRM r e q u i r e s o n l y one program t o b e " i n
ex is tence" a t a time. Nothing i n t h e LRM h a s been f o u n d t o
r e q u i r e s u c h a r e s t r i c t i o n . 5

E a c h program would be d i s t r i b u t e d i f t h e r e q u i r e m e n t s
d i c t a t e d t h a t approach . Each would b e o n l y a s d i s t r i b u t e d a s

The i s s u e of multiprogramming i s (a p p r o p r i a t e l y) n o t
a d d r e s s e d i n t h e l anguage r e f e r e n c e manual.

B.3.4.11

necessary, t o reduce the costs o f distribution Support.
Furthermore, if t h e RTSE is constructed in a l a y e r e d ,
modular fashion, those programs not requiring distribution
support would not pay an overhead penalty since the RTSE
would b e configured to the minimum support necessary. A non-
distributed program would then be supported by a traditional
configuration of runtime support services.

Although the details of supporting the integration of a
new subsystem without first stopping that subsystem are not
clear, it is felt that such an activity is impossible i f
separate programs are not employed.

Conclusion

A s s h o w n , rrany o f the issue- i.1 distributing Ada
programs are common to distributing any high-order lancuage.
T h e 3 i s t r i b u t i o n schenle, because of its impact on the
underlying RTSE complexity, should be carefully chosen when
implementing distribution of the language. i n making the
choice, special consideration must be given to the amount of
f a u l t - t o l e r a n c e required, and the level of programmer
response. In Space Station, such issues will be critical.

B. 3.4.12

B i b 1 iog r aphy

A Feasibility Study to Determine the Applicability of
Ada and APSE in a Multi-microprocessor Distributed
Environment (Final Report, March, 1983) TXT, CISE, SPL

American National Standards Institute
Reference Manual for the Ada Programming Language
ANSI/MIL-STD-1815A-1983

Cornhill, Dennis
A Survivable Distributed Computing System for Embedded
Application Programs Written in Ada
Ada LETTERS, vol. 3, no. 3, pp. 79-87

Cornhill, Dennis
Four Approaches to Partitioning Ada Programs for
Execution on Distributod Targets
Proceedings of the IEEE Computer Science Conference on

Ada Applications and Environments, St. Paul, MN
(Oct. 15-18, 1984) pp. 153-162

DeWolf, Barton, Nancy Lodano, Roy Whittredge
Using Ada for a Distributed Fault-Tolerant System
Draper Labs Report No. CSDL-P-1942 (dated Sept. 1984)

Dapra, A., S. Gatti, S . Crespi-Reghizzi, et a1
Using Ada and APSE to Support Distributed Multirnicro-

Ada LETTERS, vol. 3 , no. 6, pp. 57-65

Gehani, N. H.

processor Targets

Concurrent Programming in the Ada Language: the Polling
Bias
Software Practice and Experience, vol. 14, no. 5 pp. 413 -
427

Grover, Vinod, arld Reuben Jones
Programming Distributed Applications in Ada
SofTech, Inc. Report No. 9076-3 (Dec. 1984)

Knight, John C. , and John I. A. Urquhart
On the Implementation and Use of Ada on Fault-Tolerant,

Ada LETTERS, vol. 4, no. 3, pp. 53-64
Distributed Systems

Rossi, G. F., and Zicari, R.
Programminq a Distributed System in Ada
Journal of Pascal and Ada, SeptIOct 1983

B.3.4.13

A Dhtr ibuhble APSE

S. Tucker Tart
Intarmctricr, Inc.
733 Concord Ave.

Cambridge, MA 02138

--...--.....-.----.--

for: The First Internationd Symposium on A d a for the NASA
Space Station, June 2-6 1986

Nassau Bay Hilton Hotel
Houston, TX

1. Introduction

A distributed Ada(r) Program Support Environment (APSE) t one in which programmers,
managers, customers, testers, etc., may work on deparate comkute:s, linked by a high-speed
network. I t also may imply that program development proceeds in a series of relatively
independent subsystems, which are then combined into larger A d a programs as p a t of final
integration. (This reminds one of the frequent similarity between the structure of programs
and the structure of the organizations that build them.)

This paper will discuss an approach to the implementation of a distributed APSE which provides
for parallel development on separate cornputen while sharing "cat.alogs" of compiled units, b u t
avoiding global locking o r naming bottlenecks.

2. T h e A& Pmgrarn Library

Ada a a language is somewhat unusual in that a "program Iii-ary" must be maintained across
separate compilations, holding compiler- produced information necessary not only for later
linking, but also for later compilations. To support a distributed APSE, it is essential that the
A d a program library may itself be "distributed," because it is too expensive in disk space andior
compile-time to maintain on each computer a copy of the entire program library.

Even on a single computer, there are r p u o n s to "distribute" the A d a program library. A s
defined in the Ada. Reference Manual (A R M 10.4) the program library holds the "universe" of
compilation units available for "WITH" references at compile time, and for eventual linking into
an A d a program. Conceptually a t least, the library includes all the language-defined packages,
such ia TEXTJO, CALENDAR, e k . There by themselves represent a major investment in
compile-time and disk space, and most Ada compilation systems have devised some way to
sharp such compiled packages across program libraries.

2.1 Program Library an Network of Cabloga

As a generalization o f sharing language-defined compiled packages, we have defirled a

conceptual Ada program library as a net of interconnected "catalogs," some o f which may be
connected into o t h e r prograrir libraries as well. Each catalog holds a s e t of (compiled)
compilation i ini tn r rprewnbcl i n a D I A N A lorm, .w well a.. a more conventional o h p r t m o d \ l l e
form. A conceptual library is constructed from a read/write "primary" ca tdog plus links to a s e t
of read only "resource" catalogs.

Every program library must provide the language-defined packages, which in our case are

B.3.6.1

gathered together to form the "RTS" (run-time system) resource catalog. A typical law1
program might have a series of other resourcr eatdogs for utilities, like a DBMS catalog,
MATH catalog, a DEBUG catalog, etc., plus one catalog for each major subsystem.

Each resource catalog is actually part of a se t of revisions. Two revisions may share some (1 1
their compiled unita, and differ in othera. We therefore provide for both sharing of cornpilei:
units across digerent program libraries, as well as across revisions of the "same" conceptl1;l:
program library. .-

3. T h c H I F

To support this distributed program library structure in a host independent way, we have
defined a standard Host Interface (HIF) to a (distributed) database system. The Hif database is
organired as a s e t of "nodes", partitioned by "Hif user' (where a Hif user maps to a user or
sub-project on the Host system). There is a "top-level node" associed with each Hif user,
analogous to the "home directory" of a conventional file system.

Hif nodes have string-valued at t r ibukr , and relationships from one node to another. The
relationships are uni-directional, meaning that they can be viewed as directed arcs in a graph of
nodes. A subset of the relationships, called the "primary" relationships, form a strict tree
reaching every (n o n top-level) node by exactly one path. The "secondary" relationships forri
an arbitrary graph.

5.1 H I F Node Kinds snd Partitions

Two kinds of HIF nodes exist: structural and file. File nodes have a host file associated with
them (typically containing the DIANA o r OBJMOD representation of an Ada compilation
uni t) , while structural nodes serve only as connectors between other nodes, and as carriers of
attributes.

The subtree of nodes beneath the top-level node associated with each H I F user, plus all of the
host files associated with these nodes form a partition of the HIF database. The information
necessary to represent a user's partition is gathered into a single host directory. The n o d e -
structure database is represented by 3 files: a B t r e e of nodes, a hash-table o f
relation/key/attribute identifiers, and a heap of attribute values. The file-node host files are
assigned HIF-generated names i n the host directory.

3.2 Program Librsry Implementation via the IIif

The program library is implemented using Hif nodes, taking advantage of the partitioning by
/{if user. The s e t of revisiuns o f a resource catalog, plus all of the conipiled u n i b included irl
o n e or more of the revisions, are comhined into a singlc Hif partition.

In addition, some number o f primary catmlogs may coexist in the same Hif partition. In
particular, the primary catalog used to create the next revision o f the resource catalog must be
ir i this same partition.

I t is posfiihle to put more than one resource catalog revision s e t in a single I l i f partition.
t[owcvcr, maximum flexibility o f tlistrihotinn results from defining B separate Hif user Tor each
r e s o u r r e . Separate partition? for testiriK l ic lp further, by keeping the resource partitions free o f
test stubs and drivers.

13.3.5.2

I

4. Unique Identiflerr

G i v e n M Ada program library dis t r ibuted u n o n g primary and resource catalogs, and a H i f
database diatr ibuted a m o n g partitions, a n u m b e r of interest ing technical p r o b l e m s arise in the
a r e a of u n i q u e naming.

U n i q u e ident i f iers are n e e d e d for cornpilation u n i t revisions to correct ly d e t e r m i n e when a
compi la t ion u n i t g o e s out-of-date. T h e compi le r m u s t record the uniqlle identifier o f all
compi la t ion u n i t revir ions referenced while compil ing the uni t (e.g. the "W1TH"ed s p e c s) , and
t h e n w h e n these a re replaced in t h e (conceptual) program library, the u n i t m u s t appear o u b o f -
date .

U n i q u e identifiers are also needed for subproBrams, so tha t references at calls rnay
to t h e appropriate body. Overloading m e a n s a simple s t r ing will n o t suffice.

Finally, u n i q u e ident i f ien are needed for each A d a type, so t h a t s t r o n g type checking and
over load analysis m a y be per formed correctly. L o n g identifiers and potentially d e e p nes t ing
m a k r the fu l l A d a n a m e an inappropriate choice.

r * . ~ ~ ~ l i c t l

In each case it is desirable tha t the unique identifier be relatively s h o r t (e + 32 o r 84 bits) s ince
there are a very large n u m b e r of references, m d y e t be distinguishable f rom all o t h e r identifiers
in the diatr ibuted program library. This is made m o r e difficult when compi l ing is proceeding
independent ly o n separate computers , presuming there is n o central ized assigner of globally
u n i q u e identifiers.

4.1 Contur tdependent Unique Identiflerr

W e have so lved each of these unique identifier problems by using the c o n c e p t of c o n t e x b
d e p e n d e n t identifiers, with c o n k x t d e p e n d e n t translation per formed a3 par t of moving t h e
identifier f rom o n e c o n t e x t to the next .

4.2 Node I&, Partition I&, and Partition Map.

T o uniquely identify compilat ion uni t reviaions in the dis t r ibuted A d a program library, we rely
o n the genera l Hif node identifier, which consists of two integers , a "partition" id, and a nodt ,
id. T h e partition id is s imply an index into a "partition map," select ing an e n t r y which idrnt i f ics
the locat ion of the h o s t files represent ing the partition within the host file s y s t e m , as wel l ;IZ

which partition m a p (if different f rom this one) to use for interpret ing partition-ids appearing
within t h a t partition. T h e node-id is used aa a key into the B t r e e (h o s t) file which represents
the par t i t ion, and is aasigned sequent ia l ly within the partition an nodes are created.

Each c o m p u t e r can maintain ita own partition m a p relatively independent ly , ass igning its own
part i t ion ids. W h e n a reference is created to a partition o n a n o t h e r c o m p u t e r t h a t is not yet i n
the par t i t ion m a p , a partition-id is ansigned for use from the referencing c o m p u t e r . T h e en t ry
in t h e partition m a p indicates the location of the partition, as well M the locat ion o f the
partition m a p to he used to in te rpre t its partition references. W h e n a node reference
(par t i t ion- id , node-id pair) is copied f r o m a partition o n o n e c o m p u t e r to a partition o n the
o t h e r c o m p u t e r , the partition-id is translated according to the corr t ispondence be tween t t i r

partition maps o n the two cornpiiklrs.

B.3.6.3

4.2.1 Ezporfing Parfikbnr and Partilion Map8 T h e puti t ion map mechanism makes f o r a
convenient method for exporting a ret of put i t ions on tape, by simply including the partition
map on the tape. Then , when the puti t ions .n read . a& in off the tape, so is the partition
map. The partitions are entered into the 5nuterm puti t ion map on the receiving computer , and
their entry in the partition map indicates that when interpreting partition references within
them, t6 use the partition map also copied from tape.

For convenieiice, a partition doer - o t embed itr own partition id in self-references, but rather
user the special partition-id aero. This way, if the partition is totally self-contained, there is n o
need to ship the partition map when shipping the partition all by itself.

4.8 Unique A&-Entity Idcntifierr

A second kind of unique identifier, an Ada-entity idenlifier, mus t specify a particular Diana
node, which represenb the entity, among all of the Diana nodes in all of the compilation units
in the (distributed) program library. Nevertheless, since there are many thousands o f such
references in a large program, the node identifiers ("locators") mus t be kept M small as possible
(e.g. 32 b i b) . This apparently conflicting set of requirements was resolved by making each
Diana file its own context for interpreting the locators.

4.3.1 Diana Node Locaton; Scqmcnt + Offact Node locators are broken up into two halves,
16-bits of segment index, and 16-bib of segment o8set. When the segment index is positive, it
u an intrkfile reference, and the segment index simply selects in which 64K segment of the file
the Diana node appears. The segment offset always gives the byte offset within segment. a

0

When the segment index is negative, it hp an inter-file reference, and the absolute value o f the
segment index selecb the element in the Diana file's "external segment definition table" which
identifies (with a Hif relationship) the compilation unit being referenced, and the segment
within it.

This mechanism allows each compilation unit to refer to 32K other compilation unit segments,
each of which is up to 64K bytes in length. However, it means that a locator must always be
interpreted relative to the file i n which it resides. To simplify the manipulation of locators by
the compiler, a "master" segment definition table is deGned, and all locators are translated to
"master" locators as they are retrieved from a Diana file. By design, the master segment
definition table becomes the external segment definition table for the Diana file being created at
that time, meaning that n o additional locator translation need be d o n e o n storing i n t o the file
being created.

5 . Summary a n d Expericnw

A distributed A d a program library is a k e y e lement in a distributed APSE. To impleulent this
successfully, the program library "universe" an deGned by the Ada Reference Manual must he
broken up into independently manageable piecen. This in turn requires the support of a
distributed databaqe system, a.9 well M a mechanism for uniquely identifying compilation units.
linkable subprograms, and Ada types in a decentralired way, to av falling victim to the
hottleriecks o f a global datahaw and/or global unique-idenlifier nanager .

W e have found the ability to decentralize Ada program library activity a m a b r advantage in the
management of large Ada programs (i n particular, Lhe multi-t.ugcted/iiiulti-hosted . Ida
compiler itself). We currently have 18 resource-catalog revision sets, each in its own tiif
I'artition, plus 18 partitions f o r testing each of these, plus I 1 partitions for the top-level

8.3.5.4

compiler/linkcr/progrun-libru~mrnyer componentr. Compiling and other development work
CUI proceed in p u d l c l in each of there putitfonr, without ruffering the performance
bottleneckr of global lock8 o t global unique-identifier generation.

B.3.6.5

1 r a n
ML c

by
Smi1 Ruhman and Flavia Rosemberg
Department of Applied Mathematics
The Weirmann Institute of Science

Rehovot , Xsr ae l

Standardization activity of data comunlcation in avionic systems
StartaY In 1968 L# m?Irapadt of -1 system -sum d the - d m * - - - m -
w m b ~ ~ sufi-assemlfffcs. ffrsr issued in r m , m - m - r 5 5 3 (DSAF)
replaced point-to-point wiring w l t h a digital time-multiplexed
cammon-bus for serial data trarmmlsslm. Reissued fn 1975 as a
tri-service standard (version A) and again revised in 1978
(version B), it came into wide use and is supported by integrated
hardware. However a major development effort must still be invested
in e v e y real-time sy*sterr for interprocessor synchronizaticjn and
scheduling of information transfer in the absence of a high-level
language possessing communication constructs.

The growing complexity of avionic systems is straining the
capabilities of MIL-ST!!-lS53 B, but a much greater challenge
to it is posed by Ada, the standard language adopted by the
US Department of Defense for real-time, computer-embedded-systems.
The stochastic, distributed nature of Ada with its
rendez vous protocol for interprocess synchronization is not
matched well by the deterministic central control of
ommunication in MIL-STD-lSSJ 8 . Accordingly, the authors & ave proposed hardware implementation of Ada communication

protocols in a contention/token bus or token ring network (1).

command/response multiplex data bus is still flourishing and
the development environment for distributed multi-covuter

of the standard language with the standard bus could be very
useful and even highly desirable. By concentrating all status
information and decisions at the Bus Controller, it was found
possible to construct an elegant and efficient hardware
implementation of the Ada protocols at the bus interface. and
this solution is the subject of our paper. No compromises are
taken with the bus standard, and no changes imposed on Remote
Terminals. Implementation hardware is restricted to the
B u s Controller and its alternate. the B u s Monitor.

However, during the transition period when the current

M a sys- js a§ ye t Im8ng , B t4myWrsw iieX&#Kd&CPrn

The idea is based on polling of the Remote Terminals
by the Controller for entry calls, accept statements,
or results (output parameters). The Controller interface
maintains all the entry call queues and the list of ready
accept statements, searches for a match, and issues the
appropriate commands for transfer or execution depending
on the presence of input and/or output parameters. In
addition, the Controller interface times the delays
of selective waits and of timed entry cails, and controls
-he execution of delay alternatives and of "else" clauses
lost of these operations are clearly of a match-making or
associative nature. To avoid long Controller response

s

B . 3 . h . l

times due to conventional searching of extensive filw, a l l
queue8 and lists 8ra stored in 8 cooamon associative memory
which As microsequenced from a control store.
presents the algorithms en$loytxl, defines the cormnand and data
tonnats, and outlines the hardware organization. The resulting
bus traffic and speed of operation are discussed.
to note tha t while our algorithms take advantage of m o d e
Co!mands to reduce traffic, no such use was found for broadcast
cormnands .

The paper

It is interesting

The proposed approach renders distributed intertask
synchronization transparent to the designer and inplements it
in hardware at the bus interface. In addition, data buffering
becomes unnecessary, since transfer is delayed until both
parties are ready. Many important advantages result, chief
among them being: facilitation of the development environment:
major savings in specific development effort; conservation of
system resources such as host processing and line transmission
capacity; and faster system response.

Reference :

(1) Rosemberg, F. and S. Ruhman, "Hierarchical partitions in cyclic
closed systems : a hardware oriented approach", Proceedings of
Computers in Aerospace V Conference, Longbeach. CA.
October 1985, pp. i48-15s.

0

B.3.6.2 .

SOFTWARE ENGINEERING AND ADA. I N DCSlGrl

I Don O ' N e l l l

IBH FSD
March, 1986

WADAS

*Ada i s a r e g i s t e r e d t rademark o f t h e U.S. Governnent, M a J o i n t Program O f f i c e

About t h e Au tho r

Don O ' N e i l l has been w i t h IBH's Federa l System
D i v i s i o n (FSD) f o r t h e p a s t t w e n t y - s i x yea rs . He
i s p r e s e n t l y t h e Ada T e c h n i c a l A s s i s t a n t t o t h e FSD
V i c e P r e s i d e n t f o r Technology. As Manager o f Sof t -
ware E n g i n e e r i n g f o r FSD (1977-1979) . Hr . O ' N e i l l
was r e s p o n s i b l e f o r t h e o r i g i n a t i o n o f FSD s o f t w a r e
s t r a t e g i e s and the p r e p a r a t i o n o f t h e FSD s o f t w a r e
E n g i n e e r i n g P r a c t i c e s . He r e c e i v e d an IBM bt-
s t a n d i n g Achievement Award f o r h i s c o n t r i b u t i o n t o
t h i s e f f o r t . M r . D ' N e i l l has been a p p l y i n g modern
s o f t w a r e e n g i n e e r i n g on p r o d u c t i o n s o f t w a r e deve l -
opment p r o j e c t s . He has r e c e n t l y been l e a d i n g t h e
a c t i v i t y t o p r e p a r e FSD f o r Ada use on p r o j e c t s .

M r . O ' N e l l l i s a member o f t h e E x e c u t i v e Board
o f t h e I E E E Techn ica l Committee on So f tware Engi -
n e e r i n g . I n a d d i t i o n , he has been a D i s t i n g u i s h e d
V i s i t o r o f t h e I E E E S o c i e t y . H r . O ' N e i l l a l s o
s e r v e s as a menber o f t h e A I A A So f tware Systems
T e c h n i c a l Committee. He r e c e i v e d h i s BS degree i n
ma themat i cs from O ick inson Co l l ege i n C a r l i s l e .
P e n n s y l v a n i a .

PREFACE

Modern s3f;rrare e n g i n e e r i n g p r a n i s e s s i g n i f i c a n t
r e d u c t i o n s i n s o f t w a r e c o s t s and improvements i n
s o f t w a r e q u a l i t y . The Ada language i s t h e focus
f o r t hese s o f t w a r e methodology and t o o l improve-
ments. The c m m u n i t y may have underes t ima ted the
p r e p a r a t i o n f o r M a . i n c l u d i n g c o m p i l e r development
and e d u c a t i o n . More must be done. On the o t h e r
hand, t h e ccmnuni t y may have underes t ima ted t h e
b e n e f i t s o f M a p r o d u c t i v i t y and q u a l i t y . Perhaps
e x p e c t a t i o n s shou ld be r a i s e d .

So f tware E n g i n e e r i n g and Ada f o r Des iqn ove r -
v lews t h e IBM FSD S o f tware F a c t o r y approach, In-
c l u d i n g t h e s o f t w a r e e n g i n e e r i n g - p r a c t i c e s t h a t
g u i d e t h e s y s t e m a t i c d e s i g n and deve lopnen t o f
s o f t w a r e p r o d u c t s and t h e management o f t h e s o f t -
w d r e p rocess . The r e v i s e d Ada destgn language
a d a p t a t i o n i s r e v e a l e d . This f o u r l e v e l d e s l y n
me thodo logy i s d e t a i l e d -- i n c l u d i n g t h e purpose o f

mwnicur 1916 i v TUE USOCIATIOII ion c M I m I n a
IUCUIIILIV. INC. h n l a s l o n t o copy rlthout Io. a l l o r
p a r t O K t h l a u t e r l a l 1. pranced p r o v l d d tha t t h e
coploa a r a not mad. or dlstrlbutd Kor dlr-ct
commorclal adrancaq~. t h o A U copyrlqht notlca and tha
title O K I h a publlcatlon a n d l t a d a t a appaar, and
notlca la q l v a n that copylnq la by penlaalon of tha
raaoclatlon t a r Computlnq Machlnary . To copy oth.rvl...
o r t o republleh. requ1r .a K-0 and/or *pecltlc
p.nla.lon.

each l e v e l , t h e inanagenent s t r a t e g y t h a t i n t e g r a t e s
t h e s o f t w a r e d e s i g n a c t i v i t y w i t h program ! n i l e -
s tones , and t h e t e c h n i c a l s t r a t e y y t h a t n a p s thr?
Ada c o n s t r u c t s t o each l e v e l o f d e s i g n . A C G n P l e i C .
d e s c r i p t i o n o f each d e s i g n l a e l i s p r o v i d e d diol!;
w i t h s p e c i f i c d e s i g n language r e c o r d i n g gu ide1 ifierJ
f o r each l e v e l .

F l n a l l y , some tes t imony i s o f f e r e d on e d u c a t i o r ,
t o o l s , a r c h i t e c t u r e , and m e t r i c s r e s u l t i n y f r v -
p r o j e c t use o f t h e f o u r l e v e l Ada d e s l g n lan<.JJ. , r
a d a p t a t i o n .

S e c t i o n 1

INTRODUCTION

S o f t w a r e may be t h r o t t l i n g t h e i n d u s t r i a l de, , r l -
opnen t o f t h e U n i t e d S t a t e s . As t he i n f o n r j : ! . i - i
s o c i e t y takes h o l d . t h e demands f o r s o f t w a r e d v r
i n c r e a s i n g . Fu r thennore , p u b l i c e x p e c t a t i s i : 'I.

i n c r e a s i n g too; peop le want s o f t w a r e t r a t p r L ' i ;
t h e r i g h t answers on t ime, e v e r y t i m e , anNf o d e \ >
i n a u s e r - f r i e n d l y manner. So f tware i s 1ntenae.i :.>

p r o v i d e f o r t h e hannonious c o o p e r a t i o n among c r ' . ' ; l i .
and machines. People possess an i n f i n i t e vdri.::,
and machines do o n l y what i s i n s t r u c t e d , nut-i!n-
s t a n d i n g the promise o f a r t i f i c i a l i n t e i 1 r y e x t . .
AS a r e s u l t . t h e burden on s o f t w a r e i s S u S S t d r l ! ' J I
indeed and i s i n c r e a s i n g .

R e c e n t l y , s o f t w a r e e n g i n e e r i n g has p r o v i o e d f.ir
t h e s y s t e m a t i c d e s i g n and deve lopnen t o f s o f : - r r c
p r o d u c t s and the i i i dnagnen t o f t h e SOfth.!l't' :\I < -

ess . The r e s u l t shou ld be q u a l i t y s o f t - d r e ; * - , z -
u c t s o b t a i n e d th rough d e s i g n , s u s t a i n e d t n r u ~ , ; b
deve lop i i en t , and iiiofii tored t h r o u g h t e c h n i c d l r e -
v iews . We have always known t h a t good p r o j e c t s d r ?
ones w i t h few err0i.s a t t h e end. We now knoh t n d t
good p r o j e c t s a r e a l s o ones w i t h few e r r o r s a t thc
b e g i n n i n g . What may be needed now i s a r e f i n w e n t
o f t hese methods, e s p e c i a l l y i n the r e q u i r e : : r ' r i t j
and s p e c i f i c a t i o n areds, t h e i r broad dpp l i c d t i o n ,
and p r e p d r a t i o n of adequate t o o l s t h d t r e - e n f c r c e
and en fo rce t h e i r use w h i l e a s s i s t i n g i n p r o d J c t r i -
i t y g a i n s .

S e c t i o n 2

SOFTWARE E N C I N C E R I N C f A C T O R Y

Sof tware e n g i n e e r i n g p r o v i d e s f o r t h e s y s t e n a t i c
d e s i g n and developi i icnt o f s o f t w a r e p r o d u c t s and t h e
management o f t h c s o f t w a r e p rocess . S o f t w d r e

8 . 4 . 1 . 1

e -3

eng ineer ing may be viewed i n the form o f a s t a t e
machine c a p o s e d o f Inputs, t r a n s i t i o n s , outputs,

The Inpu.ts to the process i nc lude the q u a l l f l e d
people, l a b o r saving too l s , and p r a c t l c a l technol?-
gy needed t o app ly modern design, developnent, and
management p r a c t i c e s i n the p roduc t i on of usab le
and reusab le so f tware products o f s u f f l c l e n t l y h i g h
q u a l i t y t o ensure l i f e c y c l e b e n e f i t s and con f iden t
customer ownership. People today a r e requ i red t o
be highly q u a l l f l e d and equipped wi th spec ia l i zed
t r a i n i n g I n both software technoloyy and app l lca-
t i o n s . Testimony fran e a r l y Ada users i nd i ca tes
t h a t the t r a i n l n g needs may be subs tan t i a l . Har lan
M i l l s observed t h a t as we shape our too ls , wr
t o o l s may l a t e r shape us. Too ls represent an
I n s t l t u t i o n a l l r e d exper t s y s t m . knowledge base o f
so f tware methodology and s t y l e . Tool investments
o f t e n l a g behind t h e i r need. P r a c t l c a l technology
r e q u i r e s the a p p l i c a t i o n o f bas ic p r i n c i p l e s fron
advanced technologies repackaged i n t o i n t u i t i v e
approaches and s i m p l i f i e d f o r use by i ndus t r y
p r a c t i t i o n e r s and acceptance by customers. lech-
no logy must employ an understandable Conceptual
model t o a s s i s t the t r a n s i t i o n fran user need t o
usable product.

The t r a n s l t i o n s o f the software engineer ing
s t a t e machine are governed by the software engl-
neer ing p r a c t i c e s f o r design, development, and
management. app ly ing across the f u l l l i f e cyc le .
Software design inc ludes methods f o r producing and

and re ta ined da ta (F igu re 2-1).

INPUTS

PEOPLE

TECHNOLOGY

TOOLS

v e r i f y i n g modular designs and s t r u c t u r e d programs.
Designs a r e recorded us ing a des ign language baled
on Add, i nc lud ing both procedural designs and data
designs. Advanced design ensures semantic corre-
spondence o f s p e c i f i c a t i o n s through da ta dlCt lOndr-
Ies . Systematic design prov ides f o r funct ional
a l l o c a t i o n and decanpos i t ion o f procedures and
data. Sys tenat lc p rogrmming inc ludes the elabord-
tlOn o f p r o g r m designs us ing stepwlse r e f l n m e n t ,
program design language, and cor rec tness tech-
nlques. Taxonay inc ludes a proper p r o g r m w i th a
s i n g l e entry and s i n g l e e x i t , a pr ime p r q r & q
ccmposed o f zero o r one p red ica te cons t ruc ts , inner
syntax o f data r e f l n m e n t and opera t ions and t e s t s .
The Ada based deslgn language used t o record de-
s igns a s s i s t s the reasoning o f the designer and h l s
comnunication w i t h o thers i n g e t t i n g the d e s i g n
r i g h t , knowing i t , and conv inc ing o the rs . Softwdre
development includes the methodology f o r the e a r l y
tmp lmen ta t i on and i n t e g r a t i o n o f d e t a i l e d des igns
i n t o product increments represented a s source code
l i b r a r i e s , con f i gu ra t fon con t ro l l ed through 1 i b r d r y
h ie ra rch ies . I n a d d l t l o n t o incremental r e l e a s e s ,
the concepts o f rap id p ro to typ ing , s o f t w a r e f i r s t ,
and Component reuse are being r e f i n e d f o r r o d t i f i e
use on p r o j e c t s i n the fu tu re . Software mdnagernent
assures the e f f e . t i v e a p p l i c a t i o n o f qual1 f1i.d
people w i t h i n a p r t d l c t a b l e process to o r i g i n a t e a
q u a l i t y product t h a t s a t i s f i e s perfonndnce r e q J i r e -
ments on schedule w i t h i n cos t . The use o f S O f t l d r e
Development Plans and techn ica l reviews e n s j r r 6 n

accurate view o f s ta tus .

THE SOFTWARE FACTORY

PROCESS

MODERN

SOFlWARE

ENGINEERING

PRACTICES

REUSABLE
PRODUCTS

f i g u r e 2-1. Sof tware t a c t o r y

6 . 4 . 1 . 2

OUTPUTS

USABLE
PRODUCTS

QUALITY
PRODUCTS

LIFE CYCLE
BENEFITS

CONFIDENT
PRODUCT
OWNERSHIP

;, ... ! ..,i , . I., , , ,

.

The o u t p l t s of t h e p rocess i n c l u d e u s a b l e p rcd -
ucts o f h i g h q u a l i t y t h a t nay be r e u s a b l e c a p a b l e
o f a s s u r i n g c o n f i d e n t c u s t a n e r o m e r r h i p . Usab le
p r o d u c t s are t h o s e t h a t o p e r a t e h a r n o n i o u s l y wi th in
the user o r g a n l r a t i o n . They are a d a p t a b l e t o new
r e q u i r e m e n t s and f e a t u r e u s e r f r i e n d l y i n t e r f a c e s .
The reward f o r t h i s may be f r i e n d l y u s e r s . Q u a l i t y
p r o d u c t s are t h o s e t h a t have few errors a t t h e end.
These are the same ones t h a t have few e r ro rs a t t h e
beg inn ing . A r e u s a b l e p r o d u c t i s one t h a t c o n t i n -
ues t o meet chang lng r e q u i r e m e n t s t h r o u g h p r o d u c t
enhdncenents. Fu the rno re , r e u s a b l e p r o d u c t s a r e
t r a n s p o r t a b l e t o o t h e r sys tens f o r s i m i l a r uses.
The M a language p r a i s e s t o p r o v l d e f o r s o f t w a r e
r e u s a b i l i t y . Us ing a r t i f l c i a l i n t e l l i g e n c e , d
canponents l i b r a r y o f s p e c i f i c a t i o n s can be i n t e r -
r o g a t e d f o r s o f t w a r e components needed f o r new
a p p l i c a t i o n s . As t h e i n d u s t r y becanes s k i l l f u l and
e x p e r t a t m a t c h i n g e x i s t i n g p r o d u c t s w i t h new
needs, t h e s o f t w a r e f a c t o r y may becane a r e a l i t y .

k c t l o n 3

SYSTWATIC USE OF ADA AS A DESlGN LANGUAGE
F l l r t i n g w i t h Ada? C a r e f u l . She i s more than a

p r o g r m l n g language but l e s s than a c o m p i l e r f o r
In M a t r e n d s John N a i S b l t t p o i n t s o u t t h a t ' 2 % s are+* i k c horses. If you want t o r i d e them,

I t pays t o go i n the same d i r e c t i o n t h e ho rse i s
a l r e a d y t r a v e l l n g . He a l s o p o i n t s o u t t h a t fads
o r i g i n a t e a t t h e top, tend t o peak. and then fade
o u t . On t h e o t h e r hand. t r e n d s a r e bo t tom up,
possess b roader s u p p o r t , and p e r s f s t .

The use o f Ma as a p r o g r a m i n g language may
co r respond t o N d i S b i t t ' S c h a r a c t e r i r a t i o q o f a fad,
t o p down, perhaps e x p l a i n i n g i t s s l u g g i s h beg in -
n i n g . f o r Ma the prog-mtn ing language. t h i s i s
t h e awkward p e r i o d between promise and d e l i v e r y .
@I o t h e r hand, t h e use o f Ada dS a d e s i g n language
may be a t r e n d , a r i s i n g fran t h e bot to tn a s a popu-
l a r c h o i c e . I t i s happening today.

A d e s i g n language may be used f o r a number o f
reasons . I t p r o v i d e s t h e f a c i l i t y t o r e c o r d d e s i g n
d e c i s i o n s . Once reco rded , these d e s i g n d e c i s i o n s
can be shared w i t h o t h e r s forming t h e c a m u n i c a t i o n
b a s e l i n e among system eng ineers , s o f t w a r e eng i -
n e e r s , and i n t e g r a t i o n and t e s t eng inee rs . I t
p r o v i d e s t h e b a s i s f o r t h e d e s i g n e r t o be more
c o n v i n c i n g i n t h e de fense o f h i s des ign . I t p ro -
v i d e s o t h e r s w i t h a r l e a r r e f e r e n c e p o i n t t o focus
t h e i r c r i t i c i s m s . The r e s u l t i s a b e t t e r des ign .
The use o f & a a s a d e s i g n language encourages good
s o f t w a r e e n g l n e e r l n g w h i l e a t t he same t ime p e n i t -
t l n g t h e d e s i g n t o o b t a i n r i g o r I n syn tax and
semant ics th rough the use o f Ada c a n p l l e r p r o d u c t
t o o l s . Ada a s a d e s l g n language p r o v l d e s a p l a t -
form f o r systematically accompl l s h l n g r a p l d p r o t o -
t y p i n g t h r o u g h use o f t h e m e r g i n g s o f t w a r e d e s i g n
and p r o d u c t I t s e l f . In ways yet t o u n f o l d , Pda
d e s i g n language may a l so be a u s e f u l b a s i s f o r
a s s i s t i n g t h e access o f r e u s a b l e c a p o n e n t s . To be
a b l e t o s u p p o r t t hese v a r i o u s uses s y s t e m a t i c a l l y ,
Ada a s a d e s i g n language needs t o be I n t e g r a t e d
f n t o a s o f t w a r e e n g i n e e r l n g methodology.

3 . 1 Four L e v e l Des ign

An Ada based so f tware d e s i g n methodology has
been dddpted fran the So f tware e n y l n e e r l n g p rac -

t i c e s d i s c u s s e d i n advanced d e s i g n , S y s t H l d r l C
des lgn , and s y s t r w a t i c prayraimning. Th is dddl1:d-
t i o n f e a t u r e s f o u r l e v e l s o f d e s i g n suppor ted 111 d
management s t r a t e g y and d t e c h n i c a l s t r a t e g y . Thc
management s t r a t c g y maps t h e f i r s t two l e v e l : o f
d e s i g n t o t h e s p c c i f i c a t i o n p rocess and 1 t S r i l v I (' *
and t h e l a s t two l e v e l s o f d e s i g n t o t h e d e t a i l e d
d e s i g n p rocess and I t s r e v l e w . The t e c h n l c . j l
S t r a t e g y p u r p o s e f u l l y and r i g o r o u s l y u t i 1 l i e s t k
e x p r e s s i v e power o f Ada a t each l e v e l o f d e s i g n b j
mapping p a r t i c u l a r Ad.? c o n s t r u c t s f o r use a t e d c h
1 eve1 .

The purpose o f each l e v e l o f d e s i g n (F i g u r e 3 - 1 1
c o n s l d e r s the expcc ted aud ience h i e r a r c h y r t i t h l r l d
p r o j e c t , r a n g i n g f r a n readers t o w r i t e r s and I n -
c l u d i n g progranri iers, e n g l n e e r s , and inandqers .
E a r l y d e s i g n l e v e l s must be I n t u i t i v e l y u n d e r s t d n g -
a b l e b y a l l members o f t h e aud ience and C d n r l ' J t

depend on everyone be ing f u l l y Ada l l t e r d t e . i o
s u p p o r t t h i s need, Leve l 1 d e s i g n i s i n t e n d & 6 :
t h e u s e r c o n t r a c t . The u s e r s h o u l d be though t u f
a s o t h e r s o f t w a r e p r o d u c t s t h a t m i g h t u t i l i r e o r
i n t e r f a c e w i t h t h e s o f t w a r e b e i n g d c s i q n c d d s
Opposed t o t h e end u s e r o f t h e system. L e v e l ?
d e s l g n p o r t r a y s t h e d e s i g n p a r t s dnd t h e l r I t . : :-
t i o n s h i p s b o t h da ta I n t e r f a c i n g and t a s k l n q . , I , .< . !
3 d e s i g n C l d b O r d t C S d d e t a i l e d f u n c t i o n d l I:, , I

t h a t i s lndependcnt o f t h e t a r g e t o p e r d t i n l ,I;.
and i n s t r u c t i o n st!t a r c h i t e c t u r e . F i n d l I ~ . I..... :
d e s i g n s a r e d e t d l l e d des igns t h a t a r e f " : ! , , ! : , -
g e t e d t o the u p c r d t i n g system a n d IP * , IV ,C I i , !
a r c h i t e c t u r e . reJdy f o r i m p l e r i e n t a t i o n r ~ n , , r : . ' ' ,
e f f i c i e n c y and ccipcic i t y cons t r a i t i t s .

FOUR LEVEL DESIGN

M E T H O D O L O G Y Tt lAT R I G O R O U S L Y UTILIZES TtjE E X P R E S \ l ' . f
P O W E R OF A D A POL A T E A C H LEVEL

LEVEL 1 U S E R C O N T R A C T

LEVEL 2 D E S I G N P A R T S A N D R E L A T I O N S H I P

LEVEL 3 D E T A I L E D F U N C T I O N A L D E S I G N S INDEPErdDE k l o f
T A R G E T
- O P E R A T I N G S V S T E M
- I N S T R U C T I O N SET ARCHITECTURE

LEVEL 4 D E T A I L E D D E S I G N S FULLY T A R G E T E D R E A D I I . ' f '
I M P L E M E N T A T I O N

F i g u r e 3 - 1 . Four Leve l Des ign

3.2 MdndgRilent S t r a t e g y

The management s t r a t e g f o r t h e fs i r r : c . , . '
d e s i g n approach (F i g u r e 3-23 maps l e v e l s 1 a n d 2 ::
t h e s p e c i f i c a t i o n r e v i e w m i l e s t o n e and l e v e l s .3'.:

4 t o t h e d e s i g n r e v i e w m i l e s t o n e . The s p e r i t , : J -

t i o n r e v i e w m l l e s t o n e equates t o the P r e l i : - , i r i r , ,

Destgn Revlew (POR), t h e des ign r e v i e w m t l e s t o r , e
equa tes t o t h e C r i t l c a l Des ign Revlew (CDR). I n
t h e HiLSTD 2167 process l e v e l 1 and 2 d e s i g n s j r c
l n c l u d e d f n the So f tware Top Leve l Des ign D o c ~ r . 1 : ;
l e v e l 3 and 4 des igns a r e l n c l u d e d i n t h e Sof t* . i r e
D e t a i l e d Des ign Document.

Beg lnn lng w i t h Leve l 1, t h e s p e c i f i c a t l v n I S
t n p u t t o the s o f t w a r e d e s l g n p r o c e s s . A Level 1
d e s i g n I s produced and reco rded i n t h e fonn o f d q
Ma PdCkdgc ~ p C C i f l C d L i O n . The L e v e l 1 d C 5 l ~ j r l d:!,j

B . 4 . 1 . 3

SOFTWARE ENGINEERING AND ADA IN DESIGN

LEVEL 1 LEVEL 2 LEVEL 3
USER CONTRACT - PARTS DESIGN FUNC. DPSIGN - LEVEL 4

DETAIL DESIGN

I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I

METRICS
REVIEW 4 4 SPECIFICATIONS

I
L I

I

I I
I DESIGN
I TOCOST '
L-,---,,J

J I

I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

any r e u s e c a n d i d a t e s a r e s u b j e c t e d t o a d e s i g n
r e v i e w . The d e s i g n r e v i e w lndy be coriducted e l e c -
t r o n i c a l l y , or l t may be conducted th rough a meet-
i n g o f team members. P a r t i c i p a n t s a r e h i g h l y
t r a i n e d e x p e r t s c m i tted t o r e v i e w i n g t h e d e s i g n
f o r canpl e teness, c o r r e c t n e s s , u r a h i 1 i t y , p e r f o n n -
ance, and o v e r a l l u s e r s a t i s f a c t i o n . Each r e v i e w e r
must be p e r s o n a l l y s a t i s f i e d w i t h e v e r y aspec t
b e f o r e t h e d e s i y n r e v i e w i s concluded. The a p p l i -
c a t i o n o f modern s o f t w a r e e n g i n e e r i n g p r a c t i c e s hnd
t h e i r e n f o r c e n e n t t h r o u g h a unanimous concensus o f
t hese h i g h l y t r a i n e d e x p e r t s i s expec ted t o p r o v i d e
a p o w e r f u l impetus t o d r a m a t i c a l l y improved p r o d u c t
qua l i t y .

Once t h e d e s i g n I s s a t i s f a c t o r y , t h e m e t r i c s
a s s o c l a t e d w i th t h e s o f t w a r e e n g i n e e r i n g p rocess
and the s o f t w a r e p r o d u c t a r e rev iewed and expec-
t a t i o n s t e v l s e d . Fo r the s o f t w a r e e n g l n e e r l n g
p rocess the m e t r i c s i n c l u d e p r o d u c t i v i t y and wall-
t y e x p e c t a t i o n s . f o r t h e s o f t w a r e p r o d u c t t hese
r n r t r l c s i n c l u d e c m p l e x i t y measures, r e l i d b i l l t y ,
dnd ccmputer r e r o u r c e l o a d i n g . Iticse m e t r i c s dfe
r e v iewed f o r compl i a n c e w i th budgets, perhaps
n e c e s s i t a t i n g ad jus tmen ts f n t h e d e s i g n I n an
e f f o r t t o ach ieve ccmp l iance . The s p e c i f i c a t i o n
itself may need t o be reassessed and p a r t i t i o n e d

l n t o e s s e n t i a l r e q u i r e n e n t s and d e s i r a b l e f e d t u r e s .
C e r t a i n d e s i r a b l e f e a t u r e s may need t o be el i i n i -
n a t e d o r reduced I n o r d e r t o c a n p l y w i t h mdndgo.ient
budge ts .

A t L e v e l 2, t he d e s l g n f o r each canponent p d r t
i d e n t i f i e d i n l e v e l 1 I s reco rded b S an Ada p a c k d g c
s p e c i f i c a t i o n and i t s body. The Leve l 2 Ada p d c k -
a3e s p e c i f i c a t i o n and body a r e e v d l u d t e d f o r reuse
c a n d i d a t e s , c o n t i n u i n g t h e s y s t e m a t i c e x p l o l t a t r o n
o f r e u s a b i l i t y . The d e s i g n r e v i e w i s conduc ted , a s
i n L e v e l 1. M e t r i c s da ta i s ired and ana lyzed
f o r L e v e l 2 w i t h t h e d e s i g n t o c o s t p rocedure
f o l l o w e d i f necessary. The So f tware Top L e v e l
Des ign Document i s t hen s u b j e c t e d t o t h - , P r e l i m i -
n a r y Des ign Review (PDR). Throughout t h i s p rocess ,
s y s t a n s eng ineers and so f tware e n g i n e e r s work i n d
dependable r e l a t f o n s h l p i n shaping and f i t t l n]
d e s i g n s t o meet u s e r needs.

A t I e v e l r 3 and 4 . t h e d e s i g n f o r e d c h i d r n -
t i f i td s u b u n i t i s reco rded as an Ada procedure 1 ~ 1 t h
i t s accunpdnying i n t e n d e d f u n c t i o n ccninentary
P rocedure C A L L semant ics and i n t e n d e d f u n c t i o n
carrncntary a r e e v a l u a t e d f o r reuse c a n d i d d t e s ,
a g a i n c o n t i n u i n g t h e s y s t a n a t i c e x p l o i t d t l o n o f

B . 4 . 1 . 4

r e u s a b i l i t y . Design reviews a r e conducted. ' Met-
r i c s da ta i s analyzed. The design t o c o s t proce-
dure cont inues t o operate but w i t h d lmin ishcd
f l e x i b i l i t y s ince the s p e c l f i c a t l o n has been base-
l i n e d a t PDR.

3 . 3 Technical S t ra teqy
The Technical S t ra teyy (f i g u r e 3-3) governs the

mapping o f Ada cons t ruc ts t o each l e v e l . This
mapping i s intended t o f o l l o w the a r c h i t e c t u r a l
l i n e o f t he language. futhennore, t he C O n S t N C t
mapping by l e v e l p rov ides J na tu ra l p a r t i t i o n i n g
s u i t a b l e f o r educat ing bo th readers and w r i t e r s a
l i t t l e a t a tiiiie.

Ada cons t ruc ts a r e mapped t o each l e v e l f o r
ou te r and inne r syntax. Duter syntax inc ludes
organ iz ing u n i t s and con t ro l s t ruc tu res , bo th
sequent ia l and asynchronous. The inne r syntax
prov ides the format f o r expressing data and the
opera t ions and t e s t s on the data. The cons t ruc ts
a r e assigned t o each l e v e l w i th the o b j e c t i v e o f
s a t i s f y i n g the purpose o f t h a t l e v e l . Once as-
signed t o a l eve l , a cons t ruc t i s pe rm i t ted t o be
used i n subsequent l e v e l s .

The Mi. product form f o r Level 1 i s the package
s p e c i f i c a t i o n used t o express the user con t rac t .
This c a l l s f o r an organ iz ing ou ter syntax along
w i t h Inner syntax c m c n t a r y . Level 1 i s l i m i t e d
t o d few s e l f ev ident cons t ruc ts needed t o accoin-
p l i s h i t s purpose. Those cons t ruc ts a re l i s t e d i n
F igure 3 - 4 . They can be conven ien t ly organized
i n t o a package s p e c i f i c a t i o n template used t o
govern the s t y l e o f the design record ing . Other
des iyn record ing gu ide l i nes r,.ay be set f o r th ,
i nc lud ing naming convention, ca inentary f o r i n -
tended func t ions , and key words i n s t ruc tu red
c m e n t a r y use fu l i n encouraginy the use o f the
s t a t e machine model.

The product fonn f o r Level 2 i s the package
s p e c i f i c a t i o n and package body used t o express the
design pa r t s and t h e i r r e l a t i o n s h i p . This c a l l s
f o r an od ter syntax o f s t r u c t u r i n g and tasking
cons t ruc ts . The inne r syntax may be expressed as
Ada abs t rac t i ons . i nc lud ing abs t rac t data types.

(

1

Procedural e labo ra t i ons a re no t c d r r l e d out I n
Levc l 2 but instead are penn i t t ed to cppedr d S
procedure C a l l s . The a d d i t i o n a l Level 2 L w S ? v c . r ? S
are show i n F i yu re 3 - 4 . Those too can be c;inren-
i e n t l y o y a n i r e d i n t o package s p e c i f i c d l 1 0 1 d n d
prckaye body templates used t o govern the S t y l e o f
the des ign record ing . Design recordrng qu ide l ines
o f Level 1 iliay be expanded to inc lude the n t i s t r n c t
data types l r n n i s s i b l e .

The product form f o r Level 3 i s the procedure
e l a b o r a t i o n used t o express a d e t a i l e d func t i ond l
desiyn. This c a l l s f o r a f u l l conplement o f (J 'J te r
syntax func t i on expressions and inner syntax d d t d

r e f i nenen t , i nc lud ing predef ined data types and Add
prhni t lVCS. The a d d i t i o n a l Level 3 cons t ruc t5 dre
shown I n f i g u r e 3-4 . Here too, procedures and t n 5 k
templates are used t o gutde the s t y l e o f the design
record ing . Add i t i ona l record ing guide1 ines m y be
s ta ted . Furthermore, t o c o n t r o l the q u a n t i t y o f
the Ma POL being produced, Level 3 may be I i ! n i ted
to the e labo ra t i on o f on l y those procedures prri:ent
I n Level 2 as procedure ca l Is.

The product form f o r Level 4 i s the P r ' J L e J J r V
e labo ra t i on , a s we l l as f unc t i on e labo ra t i ons u:ed
t o express a f u l l y targeted, d e t a l l e d design. 1 J I I
MIL-STD 1 0 1 5 A i s a v a i l a b l e a t Level 4 (I C C 1 I , ,r 'c
3 - 4) .

Sect ion 4

CONCLUS I ON

So f twdreLny inee r ing and Ada 1Q Des lqn 1 5 : # , : .!'I

e a r l y mi les tone repo r t on the s y s t w d t i c u ' , c I J ~ : . : I
a s a design language. F r a n t h i s e a p r r l e n i e , I ! 1 5
c l e a r t h a t the prepara t ion f o r the use o f ;!o f i n s

been undcrest i i i iated i n several a r e d s . i n c l d f j i n j : . l d
ca i i p i l e r a c q u i s i t i o n , t oo l i n t e y r d t i o n , dnd i ' : , : d -

t i o n .

The /\da ca i i p i l e r a c q u i s i t i o n d i f f i c u l r i c > 11:

i ndus t r y are we l l known. The ne& f o r Add V r L J s i i s
dur ing the design a c t i v i t y has ,ece ivea l e s s d : : ~ n -
t i on . It i s n i c e to have an Ada f ron t -end ;roJ,ct
f o r seinantic and syntax ana lys i s d u r i n g 1 e . e : ~ !

TECHNICAL STRATEGY

-
INNER SYNTAX

PURPOSE SYNTAX FUNCTION DATA

LEVEL 1 USER CONTRACT ORGANIZING COMMENTARY COMMENTARY

LEVEL 2 DESIGN PARTS A N D STRUCTURING. PROCEDURE CALLS ABSTRACT DATA
RELATIONS HIPS TASKING TYPES

OUTER .- I

EXPRESSIONS PREDEFINED DATA LEVEL 3 DETAILED FUNCTIONAL -
DE SI 0 NS INDEPENDENT
OF TARGET

TYPES,
ADA PRIMITIVES

LEVEL 4 DETAILED DESIGNS
FULLY TARGETED

REFINEMENT REFINEMENT

F igu re 3-3. Technical Stra'teqy

6 . 4 . 1 . 5

PURPOSE

LEVEL 1 USER CONTRACT

LEVEL 2 DESIGN PARTS A N D
RILATIONSHIPS

LEVEL 1 DETAILED FUNCTIONAL
DESIGNS INDEPENDENT OF
TARGET OPERATINO
SYSTEM A N D INSTRUCTION
SET ARCHITECTURE

LEVEL 4 DETAILED DESIGNS
FULLY TARGETED
READY FOR
IMPLEMENTATION

OUTER
SVNTAX

PACKAGE SPECIFICATION
PROCEDURE SPEC
TASK SPEC

WITlt. USE

PACIlAOE ROOV
IS SL I 'A I IA I E
UCtIIN
IF T I K N
CAST.
LOOP (WItILE

FUNCTION
ACCEPT. DO
SELECT

ELSIF
WHEN

fO11. EXIT WHEN1

INNER.SYNTAX

DATA FUNCTION -
COMMENTARY COMMENTARY

AOSTRACT DATA
W P t S

P m c r n u i i A L C A L L S OENERIC INSTANTIATIONS OF
TASK C N T I I V CALLS ABSTRACT DATA STAUCTURfS

PRIVATE DATA TVPES
DERIVED DATA TYPES
TASK TYPES

:9.+ .-:.-.I ADA DATA TVPES
REM. M O D RECORD
OR. AND. XOR. NOT ARRAY
RANGE, ABS RANGE
9 . . -. < -. I 9
TERMINATE CONSTANT
DELAY SUBTYPE
EXCEPTION. RAISE

PRAGMA DELTA, DIGITS
ABORT FOR. USE. AT

ACCESS TVPE

ADA CONSTRUCTS

F i g u r e 3-4. Ada C o n s t r u c t s

and 2. It i s a n e c e . - i t y tr, have t h i s t o o l a v a i l a -
b l e and r e a d y f o r use d u r i n g l e v e l s 3 and 4 .
W i t h o u t i t , the r e e n f o r c e m e n t o f Ada e d u c a t i o n
t h r o u g h t h e d e s i g n a c t i v i t y i s l o s t . Fu r thennore ,
t h e e r r o r d i s c o v e r y o p p o r t u n i t y i s postponed t o
downs t r e a i n . The d e s i g n i n s p e c t ion accai ipanying
each d e s i g n l e v e l needs t h e o u t p u t o f t he Ada
f r o n t - e n d . Where r a p i d p r o t o t y p i n g i s i n t e n d e d ,
t h e Ma c o m p i l e r i t s e l f i s needed to p e n i i i t code
g e n e r a t i o n and e x e c u t i o n .

For e a r l y Ada p r o j e c t s . t h e e d u c a t i o n o f t h e
p r o j c c t tediii may need t o be i n t . w j r d t c d w i t t i t h e
d e s i g n a c t i v i t y . One approach t o t h i s i s t o t r a i n
p e o p l e i n one d e s i g n l e v e l a t a t i i i ie . f u ' l o w c d by
t + e pe r fo rmance o f t h e d e s i g n a c t i v i t y and i t s
r e v i e w . In t h i s w a y , t h e t r a i n i n g schedu le can be
d i s t r i b u t e d t h r o u g h o u t the pe r fonndnce p e r i o d , t h e
t r a i n i n g f o r each l e v e l can be r e f i n e d based on the
resu l t s o f t h e p r e c e d i n g d e s i y n r e v i e w , aiid p r o j e c t
p e o p l e new t o Ada can p r o y r e s s t h r o u g h the e x p e r i -
ence s h a r i n g p r o b l e n s and o h t a i n i n y a s s i s t a n c e
w i t h i n t h e team. I n t h e f o u r l e v e l d e s i y n ap-
p roach . L e v e l 1 r e p r e s e n t s o n l y f o u r c o n s t r u c t s ,
a l l c o n t a i n e d i n a t e m p l a t e . As a r e s u l t , t h e r e i s
an e a r l y success f o r t h e new Ma PDL d e s i g n e r .
L e v e l 2 adds more c o n s t r u c t s and i s a y a i n g u l d e d by
t s n p l a t e s , a s s i s t i n g success. L e v e l 3, however,
r e p r e s e n t s t h e f i r s t t i m e the Ada PDL d e s i g n e r must
o p e r a t e s u b s t a n t l a l l y on h i s orin w i th a l a r g e
number o f Ada c o n s t r u c t s . A t Leve l 3, d e s l y n
r e v i e w s may r e s u l t i n a s u b s t a n t i d l r e w o r k i n y o f
t h e d e s i y n . By L e v e l 4 , t h e M a e x p e r i e n c e k y l n s
t o pay o f f , and Ada POL d e s j g n e r s a r e c a n p l e t i n g
t h e i r d e s i g n s w i t h c o n f i d e n c e .

I n f o n n u l d t l n g d r c h l t e c t u r e s f o r Ada s o f t w a r e
d e s i g n s , new t h i n k i n g may be ncctled. l l n p o r t a n t

b e n e f i t s a r e p o s s i b l e i n k d t h r o u y h moder'r! s u f t -
ware e n g i n e e r i n g . To o b t a i n these b e n e f i t s ,
s o f t w a r e d e s i g n s mus t make t h e t r a n s i t i o n fro-
des igns thdt s i t n u l a t e d a t a f l o w t o d e s i g n s t b d !
e n c a p s u l a t e d a t a i n ways n a t u r a l t o t h e app l i c ~ t i o r
p r o v i d i n g o n l y as much v i s i b i l i t y a s necessd ry ~ I J
a s much i n f o n n a t i o n h i d i n g a s p o s s i b l e . h r t h e r -
more, t o o b t a i n these b e n t - f i t s , t h e Ada t d r i i n ;
model needs t o be e x p l o i t e d a t a p p r o p r i a t e 1 C b t ' l s

i n t h e d e s i y n . The i n t e r f a c e w i t h c o m e r c i J !
s o f t w a r e p r o d u c t s needs t o be aCCOMlOddted i n d h d y
t h a t r e t a i n s the c o s t b e n e f l t s o f t hese produc!s ,
but docs n o t d u l l i n a t e t h e s o f t w a r e d r c h l t e i t d r e .
More work i s needed i n u n i f o r m d e s i g n mnrphdl , l , ic r
f o r MJ t o p r o v i d e u s e f u l M a a r c h i f e c t u r k n ~ ~ . ~ ~ 2 t ~ l ~
f o r e a r l y u s e r s . a s w e l l a s t he framework f d r

e x p l o i L i n g r e u s a b l e canponents by a1 I u s e r , .

Very l i t t l e i s known abou t Ada i i i e t r i c s . As 3
v e s u l t , t h e r e a r e many q u e s t i o n s abou t the 51:e o f
Ada prograi i is and d e s i g n s , Ada p r o d u c t i v i t j , d d

q u a l i t y , and Ada per formance. The e a r l y e x p e r i r n i e
w i t h Mn PDL seems t o show t h a t a l o w r d t i o may
e x i s t between ma source l i n e s and Add Jcs1 jn
l i n e s . I t may be 2 : l o r 3:l. Where Ada is m t h
t h e t a r g e t l anguaye and t h e d e s i g n language, t h e
Add POL i s p a r t o f the p r o d u c t . I n t h i s c d s e ,
ins ight abou t t h e r a t l o may a s s i s t t h e a l l o c J t i o n
o f e f f o r t and schedu le between the d e s i y n and code
a c t i v i t i e s . The r e c e n t e x p e r i e n c e showed t h d t t h e
ca i i b ined Leve l 1 and 2 r a t l o wds about 2 5 : I , Level
1-3 a b o u t 1O:l. and L e v e l 1-4 l e s s tnan 5 : 1 . Not
enough I s known t o use these r e s u l t s a s m a n a y t w c i c
budge ts .

The r e v i s e d I O M FSD f o u r l e v e l Ada PDL i 8 e t h -
o d o l o g y hdS d e n o n s t r a t e d sane i m p o r t a n t b e n e f i t s i n
r e c e n t use (f i g u r e 4 -1) . Expanding the alrdience o f

WGINAL PAGE tS
OF mi? QUALITY

B . 4 . 1 . 6

BENEFITS: FOUR LEVEL ADA PDL METHODOLOGY

AUDIENCE - BOTH TECHNICAL AND NON-TECHNICAL

PRODUCTIVITY - TEMPLATES AT LEVEL AND CONSTRUCT

QUALITY - MINIMUM CYCLOMATIC COMPLEXITY

PERFORMANCE - FOCUS ON TASKING AT LEVEL 2

PORTABILITY - FULLY TARGET INDEPENDENT LFVEL 3

REUSABIL!TY - LEVEL FORMAT PERMI1.S EFFCCTIVE
ACCESS FROM COMPONENTS LIBRAR'I'

8' ADA TRAINING - LEARNING AND USING ADA, A Ll7TLE AT A
TIME, IS A N EFFECTIVE APPROACH TO ADA
TRAINING, ALONG ARCHITECTURE LINE

MAINTAINABILITY - FOUR LEVELS PROVIDE A STAGED, LAYERED
INTRODUCTION TO DESIGN AND
IMPLEMENTATlON DETAILS

PR ED ICTAB I L I N -- MEETING COST AND SCHEDI'LE AS ASSISTED
BY DESIGN TO COST FEATURE OF
MANAGEMENT APPROACH

F i g u r e 4-1. B e n e f i t s : Four Leve l Ada POL Methodalogy

d e s i g n r e v i e w e r s f r a t e c h n i c a l t o n o n - t e c h n i c a l
p e r m i t s u s e f u l and needed use r i n p u t t u the conp le -
t i o n o f t h e s p e c i f i c a t i o n and t o e a r l y d t c i g n
d e c i s i o n s . Th is i s made p o s s i b l e by a t r a i n i n g
program. p a t t e r n e d a f t e r t h e f o u r l e v e l s , t h a t
teaches & a a l i c t l e a t a t ime a long the a r c h i t e c -
t u r a l l i n e o f t h e language. Fu r thennore , t h e
temp la tes t h a t gove rn the p r o d u c t s t y l e a t each
l e v e l p r o v l d e a c r u t c h for t h e e a r l y Ada u s e r both
r e a d e r and w r i t e r . a boos t t o p r o d u c t i v i t y , and the
assurance o f u n i f o r m i t y i r d e s i g n s t y l e . P roduc t -
i v i t y may be g i v e n a more S u b S t a n t i d l boob: h e r ,
reuse o f e x i s t i n g Ada components can be ob ta ined .
The Leve l 1 t e m p l a t e format may a s s i s t t h i s canpo-
n e n t r e u s a b l l i t y by p r o v i d i n g t h e renab!ics needed
to access a c m p n e n t s l i b r a r y . Managing and
m e e t i n g c o s t acd schedule budgets I s dSSfSt f?d b y
t h e s y s t e m a t i c use 3 f t h e d e s i g n t o c o s t f e a t u r e
embedded i n r r c h d e i l g n l e v e l . Once completed, t h e
f o u r l e v e l s o f Pda PDL p r o v i d e t h e l a y e r e d l n t r o -

d u c t i o n t o d ~ s l l J l l i l c ~ t a l l s needed by thc l " J l f l ! ~ i l t ~ ~ ' '

t o l e a r n d e s i g n d e t d i l s a s needed and t d cr1;in.i':'
any r e q u i r e d ~ I ' O ~ U L ~ a d a p t a t i o n s w i t h c o n f ik!t,f I '

Designs p r o d u c d w i t h the fou l - l e v e l Add 1'31 I C , ! ' .
o d o l o q y tend la bc t he s i m p l i f i e d J c s i g 1 i b 1 ' ~ ' .
r e s u l t frail itiodcvri s o f t w a r e engineer in<; . ;!!
same ti-? these d r s i g n s c o n s i d e r perfor:.idnct* rea-
q u i r e a c n t s and i i icrting r e a l t i m e deddl \ (:e> t t m t v . i l . '
t h e t a s k i n y focus a t L e v e l L an6 t h r o u j q t v e '~e' . -
r i c s a t e v e r y : - v e l . r i n a l l y t he t ' i e t ! idd .~ l , i ; ,
s u p p o r t s p o r t a b i l i t y t h r o u g h the L e v e l 3 1.11 ; c z '

independence o f u l i c r ~ t i n g s y s t e r and i n s t r . . , c : : \ '

s e t a r c h i t w t u r c .

A1 though t r u e t h a t t h e community h a 5 d n j c r -
e s t i i n a t e d t h e p w p a r o t i o n f o r Ada, t h i s p r e p d r j ! i . .
has been s t a r t e d dnd i s underway. I t lady a l s a !x
t r u e t h a t t h e c n u u n i t y has u n d e r e s t i m a t e d t-.:
b e n e f i t 5 o f Ma which a r e s u b s t a n t i a l and d r e 5 : : i I

:e i n g d i scovercd .

8 . 4 . 1 . 7

B!BI IOCRAPHY
1.

2,

3.

4.

5.

6.

"Reference Hanual f o r the Ma Programing Lan-
guagc. (MIL-STO-1815A) ,' Deparbnent o f Defense,
17 February 19ti3.
"Hethodinan I I , ' I n s t i t u t e f o r Defense Analysts
(IDA), Memorandum Report M-11, November 1984.
"Su&et o f Maw - Based POL'S,' Naval Av lon ics
Ceiiter Technical Pub l i ca t i on , TP-598, January
1985.

N a i s b i t t , J., 'Megatrends: Ten hew D l r e c t f o n r
T r a n s f o n f n g fhr Lives," Warner Books, Inc.,
1982.
O 'Ne l l l , 0.. 'Software Cnglneer lng Progran,'
,13H Systems Journal , December 1980, Yol. 19,
No. 4.
O'Nz!11, 0.. 'An I n t e g r a t i o n Englneertng Per-
~ p e c t l v e , ' The Journal of Systems and Software,
3, 77-83 (1983).

7. O ' N e l l l , D., " A t 1014 - A S t ra tegy f o r S o f t w d r e
Hanaganent," l n fonna t lon Systems News, F e b r u a r y
1981.
'Ada as a ue r f yn Language," I f f E Computer Socl -
e t y Yorklng Group (P. 990). D r a f t 1985.
O 'Ne i l l , D., "An O v e r v i e r o f Cloval Pos i t i on ing
System Software Destgn. S o f t w a r e fnqlnecrinq
Exchange, October 1980, Vol . 3, No. 1.

8.

9 .

Key Words
S o f t wa r e Fac 50 ry

Four Level Design
Ada based deslgn
Hanaganent S t ra tegy
Technical S t ra tegy
Ada Constructs

8 . 4 . 1 . 8

/ L - 7 3 Y 4 c
' w .

N09= 1 6 2 9 9

Analysis and Specification Tools in Rela t ion to the APSE

John W. Hendricks

Sys tems Technology, Inc.

Ada and t h e Ada Programming Support Environment (APSE) specifically address t h e

phases of t h e sys tem/sof tware l ifecycle which follow a f t e r the user's problem has

been t rans la ted in to system and sof tware development specifications. The

"waterfall" model of the l ifecycle identifies t he analysis and requi rements definition

phases (now known as the concept exploration and t h e demonstration ti validation

phases in the l ifecycle as described in the new DOD-STD-2167) a s preceeding

program design and coding.

Since Ada IS a prograrnming language and the APSE is a prce;ramming support

environment, they a r e primarily ta rge ted to support program (code) development,

B.4.2.1

t es t ing , maintenance, etc. T h e use of Ada based or Ada r e l a t e d specif icat ion

languages (SLs) and program design ianguages (PDLs) c a n ex tend t h e use of Ada back

i n t o t h e s o f t w a r e design phases of t h e l i fe cyc le (for example, see Goldsack).

However, t h e r e s e e m s to b e s o m e agreement t h a t Ada is no t appropr ia te as a language

for deal ing with t h e "problem space" and t h e ear l ies t phases of t h e l i fecycle (Brodie,

Mylopoulos, and Schmidt, p.4 10; Booch,p. 359).

T h e Ada Programming Support Environment (APSE), and indeed t h e Ada language

i tself , was defined as a response to t h e "software crisis" in DOD embedded systems.

Booch (p.7-8) l i s t s a number of symptoms of this situation, including:

o Responsiveness. Computer-based sys tems of ten do not m e e t user
needs.

o Modifiability. Software maintenance is complex, costly, and er ror
prone.

In par t icular , sof tware maintenance is identified as being responsible for between

40% and 70% of the to ta l hardware and sof tware expendi tures f o r these systems. W e

c a n e x p e c t t h a t many of the systems for t h e NASA space s ta t ion will s h a r e impor tan t

charac te r i s t ics with t h e DOD embedded sys tems (e+, complexity, long-lifetime,

changing requirements , real-t ime inter-iaces), and they should be subject to many of

these s a m e problems.

The world's best programming ef i o r t cap not produce a system which is responsive to

t h e user's needs i f the requirements upcn which i t depends d o not descr ibe a n

appropr ia te solution t o t h e user's problem or i f the requirements a r e in a form which

0.4.2.2

we have great d i f f icu l ty t ranslat ing i n t o an implementable design. Also, if this

problem exists with t h e original requirements for a system, it c a n be r e p e a t e d e v e r y

t ime there i s a change in t h e problem. W e do not have d a t a which c h a r a c t e r i z e t h e

distribution of software maintenance costs be tween "bug fixes" and changes in

requirements, but it would not be surprising if a la rge par t of t h e "maintenance" costs

are caused by evolution of t h e requirements, especially for sys tems which a r e in

serv ice for a number of years. Therefore, both the responsiveness problems and a

large part of t h e maintainabili ty problems which charac te r ize the sof tware crisis may

be beyond t h e reach of Ada and t h e APSE, unless faci l i t ies to deal with t h e processes

of concept exploration and demonstrat ion & validation can smoothly be linked in to the

APSE.

There are a number of developments which demonst ra te t h e feasibil i ty and

desirabil i ty of formalizing specifications or a rch i tec ture designs at higher levels of

abstract ion than t h a t provided by a programming language (e.g., Ralzer; Zave). These

e f f o r t s share an object ive of reaching out toward t h e "problem space" w i t h a

representat ion which is much easier to use than a programming language for

describing the requirements, but is still capable of being t ranslated or t ransformed

in to compilable code with l imited manual intervention (au tomat ic prograrnming).

They also share a commitment to extensive use of computer based tools to suppart t h e

processes of analysis, specification and design. To the degree t h a t these approaches

succeed, they can address t h e problems of responsiveness t o init ial user needs and

main tenance of responsiveness as these needs change over the l i fe t ime of t h e sys tem.

It is unlikely t h a t any of these e f f o r t s will e l imina te t h e need for substant ia l a m o u n t s

of human programming in the development of the la rge and complex sys tems for

8.4.2.3

QRlGlPIAL PAGE tS
OF M W L l N

which Ada and t h e APSE are designed. If these new techniques a r e to be

explo i ted for major pro jec ts such as t h e N/,SA space stat ion, they must be capable of

being used in conjunction with program design and development under t h e APSE.

O n e of t h e m o s t promising of these new systems is Process Archi tec ture Design

Technology (PADtech). Sys tems Technology is working with t h e developers of this

sys tem, Associative Design Technology, Ltd (USA), to introduce and support

this new technology for aerospace and mili tary applications. An overview of PADtech

and s o m e of t h e issues raised by its use with t h e APSE should suggest both t h e promise

of t h e s e new sys tems and some of t h e issues to be considered in "integrating" these

new tools i n t o major projects which will be using t h e APSE.

PADtech includes both a methodology and a set of computer based tools t o support t h e

use of t h e methodology in c rea t ing an a rch i tec ture design for a complex system. The

methodology provides a representat ion to formally describe:

o t h e s t ruc ture of processes which we expec t t h e sys tem to
implement , t h e events which will cause each process to be executed ,
and t h e e v e n t s which each process c a n cause to occur; and

o t h e conceptual s t ruc ture of the en t i t i es involved in t h e processes in
t e r m s of the role relation hips between the concepts , object types
and objects.

This representat ion (Process Archi tecture Design specification Language or PADL)

descr ibes processes which may be implemented by hardware, or by persons following

procedures , as well 3s by software. However, PADL has a precise semant ics which

enables i t to be t ransformed in to executab le forms, ;rid this inevitabil i ty makes i t s

R.4.2.4

application a more demanding process. By way of contrast , Coldsack (p.11) noted t h a t

"...the ease of use of PSL, SAD" and many others, is partially due to the absence of a

precise ... seman tics."

The computer based tools for t he application of PADtech include the following:

A design workbench which provides a high performance, c o b , icon
driven, interact ive graphics interface fo r t h e cre.:tion and
manipulation of the graphical form of the Proczs3 Archi tecture
Design specification Language. The design workbench supports t he
system archi tec t in the evolutionary process of analysis,
specification and design. I t also provides support for interactions
with problem a rea experts and with program designers 2nd
programmers.

Modules which translate between the graphical form and t h e textual
form of the Process Architecture Design specification LanguagL;

A da ta manager which provides bookkeeping support for the
evolving process archi tecture design;

A facility for building up a customized set of icons, process models,
etc. which a r e appropriate for specific problem areas.

An interpreter for simulated execution of the process archi tecture
for an early prototyping, i terat ive design cycle.

A "monitor" which collects the results of the interprc ; i ?xecuti\, (.

A "debug" environment for controlling and examining t h e results of
interpretive execution.

Code generation faci l i t ies for transf orining Process Architecture
Design specification Language descriptions for process and
conceptual s t ructures into the implementation languages, Ada and
SQL.

B.4.2.5

P A D t e c h is designed to be applicable to t h e analysis, specif icat ion and design process

at several d i f fe ren t levels. First, i t can be used at t h e s t r a t e g i c planning level. For

example, one can build a process architecture to represent an e n t i r e organizat ion or a

major project , and use this "enterprise modeP to ident i fy and specify a u t o m a t e d

information and communication sys tems to support operat ion of t h e e n t i r e enterpr ise .

Second, PADtech c a n be used at t h e system or integrat ion a r c h i t e c t u r e level f o r a

s p e c i f i c system. I t can be used to design the a r c h i t e c t u r e which def ines t h e overall

structure f o r a comple te system, or to design and implement a da tabase and

communicat ion "substrate" to in tegra te many separa te ly developed modules,

including man- and hardware-in-the-loop elements . Third, PADtech c a n b e used t o

specify, design and implement (by code generation) sys tems which c a n readily be

c h a r a c t e r i z e d by "object processing" processes, i.e., processes which c r e a t e and

change t h e state of both abs t rac t and "real" objects.

PADtech will be most beneficial when applied to sys tems with some of t h e following

character is t ics :

o Requirements which a r e complex, not completely understood, and
a r e expec ted t o evolve over the life of t h e system,

o Requirements for very high speed execution involving parallel
and/or distributed execut ion,

o Requirements for real- t ime rcsponsiveness,

0 A requirement for high speed management of complex. in te rac t ive
d a t a bases and cornmunicatior? s t ruc tures ,

0 Integration of a large number of processes while maintaining
protection against ca tas t rophic failures.

R.4.2.6

W e expect t h a t there will b e a number of space station sys tems with these

character is t ics , and t h a t PADtech and o t h e r innovative tools for analysis,

specif icat ion and design will b e required to make these sys tems responsive t o the

requirements and maintainable over a long l ifetime.

What a r e s o m e of t h e issues raised by the use of these tools with Ada and the APSE?

Firs t , tools which a r e geared to crea t ing a problein space or iented, executab le

specif icat ion or design specif icat ion tend to c u t across the phases of the lifecycle as

defined in t h e waterfal l model. These tools gain much of their uti l i ty f rom an

i t e r a t i v e cyc le of analysis, execut ion and evaluat ion of the specif icat ion as a

"prototype," re-analysis, e tc . They emphasize d i rec t involvement of t h e users or

problem area e x p e r t s in evaluat ing t h e implications of a design specif icat ion as they

a r e revealed by repea ted prototyping. The analysis and prototyping processes a r c

supported by an in te rac t ive environment which is heavily dependent on "prototype

execution" and graphics for presentat ion and manipulation. Also, these new

techniques push formalization back toward the problem specif icat ion and use

(pdrtially) autoindted t ransformation to genera te code modules. This allows

maintenance which is occasioned by changes in t h e requirements , to be perlorrned on

t h e speci[ication/design rather than on t h e code. Then, t h e revised specification is

transfortned into updated code modules. (Jse of these new techniqttes will be mdde

inore difficult i f a rigid segmentat ion in to the phases of a waterfal l lifecycle model I S

imposed by procurement processes or by implementat ions of the APSE.

Second, t h e r e a r e several reasons why specification and design tools should be linked

i n t o the APSE. Most important ly , if design specif icat ions such as those in PADL a r e

t o be used f o r main tenance and a r e to become a par t of t h e permanent documentat ion

0.4.2.7

of a systcrn, i t is impor tan t to have control over their versions as o n e does f o r c o d e

modules. Also, in sp i te of cveryone's tendency to claim t h a t his sys tem is c o m p l e t e

a n d u n h e r s d , none we. AJl of t h e analysis, specif icat ion and design tools would

benefi t f rom being ab le to i n t e r f a c e with o ther sys tems which could complement the i r

own capabi l i t ies (for example, see Ripken). An "open" APSE could coord ina te

be tween severa1"outside" tools, as well as between these tools and code development

under t h e APSE.

Third, t h e amount of e f f o r t being put into the development of Ada and t h e APSE

create5 a certain mmentum towards making them all inclusive. If Ada is the

programming language, why not use i t as the basis for a design language, a

specif icat ion language, a conceptual design language, etc., and mandate their use? I f

t h e APSE is to control the programming process, why not mandate t h a t only tools

which a r e fully integrated in to the APSE c a n be used f r o m concept exploration

onwards? The potential benefi ts of such a coherent , s tar t - to-f inish development

environment need to be balanced against t he potent ia l costs of using much less than

opt imal tools in the pre-programming phases of t h e l ifecycle.

A detailed examination of these issues would be a major project and is n o t

contempla ted here . However , we will suggest t h a t in applying Ada, t h e APSE and

s tandards s u c h as 2167, we should be careful not to let their application expand to a

point where they stifle innovation. The continuing revolution in microelectronics is

providing an opportunity to c r e a t e sys tems to solve increasingly complex problems;

new techniques for specification and design will also be needed to exploit this

opportunity. which will b e needed to build t h e

increasingly complex sys tems we require, will not b e developed exclusively for use by

Many of these new techniques,

8.4.2.8

one industry or one language. Retaining the option to se lec t different methodologies

for problems which have differing characteristics may be the only e f fec t ive approach

at this time.

c

Recall that the standardization of the APSE as a programming support environment is

only now happening af te r many years of evolutionary experience with diverse se t s of

programming support tools. Restricting consideration to one, or even a few chosen

specification and design tools, could be a real mistake for an organization or a major

project such as the space station, which will need to deal with an increasingly complex

level of system problems. To require tha t everything be Ada-like, be implemented in

Ada, run directly under the APSE, and f i t into a rigid waterfall model of the lifecycle

would turn a promising support environment into a straight jacket for progress.

8.4.2.9

R e f e r e n c e s

Balzer, R., "A 15 Y e a r Perspect ive on Automat ic Programming," IEEE Trans.
Software Eng., vol. SE-I I , pp. 1257-1268, November 1985.

Booth, C., Sof tware EnRineering with Ada, Menlo Park, CA: Benjamin/Cummings,
1983.

Brodie, M., J. Mylopoulos and J. Schmidt (eds.), O n Conceptual Modeling;
Perspec t ives f r o m Artificial Intelligence, Databases and Programming Languages,
New York: Springer-Verlag, 1984.

Goldsack, S. (ed.), Ada for Specification: Possibilities and Limitations, Cambridge,
England: Cambr idge University Press, 1985.

Pepper , P. (ed.), Program Transf orrnation and Programming Environments, Berlin:
Springer-Verlag, 1984.

Zave, P., "The Operat ional Versus t h e Conventional Approach to Sof tware
Development," Commun. ACM, vol. 27, pp.104-118, Feb. 1984.

B.4.2.10

.

SOME DESIGN CONSTRAINTS REQUIRED FOR THE USE OF GENERIC SOFTWARE
IN EMBEDDED SYSTEMS: PACKAGES WHICH MANAGE ABSTRACT DYNAMIC

STRUCTURES WITHOUT THE NEED FOR GARBAGE COLLECTION

Charlee S. Johnson

ABSTRACT

The embedded systems running real-time applications, f o r
which Ada was designed, require their own mechanisms for the
management of dynamically allocated storage. There is a need f o r
packages which manage their own internal structures to control
their dealkcation as well, due to the performance implications
of garbage collection by the KAPSE. This places a new
requirement upon the design of generic packages which manage
generically structured private types built-up from application-
defined input types. These kinds of generic packages should
figure greatly in the development of lower-level software such
as operating systems, schedulers, controllers and device
drivers; and will manage structures such as queues, stacks,
link-lists, files, and binary/multary (hierarchical) trees.
Generic structures like these will have to be carefully
controlled to prevent inadvertent de-designation of dynamic
elements, which is implicit in the assignment operation. A s t u d y
is made of the use of the limited private type, in solving the
problems of controlling the accumulation of anonymous, detached
objects in running systems. The use of deallocator procedures
for run-down of application-defined input types during
deallocation operations is also discussed,

INTRODUCTION

Reusability is crucial to programs developed for
Integration and Test (I & T) applications. The Ada language w a s
specifically developed for use on embedded systems where
most of the real-time applications work is performed. The
creation of a software support environment for real-time w~r-k
must first deal with the selection of a design approach which
maximizes the reusability of Ada software components. The issue
of Ada reusability does not just address problems of portability
across machines and between projects, but also reusability
within one project, and for one machine. One property of
generic abstraction is the containment of a solution f o r a
system- and application-dependent problem. Once having been
solved generically, that solution is available for re1 iab1.e
reuse by all the applications of the system.

BRIEF BACKGROUND

Kennedy Space Center/ Engineering Development/ Digital
Electronics Engineering Division is in the process of
prototyping distributed systems supporting I & T applications,
particularly the Space Station Operations Language (SSOL)

B.4.3.1

System, which is the I f T subset of the User Interface Language
(UIL) for the Space Station. The discussions in this paper were
developed from the results of systems designed and developed in
Ada to demonstrate the feasibility of developing reusable
software specifically targeted for real-time embedded
applications. The Ada environment used was that of VAX Ada under
VAX/VMS .

USE OF ADA IN EMBEDDED SYSTEMS

The implementation of the Ada KAPsE for a computer system
can be performed in one of two ways. The KAPSE can be layered
Over an existing operating system, using it's services and
saddled with it's limitations. The KAPSE can also be directly
layered onto the computer hardware, and act as a limited
operating system. Ancillary operating system services will then
need to be supplied by Ada applications. For most embedded
systems the latter alternative will hold, for both developnsntal
and performance reasons. Developmentally, it is harder to re-
host both the operating system and the KAPSE to new computer
hardware, than it is to re-host the KAPSE alone. A l s o , for
applications developed on a layered KAPSE, performance will
suffer as requests for system services have to be processed at
two levels. The organization and system approach for the two
levels of support, since they were not designed specifically to
be integrated, will almost certainly be mismatched in many
ways.

For systems with a native KAPSE, the optional features of
the Ada lancpisge (some pragmas, services) will be slow in
appearing, or may be seen to be negative in effect. The system
garbage collection feature in the KAPSE will be one of those
features that won't appear initially. When it does appear, in
many implementations, it's use will be precluaed in real-time
systems. 113

The garbage collection feature of the KAPSE tracks, and
deallocates anonymous objects in the Ada system, thereby freeing
the system resources that they use.

Anonymous objects are previously-designated objects
of a type associated with an access type (pointer type). A
designated object is created by an allocator, which associates
it with an access object (pointer object), which then, of
course, designates it. Designated objects are implicitly
declared by that allocation as objects of the designated subtype
(subtype of object pointed to) of the access type, and are
rompatible with all objects declared of the designated base type
foriginal type referenced in the access type definition).

Designated abjects become anonymous objects by three means,
all have to do with assignment:

1. The access object designating the object is assigned
to the value of another access object of the same

0

type.

B . 4 . 3 . 2

2 . The access object designating the object is assigned

3 . The access object designating the object is assigned

to a new value by an allocator.

to tha value %ulll@.

Unless the previously-designated object was designated by
mcI,-e than one access object, after access object reassignment 1t
becomes an anonymous object.

The use of access types is necessary if a system is to be
flexible, and capable of creating objects in response to needs
that cannot be specified until the need arises. Release of the
system resources used by objects of designated subtypes, is
essential in that flexibility {or static types rather than
dynamic types could have been initially specifisd) .

In layered systems built on general-purpose operating
systems, the tracking down and subsequent deallocation of the
resources consumed by these anonymous objects (the garbage-
collection process) will be a built-in feature. In VAX-VMS the
KAPSE performs this service. In ATCT Ada f o r the AT&T UNIX
System V (Release 3) , this service is implicit in the system,
because all Ada objects are created on the system heap, which 2 s
managed by the system. In both cases, there is an ever-Dresent
background process, perfonning rundown o f dynamic objects
declared in the system. The performance detriment due to this
background process is unpredictable, both for when i+- occ,:irs (it
is concurrdnt and unsynchronized with the applications) and f o r
the systen resources it consumes.

It is noted here that acc--- types can be both data arie
task types. The problem of garbage-collection exists f o r b o t h
task and data types. In this paper, only the data type problem
will be discussed.

There is no requirement in the Ac'a Reference Manual (ARY;
[2] f o r the garbage collection feature to be implemented in t h e
KAPSE. For many embedded systems running real-time applications,
it will be required that the garbage-collection feature, if
present in the KAPSE, retain the capability of being turned off.
The preFIence of unpredictable resowce consumption 1 s
ccntradictory to the principals of real-time cmputiiv-j,
in particular, the response to external interrupts in a tirnel).
and reliable manner.

i'his poses a new problem. Without garbage-collection, the
only time that anonymous objects are collected by the s y s t e m
(deallocated), is upcn the expiration of the scope of the
application which contains the definition of the access typc.
For anything 0'-her than restrictive vse of the access t y p e ,
this will usually be a package specified at the highest scope in
the program. This szope, by not expiring, implies that normal
collection will never occur (without garbage-collection) .

For proqrams running on embedded systems, this means
dynamic objects will continuously be converted into anonymous
objects, corrsuming more and more system resources, until the
program aborts when the system resources are exhausted. This
self-destructive behavior may not be noticed during verification

B . 4 . 3 . 3

Or validation, if the process of creating anonymous objects is
sufficiently slow. Indeed, well-written processes that are
conservative in their exhaustion of syntem resources may live
long before the limitations are breached.

These programs must, then, control their own storage
allocation and deallocation. A pragma for declaring the storage
management for an object as being controlled by the application
(Pragma CONTROLLED), and a generic package for deallocating
controlled objects (UNCHECXED-DEALLOCATION) Will be available
f o r embedded systems development. The problem is that the
implementation of these features must be standardized in the
development of the application system, for there to be any
assurance that anonymous objects will not collect.

A design philosophy encouraging abstraction would tend to
drive the Ada source code using these features into the hidden
scape of a package. This would create, in the system, an
assortment of packages which define, declare and manage private
access types, while retaining complete control of the allocation
and deallocation of objects designated by those types. The
control of the storage allocation in these packages would need
to be implemented in an efficient way, such that the use of the
package types would be flexible and easy (to encourage package
use). A requirement of these packages, stemming from real-time
considerations, would be that the behavlor of systems using
these packages should differ from that of systems using garbage-
collection. The overhead incurred by the deallocation of storage
should occur in predictable amounts, and in synchrony with, or
under the control of the operation that incurs the overhead.

A design philosophy encouraging maximum reusabi1it.y of
software for the system, would tend to drive those packages,
whera possible, into a smaller family of generic packages using
reneric formal parameters which determine the differences
between instantiations. Maximum reasability of these generic
packages could be accomplished by the use of generic formal
parameters matching the widest variety of input types, and by
declarin9 internally controlled dynamic types which match the
w i d e s t variety of applications (flexibility of use).

0

GENERICALLY STRUCTURED ABSTRACT TYPES

At some point in most Ada textbooks, a generic package is
described that maintains a generically structured abstract type.
The type is declared inside the package, and contains a
component type within it which is defined from a generic forrnal
type parameter (an application defined type contained within a
generic structure). The example given is typically for a generic
stack, list or queue, and the generically structured object may
Le hidden within the package, or declared as private type, or
j u s t as a type.

The important point of these textbock examples is the
demonstration that the procedures for managing even very complex
structures such as lists, queues, binary trees, multary
(hierarchical) trees and files can be made general and
separated from the procedures for managing the objects that they

0 B . 4 . 3 . 4

0 t Contain. And, of course, that Ada supports the separation of
these management procedures in a slick and easy-to-use manner.

If the design constraints on the system (storage control)
ccn be embedded into the packages managing generic structures
composed of application-defined types, many possibilities open
Up. The creation of what could be very complex systems such as
operating systems containing schedulers, controllers and drivers
becomes much simpler. These kinds of programs can be based on
the use of just a few simple types of structure.

In an example, if a generic structure such as an index were
managed in a storage controlled way, many system structures and
much system processing could be based upon it. An index is EI

list of elements of one type (can be composite), ordered b y
elements of a second type, the index key. Many sample
applications are possible. Logons could be controlled by a list
of user names versus passwords, ID'S, priorities, etc. Batch
printing could be performed using a priority ordered list of
print files. 9 disk c'irectory could be held as a list of files
ordered by nde, or lists of lists. Batch scheduling of tasks
could be ordered by priority or timestamp. More pertinent to I L
T applications, a list of logical designators for the control of
hardware on a Test System could order the blocks which contain
their logical-to-physical access information. In this case a
hierarchically ordered list of designators versus access blocks
would probably be more useful.

The focal point of the impact of this technology is on the
reuse of software components within a project. The system-
dependent functiocing buried in the body of packages , x i 1 1
not be nearly as portable between machines and areas of
application as it is reusable within a project. Some external
software will be incorporated, of course, like it is today:
DBMS, graphics support, user interface packages, communications
support. These kinds of packages will be available where there
are broad areas of commonality of function, and where system-
dependent features can be profitably developed in packages by
vendors.

Standardization by the use of generically manacjed
structures makes p o s s i b l e the idea of technology i n s e r t . i c n
directly into the applications of a system. If a sys ten-
or application-dependent problem is solved one time, in :
flexible and reusable manner, the developer can beat t h . i , .
solution to d.?ath, reusing it over and over.

Maintenancs of reusable software enhances the sysce . : :
effectiveness. That reusable solution can be tuned at a minimx!n
number of locations in the system, and re-iiiserted into t!?t?
applications. If a better hashing function is fotnd for the key
of our index example, for instance, a widespread increase in
performance will result.

D E S I G N G O A L S A N D C O N S T R A I N T S

The design of packages managing generically structureLl
abstract objects must begin with the establishment of goals a n d

B . 4 . 3 . 5

constraints. The goals and some of the constraints are
independent of the problem of embedded systems. [3] :

1. Package-managed generic objects that are declared in
the application software should, where possible, be
defined as abstract types, that is, made private.

2 . Maximize the generality of the package. This comes
from tho use of formal generic parameters,
particularly for types, that match the widest variety
of application input types (type private instead of
digits <>, for example).

Maximize the usability of the application interface to
the package. Extend, as far as possible into the
application domain, access to the structures managed
in the package, without violating the integrity of the
internals, or the independence of the application
from the generic software component (generality).

Maximize the completeness of the application interface
to the package. Give the application developer all the
operations required to access and manipulate the
internal structures, in a package-controlled manner.

5 . Support, if possible, multiple objects with the same
package. This limits the need to re-instantiate the
package several times within the same scope, for
processing of multiple objects.

6. Design for flexibility: a single tool, suited to a
wide range of applications, is more likely to be
remembered, and used by developers.

3 .

4 .

7. Cover the infrequent failure modes. Most failures of
algorithms and processing logic in programs occur at
the extremes of their domain of applicability.
Testing should cover the ends of rapges and the
infrequent states of the application. If the software
component is reusable, it will be used in a wider
range of applications, and the infrequent failure
modes will occur more frequently.

Some of the constraints on the design of packages managing
generically-structured abstract objects stem from requirements
generated by the use of Ada on embedded systems, and are
therefore application-dependent:

8 . The package operations must control and deallocate any
internally allocated dynamic storage.

9. The package must, by it's implementation, disallow any
inadvertent de-designation of package managed dynamic

B . 4 . 3 . 6

structures or elements. The application must be
prevented from creating anonymous objects.

10. The overhead involved i n the processing of package
operations must be predictable and controllable by the
application (in contrast to the garbage ColleCtion of
anonymous objects by the KAPSE).

SELECTION OF DESIGN APPROACH

The index package, which was described above as a list of
elements ordered by another set of associated index key
elements, will be used as an example for the selection of design
approach. The index structure itself should be some kind of
private type. Functions for index lookup by key item, element
add/delete, and for stepping through the index sequentially
should provide a useful set of operations for index
manipulation. The INDEX type itself should be defined in the
package specification, not hidden, so that it can be declared as
an object in the package scope.

The importance of having the index object in the scope of
the application is in the flexibility of use of the object at
the application level. The developer should be capable of
passing the object as a parameter to subprograms developed at
the higher level. If the object of type INDEX is hidden, this
flexibility is not there.

This generates a conflict with the application-specific
constraint about allowing the application to inadvertently
generate anonymous objects. If the object of type INDEX is
declared in the user scope, any kind of assignment operation tc
it will create an anonymous INDEX object.

USE OF THE LIMITED PRIVATE TYPE

The definition of the INDEX type as limited privatc
prevents reassignment of it's value in any operation. It cannct
be reassigned in the deepest level of any procedure (Ada) , c r
generic software component that knows of it's typing. Thls
allows the access object to be declared in the user scope, ar *

used as a parameter, without any chance of creating anonymous
objects from reassignment (unless the package itself does).

The removal of needed functionality by the definition of
the type as limited private, creates a need f o r the definitior
of analogous functions: assignability, comparab 11 1 t ir ,
nullability.

The assignment function which has been removed cannot be
replaced exactly. If the application is given the ability r -
assign the same value to INDEX objects, even controlling t h e
creation of anonymous objects during reassignment \/on't h e l p .
Having two INDEX objects of the same value implies that the
package cannot explicitly deallocate either INDEX designatecl
object , without creating an erroneous circumstance (an I N D E x
object designating a deallocated object). This cannot be
allowed. Therefore assignment (call it ASSIGN the I' : - - I '

B . 4 . 3 . 7

ORlOlNAL PAGE: IS
OF KK)R QUALITY

operator cannot be overloaded) will first clear the access
object value by deallocating the current designated object, and
then copy the object designated for assignment, eleml-nt for
element, until two copies exist,

If the need f o r mutual designation by the same INDEA object
was a requirement, creation of anonymous objects could be
controlled by the installation in the structure of the
INDEX designated object of a semaphore-type variable, which
would provide concurrent access to the structure along with the
protection by mutual exclusion. This would allow the package to
keep a count of the number of INDEX objects accessing the
structure of the index, with the capability to deallocate the
INDEX designated object upon the reassignment of the last INDEX
object designating it.

The compare function, !I=)(, can be overloaded for limited
private types, and should be defined to compare the elements
designated by the two objects of type INDEX, one for one,
to establish equality. It should be noted here, that the
application itself could define 11=)1, if the capability of
stepping through the INDEX elements one by one, and retrieval
functions for each element are provided.

The re-initialization of the INDEX object ("nulltt
assignment) is replaced by a DELETE function which deallocates
the designated object (the entire structure).

APPLICATION DEFINED DEALLOCATOR PROCEDURES

There is one last potential for the inadvertent creation of
anonymous objects by the package itself. The package allocates a
node when it adds an element to the INDEX designated object, and
it deallocates a node when a delete of an element occurs.
However, ii: the type that was passed as the formal generic
parameter for the key type or the element type is itself an
access type, deallocation of the node will create anonymous
objects that were previously designated by access objects of the
application-defined input types.

The solution f o r this problem depends upon the developer.
For every application-defined component type which is passed
into the generic package as a generic formal parameter to be
incorporated into a generically-structured storage-managed type,
there must be an accompanying generic formal parameter
in2icating a procedure which deallocates any objects designated
by an object of the application defined component type. This
allows the generic package to invoke that procedure for the
components of the structure, so that the subsequent component
deallocation will not create any anonymous objects.

For application-defined types that are not or do not
contain access objects, the deallocator procedure passed would
simply provide a null return, and do nothing.

To repeat this rather complicated rule in other words,
there is a need for every generic formal parameter of an
application-defined type for a structural component, to have an
accompanying deallocator procedure, not fo r the type itself, but
for designated objxts of that type, and designated objects of

B . 4 . 3 . 8

.I " ~

those designated objects, and so on. If the developer wishes to
incorporate structures within structures, the price of this
complexity must he paid.

INCREMENTAL DELETE FEATURE

It is not reasonable to assume that the size of the
structure being managed by the generic is known before
the application is coded, or else the developer might have
chosen a static rather than a dynamic type. The processing
overhead incurred from the deletion of an entire structure or
one part of a structure is then also not predictable. This c a n
put the real-time performance of the package operations back to
square one.

If a real-time application performs a delete operation,
the return from the subprogram must be made within application
defined time-constraints for the package to be useful. In
an example indicating the problem, a real-time application,
while in between accepting interrupt entries from a hardware
device (a timewcritical operation, for hardware interrupts a r e
not queued), attempts to initialize the access object
designating a structure, during the time window that is known t o
exist between interrupts. During initialization of tke
structure it is necessary, of course, to run down the enzire
structure, deallocating each component of the current structure
exhaustively, until the access object can be initialized.
Unfortunately, during the time that the subprogram took control
away from the real-time application, several interrupts wsre
overwritten, and critical data was lost.

The solution to this problem is to supply an incremental
delete function. The overhead incurred from the delete a r d
subsequent deallocation of a single element is knowable. Ar.
incremental delete operation can then be defined, such that upon
input of the logical parameter indicating how much of t h e
structure to remove, and a physical parameter indicating t h c
number of elements to remove for each successive invocation, t!%t
structure will be whittled away incrementally. The order of
deletion/deallocation should be such that a reference alwa
exists to the remaining increments of the section of t ' : ~
structure that are to be removed (for example, delete a t r i e
from the leaves in toward the root).

CONCLUSION

It is concluded, by our studies, that it is feasible to
create families of highly reusable generic software components,
specifically tailored to support kinds of applications. These
generic packages can maximize the reusability of software
developed within and for a particular project. At the same time
they can address the performance requirements of software
developed for embedded systems running real-time applications.
These requirements stipulate that such software be responsive
and controllable in terms of direct processing overhead, and
incur little or no background processing overhead of an

B . 4 . 3 . 9

unpredictable nature (in contrast to the garbage collection of
anonymous objects by the KAPSE).

a
ACKNOWLEDGEMENT

I gratefully acknowledge the support given by the Kennedy
Space Center/ Engineering Development/ Systems Integration
Branch in supplying the computer facilities for the feasibility
studies that provided the basis of this work. I also thank mY
wife, Bronwen Chandler, for her support.

REFERENCES

1. Burns, A. 1985. Concurrent Programming In Ada. Cambridge,
Great Britain: Cambridge University Press.

2 . United States Department of Defense. February 17, 1983.
Reference Manual for the ADA Programming Language.
ANSI/MIL-STD-1815A-1983. New York, New York: Springer-
Verlag.

3. Johnson, C., 1986. ItSome Design Constraints Required for
the Assembly of Software Components: The Incorporation of
Atomic Abstract Types into Generically Structured Abstract
Typestt, Proceedings of the First International Conference
On Ada* Programming Language Applications For The NASA
Space Station, E.l.l.

B. 4.3.10

A Computer- B as ed S p e ci Fic a t io n M et h o d o I o g y

Robert G. Munck

T h e M I T R E Corpora t ion
Bedford , MA 01730

Miinck@MITR E- Bedj0rd.A RPA

ABSTRACT
I t is becoming clear tha t our s t anda rd way
of wr i t i ng spec i f ica t ions -- requircmcnts,
dcsign, test, a n d o the r types -- is
i nadequa te f o r large, complcx. a n d long-
l ived systems. T h e process by which thcy
a r c c rea ted is uns t ruc tu rcd a n d o f t en
cursory , a n d t h e resu l t ing papcr documents
a r e bulky , vague, inconsistent, a n d
d i f f i c u l t to publish. d i s t r ibu tc . a n d updatc.
Wc are cspccially bad a t wr i t ing under -
s tandable , consistent, a n d suf f ic ien t ly-de-
tailed requi rcmcnts specifications.

Pa r t of t h e problem conics f r o m t h e
shor tcomings of wr i t t en English a n d the
essentially lirienr scntcncc /paragraph/chap-
tcr s t ruc tu re of specifications; i t has been
aggrava tcd by widcsprcad use of word
proccssors t ha t suppor t no th ing but text.
Tcx t will always bc a pa r t of
spccifications. but thcrc a r c o ther fo rms of
csprcssion tha t can bc morc su i tab le for
o t h c r 2 a r t s : da t a - f low, SADTIRoSS751. a n d
Buhr! C H R 8 4 1 dia r i m s non-lincar tcxt or
*' h y p c r t c x t ,"[" AN 701 s p r c a d s h c c t -
suliportcd tablcs, char t s , a n d graphs,
n n i m:i t ion ol' a lgor i thms a n d proccdurcs.
gcoinctric niodcling. and voicc a n d vidco
proLcssing. Al l of thcsc bcconic viablc
possibilities i n thc high-capacity. display-
o r i c n t c d works ta t ions of thc proposcd
Space S ta t ion Da ta hfanagcmcnt Systcm.

. I 1:c usc 01' cxotic, "high-tcch" prcscntation
riicil i3 i n spccil ' ii3tioiis w i l l not
rcu toni : i t i<31ly makc thcm casy to producc
and undc r s l and ; i t is niorc impor tan t that
thcrc bc a rncthodology fo r c rca t ing thcm
that cmphasizcs corrcclncss a n d c la r i ty of
prcscnta t ion , a n d which suppor ts
coopcra t ivc work ovcr a nctwork. T h c
most complctc a n d niaturc such
mctt1odotogy is Sof.I'cch*s S A D T ~ ~ . S A D ~ r
is un iquc i n thc ani'>unt of a t tcn t ion i t
p a y s t o thc w a y pcoplc work togcthcr a n d
:IS individu:iIs an t1 i n i t % I':icilitics fo r
s j)cL i 1' y i n g r cc l u i r c iiic i i I
:I I I !' pa r t i i u I :i r i iti 1) I c i t 1 c n I ;I I i 0 1 1 .

i 11 d c' p c 11 tl c 11 t o f

- I 1 4.4. I .

OetlGlNAL PAGE fS
ff mi? QUALITY

SADT's most widcly-uscd componcnt is t h c
h ie rarch ica l box-and-ar row d iag ram
notation. I n t h c fu l l methodology, t h a t
notation is suppor tcd by a n " in f r a s t ruc tu rc"
of proccdures, formats . protocols, a n d
"ways of th inking" tha t makc i t possiblc
f o r many pcoplc to work foge lher on a Inrgc
projcct. For example, the Reader /Aut l ior
Cycle is a pcer rcvicw proccdurc tha t
emphasizes cons t ruc t ive c r i t i c i sm s n d a
disciplined cxchange of idcas. Reader Kits
a n d the i r associatcd K i t Files provide a
mechanism f o r working on par t of a
specification wi thou t losing sight of its
relationship to the whole A N D f o r t racking
the evolution of the spec i f ica t ion ot 'cr
t i me.

T h c papcr proposes a network-based s! s t c m
f o r writ ing, rcvicwing. a n d publishing
multi-mcdia spec i f ica t ions wi th tools a n d
proccdurcs based on SADT mcthodologi 1 1
envisions people a t universit ies. compantcs.
a n d N A S A sites a11 ovcr the world uorC,t i iS
togcther t o p rcpa rc a requi rcmcnts or
design spec i f ica t ion a n d discusscs rhc
possibility of semi-automat ic con \c r s ion 0 1
such a spec i f ica t ion to Ada1 code,
cur ren t ly undc r invcstigation a t \ I 1 T K
T h e computc r -bawd S A D T tools d e \ c I c t).J
i n that projcct wi l l bc dcscrtbcd

1 Everybody's Talking

Natu ra l languagc has cvol\ cd o \ c 'r I hi.
niillcnnia a s ou r most powcrl 'ul tool. i11. i i
which t r u l y scpara tcs us f rom aniiii31s
t lowcvcr , i t is bcconiing appnrcn t 1 h 3 1
"wr i t tcn English" using t rad i t iona l (o r i n ,
a n d mcdin (chaptcrs a n d paragraphs . ~ ' : i p c ~
a n d ink) i s insuf f ic icn t to coniniutiic:iii '
vc r y In r gc, com plc x I y - i n t c r r c I :i t cd c o n i i- 1) I ,
of a modcrn computcr-b3sCd c l c c t r o n i ;
syslcni. 7'0 put i t ano thc r w:i!', o u r
_ _ _ _ _ - _ _ - _ _

1 A d a IS a r c g i s t r r d tra.tcn!ark of the t!iiitr,i J::,i,..;

(: ~ ~ v e r n r n e n t (A i i : r J W I I I I'rofirArn Office)

spec i f ica t ion documen t s v a r y f r o m

they are supposed to do.
"unsa t i s fac tory" to "horriblc" i n do ing w h a t

1.1 Words in a Row

Writtcn Engl i sh (or t h e language of your
choice) is esscnt ia l ly t h e spoken f o r m
t rans la tcd f r o m s o u n d t o ink pa t t e rns on a
word-by-word basis and la id o u t i n l inear
form. A s such , i t makes m a n y of t h e same
assumpt ions as speech; f o r example,
p ronouns a r e based on t h e assumpt ion tha t
t h e l i s tencr has a high-speed shor t - te rm
mcmory t h a t c a n ma tch 3 pronoun to thc
last ob jec t named , thus r educ ing repeti t ion
of namcs. Unfo r tuna te ly . i n technical
wr i t i ng t h e use of p ronouns is
ovc rwhc lmcd by the grca t numbcr of
objccts need ing to be namcd. Names of
th ings a r c t h e r c f o r e rcpca ted over a n d
over , a n d a r e o f t e n long proper noun
phrases con ta in ing scvera l cap i ta l ized II

adjcc t ivcs a n d adverbs . T h c rcsult ing text
is much l ikc a r03d con ta in ing f r cqucn t
pot h ol c s a n d bou Id c rs.

Graph ica l languagcs such as SADT boxes-
a n d - a r r o w s a n d Buhr d i ag rams rcducc thc
nccd to repca t namcs by usir.g two

d imcns iona l rcprcscnta t ion of wr i t ten text.
T h a t is, a n objcc t c a n bc associated wi th
th ings above , bclow, right. a n d lc f t of i t ,
not just to t he lc f t . SADT also generalizcs
rhc)ioio1 - verb - objecf scntcncc s t ruc turc
ol' English in to t w o dimensions, thus bcttcr
3 p p r o x i m a t i n g thc w a y pcoplc t h i n k . I n a
iiiiiplc csanip lc , thc S A D T I'ragm:nt

'dirncnsions instead of t he l incar onc-

I C , t h c cqu iva lcn t of thc English " w i i u - 1 is
~ , ' l h c c l to makc w i i 1 1 - 3 as controllcd by

noun-2". A morc complex example , wh ich
demonst ra tes t h e gcnera l iza t ion , is

I1
1 ¶

1 I t --.
which says "rroirn-1 is verb-l'ed to make
tioirti-5 as controllcd by thc tioirt~-3 aspcct O f
troirti-2; tioun-5 is verb-2'ed to ma kc rtoir/i-6
3s controlled by the troioi-4 aspcct of
tioutr-2". A somcwhat morc real cxamplc:

.,.rhiI .I-*.
c1

Put in to English, it says (appioxim3fc lp) :

T h e s t a r locator image is
used to de tec t d r i f t by using
the dcsircd h a d i n g f r o m the
o rb i t clcments to ca1cu13tc 3
d r i f t vcctor. T h e d r i f t
vcctor is then used to
computc a cor rcc t ion f r o m i t
a n d thc s teer ing j c t a n d mass
dis t r ibu t ion d a t a f r o m the
orb i t clcments da t a .

A complctc SADT d iag ram, such as this:

- 13.4.4.2 -

,-odrl structure
c

Might t r ans l a t e i n to a pagc or more of normal tcxt. T h a t tcxt would bc a s rcadablc or
unrcadab lc 3s tcxt specifications normally arc.

T h e d i a a r a m s shown abovc all havc
activiti;, actions, o r verbs i n thc i r boxcs
a n d da ta , t.hiygs, o r objccts as thc i r arrows.
T h c r e a r c In t a c t f o u r k inds of d iagrams,
of which thcsc a r c only onc, callcd t h c
Activity Diagram, T h c r c a r c also Data
Diagrams, S t a t e Diagrams, a n d Trans i t ion
Diagrams. Da ta diagrams, i n which thc
a r rows a r c activit ies, a r c s imi la r to thosc
d r a w n i n Data Basc dcsign a n d Objcct-
Or icn tcd Dcsign. S ta tc a n d Trans i t ion
d i ag rams a r c uscful i n rcal-t imc systems.

1 .2 \ \ 'hat It's A l l About

F u n i 3 n comniunicntion i5 bnscd on thc f a c t
t h l t wc h:ivc n vocabul3ry i n conimon wilt1
c3ch o thc r . Unfor tunntc ly , t h a t com-
monal i ty is on ly approximnlc; wc can ncvcr
bc cn t i r c ly ccr ta in what soniconc clsc
mcans by "rcd" or "big" or "Multi-niod:iI
Phascd R a d a r Ar ray Scrixl Intcrfacc."
Tcc h n ica I spcc i f ica t ions cn n bc
cha iac t c r i zcd a s a scnii-ordcrcd sct of
tcrmS a n d thc dc f in i t i ons of thosc Icrnis - -
i n thc u l t imatc thc cn t i rc spccification is a
d c f i n i t i o n of its titlc. T h c problcms that
arisc inc ludc mul t ip lc a n d conf l ic t ing
dcf in i t ions , thc dcf in i t ion of a tcrm bcing
" f a r : i \r,ay" f rom its ur:igc :\lid d i f f i cu l t 10

f ind , a n d multiple tcrms hav ing the snnic
dc f in i t ion.

Dcf in i t ions of tcrms o f t e n thcr.scIvcs
conta in terms tha t nccd dc f in i t i on . SAl1 . I '
USCS thc h ic rarchy result ing f rom this ; I \ i t , ,
o rganiza t iona l backbonc. Each bos on :I
d i ag ram conta ins a word o r tcrni t h n : h : i b

some mcaning to t h c a u t h o r of thc
d iagram; i t may havc a d i f f c r c n t nic3niiig
to a rcadcr of i t . If t he a u t h o r f c c l s t h a t
rcadcrs might 1 , : t b c 3 d i f f c r c n t nicsning 1 . ~ ~ 1

3 box thaii \ : i s i- . tcnt or not know \vli: i i i i
mcans. h e crca tcs ;L ncw (c h i l d) dingr:ini
that "cxplains" o r "dcfincs" thc box i n
grcatcr dc ta i l .
that nccd f u r t h c r cxplana t ion nrc
thcmsclvcs cxpandcd in to di3gr:iiiis. t i i i l i i
a11 tcrnis i n n l l uncxpandcd boscs : i ic III

coni nion pa r I n ncc a n d u n a ni big u i) ti s.

Onc of thc s t rcngths of n a t u r a l I:ingu:isc I-,

tha t words can ha *c d i f r c r c n t iiic:iiiiiis\ 1 1 ,

difl 'crcnt contexts. Th i s rcduccs LI!. ~ C \ C I . I I
ordcrs o f ningnitudc the numbcr 01.
d i f f c r c n t words wc nccd. t lorvc\ 'cr ,
spccification wr i tc rs o f t en attciiipt t o S I \ c
ccrtnin impor tan t words rigid dcl'iiiiIit)iis
fo r a11 contcxts, placing thosc dcf in i t io i i r
i n a glossary. Thosc rcading [ti ,

spccificntiori m u s t . i n c f f c c t , iiiciiiori7c t h i .

Boxcs on thc chilti ~ ~ . I ; : I . I I I I

- B.4.4.3 -

entire glossary for t h e duration of the i r
reading; o the rwise t h e y will h a v e to f l i p
back and f o r t h to it cont inuous ly , w i t h no
w a y to k n o w i f t h e y need t o look up a
par t i cu la r word. In SADT, t he re is a n
ind ica t ion on e a c h box if i t is expanded.
Boxes on d i f f e r e n t d i ag rams con ta in ing t h e
same word or ph rase m a y have t h e same o r
d i f f e r e n t expansions. T h i s is t h e SADT
equ iva len t o f t h e common not ion tha t a
word o r ph rase m a y h a v e d i f f e r e n t
mcanings when used in d i f f e r e n t contexts.

1.3 SADT Media and t h e Message

S A D T was or ig ina l ly designed f o r use wi th
n o compute r suppor t ; a tcam having
s t a n d a r d o f f i c e suppl ies nnd a copicr could
c rca t e very largc, very high-quality
spcc i f ica t ions . I n f ac t , users tcndcd to
rcsist h a v i n g the i r d i ag rams cvcn typcd o r
typeset; a d i a g r a m produced wi th a good
pen, a s t ra ight -edge or f lowchar t t cmpla te
(f o r t h e c u r v e d corners), a n d legible
h a n d w r i t i n g sc c m cd mor e "co m f o r t a b 1 e."
An ea r ly a t t e m p t to coniputerizc the
product ion of d i a rams using a timc-sharcd
niainframelS"lTHafi was unsa t i s fac tory d u e
to slow rcsponsc t ime.

Dcspite t he power of thc S A D T f i l i ng a n d
3r:hivc sys tcm (discusscd later), large a n d
long- te rm pro jcc ts found the main tcnance
of 3 l a rge sct of d i ag rams (thousands) to bc
burdcnsomc. For tuna tc ly , the pcrsonal
conipu tcr has now bcconic powcrfu l enough
to suppor t SADT, a n d i n f a c t is proving to
bc a n cxtrcrncly valuable addi t ion . Thc rc
a rc a t least f o u r announccd or
S A D T sys tems on the

7 hc S,1da~MUh'CK851 systcm, irnplcmcntcd by
rhc a u t h o r as a n l R & D projcct a t h l l T R E .
runs on a n I B M PC or cquivalcnt. A
i ~ t i s f a c t o r y systcm w i t h thc ncccssary
graphics a n d tclccommunications can bc
bought f o r $2500 ha rdware Costs; a "supcr"
ibstcrn w i t h a big color display a n d laser
pr rn tc r might cost $ l O , O O O .

lnnncd

2 The Way We Work

1 lic : ~ b o v c discussion has shown 3 f cw or
l l i c ii1:iny ways t h a t S A D T niakcs it
~) o ~ ~ , i l) l c t~ have a rcadablc. undcrs tandablc

technica l spec i f ica t ion . In genera l , i t docs
SO by re lax ing or genera l iz ing English
grammar , sen tence a n d p a r a g r a p h
s t ruc ture , and t h e d iv is ion i n t o sections,
appendices, glossaries, annexes , a n d
volumes of no rma l spec i f ica t ions . W i t h
SADT, t h e most complex sys tems t h a t wc
a r e capable of bu i ld ing cnn be spcc i f icd
unders tandably . Among the most complcx
system spcc i f icd in S A D T to d a t e is thc
f inanc ia l system of the Dcpar tmcn t of
Energy. T h c complc tc spcc i f ica t ion took
more than 25 analys t -years to wr i te a n d ,
pr in ted doiible-sidcd, was cvc r t w o fcc t
thick. Bccause i t was done on papcr bcforc
computer suppor t was ava i lab lc , t hc
document is qu i t c i n t imida t ing by i ts shccr
mass, bu t still vastly p rc fc rab lc to a tcxt
cquiva lcn t .

Of course, thcre is n o f r c c lunch .
Spec i fy ing a complcx systcm wcll wi th
SADT takcs a grea t dca l of ha rd work b!,
traincd. cxpcr icnccd , smar t pcoplc. T h a t
work is made a s product ive a s possiblc b)*
o thcr f ca tu rcs of S A D T tha t dca l w i t h thc

These f ca tu rcs minht bc callcd thc
pcoplc work togcthcr a n d ind iv idua l ly .

"managcmcnt" or Gociological*# aspccts of
SADT.

2.1 Al l Toge the r Now

T h c crca t ion of spec i f ica t ions is usually 3
qu i t c chaot ic proccss i n most organiza t ions
A common f c a t u r e is t he "brainstorni
scssion" a t which a number of pcoplc
prcscnt idcas, argue. a n d f i l l b lackboards
with scribbling. At thc cnd , scvcral
par t ic ipants a r e chargcd wi th " w r i t i n g u p
the results." Howcvcr. thcy will cap tu rc
only thc last sct of idcas proposcd a n d not
rcjcctcd; o thcr good idcas d isappcar
forcvcr thc next t ime thc b lachboard is
crascd or ncvcr appca r bccausr thcir
conccivcr is abscnt o r doesn't comrnunisa tc
wcll i n noisy nicctiitgs. T h c basic idca o i
bra i ns t or 111 i ng is good: coni [ii J n ic3 t i n g
"ha l f -bakcd" idcas quick ly to othcrs N ho
can g r a b thc good oncs anci a d d the i r okvn
improvcnicnts. Wc nccd a bc t tc r proccss
a n d nicdium than thc noisy niccting and
black board.

S A D T includcs thc Hcader/Author Cycle t o
rcplacc this aspcct of wr i t i ng
spccifications. I t works a s follows:

- 1j.4.3.4 -

1. One analys t , ca l led t h e Author,
creates 8 smal l numbcr of diagrams.
H i s SADT t r a in ing tells h i m to l imi t
t h e d i a g r a m s to one major thought
or amount of i n fo rma t ion ,
approx ima te ly a half-day's work on
h i s p a r t t o c rea t e a n d an hour's
work t o read. T h i s a m o u n t is
typ ica l ly one pa rcn t d i ag ram a n d
th rce lo f i v e ch i ld diagrams. T h c
SAda d r a w i n g tool hclps h im crca tc
t h e d i a g r a m s us ing a mouse a n d
keyboard such t h a t his t h ink ing is
a b o u t t h e subjcc t mat tc r , not t he
mechanics of d rawing ; t hc rc is n o
nced to ske tch d i ag rams on paper
a n d e n t e r them in to the computcr as
3 sepa ra t e step.

d i ag rams in to 3 Render K i t a n d
sends t h c k i t to a small numbcr (1-4)
of h is c o l l c ~ g u c s , callcd Readers.
Thcse d i ag rams a r c t ransmi t ted by
c lcc t ronic mail a n d appca r in a "to-
be-read" d i r cc to ry i n thc Rcadcrs '
mac h i ncs.

3. Each Readc r rcads thc k i t wi th in
one work ing day . Hc writcs
comrncnts on the d iae rams with
a r rows a n d circlcs ind ica t ing whcrc
they apply . using the mouse a n d
kcyboard . S A D T Rcadcrs a r e
t r a incd a t g rca t lcngth to makc thc i r
commcnts cons t ruc t ivc a n d non-
thrca tcn ing; i n c f f cc t , thcrc is a
"codc of courtcsy" f o r wr i t ing
comments. Notc tha t t i x Author
docs not havc a l a r g e "psychic
invcs tmcnt" i n thc d iagrams; hc has
spcnt a ic la t ivc ly shor t amoun t o r
t imc crcn t ing thcm. T h i s contrasts to
thc d i f f i c u l t y of c r i t i c iz ing
sonicthing t h a t somconc h a s spcnt
wccks or months producing.
Kcadcrs who a rc also traincd to bc
Au thor s comincnt on thc fo rma t and
undcrs tandabi l i ty of thc d i ag rzms a s
~ c l l 3s thc i r tcchnic:il contcn t .

2. T h e Author asscmbles thcse

4 . Thc 1'c:idcr 1r:insmlts his conirncnts
back to thc A u t h o r .

5 . T h c Author ~ c n d s thc commcnts
f rom cach f<c:rdcr w i t h i n onc
working d:iy a n d writcs n rcply to
c:ich one. Ilcrc :\g:\in, t h c Author is

t r a incd t o wr i t e rep l ies t h a t a r e
cons t ruc t ivc a n d he lp fu l , no t
a rgumenta t ivc . While d o i n g this, hc
also makcs notes o n t h e d i ag rams
ind ica t ing changes to be madc t h : l t
t h c comments havc insp i rcd .
Cornmcnts, replies, a n d notcs a r c
over lays or windows t h a t can bc
a d d c d a n d removcd f r o m tnc
d i ag ram on the d isp lay ; on a color
d i sp lay , they a p p c a r in color.

6. T h c Au thor t ransmi ts each Rcadcr ' s
commcnts back to him.

7. T h c Readc r rcads the rcplics a n d
a d d s add i t iona l notes of his o w n .
T h e d iagrams, comments, rcplics,
a n d notes a r e added to his f i les.

8. I f necessary, the Au thor revises h i s
d i ag rams a n d sends them out a g a i n ,
s t a r t i ng ano the r cyclc. T h i s t imc,
howevcr, thc Readcrs havc thc
prev ious revision wi th the c o r n n i c n i ~
a n d replies. T h c y can thcrcforc
check tha t problems t h c y noticcd
have bccn f ixcd .

T h e Cycle is "kept going" in the manual
system by the L ib ra r i an , a c icrk t ra incd i n

S A D T proccdurcs. He does thc mcchani<al
tasks such as copying a n d ri l ing, a n d
makes s u r e tha t the par t ic ipants d o t i i c i r
jobs in the t imc a l lowed. In the computc r -
bascd systcm, no L ib ra r i an is nccdcd. J i i d

the par t ic ipants may bc Tar apa r t
physically on a looselp-couplcd nct A 01 h

T h e Rc3dcr, 'Author Cyclc h s s bccn s l i t ~ v . 11

to bc a n cxtrcnicly powcr fu l org: inizi i ig
in f lucncc on tcchnicnl work of a11 h i i i i ! j

Many organiza t ions t h a t wcrc c . ~ p o s c ~ 1 IO 1 1
t h rough S A D T t r a in ing n o w usc i r I 'LJ I iiiLl,):

or a l l o f thcir work, cvcn w h c n o(1ic.r
aspects o f S A D T a r c not invol\ .cd 1 1
appears to bc a good match to i h c i i c L ' J r

a n d organiza t ion of N A S A .

Whcn uscd wi th t h c "codc of cour t c sy" : 1 i) d

o thcr aspccts of SADT, t h c Cyclc briny.;
ou t thc bcst, most c rca t ivc thoughts 01' i h c
participants. rcduccs conf l ic t , a n d c a p t u r c b
thc proccsscs by which dccisions a I c i i i : i dc~

not just thc i r rc.sults. f'coplc w h o 11:i\c
workctl on suc.x!ssfu! S A D T projccts I C I ~ ~

11.4.4.5 -

0 t o urge o the r s to use i t w i t h t h e fervor of
rc 1 i g ious converts.

2.2 I n Organ lza t lon T h e r e is S t r e n g t h

W c h a v e men t ioned t h e two-dimensional
aspcct of d i a g r a m s and l a t e r a t h i r d
d imcns ion , t h a t of expans ion of boxes in to
d iagrams. T h e r c is also a dimens ion of - timc, i n w h i c h e a c h d i a g r a m has a poin te r
to t h e d i a g r a m t h a t i t rcplaced a n d to t h e
one t h a t rep laced it, a n d notes by thc
a u t h o r exp la in ing w h y i t was replaced.
T h c resu l t is a f a i r l y complcx d a t a
s t ruc tu re , b u t o n e t h a t proves easy to
n:lvigate w i t h t h e r igh t computer support .

A s ingle set o f d i ag rams related
h ie rarch ica l ly , s t a r t i ng f r o m 3 single "top
Icvcl" d i ag ram, is called a model. A modcl
is a top-down exposit ion of a single aspcct
o r p a r t o f t he sys tcm as seen f rom a single,
st3tcd v iewpoint . For cxamplc, wc might
havc modcls of 3 single ins t rument f rom
viewpoin ts such 3 s a uscr. a main tcnancc
tcchnic ian , a programmcr , a tclcmetry
systcm, a n d a powcr system. Each of thcsc
modcls will emphas ize the parts tha t a r c
impor t an t f r o m i t s givcn viewpoint a n d
t v i l l t a v c poin tc rs to o thc r modcls f o r
o thc r par's a n d to modcls of o thcr aspects
of t he systcm to which i t is rclatcd.

0

3 Make it Run

As done on papcr , a n SADT spccificntion
c a n bc a n cx t rcmcly rcadablc docurncnt,
1c:icling to ,iiuch bcttcr implcmcntation. I n
t h e computcr -bascd systcni, thcrc a r c cvcn
111 o r c poss i b i 1 i t i cs:

- A niodcl of thc ac t ;v i t ics o f a
p r o j c c t , w i t h cstiniatcd timc a n d
i i ixnpowir : i t t 3~ l i cd to tach box, cnn
bc ana lyzcd b y thc machinc to
dc t c rminc a schcdulc a n d indicatc
u h i c h ac t iv i t ics a r c on thc cri t ical
p:ith. T h i s projcct modcl can bc
m:iintaincd b y thc program o f f i cc a s
[tic m:istcr projcct schcdulc. with
poin tc rs f r o m cach box to thc
cu r rcn t st3tus rcport f o r that
ac t iv i ty . Oiic would bc ablc to
rcvicw progrcss inforninlly a n d

convenient ly by browsing th rough
t h e model.

- A modcl of a piecc of s o f t w a r e can
havc execut ion t ime a n d resource
use es t imates a t t ached to cach box.
I t c a n then be "executed" a s a s imu-
la t ion o red ic t c r f o r -
manCe!BSCHERT81P T h e s imula tor
could "animate" t h e modcl on a
g raph ic d isp lay as i t exccutcs. Small
rncters or bar c h a r t s could bc
a t tachcd to boxes a n d a r rows on thc
d isp lay to show cu r ren t valucs such
as processing rate, q u c u c Icngth,
f rcqucncy , a n d values of variables.

- A deta i led model of a piece of
so f tware can be c nver tcd into
skclcton Ada[Ada83y codc dcf ining thc
task structure. Each lowcst-lcvcl box
can then be coded by a n Ada
programmer (or the appropr i a t c
func t ion f o u n d i n a l i b ra ry) a n d
combincd wi th the skclcton to makc
a runn ing system. T h c SAda projcct
a t MITRE i s beginning to cxplorc
this possibility.

- A modcl could be conncctcd to it:
implcmcnta t ion , ha rdware o r
sof tware , by d iagnos t ic o r mctcr ing
probes. I t could then "run" in the
same way tha t thc simill3tor
an imat ion discusscd above d id . A
pcrson moni tor ing the systcm could
niovc u p a n d down bctwccn lcvcls of
detail .

- A dctailcd modcl m i g h t bc ab lc to
be convcr tcd mcchanisa l ly in to a
custom in tcgrz tcd c i rcu i t or piccc of
wnfcr-scalc in tcgra t ion . T h i s niodcl
niight also havc r u n a s a simul3tioi ,
or bccn convcr tcd in to runn ing A d s
codc.

Most of thc above sllggcstions have b c c n
tr icd i n onc way or anothcr . a n d 311
showed promisc. T h c t imc is r ipc to bcgin
work on an I r t / rasir i ic i~rrc~ or sirppori
cmiroiinic!ii on which the tools fo r wr i t ing ,
rca d i n g. a n d "c x c rc is i n g" co 111 p u t c r - b3 sc d
spccifications can bc in tcgra tcd . I t is cIc;ir
tha t such spcc-wr i t iiig suppor t
cnvironnicnts would h3vc a grca t dc31 i n

* U.4.4.6 -

common w i t h p rogramming suppor t
env i ronmen t s , t o t h e poin t of both be ing
p a r t o f a s ingle l a rge r system.

4 Conclusion

S t a n d a r d prac t ices f o r c r ea t ing a n d using
sys tcm spec i f ica t ions a r e inadequa te f o r
large, advanced- technology systems. We
nccd t o b rcak a w a y f r o m papcr documents
i n f a v o r of documen t s t h a t a r c stored in
Computers a n d wh ich a r e rend a n d
o the rwise used w i t h t h e he lp of computers.
A n SADT-bascd systcm, runn ing on the
proposed Space S ta t ion d a t a management
ne twork , could be a powerfu l tool f o r
do ing much of t h e requi red technical work
of t he S ta t ion , inc luding crca t ing a n d
ope ra t ing the ne twork itself.

References

[Ada831 U.S. Dcpar tmcnt of Defense
Reference Manual f o r t h e Ada
Programming Language,
ANSI/MIL-STD-18 1 SA- 1983.

[BUCHERT81]
Buchcrt. R.F., K . H. Evcrs. a n d
P. R . Santucc i , "SADT/'SAINT
Si rn u 13 t i o n Tcc h n iq u c," Natiotral
Aerorpace atrd Electrotrics Coir J .
Proc , 1981.

[B U IH R 841
Buhr, R.J.A, S y s t e m Design With
A d a , Prcnticc H a l . Lnglcwood
Cl i f f s , NJ, 198d

[CO XI ll E L I C7 81
C o rn b c I i c , D . , " Us c r E x p c r i c n c c
w i t h Ncw Sof twarc Mcthods
(S A D T) , " Proc . .VCC, Vol. 47,
1978, pp. 631-633.

[MUNCK 851
Munck, R, "Toward Large
Sof tware Systems tha t Work,"
AIAA/ACM/NASA/IEEE
Computers in Aerospace V Proc.,
Oct. 21-24, 1985.

[ROSS751 Ross, D., a, S A D T Sf ruc tu red
Analysls a n d Deslgn Techn ique
Author Guide , SofTcch , Inc.
6490-1, Octobcr , 1975, Waltharn,
MA.

[SAIB85] Saib. S., "A Lifc-Cyclc Env i ron -
me n t ,* A I A A / A C M / N A SA / I E E E
Computers in Aerospace V Proc.,
Oct. 21-24, 1985.

[SMITH8 I]
Smi th , D.G., "Intcgratcd
Computer -Aided Ma n u fac t u r i n g
(ICAM) Archi tcc turc Par t I 1 - -
Automated IDEF-0 Devclop-
ment," N TIS BO62454-BO52459.
August, 1981.

van Dam, A, a n d D.E. Kicc,
T o m pu tc rs a n d P u bl ish i n g:
Writing, Edi t ing , a n d Printing."
Advances in Computers,
Academic Prcss, Ncw York,
19'0.

[VAN DAM701

- B.4.4.7 -

Biography
Robert hlunck rcccivcd a n AB i n coniputcr
science f r Q m Brown Univcrsity. I n tuc:i i i \
years i n t he f ic ld , hc has taught 3 t B r o u n
a n d workcd a t SofTcch , Prinic Conipurcr.
the Naval Rcscarch Lab, a n d MITRE,
whcrc hc is prcscntly wr i t i ng 3 C A l S
opcra t ing systcm i n Ada for thc Intcl
80386.

- w . 3'3 - 6 /

4
TOWARDS A D O C U M E N T S ' I ' R U C T U R E EDII 'OII

FOR

S O F T W A R L R E Q U I R E M I - N T S A N A L Y S I S

Vincent J. Kowa'ski and
Dr. A n t h o n y A . Lckkos, University of I l o u s t o ~ l

Clear Lake
1. Introduction

Of the six or seven phases of the software engineering ide cycle, require-
ments analysis tends to be the least understood and the least formalized. cor-
respondingly, a scarcity of useful software tools exist which aid in the develop
ment of user and system requirements.

in a seta' documents similar to those that usually accompany a delivered
softwa~~product. We present the design of a software tool, the Document
Structwe Editor, which facilitates the development of such documentatlon

may be defined as the phase of software development in which the require-
ments of the user of a pmpoaed software package are identified in a precise,
complete and lq icalb coherent manner [6,i7. System constraints that result from
the target hardware i s well as nortfunctbnal constraints such as budget, time.
and human reaurces must also be a p m of a complete requirements analysis

that appear frequentty in the literature are:

In this paper we propose that requirements analysis should culminate

The requirements analysis phase of the software engineering life cycle

Two approaches to the problem of representing software requirements

- natural (textual) language approach [lo, 12)
- formal representation approach [3, 5, 9, 12, 191

The first of these attempts to specify requirements in a manner that is easily
developed m d understood by humans. It has the disadvantage that it fliay
give rise to logically incorrect sets of requirements. The second approach,
though it prevents logical inconsistencict, has as its main drawback tne fact
that r3 formal language must be used. ' I his is riot necessarily a desirable srtu-
ation since user requirements are best provided by usem, not programmers.

Sevcral software packages are spoken of as aids to the requirements
aridyeia phase of the ooftware engineering life cycle. A list of eome of the
more well-known of these packages is the foi,>wing:

- PSUPSA (211
- SREM [17, 181
- SADT [I 5, 161
- SSA [SI
- HOS [2, 131
- GIGt 111

A close examination of the above toote ha8 revealed that they are more suitably
ch88ified a8 progam design and etmcture tools. Though the design of code ia
an essential phase in the software engineering life cycle, it is most appropriatety
thought of 88 largely independent of requiements analysis.

Finally, the relative importance of good requirements ana!ysis is the mo-
tivation far this work. Several studies have shown that the further a software pro-
ject is along in the software engineering life cycle, the more difficult and costty

is to fix bugs, make changes, and add new requirements [4, 111. As we have
found, requhments are a difficult part of software development because of the Ipck
of automated tmte that specifically aid requrements generation and maintenance

2. Document Structure Editor

2-1 Purpose and Goals

7 die complete set of documentation that in general accompanies a d&
livered software package provides a very complete set of requirements for
that software package. Such documentation is, however, usually developed af-
ter the code for the package has been designed, implemented and tested. Ex-
amples of such documentation include:

- General Information Manual
- User Manual

- Language (or Command) Reference
-Guide
- Tutorial

- Syatem Requuernents Document

The general goal of the Document Structure Editor is to provide an aut*
mated software tool for the development and subsequent management of &e
umente such as those listed above. The most important feature of the DSE
t8 that once the general structure of such a document is determined it may be
stored as a Template for use in the generation of other similarly structured doc-
uments.

8.4.5.2

2.2 Syaem Overview

The Document Stucture Editor system is depicted in Figure 1. At the high
est level of the system are the users. Next, the users' interface to the system
cOns*kta of a set of commands supplied by DSE. This interface may be taylored
to a user's particular needs and in essence each user has his or her own inter
face to the DSE. Commands are interpreted at the next lower level in the system.
These commands invoke any combination of the lowest-level components of the
+em. These lowest-level components are:

- Stmcture file

- Panel Primitive13 - Text / Graphics Editor

- OBMS

The Structure File is the internal data structu~e that reflects the structure of a given
document. In most cases, this sbucture will be hierarchical. The DBMS ia used
for archival of document Templates and the data associated with particular +
uments. Panel Primitives are the software packages in the DSE which perform
the necessary mappings between the Structure File and a particutar CRT or
workstation. Finally, the Text I Graphics Editor is the means by which a user
enters data (text and digitized p p h ' m l objects) into the DSE.

2.3 Bask Terminology

Below are listed the definitions of terms defined in the Document Stucture
Editor Several of the terms defined below are illustrated by Figure 2 Fgure 2
is an example of a document or Template stored in the DSE. ft should be noted
that the document is divided into parts, which are further divided into chapters.
which in turn are divided into sections. This structure ia typical of most technical
wrrting and IS easily developed and stored by the DSE

R . 4 . 5 . 3

..

Topic The atomic unit of a document. A Topic consists of a
Heading and a bdy. In actual documents, a Topic may
be thought of as a generic term for parts, chaptere,
sections, and wbsections.

Heading This is a line of text that comes at the top of a Topic.
A Topic must have a Heading. In a real document,
a Heading may be a title, the name of a chapter or
the like.

Level

Depth

The Body is the content portion of a Topic. A Topic
does not need to have a Body (ahhaugh the DSE
reserves space for a Bocly in every Topic).

The Level of a Template is how far up or down in a
document's hierarchical sttucture you are. For ex-
ample, the title d a textbook is its 0th Level, the parts
are its 1st Level, the chapters are its 2nd Level, the see
tbns are its 3rd Level, the subsections are its 4th Level
and so on.

Given a Level, how many Levels are contained with
in it. If we talk about a document (or Template) that
has a title, chapters, and sections, the Depth of the
Level that corresponds to the title is 3 (you include
the Level you are loding et).

Breadth The Breadth of a Level is how may Topics are cow
Mined within that Level. In other words. i f Template
has five chaptere and the Level being considered is
that which corresponds to chapters, that Level has
a Breadth of 5.

Template This is the sum total of all the Topics and their assgned
Levels-the total document under development.

0 . 4 . 5 . (4

Menu

Prof ita

Command
-Line

A Menu is a special Command available to u s m of the
DSE. Menu is used to build selection menus and may
be invoked by a Profile or a User-Defined Command.

h f i l e s are user-written files that consist of DSE com-
mands and systemrelated commands. A profile is ex-
ecuted when the DSE system is entered at (or enters)
some particular point. For instance. when a user bgs
on the sytem. the User Profile is immediately executed.

The typinqin of DSE or User Commands is pertormed
on a space on the terminal screen called the Command
L h n & ~ R f N h ~ ~ ~ ?&fhfB$hWOc#RtGSfM€de@ C,

ae Line Commands

-

the Level yauare-laaktng et)

Breadth

Breadth

The Ekeedth 01 e Level 4 how may Topics ere con-
e , , - . ,f ,d,rtF4,. t l . * t 8. , I . 1 I,-. , . t k 2.). !,'-,?..le f f TpP.Pl,*f(

The Breadth of a Level ts how may Topica are con-
Mined within that Level. In other words, if Template
hae five chapters and the Level being considered is
that which corresponds to chapters, that Level has
a Breadth of 5.

Template This is the sum total of all the Topics and their amgned
Levels-the total document under development.

B . 4 . 5 . 4 P *

Menu

Profile

Cammand
-Line

Command
-User

Commmd
-General

Scroll

DSE

A Menu is a specie1 Command available to U S m of the
DSE. Menu is used to build selection mews and may
be invoked by a Profik or a User-Defined Command.

Profiles are user-written files that consist of DSE corn-
mands and systemelated commands. A profile i8 ex-
ecuted when the DSE system is entered at (or entera)
some particular point. For instance, when a user logs
on the sytem, the User Profile is immediately executed

The typiwin of DSE or U s e r Commands is pertormed
on a space on the terminal screen called the Command
Line. Commands entered in this fashion RE referred TO
as Line Commands.

A User Defined Command is similar to a Profile, except
that a User Defined Command may be invoked anywhere
in the system a Command Line is available. The User
Command consrsts of DSE and hast system commands
and is assigned a name by the user who writes it.

Commands are the means by which a user tells the
DSE what to do. Commands are the basis for the inter
face between :he user and the DSE system

Scrolling a Template is a feature of the DSE that allows
a user to view a Template as one continuous piece of text

Software that converts DSE or User Commands into
inatNctiona that the host computer understands

8.4.5. I)

StNcture
File

Currency

Command
-Key

A file that containa the Level information and hence the
Structure of a Template. tt is defined here for the purpose
of completeness.

The DSE "knows' what template or topic or whatever you
might be mfening to by keeping Current values for such
items. The currency is usually set using some Select
command.

A Key Command is an association (or mapping) between
a short key sequence and a DSE or User Command. These
associations are defined in a Profile and the last Profile
executed takes precedence over any previous Profiles
with r m to these Key Command definitions.

3. Related Efforts

In many respect&, storing the associated structure of a given document
is the logical next step for word processing software packages. Several com-
mercial packages have structure editing capabilities These packages gep
erally fall into one of two categories'

- Automatic Indexers - Outliners

Automatic indexing software usually is available as an option to many popular
word processors Outliners. on the other hand, have outlining of documents as
their primary purpose wrth limrted word processing capabilities Such packages
run on microcomputers exclusively In addrtion. the integration of the compo-
nents of these packages m questlonable (201

I3 . 4 . 5 .(,

z
,

Figure 1 .
0 . 4 . 5 . 7

i PRIMITIVES
I

BODY

1

n n n

ii jj -

LEUEL 3

Figure 2.

n . 4 . 5 . 8

Baker, R., Gist Final Report, Information Sciences Institute, University Of
Souther California, Feb. 1981.
Baas, J., "Higherorder computing generates high order business for
Cambridge Company," Mass High Tech, Jul. 23, 1984.
Bell, T., et al.: "An Extendable Approach to Computer-Aided Sof tWe
Requiements Engineering,'Trans. Software Eng., Jan. 1977.
Booch. G.. Software Engineering With Ada, BenjamirJCummings Publish
ing Co., Menlo Park, California, 1983.
Borgida, A., and Greenspan, S., 'Knowledge Representation as the B a s 6
for Requiements Specifications." IEEE Computer, Apr. 1985.
Fairley. R.. Software Engineering Concepts. McGraw-Hill Publishing CO..
New Yo&, 1985.
Freeman, P., "Requirements Anelyaia and Specification: The First Step,'
Advances in Computer Technology, Aug. 1980.
Gane C., and Sarsan, T., Structured Systems Analysis: Tools and
Techniques, PrenticeHall, Englewood Cliffs, N.J.. 1979.
Greenspan, S., et al., "Capturing More World Knowledge in the
Requrements Specification," IEEE Proceedings of the Sixth lnterrtational
Conference on Software Engineering. 1982.
Heninger, K. "Specifying Software Requrements ?or Complex Systems:
New Techniques and The? Application,' IEEE Transactions on Software
Engineering. Jan. 1986.
Jones, C.. Programmer Productivity, McGraw-Hill. New Yo&. 1986.
Levene. A., and Mullery, G., "An Investigation of Requirements Specification
Languages: Theory and Practice," IEEE Computer, May 1982.
Martin, J.. System Design From Provably Correct Consttucts, McGmw-
Hill, New Yo&. 1985.
Robinson, L., et al.. 'A Formal Methodology for the Design of Operating
System Software.' Current Trends in Programming Methodology. vol I.
Prentice-Hall, Englewood Cldfs, N. J., 1977.
Ross. D.. "Stmctured Analysis (SA): A Language for Communicating
Ideas," IEEE Transactions on Software Engineering, Jan. 1977
Ro3s. D. "Applcattons and Extensions of SADT," IEEE Computer. Apr ,

1985
Rzepka. W., et al., "Requirements Engineering Environments: Software
Tools for Modeling User Needs." IEEE Computer, Apr 1985
Scheffer, P., et al , 'A Case Study of SREM.' IEEE Computer, Apr 1985
Shaw. A , "Software Specifcation Languages Based on Regular
Expressions." in Software Development Tools. Springer-Verlag. Berlin.
1980.
Spezzano, C , "Unconventmal Outliners", PC World, Mar. 1986
Teichrow. D., et e l , 'PSUPSA: A Computer Aided Technque for Structured
Documentatlon and Analysis of Information Processing Systems." Trans
Software Engineering. Jan. 1977

13.4 .5 . 'J

&,C -3.J 2
DEC Ada* Interface to Screen Management Guidelines (SMG 1

Somsak Laomanachareon
Dr. Anthony A . Lekkos

University of Houston, Clear Lake

INTRODUCTION

DEC's Screen Management Guidelines are the Run-Time
Library procedures that perform terminal-independent screen
management functions on a VT100-class terminal. These
procedures assist users in designing, composing, and keeping
track of complex images on a video screen.

There are three fundamental elements in the screen
management model: the pasteboard, the virtual display, and
the virtual keyboard. The pasteboard is like a two-
dimensional area on which a user places and manipulates
screen displays. The virtual display is a rectangular part
of the terminal screen to which a program writes data with
procedure calls. The virtual keyboard is a logical structure
for input operation associated with a physical keyboard.
Other features included in SMG are input and outpuc
operations, control of asynchronous actions, optimizing
performance, and many more.

SMG can be called by all major VAX languages. Through
Ada, we use predefined language Pragmas to interface with

and Pragma SMG. They are Pragma Interface
Import-Valued-Procedure. In association with these Pragmas,
we also used the three other predefined packages: System,
Condition-Handli.ng, and Starlet. With these predefined
Pragmas and packages, we can put together another package
that contains all the procedure calls to SMG which allow Ada
application programs to access the SMG.

8 . 4 . 6 . 1

OlVorNAL PAGE 1s
OF)OOR QUALITY

e 1

The Screen Management procedures provide terminal
independence by allowing user to perform all screen
functions without concern for the type of terminal being
used and i f the terminal being used does not support the
requested function in hardware, the Screen Management
procedures perform the requested function by emulating it in
software. The important aspect of the Screen Management
Facility is the separation of user programs from the
physical device. For example, the user program writes to the
virtual display instead of the physical screen. The
separation of virtual operations from physical operation
allows the terminal-independent aspect to be realized.

Working with the SMG involves three fundamental
elements in the screen management model. First, a pasteboard
is always associated with a physical device. A pasteboard
can be either smaller or larger than the physical screen,
but each output device can have only one pasteboard
associcated with it. A pasteboard can be thought of as a
logical coordinate system where position(1,l) corresponds to
the upper left-hand corner of the screen. With this
coordinate system, the virtual display, described later, can
be placed anywhere and it may be partly visible on the
physical screen.

Second, a virtual display is a rectangular part of the
terminal screen to which a program writes data and
text. When a virtual display is associated with a
pasteboard, it is said to be pasted. When the display is
removed from a pasteboard, it is said to be unpasted. To
make a virtual display visible, you have to paste to a
pasteboard. Your program can create and maintain several
virtual displays and each display can be pasted to more than
one pasteboard at the time.

Third, a virtual keyboard is a logical structure for
input operation associated with a physical keyboard or it
maybe associated with any file accessible through Record
Management Services(RMS1. The advantage of using virtual
keyboards is device independence. The Screen Management
procedures maps the different of code seqnrnces into a
uniform set of function codes.

All the attributes associated with pasteboards, virtual
displays, and virtual keyboards that your program created
can be modified and maintained at all times. A virtual
display can be pasted, unpasted, and moved around a
pasteboard. Input and output of each virtual display is
independent of each other.

8 . 4 . 6 . 2

Text can be added, inserted, and deleted from a virtual
display. Their video attributes can also be altered. The
cursor position on a virtual display can be requested or set
to any position on the virtual display.

cursor position on a virtual display should not be
confused with the physical cursor position on the screen.
Although each virtual display has an associated virtual
cursor position, only the cursor position on the most recent
modified virtual display corresponds to a physical cursor.
Line drawing capabilities and control of asynchronous events
are also provided as well as support of Non-DIGITAL
terminals.

The

SMG can be called by a13 major VAX languages. In Ada,
predefined language Pragmas are used to interface with SMG.
Pragma Interface which allows Ada program to call subprogram
written in another language. A Pragma Interface has the
follszoing form

Pragma Interface (language-name, subprogram-name);

Together with Pragma Interface, the Pragma
Import-Valued-Procedure is specially designed for calling
system routines. System routines return status values using
the same parameter-passing as Ada uses for returning
function results. Some system routines also cause side
effects on its parameters. Ada treats a routine that
returns a result as an Ada function, but a function with IN
OUT or OUT parameters is not legal in Ada. Pragma
Import-Valued-Procedure allows such a routine to be
interpreted as a procedure in an Ada program, and as a
function in the external environment. Note that the first
parameter of the imported procedure must be an OUT parameter
passed value. The value is returned as function value. The
other parameters call be specified with the mode IN, IN OUT,
or OUT, according to the service routine parameters. For
example :

with System, Condition-Handling;

package SMG is

procedure Create-Pasteboard
(Status : out Condition Handling.Cond-Value-Type;
Pasteboard-Id : out Integer;
Output-Device : String := String'Null-Parameter;
ROWS, Colmns : Integer := Integer'Null-Parameter;
Screen-Flag : Boolean := Boolean'Null-Parameter);

U . 4 . 6 . 3

pragma Interface (SMG, Create-Pasteboard);
pragma Import-Valued-Procedure

procedure Create-Virtual-Display

Rows, Columns : Integer;
Display-Id : out Integer;
Display-Attribute,
Video-Attribute,
Char-set : System.Unsigned-Longword

pragma Interface (SMG, Create-Virtual-Display);
pragma Import-Valued-Procedure

(create-Pasteboard, ttSMG$CREATE-PASTEBOARDRD");

(Status : out Condition-Handling.Cond-Va1ue-me;

:= System.Unsigned-Longword"ull_Parameter);

(Create-Virtual-Display, llSMG$CREATE-VIRTUAL_DISPLAY");

... Other procedures
end SMG;

From the example above, the package System provides
types and operations for manipulating system-related
variables and parameters. The package Condition-Handling
provides VAX Ada types for VAX/VMS condition values as in
the above status parameter which is returned by a system
routine. Another package, not shown, is Starlet which
provides VAX Ada type, VAX Ada constants for symbol
definitions, and VAX Ada operations for calling system and
RMS services. The package Starlet is specially useful in the
application program which calls procedures in the SMG
package that use symbol definition, for example:

with SMG, System, Condition - Handling, Starlet;
procedure Screen is

Status : Condition-Handling.Cond-Va1ue-Type;
Screen-1 : Integer;

begin
... ...

.
SMG.Create-Virtual-Display

(Status,
Rows => 7,
Columns => 70,
Display-Id => Screen-1,
Video - Attribute => Starlet.SMG-M-REVERSE);

8 . 4 . 6 . 4

.

e
end Screen;

... ...
As shown in the example, all oatput in the virtual

display named Screen-1 will be in the reverse video.

With these packages and pragmas, we can put together a
package which contains all the Screen Management procedures
that we need. Then Ada application programs can use this
Screen management package to create and manage application
screens.

B . 4 . 6 . 5

r f A PROPOSED CLASSIFICATION SCHEME FOR ADA-BASED SOFTWllRE PRODUCTS

Gary J. Cernosek
McDonnell Douglas Astronautics Co.

16055 Space Center Blvd.
Houston, Texas 77062

(713) 280-1500

- Houston

1.0 UTROUCTIU

As the requirements for producing software i tho Ada* lan iage
become a reality for projects stach as the Space Station, a great
mount of Ada-based program code will begin to emerge. Although
this software will exist in Ada source code form, it will display
varying degrees of quality based on the manner in which it was
developed. In spite of the fact that Ada supports the most
modern and effective concepts of programming available, poorly
written programs can be created in Ada just as they have been in
previous languages.

Consequeatly, the term "written in Ada" could have many
connotations. The mere fact that a program exists in Ada source
code form does net imply to any degree that there is any more
quality in that product than would be if it were written in
FORTRAN or C. If the modern features of the Ada language are nnt
utilized to support the principles of software engineering, then
the entire motivation and justification for moving to the Ada
language will be defeated.

Recognizing this potential f0.r varying levels of quality to
result in Ada programs, what is needed is a classification scheme
that describes the quality of t i software product whose source
-ode exists in Ada form. This classification assessment would be
bassd on the overall process in which the software was developed,
as well as the characteristics and attributes associated with t21e
resulting source :ode produced. This provides an "after the
fact" evaluation, and thus will not directly support proper
development. However, the knowledge of the classification sc 'ht 'n i t '
may help in deterring bad development approaches and indirectly
increase the overall quality consciousness of Ada-based software.
development.

This paper proposes a 5-level classification scheme that atten1;St:
to decompose this potentially broad spectrum of quality of whi\.!.
Ada programs may possess. The numbcr of classes and their
corresponding names are not as important as the mere facT; t h a t
there needs to be some set of criteria from which to evaluate
programs existing in Ada. An exact criteria for each class i : >
nc?, presented in the paper, nor are any detailed suggestion? I.j!

_Low t,o effectively implement this quality assessment. The p a p c . : .
is merely intended to introduce the idea of Ada-based soft,w,ir-c-
classification and to suggest a set of requirements from which L,.,
bass further research and development.

* Ada is a trademark of the U. S. Government (AJPO)

B.4 .7 .1 .

2.0

The purpose of the Ada language can be viewed from two
perspectives. Technically, Ada was designed to strongly support
the goals and principles of software engineering. However, the
main influence driving the definition of Ada was economical. The
"software crisis" was recognized in the early 1970's and the
major cost factors were identified in software maintenance
activities. Therefore, Ada was designed to give the potential
for reducing software costa, Cost reductions start by providing
a common language that consequently requires less compiler
development and less programmer re-training. And as the amount
of Ada code developed increases, the re-use of verified software
components can further decrease development expenses.

Since the discipline of software engineering focuses on both
technical and economic issues, the Ada language must be used as a
software engineering tool and not merely as another programming
language. Ada will not automatically meet its purpose and goals
- it has to be used as it was designed to be used.

Therefore, it is unrealistic to expect that all software projects
developed in Ada will realize the many benefits that the language
has to offer. This is true not because the language is
deficient, but rather because there are many different approaches
to using any language. Several reasons why Ada may n o t be
properly used on initial projects are outlined below:

Technical - The education and training required to learn
how to effectively use Ada may be significant,
especially for individuals ..rithout previous exposure to
higher-level languages. Ada quality may suffer by
having improperly trained personnel pre-maturely work on
Ada development efforts.

Economical, - The initial costs involved in moving to any
new language are high. This characteristic may drive
decision makers to short-term solutions, such as code
translation approaches.

Political - Many organizations feel they are "locked"
into a particular programming language, and often the
machines that run their software. Even when Ada is
shown to be technically superior and actually cost-
effective, political influences can stifle attempts to
upgrade an outdated software development environment.

Inertia 1 - It is only natural for organizations to be
reluctant to change. Ada, as well as other advances in
computer engineering such as distributed processing, may
intimidate people who feel more comfortable with their
prc-sent . environment. This natural state of inertia
:,hould be accepted and effectively dealt with rather
t .han be a front line for personal hattles. e

B.4.7.2.

With these issues and many more to contend with, it is obvious
that most organizations will have to transition into an Ada
environment. As this transition is taking place (and possibly
thereafter), a varying degree of quality must be expected to
result among different development efforts. One way to measure
the progress of transition is to classify the quality of the Ada
software resulting from these efforts. The goal must be set to
produce only the highest level of quality in Ada software.
However, the reality must be recognized that it will be difficult,
to meet this goal in initial projects.

The suggested approach is to get started with Ada and do the best
job possible under whatever circumstances may exist. The
previously described road blocks should not prevent the
exploration of Ada. However, the learning curve must be steep
and be based on good sources of Ada training and education. Plr~c~r.
development habits must be broken and good ones must be created
and enhanced. And most importantly, engineers and managers h a v e
to encourage the training and use of Ada. Without both peer-
level and management support, effective transition to Ada will tx-
difficult.

The most important theme to understand and constantly keep in
mind is that the basis for "good" and "bad" rest. in the goals a r i d
principles of software engineering. Software engineering
represents the stable point of professional programming that C3r.i

separate quality standards from personal style and allows
concentration on issues above the language level.

Therefore, in order to measure the progress of transitioning t1.b

Ada, a software engineering-based classification method is
needed. This is also in accordance with the DOD-STD-2167
Software Documentation Standard, which has changed the emphasis
on Quality Assurance to Quality -ation .
classification scheme for evaluating Ada software quality is
presented in the next section.

A proposed

OCYOINAL PAGE ts
OF RXM QUALITY

0.4.7.3.

3.0 W s I F I W O N m H O D AND C-

Each of the classifications below are described with the
following format:

0 Classification level number: 5 (lowest) to 1 (highei-t)

0 Development Process Statement - phrase that references
tho approach taken in development:

00 Level 5 - "Translated To Ada"
00 Level 4 - "Coded In Ada"
00 Level 3 - "Programmed In Ada"
00 Level 2 - "Designed Into Ada"
00 Level 1 - "Engineered With Ada"

0 Description of the process in which the program source code
was created

0 Characteristics and attributes indicative of the
particular level of quality

Level 5 - "Translated T o Ada"
This lowest class of Ada software implies nothing more than the
fact that the program code exists in Ada form. The Ada code is
created by some type of code translation, either through a manual
and direct mapping performed by a human coding specialist, or by
an automated code translator. Level 5 classification is intended
for programs that have been previously developed in another
language and have been converted to Ada merely to meet a
requirement for the software to exist in Ada. However, programs
that have been properly re-structured or re-designed into Ada
have potential for a higher quality assessment.

The characteristics of Level 5 software include significant
maintenance problems due to lack of readable and understandable
code. None of the aesthetic qualities of the Ada language are
evident due to the absence of human engineering. Additionally,
the overall program structure i5 characteristic of the original
language's form and represents the most inappropriate and
ineffective use of the Ada language. A possible exception to
this evaluation is when an organization wants to escape the
previous language environment and allow 100% of its future
development and maintenance in Ada.

Level 4 - "Coded In Ada"

Although Level 4 programs arc humanly written in Ada, they lack
t h e basic quality characteristics possible in good Ada programs.
The development process is generally based on program development,
personnel that are not properly trained in utilizing the Ada
langzage and its support environment properly and effectively.

8 . 4 . 7 . 4 .

The approach to development is ad hoc with no basis on formal
software requirements definition and no documented design
Process. Level 4 developers incorporate coding semantics of
other languages into their Ada programs that are inappropriate to
Ada.

e

I .

Corresponding characteristics include abbreviated identifiers,
unstructured control features, and lack of effective problem
modeling and abstraction dt1.e to the absence of appropriate data
structures. Overall program design lacks modularity, utilizes
excessive amounts of global data structures, and fails to control
visibility of objects with the information hiding techniques of
package structuring. The characteristics of Level 4 software
defeat the purpose of requiring the Ada programming language for
program development. A possible exception here is to allow
developers to get started with Ada for hands-on training.
However, in this case, developers must learn proper Ada structure
very quickly.

Level 3 - ronrammed In Ada"

Level 3 represents the lowest acceptable criteria for justifying
the existence of software in Ada form. The developers are
properly trained in the basic principles of the language and know
how to effectively utilize its features for developing readable
and maintainable software. The software requirements are known
and understood with a significant amount of pre-implementation
thought going into the design of the program structure.

Level 3 programs have meaningful identifier names, use only
structured programming constructs, and accurately model real-
world objects with appropriate data structures. Program
structure is highly modularized with inter-module coupling
minimized and internal module structure strongly cohesive.
Packages are properly used to support principles of information
hiding, object encapsulation, and abstract data types.
Visibility of objects is strongly controlled, data is strc.ngly
typed, and use of global objects is strictly limited.

Level 2 - DesAgned In to Ada"

This level of quality concentrates on issues above the
programming language level. A software design approach is
adopted to properly define the structure of the modules of the
software system independently of the implementation details of
the target programming language. One or more design
methodologies may be used to create consistency and reliahilit,y
in the program structure. Since Ada directly supports the
principles of good software design, an Ada-based Program Design
Language (PDL) is very appropriate. However, the main idea is
that the software system is specified and verified to a large
degree prior to the implementaton phase, at which point problenls
a n d errors are much more costly to correct.

8 .4 .7 .5 .

The main characteristic of Level 2 software is that the overall
software system design displays a very understandable structure
that allows reliable modifications and enhancements. Software
design documents are produced as deliverable products prior to
Program source code development.
supported by automated tools that help verify interface
consistency and requirements completeness. The actual source
code programs resulting from the software design display all of
the quality attributes associated with Level 3 software.
Consequently, Level 2 software is more reliable, understandable,
and more easily adapted to new applications.

e
The design methodologies may be

bevel 1 - n w e r e d With A d c

This classification corresponds to the highest degree of quality
possible in Ada-based software. The software is created with a
comprehensive software life-cycle approach by developers who are
well trained and knowledgeable in the goals and principles of
software engineering. The main emphasis in the process is in the
distinction between the problem domain and the solution domain of
the computer-based solution. The requirements analysis phase of
development is utilized to fully understand the problem space and
to determine exactly wha2 the software is to do in the first
place. A variety of methodologies and technologies may be used
to ensure that valid requirements are specified up front and that
the associated costs and risks are reduced. The analysis phase
may include utilization of techniques such as rapid prototying
and higher-level applications generators for defining and
refining user interface and system requirements, and for
generating feedback from the user community. The remaining
phases of design, implementation, testing, and debugging are all
in the solution space of the development process and are
concerned with how to meet the requirements specification.
Software that is engineered with Ada strongly supports the goals
and principles of software engineering. Analysis is the main key
to understanding which components of the software design actually
n e e d to be developed from scratch and which ones can be satisfied
by existing reusable components. A very coherent and useable set;
of documentation is produced in the engineering process relating
to the various phases of the life cycle, a s well a5 documentation
applicable to all phases of development. The concept of a
project data or object base is realized and implemented for
accurate control and accountability of personnel, products, and
organizational information. Automated support tools are
effectively utilized throughout all forms of development to
increase productivity, support proper and disciplined
development, and to reduce the manual effort required from
software developers. And finally, an intense concern for
maintainability is prevalent throughout all decision-making and
phases of development.

8.4.7.6.

It is difficult to assess the quality of Ada code that is
automatically generated from a higher level of specification.

quality rests in the question of what level of specification will
the software be maintained at. If it is strictly at the higher
level of requirements or design specification, then the actual
source code generated will not be visible to the human progammer,
and thus its structure will not be of great significance.

human analysis and subsequent modification, then the level of
quality will be directly related to the same factors associated
with well-engineered and manually-written Ada programs.

Therefore, in this latter case, the attractive process of
generating Ada source code from a higher level of specification
must be designed such that the corresponding characteristics and
attributes associated with the resulting code coincide with those
indicative of well-written Ada software developed directly by a
hurr.9 programmer. The degree of quality associated with the
hia.er-level specification will consequently be based on the
degree to which the automatically generated code displays the

However, if the resulting Ada code will be subject in any way to

good human engineering principles needed for understandable and
maintainable software.

0

0 .4 .7 .7 .

e 5 . 0

The usefulness of tho preceding classification scheme for Ada-
based software is highly dependent on a more precise and tangible
definition of criteria for each class. Although this level of
detail was not given, the taxonomy proposes a starting point from
which to base futher analysis. The main idea of the paper is to
create an awareness of the potential problems to expect When
transitioning to a new programming language such as Ada. The Ada
language alone cannot solve the problems currently prevalent in
large organizations such as NASA in which software costs are a
significant portion of the budget. Ada, and its corresponding
support environment, merely provide the best available set of
tools which support and encourage the adherence to the provcn and
solid principles of software engineering.

The mandate for the Space Station Program to move into the "Ada
culture" will be totally ineffective if engineering principles
and corresponding methodologies are not properly utilized.
Obviously, education and training will be essentia!. for
developing a smooth transition into the software engineering
discipline. The spectrum of potential Ada software quality
classes presented here can help create and maintain the awareness
and importance of viewing software engineering as a true
engineering discipline. This recognition will be essential for
the success of the up-coming proliferation of Ada-based software
projects in the Space Station Program. 0

0 .4 .7 .8 .

i
COMMISSION

OF THE
EUROPEAN COMMUNITIES

INFORMATION TECHNOLOOIES
AND TELECOMMUNICATIONS

TASK FORCE

/
The S t a t u s o f Ada i n Eu-
Or M i k e W Rogers
a t I n f o r m a t i o n T e c h n o l o g i e s and Telecomms Task Force
Commission o f t h e European Communities
A25 5 / 1 5
200 Rue de l a LO1
81049 B r u s s e l s
Be l g i um

31.3.86

There a r e c u r r e n t l y n o b e t t e r cand ida tes f o r a coo rd ina ted , low r i s k
s y n e r g e t i c approach t o s o f t w a r e development t h a n t h e Ada programming
language and t h e a s s o c i a t e d environment work. Developed i n P a r i s i n t h e
mid ~O'S, Europe has developed c e n t r e s o f e x c e l l e n c e o n t h e a s p e c t s
o f Ada technology, and t h e i nd igenous i n d u s t r y i s now e x p e r i m e n t i n g
w i t h a p p l i c a t i o n s . Some 2M l i n e s o f Ada code e x i s t a l r e a d y i n use.

The a im o f t h e p r e s e n t a t i o n would b e t o b u i l d on a paper p r e p a r e d f o r
t h e May 1985 P a r i s Ada conference based on an e x t e n s i v e survey o f
t h e p e n e t r a t i o n a c h i v e d by Ada. Fur thermore t h e r e would b e a summary
o f t h r e e major a c t i v i t i e s i n Europe i n t h e month o f May 1986 -
- t h e 2nd Ada Users Congress - t h e 4 t h Ada Europe/SIGAda JT Conference i n Ed inb rugh - A survey on T o o l s p u b l i s h e d about then.

The n a t u r e o f a p p l i c a t i o s n suggest t h a t more d e t a i l s w i l l be a v a i l a b l e
i f o n l y a b s t r a c t s a r e pub l i shed ; as domains o f t e n l i e i n s e n s i t i v e
areas o f an o r g a n i sa t i o n s a c t i v i t i e s .

Space i s o f p a r t i c u l a r i n t e r e s t to t h e EEC, who suppor t c i v i l a p p l i c a t i o n : ;
and some Ada r e s e a r c h and development. T h i s a rea i s i d e a l f o r t e s t Deda in i :
Ada,as Ada can b r i d g e d i f f e r e n t approaches t o p r o b l e m s o l v i n g by u s e o f
i t s p o r t a b i l i t y .

F i n a l l y ; t h e " s o c i a l " i n f r a s t r u c t u r e o f Ada R and D i n Europe w i l l b e
summarised.

M W Rogers

Arpanet : mrogers a t USC-ISIF
Adakom : m w r c
Eurokom : Mike W R

,4' ,A ?
ADA(R) ASSESSMENT : AN IMPORTANT ISSUE/-

P. VIELCANET INFORMATIQUE INTERNATIONALE
2 , r u e J u l e s V d d r i n e s
31400 TOULOUSE FRANCE - -J-

T b l . (3 3) 61.34.01.92

1. INTRODUCTION

S o f t w a r e w i l l be more i m p o r t a n t and more c r i t i c a l f o r COLUMBUS t h a n f o r
a n y ESA p r e v i o u s p r o j e c t . A s a s i m p l e Comparison, o v e r a l l s o f t w a r e size
h a s been i n t h e r a n g e of 100 K s o u r c e s t a t e m e n t s f o r EXOSAT, 500 K f o r
SPACELAB w i t h IPS , and w i l l presumably r e a c h s e v e r a l m i l l i o n s l i n e s o f
c o d e f o r COLUMBUS (a l l e l e m e n t s t o g e t h e r) .

Based on p a s t e x p e r i e n c e , t h e t o t a l development c o s t of s o f t w a r e
(f a c i l i t i e s , s i m u l a t i o n , t es t items, on-board s o f t w a r e . . .) c a n a c c o u n t
for a b o u t 10 t o 15 % of t h e t o t a l s p a c e p r o j e c t development c o s t . For
COLUMBUS, t h i s s h a r e vi11 grow o v e r t h e e n t i r e s p a c e s y s t e m l i f e c y c l e
as ma in tenance and e v o l u t i o n v i 1 1 be v i t a l w i t h i n I t s v e r y l o n g o p e r a -
t i o n n a l p h a s e . C o n s i d e r a b l e s a v i n g s w i l l be p o s s i b l e by p r o p e r l y m n d -
g i n g s o f t w a r e and by e x p l o i t i n g f i e l d s of commona l i ty .

The Ada t e c h n o l o g y may s u p p o r t t h e s t r o n g so f tware e n g i n e e r i n g p r i n c i -
p l e s needed f o r COLUMBUS, p r o v i d e d t h a t t e c h n o l o g y is s u f f i c i e n t l y ma-
t u r e and i n d u s t r y p l a n s a r e mee t ing t h e COLUMBUS p r o j e c t s c h e d u l e .

Over t h e p a s t t h r e e y e a r s , I n f o r m a t i q u e I n t e r n a t i o n a l e h a s c o n d u c t e d a
c o h e r e n t programme based on Ada t e c h n o l o g y a s s e s s m e n t s t u d i e s and expe -
r i m e n t s , f o r ESA and CNES as i n d i c a d e d I n f i g u r e l .

T h i s s p e c i f i c r e s e a r c h and development programme b e n e f i t s f rom
I n f o r m a t i q u e I n t e r n a t i o n a l e f i f t e e n years e x p e r i e n c e i n t h e f i e l d of
s p a c e s o f t w a r e development and is s u p p o r t e d by t h e o v e r a l l s o f t w a r e
e n g i n e e r i n g e x p e r t i s e of t h e compagny (e . g deep invo lvemen t In t h e e u -
r o p e a n ESPRIT and HAP programmes).

(R) ADA i s a r e g i s t e r e d t r ademark of t h e US Department of Defense

c . 2 . 1

2. ADA TECHNOLOGY ASSESSMENT PROGRAMME

The logical construction of the space station oriented Ada technology
assessment programme appears in figure 1. Four main layers may be dis-
tinguished :

a) Ada development environments procurement policy (Rolm ADE and Verdix
VADS), set up of convenient methods and development of new tools :

GET, a tool for automatic production of interactive test environ-
ments for Ada packages.

SOPHIA, an advanced syntax-directed editor for Ada designed to
operate on advanced work stations and providing features for ad-
ding new functionalities (e.g. static or dynamic analysis of
programs).

b) Ada space specific experiments €or CNES and ESA aiming at a rather
broad investigation (e.g. ground and space segments) :

ADEXII, a two years experiment and assessment project undertaken
for CNES (100 man-months budget over 83-85) with following main
tasks based on careful monitoring of the activity :

. Assessment of the Ada language with respect to training, effec-
tive use and degree of applicability

. Assessment of the Ada environment and resulting Ada products

. Production of guidelines for an efficient transition to Ada.

ESA/ADA, one year experiment conducted for ESA in 84-85, aiming at
the Ada development of a coaplete simulation of the GIOTTO space-
craft Attitude and Orbit Control System from an existfng Fortran
program. The organization of the project based on partial and pa-
rallel development by INFORMATIQUE INTERNAYIONALE, CESELSA
(sub-contractor) and ESA itself successfully demonstrated unique
features and suitability of the Ada language for large space pro-
jects (signif iciant guidelines on an Ada development methodology
have been established).

CCSDS, six months project conducted for CNES in 85 demonstrating
the successful use of Ada as a data description and data handling
language for the GALILEO spacecraft telemetry (modelling and pro-
cessing according to the international CCSDS standards).

c) On-board Data Management System (COLUMBUS class) feasibility studies

- ESA/OBCA, comparative study on distributed microprocessor based
computer system architectures

- ESA/I{OL, a study of the applicability of High Order Languages f o r
on-board software production (assessment and selection of the best
candidate among Ada, Modula 2, C, LTR 3 , Pascal and HALIS).

c.2.2

.

d) Ada detailed assessment for COLUMEUS on-board distributed Data
Management System.

EbA/SSADA, two years project (start end 85) investigating three
important issues :

. availability ob Ada tooks (near and mid-term) for the develop-
ment of distributed application software

. links between Ada features (language and implementation) and
specific requirements of a typical space station mission

. specification and development in Ada of a study case software
system (derived from space station requirements analysis) which
can produce significiant insights on poverful model of future Ada
software production environments.

Ada assessment for
space station on-board
distributed DMS

Prelimimary studies :
On-board systems
High Order Languages
Data relay satellite

Space specif ic
Ada assessment
(general scope)

Environment

CEC Programme ESPRIT PCTE / S O P H I A
MAP TOOL'USE

FIG. I. : INVOLVEMENT IN COLUMBUS SUPPORT TECHNOLOGY

C . 2 . 3

3 . PRESENTATION OF CNES AND ESA ADA EXPERIMENTS

3.1 . CNES A D E X I I EXPERIMENT

As p r e v i o u s l y s t a t e d , Xnformatique Internat i o n a l e c o n d u c t e d a n Ada
e x p e r i m e n t f o r t h e f r e n c h n a t i o n a l s p a c e agency (CNES) i n T o u l o u s e ,
F r a n c e . The e x p e r i m e n t main o b j e c t i v e s were to p r o v i d e i n f o r m a t i o n on
t h e s u i t a b i l i t y a n d e f f e c t i v e u s e of t h e Ada l a n g u a g e f o r s p a c e a P P l i -
cat ions a n d t o l o c a t e t h e p o t e n t i a l b e n e f i t s and p o s s i b l e drawbacks t o
be e x p e c t e d when i n t r o d u c i n g Ada i n t o t h e a e r o s p a c e i n d u s t r y
e n v i r o n m e n t .

A s s u c h r e s u l t s and lessons learnt c a n c o n t r i b u t e t o a b e t t e r u n d e r s -
t a n d i n g and management o f a s p a c e - o r i e n t e d Ada t e c h n o l o g y t r a n s f e r .
E d u c a t i o n and development methods were e s p e c i a l l y d i s c u s s e d . The expe-
r i m e n t a l d a t a c o l l e c t e d o v e r t h e p r o j e c t have been e x t r a c t e d from a de-
velopment e f f o r t of s i x s o f t w a r e e n g i n e e r s o v e r too y e a r s w i t h a t o t a l
p r o d u c t i o n of 30 000 Ada s o u r c e l i n e s (ASL).

The e x p e r i m e n t had t h e n t o c o v e r two main a r e a s :

- i n t r o d u c t i o n of t h e l anguage (i . e . how i t is used and l e a r n e d i n
p r a c t i c e by p e r s o n n e l w i t h d i f f e r e n t t e c h n i c a l backgrounds)

- s u i t a b i l i t y of t h e l anguage f o r a p p l i c a t i o n s s p e c i f i c t o t h e a e r o s p a -
c e i r r d u s t r y , p a r t i c u l a r y r e a l - t i m e a p p l i c a t i o n s .

T h e s e t o p i c s were f u t h e r r e f i n e d , a n a l y z e d and b a l a n c e d a g a i n s t
t e c h n i c a l Ada c o n s t r a i n t s (ma in ly l a c k of i n f o r m a t i o n and t r a i n i n g o n
Ada s o f t w a r e e n g i n e e r i n g) and t h r e e e v a l u a t i o n a r e a s were d e f i n e d :

- l e a r n i n g and u s e of t h e Ada l anguage

- development of Ada s o f t w a r e p r o d u c t s

- per fo rmance a n d a s s e s s m e n t of a v a l i d a t e d Ada e n v i r o n m e n t .

To r e a c h t h e s e g o a l s w i t h i n budge ta ry c o n s t r a i n t s , i t was d e c i d e d t o
r e d e s i g n and r e d e v e l o p e x i s t i n g F o r t r a n a p p l i c a t i o c s , meanwhile monito-
r i n g r e l a t e d a c t i v i t i e s . These a p p l i c a t i o n s c o r r e s p o n d i n g t o s m a l l -
s c a l e d p r o j e c t s v e r e p r e f e r r e d t o a s i n g l e l a r g e r e a l - t i m e p r o j e c t , due
t o t h e h i g h r i s k s impl i ed by such a c h o i c e a t t h e time t h e p r o j e c t
s t a r t e d . P r e v i o u s p a p e r s (L a b r e u i l l e 84 and P a p a i x 85) g i v e a n in -dep th
d i s c u s s i o n of t h e p r o j e c t t a s k s and t h e r e s o u r c e s i n v o l v e d .

Wlth r e s p e c t t o t h e i n i t i a l o b j e c t i v e s , t h e f o l l o w i n g c o n c l u s i o n s were
r e a c h e d :

P r o d u c t i v i t y

High p r o d u c t i v i t y r a t i o s have been e x p e r i e n c e d (u p t o 1400 ASL per man-
month f o r s m a l l Ada deve lopmen t s) but t h i s d a t a s h o u l d be i n t e r p r e t e d
w i t h c a r e and b a l a n c e d a g a i n s t a r e a l i n d u s t r i a l c o n t e x t . I n t h i s expe-
r i m e n t c o n t e x t , t h e development team was s m a l l , m o t i v a t e d , e n t h u s i a s t i c
and e x p e r i e n c i n g t h e l e a r n i n g p r o c e s s and t h e u s e of Ada and program-
ming env i ronmen t t o o l s .

C . 2 . 4

More than t h e achievement of good p r o d u c t i v i t y f i g u r e s ove r t h e pro-
j ec t , t h e i d e n t i f i c a t i o n of t h e main c o n t r i b u t o r 0 t o p r o d u c t i v i t y i m -
provements were po in ted ou t :

- early v a l i d a t i o n through t h e use of Ada a t t h e des ign phase

- automatic r ecompi l a t ion f e a t u r e s suppor ted by convenient conf igu ra -
t i o n c o n t r o l system

- r e u s e of so f tware components

T r a i n i n g

Th i s experiment has proven t h a t accep tab le l e v e l of p r o f i c i e n c y in Ada
cou ld be reached r a t h e r qu ick ly (i n less than a month).
Ada, a s a programming language is no more d i f f i c u l t t o l e a r n than ano-
t h e r language , but making f u l l use of i t s unde r ly ing so f tware enginee-
r i n g p r i n c i p l e s r e q u i r e s some a d d i t i o n a l e f f o r t . Due t o Ada r i c h n e s s ,
s p e c i a l t r a i n i n g is r equ i r ed f o r "good use" of advanced f e a t u r e s , a s
w e l l a s t o avo id sys t ema t i c use of " w e l l experienced" s u b s e t .

Environment

The a v a i l a b i l i t y of a number of t o o l s i s of g r e a t h e l p , bu t oneshould
not forger, t h a t l e a r n i n g how t o use them e f f e c t i v e l y is almost a s i m -
p o r t a n t a s l e a r n i n g t h e language i t s e l f and t a k e s time and e f f o r t a s
w e l l .
Evidence vas shown t h a t an Ada compiler must be a v a l i d a t e d one , t o o l s
must be of good q u a l i t y a s w e l l and should be s u i t a b l e f o r t h e develop-
ment of l a r g e Ada programs (more than 10 0C.O ASL).

Development methodology

Use of Ada impacts heav i ly on t r a d i t i o n a l methods through :

- e a r l y and cont inuous use from des ign

- e a r l y v a l i d a t i o n of des ign through p ro to typ ieg and s tep-wise PDL
ref inement

- des ign e f f o r t which is i nc reased by up t o 50 X whi le i n t e g r a t i o n i s
reduced up t o 5 times

- e f f e c t i v e p a r a l l e l developement.

C . 2 . 5

3.2. ESA ADA EVALUATION STUDY

AS p a r t of i t s Techn ica l Research Programme, i n p r e p a r a t i o n f o r u s ing
Ada, t h e European Space Agency h a s j u s t completed a s t u d y t o e v a l u a t e
t h e u s e of Ada i n a t y p i c a l space-or ien ted so f tware p r o j e c t , w i t h par -
t i cu la r emphas is on t h e impacts on METHODOLOGY and t h e p r o s p e c t s f o r
PORTABILITY, REUSABILITY end developement s t m u l t i p l e s i t e s . The s t u d y
vas based on r e w r i t i n g i n Ada t h e A t t i t u d e and O r b i t Con t ro l So f tware
and t h e s i m u l a t i o n of t h e s a t e l l i t e dynamics and o p e r a t o r s environment
of a r e c e n t s a t e l l i t e , which were p rev ious ly implemented i n Assembler
and P o r t r a n .

AS a r e s u l t of t h i s s t u d y , ESA has now a set of Ada packages which has
been used to e v a l u a t e many of t h e e x i s t i n g Ada compi l e r s and Ada s u p -
p o r t i n g t o o l s e t s as r epor t ed I n (Robinson 86). This proved t o be a va-
l u a b l e way of I d e n t i f y i n g some of t he key a s p e c t s f o r p rov id ing
p o r t a b l e s o f t w a r e , and f o r i d e n t i f y i n g s t r o n g and weak f e a t u r e s of
e x i s t i n g and p o t e n t i a l APSES.

The s t u d y p r o j e c t was performed by Informat ique I n t e r n a t i o n a l e (a c t i n g
as prime c o n s t r a c t o r) and CESELSA (Spain) under the d i r e c t i o n of ESA
Technology Cen t re (ESTEC) . The main a c t i v i t y was t o r e w r i t e i n Ada

a) t h e A t t i t u d e and O r b i t Cont ro l Equipment (AOCE) soCtware of a r ecen t
s a t e l l i t e , from the e x i s t i n g des ign w r i t t e n i n Caine , Farber Gordon PDL
and t h e l i s t i n g s of t he RCA1802 Assembler programs,

b) t h e s i m u l a t i o n of t he s a t e l l i t e dynamics and o p e r a t o r s environment
which were p rev ious ly implemented i n F o r t r a n .

The Ada program c o n s i s t s of 6 components as i n d i c a t e d i n f i g u r e 2 . Tlie
c o r e of t h e program is t he package P-AOCE c o n t a i n i n g t h e s a t e l l i t e
s o f t w a r e . The R A M is v i s i b l e t o provide a c c e s s t o d a t a f o r o p e r a t o r
d i s p l a y , and p a r t of t he RAM (T-RAMl) is a v a i l a b l e t o write telecom-
mands. T h i s package is embedded i n a s imula t ion of t he r..al worid e n v i -
ronment , c o n s i s t i n g o f telecommand management, hardware i n t e r f a c e ,
dynamics s i m u l a t i o - and o p e r a t o r command/display i n t e r f a c e .

ESA s t a n d a r d s f o r so f tware l i f e - c y c l e (ESA 84) were fol lowed t o a s s e s s
t h e i r s u i t a b i l i t y f o r Ada. These c o n s i s t of phases f o r so f tware r equ i -
r emen t s , a r ch f t e c t u r a l d e s i g n , d e t a i l e d des ign and implementa t ion , each
phase t e r m i n a t i n g i n a formal r e v i e w . F u l l documentation vas produced.

T h e So f tware Requirements Document was wr i t t en by Informat ique
I n t e r n a t i o n a l e t o p u l l t he requi rements t o g e t h e r and a s a f a m i l i a r i s a -
t i o n t a s k t o p rov ide a c l e a r d e f i n i t i o n o f t h e work t o be done.

As an expe r imen t , two A r c h i t e c t u r a l Designs were produced, a t both
Xnformatique Znterna t i o n a l e and CESELSA. Each c o n s i s t e d of n a r r a t i v e ,
des ign d iagrams and Ada S p e c i f i c a t i o n p a r t s . I n a d d i t i o n , t he ma j o r
t a s k s t r u c t u r e was pro to typed us ing TEXT I O t o provide a l i s t i n g of t he
f low of c o n t r o l , t hus demonst ra t tng t h a t t h e o v e r a l l a r c h i t e c t u r e is
c o r r e c t , and t h a t t he s p e c i f i c a t i o n p a r t s were c o n s i s t e n t and compila-
b l e . A f t e r t h e rev iew, the ADD which was based on Objec t Or i en ted
Design was s e l e c t e d s i n c e t h i s provided t h e more cohe ren t and complete
view of t h e des ig i i . I t was decided t o u s e OOD on t h e d e t a i l e d des ign of
t h e dynamics p a r t in t he next phase t o g a i n more expe r i ence of t h i s
t e c h n i q u e .

C . 2 . 6

b .

The D e t a i l e d Design was a l s o r epea ted by t h e tvo c o n t r a c t o r s , u s ing t h e
same a r c h i t e c t u r e a s a b a s e l i n e f o r each . The main d i f f e r e n c e was t h a t
Informat ique I n t e r n a t i o n a l e decided t o use SEPARATE compl l a t lon ex ten-
s i v e l y i n t h e des ign of t h e l a r g e r packages. Th i s has t h e b e n e f i t o f
reducing t h e time f o r recompi la t ion due to changes i n on ly one procedure
d u r i n g module t e s t i n g . It results i n more sou rce f i l e s and a s l i g h t l y
more complex l i b r a r y s t r u c t u r e wi th t h e r e f o r e more need f o r Ada Program
L i b r a r y t o o l s t o manage t h e re-compilat ion and conf i g u r a t i on management
a c t i v i t i e s .

To t r y o u t t h e m u l t i - s i t e a s p e c t s of t h e p r o j e c t wi th a set of
independent ly coded packages, t h e s a t e l l i t e so f tware was programmed i n
ESA and t h e s i m u l a t i o n p a r t s were programmed i n Spain (CESELSA). These
were then i n t e g r a t e d a t a t h i r d s i t e i n France (In fo rma t ique
I n t e r n a t i o n a l e) , wi th t h e h e l p of a l l p a r t i e s .

Acceptance was based on 10 t e s t c a s e s from t h e ESTEC Assembler /For t ran
implementa t ion , which produced i d e n t i c a l p l o t s i n 9 c a s e s and a b e t t e r
r e s u l t a t t h e 5 th s i g n i f i c a n t d i g i t i n t h e 10th c a s e .
D i f f e rences between computers were t h e r e f o r e i n s i g n i f i c a n t .

The main p a r t of t h e s tudy produced working s o f t w a r e , and t h e so f tware
development l i f e c y c l e worked s a t i s f a c t o r i l y . Module t e s t i n g a t package
l e v e l l ead t o easy i n t e g r a t i o n , with good suppor t from t h e symbolic
debugger. There i s a c l e a r conclus ion t h a t i t pays t o do module t e s -
t i n g , and t h a t t h e r e s u l t i n g i n t e g r a t i o n e f f o r t wi th Ada i s r e l a t i v e l y
low i n t h a t c a s e . A "module" i n Ada is de f ined a s package, f o r which
each v i s i b l e p a r t (d a t a , p rocedure , f u n c t i o n s) is t e s t e d .

OOD was found t o provide a n a t u r a l method of producing a c l e a r p i c t u r e
of t h e d e s i g n , which l e a d s e a s i l y i n t o Ada d e f i n i t i o n , implementat ion
and I n t e g r a t i o n .

A summary of t h e s t a t i s t i c s of t h e p r o j e c t i s shown below :

Simula tor l i n e s
P-AOCE l i n e s
L i n e s of t e s t code
Comment l i n e s
Comp i l e t ime
Execut ion t ime

4800 -
-

1600
5 m i n
80 s e c .

Req u i remen t s
4 r c h i t e c t u r a l des ign 77
D e t a i l e d des ign 10 1

40

Code, t es t & i n t e g r a t i o n 152

4174
2738 = 6912

at36 = 7798
3677 = 11475
113 m i n
350 s e c .

TOTAL 370 = 31 l i n e s l d a y

C . 2 . 7

REFERENCES

[ESA 84)

I I Enable
I I

I

Trace-flow
I

J --
I [Status-Dlrplay

ESA Software Engineering Standards BSSC (8 4 1 1

[PAPAIX 861

.~

[LABREUILLE 84) B. LABREUILLE, M. HEITZ : "The Introduct ion of
Ada In French Aerospace Industry", ADA-EUROPE,
Adatec 1984, B r u s s e l s Conference.

H* PAPAIX, M . HEITZ, B . LABREUILLE : "Two Years
of Ada Experiments : Lessons and Resu l t s" ,
ADA-EUROPE, 1986, Edimburgh Conference.

[ROBINSON 86 J P . ROBINSON : "Ada Evaluation and T r a n s i t i o n s
S tud ies" , ADA-EUROPE 1986, Edimburgh Conference.

P-Simulate-Flight-Soft
(t-Requert-to-Slmu1ator \

I

P -Tc 1 ecbmmand- Ha nag erne n t

(T-DYnamlc~-FlIe-Numbr 1
[Intt I

Walt-for-Arp I I
r~ait-ior-xba I I
[Termlnarr I I

I 1
L-_- 1 L - d

F i g . I1 : AOCMS A r c h i t e c t u r a l Design

C . 2 . 8

S t r u c t u r i n g t h e Formal D e f i n i t i o n of Ada@

Kurt W. Hansen
Dansk Datamatik Center
Lundtofteve j 1C
DK-2800 Lyngby (Copenhagen)
Denmark

Abstract :

The structures of the formal definition of Ada are described in view c - f
the work done so far in the project. At present, a 'difficult' subset r ,f
Ada has been defined and the experience gained so far by this work ir:

reported on here,

Currently, the work continues towards the formal definition of the fc::
Ada language.

____-_-----_--
e Ada is a registered trademark of the U.S. government

(Ada Joint Program Off ice) . _______________-_---
This work has been partly supported by the CEC MAP project on 'The E r d f c '
Formal Definition of Ada'. Dansk Datamatik Center - Prime contrac:pr,
CUI - contractor, CNR/IEI - subcontractor, consultants: University c f
Genoa (Dept. of Mathematics), Tech. University of Denmark (Dept of C ~ . n , p .
Science), and University of Pisa (Dept. of Informatics).

C.3.1

Introduction.

Since the final requirements of Ada (the STEELMAN document) and up to
the present Reference Manual for the Ada Programming Language -
ANSI/MIL-STD 1815A (RM) the language has been subject to a great deal of
discussion, Comments, suggestions, and shear critisism.

All of this evaluation has been done on the basis of natural language
descriptions, since they are the only ones available. Natural language
descriptions Of a certain size have a tedency to be ambiguous and
contradictory and the RM is no exception to that rule. This has caused
some trouble to users, mainly conpiler writers.

It is our belief, that having had a formal (mathematical) definition Of
the language developed together with the natural language description
would to a large extent have had avoided these errors in the language
design. Not only would it have helped in analysing the complexities Of
the language which may have altered the design, but it would also have
provided an unambiguous definition.

As this was not done, the second best thing is to give a formal
definition of the language as it now stands. The number of projects
which have attempted this so far [ref INRIA 1982, Bjr~rner and Oest 1 9 8 2 1
strengthen the belief that this work is important, and the fact that.
none has succeeded in formally defining full Ada also indicates that it
is a very difficult task.

In order to gain confidence, and actually prove, that the project is
able to formally define the full language Ada, the project has selected
two sets of difficult aspects of Ada, in order to show that the
expirience and the new methods used are adequate for the task. The
reason for having two sets of aspects is, that Ada aspects which are
statically difficult are not necessarily dynamically difficult, and vice
versa so both modelling static and dynamic semantics were tried out.

A t =he present stage the project has succesfully finished the trial
definition of the Ada subsets, and is now proceeding to formally define
f u l l Ada.

^. , r L ~ s presents the work done, and experience gained in the trial
definition of the difficult Ada subsets.

C . 3 . 2

.._-.. - .. - . .

The Overall Structure of the Formal Definition of Ada.

The draft formal definition of Ada has adopted the scheme for defining
progzamming languages as found in VDM [ref Bjtarner and Jones 1 9 8 2 1 . This
means dividing the Semantics of the language into two parts: static
semantics and dynamic semantics. This gives a good overview of the
language features and in this case at the same time complies with the
semantics of Ada. As described in the RM two types of rules a r e
identified: rules which describe compile time checks to be performed,
and rules describing the dynamic (run time) behaviour of an Ada prograrr,.
Hence, the static semantics may be seen as the precondition f o r t h e
dynamic semantics of Ada.

Both static and dynamic semantic definitions are written using tr.e
syntax directed approach in a compositional style. Compositional means,
that the semantics of a construct is given as a function of tb:e
semantics of its subcomponents. Here semantics is understood as a
homomorphism (function) from the algebra of syntax into some semantic
algebra.

Not only does the compositional style make the writing of the formulae
of the semantics of Ada easier as the semantics of each construct 1 5

defined in terms of the semantics of its subconstructs, but it b l ~ -
enhances readability as you do not have to remember the semantics of 31-
preceeding constructs in order to understand the semantics of a g l v r '
construct.

Of course for example in the static semantics you have to use ::...
history to some extent, you have to know the names and types of deflnc-:
variables in order to perform the type check, but this informatlo:.. 1 s
modelled in a separate abstract data type in order not to confuse t : i e

overall syntax directed approach.

One may consider the static semantics as the first part of the f o r r z :
semantics of Ada. Static semantics takes as its input an algebra 2 :

syntax which is as ambiguous as the grammar found in the RM. Amb:;>~,~.>
means, that you cannot tell the meaning of a construct wlthcut ts:::
into account the context in which it is found. An example 1 s :

a :- f(x);

This is obviously an assignment statement, but the expression f (x) : 7 . : ,

denote:

- an element of an array
- a function call with one positional parameter

- a type conversion of the expression 'x' to the type If'

The ambiguous grammar found in the RM, is translated directly into the
algebra of syntax used in the static semantics. The idea is, that only
essential information is retained. AS an example, in the assignment
Statement the essential information is the fact that you have a
left-hand side name and a right-hand side expression.

The syntactic
metalanguage written as:

construct of the assignment statement is therefore in o u r

Assignment-stmt :: Name x Expr

Static semantics now performs the compile time check on the syntactic
constructs found. In the case of f(x), operations on the data type
reflecting declarations are used to look up 'f' in order to disambiguate
the term f(x). Next overloading is resolved, the static checks for the
left-hand side and right-hand side are done, and at last the validity of
the assignment statement is tested using the knowledge gained trying to
statically check its components (compositionallity). The knowledge
could be the fact, that for example the right-hand side is not well-
formed at all, and therefore the static check of the whole construct
must also fail.

In principle there is no reason why the dynamic semantic should not be
able to perform its run time check of and execution on an Ada program
on the same abstract syntax the one as used by the static semantics.
9owever in practice this would impose on the dynamic semantics to do
most of the work already done in the static semantics over again - like
disambiguating syntactic constructs. This would complicate the dynamic
semantics considerably, destroying the readability of the final formal
definition of the dynamic semantics.

The approach taken in this project, is to impose a transformation on the
algebra of syntax used in the static semantics (A S 1) . This trans-
formation transforms AS1 into an equivalent algebra of syntax (A S 2) ,
where the static problems to a large extent have been resolved, and some
statically availabIe informatizq is distributed more conveniently (e.g.
an aggregate is always given a type).

Resolving the static problems of the syntax means, resolving o f
syntactic ambiguities, giving unique names to identifiers (apply
visibility rules and resolve overloading), adding derived infcrn:at 1 c . n
(attach a type to an aggregate), and removing information not necessary
for the dynamic semantics (e . g . the order in which compilation units
a p p e a r) .

The A S 2 is then t h e starting point of the dynamic semantics. In order to
improve readability, the AS2 is kept as close to the original Ada
program as possible; a user should be able to recognize his program.
t'urt-hermore, if a user wants to know some facts about the run time
bet,a.,icur of h i s program, he should be able to see the AS2 program

c . 3 . 4

without having to first write an Ada program and then impose the AS1 to
AS2 transformation. This of course implies, that the program given to
the dynamic semantics must be statically correct, since the successful1
application of the static semantics is a prerequisite for the dynamic
semantics.

Human Aspects of Structuring.

The writing of formal definitions is still an exercise mostly done in
the academic environment since the writing of formal definitions has n o t
yet matured into an engineering practice.

As a reflection of this, most papers found on structuring of formal
definitions are aimed at getting the right mathematical structuring,
making sure that the whole formula system is correct and consistent. The
issue of readability has not been addressed to any large extent. This is
one of the facets of structuring that has been studied in this project.

It is our belief, that formally defining Ada is only a worthwhile t l a s i .
to perform, if a large group of people is able to use the definition.

Our good luck has been, that through the last years many more peopie
have become familiar with the notion and uses of formal definiticrt-.
Some of the driving force has been the complex problems found r n t!.7-

development of large sofware systems and the users' needs for prcven
programs, as software move into more and more vital positions of c u r
society. Formal methods provide a tool for analyzing and buildlng s u c h
complex systems and some industrial expirience has a l ready b e e n r e p a r c e d
on.

Therefore some of the studies laid down in the task of structurlcg : n z
formal definition of Ada have been in the area of finding out how hurr.a-7.~
read the formal definition, and what may be done in order to make si:^^'

that the reader gets the easiest access to the definition.

In this work, many parameters have been looked into. Some a! t ! , <
parameters have been: what about the size of the reports? model o r l e r i t c > :
v s . axiomatic descriptions, direct semantics style vs. contlnuatlons.

The answer has not always been straiqhtforward, but we believe tha: L, '~ .

have made the tradeoffs in such a way, that most people wit!;
programming background and a little formal training added, shctAld k>2
able to read and understand the formal definition of Ada.

In the structuring of documents used in this project, each formula h a 5
beer1 put into a tixed framework giving the auxiliary information needed
j n o r d e r to read that particular formula. This information includes:

c.3.5

- Identification which directly relates the formula to the RM
thereby helping people to understand the formal definition in Ada
terms.

- Short description of the objective of the formula.
- The formula itself given either axiomatically or model oriented.
AS model oriented is believed to be the most readable for
computer programmers (it resembles a program) most of the
definition is described in a functional style. If a number of
concepts can be separated out into a selfcontained abstract data
type, it has been done and in many cases the operations performed
are described using axioms.

- Natural language explanations of how the formula is supposed to
perform its task, and correlation of the formula to the concepts
of the RM that the formula describes.

- An extensive cross referencing.

Examples of the above may be found in [ref DDC and CRAI 19861.

Structure of the Static Semantics of Ada.

The subset static semantics of Ada is a homomorphism from the algebra of
syntax into the algebra of booleans since separate compilation and hence
libraries are not part of the subset. This homomorphism makes heavy use
zf operations from abstract data types being able to extract information
from t h e program text taken into account until the current point of
interrest.

As a mean of breaking the static semantics into useable pieces,
the foundation is a hierarchy of abstract data types each aimed at
describing an essential Ada concept.

Splitting a definition into data types describing concepts which are
carefully highlighted in the RM seems to give the definition two
properties: one is that the definition gets broken into manageable size
definitions which may be combined, and the other is that breaking the
definition into data types which define Ada concepts will give the user
wtlo knows about programming languages (maybe even about Ada) a
conceptual framework within which to understand the formal definition -
facilitating familiarization with and enhancing readability of the
definition.

C . 3 . 6

.

The hierarchy of data types defined, has the following properties: a t
the bottom of the hierarchy: very basic data types describing integers,
identifiers etc. Next level describes types and the strong typlny
concepts of Ada. This includes operations for the handling of derived
types, subtypes, type matching etc. From this data type a new data t Y P c - '
is built describing the properties of all entities in Ada which you may
declare.

In the same fashion concepts like visibility, overloading, and g e n e r i c s
are described in abstract data types in further levels of the h i e r a r Z t . 7 .
The topmost data type is called SUR abbreviated from surroundings. Ttd7.s
data type describes the 'static history' of the compilation unit sa far,
by combining all information from lower level data types. This IS der.?,
in order to assemble all static semantics information in one place.

The data types are used in the formation of the homonorphism frcm t.'.::
algebras of syntax. This homomorphism is named the well-formed (wf)
function (9) .
In the subset the 'root construct' is the subprogram body. The c y p e : E
the function is-wf-Subprogram-body is:

Subprogram-body i SUR i BOOL

but often the check, that a given construct is well formed canr:ct L i .
performed if the only fact known about the subconstructs is whether t!.c;'
are wellformed Or not. Further retrieving of information dbout c t t c
Subconstructs is necessary. As an example take the assignment scacerr:er-.r :
the left-hand side has to be well formed, the right-hand side has t . 3 L::
well formed, but on top of that, the types of the two sides have te : z C .
t h e same. As an is-wf function only returns BOOL, data type o p e r a r : ' - ? s
and auxiliary functions have to be used in order to retrieve t h ? : \ ; . ; . I

information from both sides.

Structure of the Dynamic Semantics of Ada.

The dynamic semantics of Ada is modelled using the SMoLCS (5 t r u L - t : : : . :

Monitored Linear Concurrent Systems) method as descrlbed 11: i :, :
Astesiano et a1 19851.

Using the SMoLCS method already imposes some structuring on the fJr .r .31
definition of the dynamic semantics. SMoLCS is a layered approa:h t o tt,?
description of concurrency. It Consists of four layers. At the bntt,.m
describing t h e basic states possible in the system we find a labelle..:
transition system similar to the ones found in for example 2 C S .

c . 3 . 7

ORIGINAL PAGE t?3
OF KX>R QUALITY

,-

In order to describe the behaviour of the concurrent system, some con-
straints are applied to the transition system. These constraints fall
into three types. First all actions which may result as synchronized
operations of processes are identified, next all synchronized actions
which may occur in parallel are identified, and the last step defines
which actions are possible in the system as a whole.

The above levels constitute what we call step 2 . Step 1 of the dynamic
Semantics, which is using a denotational style is the homomorphism from
the algebra of syntax into the semantic algebra defined by step 2 . As
the metalanguage makes it possible to axiomatically define operations
which closely match Ada concepts, the issue is what to define
denotationally.

The problem has been solved by structuring the definition of dynamic
semantics in such a way, that all concepts described in the RM are
defined in denotational clauses, so that no concept of Ada is hidden in
an abstract data type.

An argument for moving the concepts from the denotational part could be,
that a definition may be written more abstractly by moving some Ada
concept modelling out of the denotitional part, but for the reason of
understanding by the user, it seems more appropriate to split as
described above.

A further advantage of the SMoLCS method is the high degree of para-
meterization. This is used to describe some of the features that pre-
viously have been very difficult to describe. These sorts of concepts
include implementation dependent features. They may now be modelled by
including the appropriate parameters in the definition. A further con-
cept is context clauses. Also here the parameterization scheme helps
[ref DDC and CRAI 19861.

Cor,clusion and Further Work.

~ h n formal definition of the subsets mentioned has assured us, that t h e
task of formally defining the language Ada as described in t h e RM is

feasible and can be done.

During the work with the trial definition we have seen, that in the
static semantics the abstract data types had a tendency to become rather
large. The problem is overcome by splitting some of them into smaller
d a t a types. This is almost also a prerequisite for the second change:
the axiomatic modelling of the data types. Currently they are defined by
3i~ririg a specific model, but breaking the data types into smaller
,!r;flni t~ions makes an axiomatic definition feasible.

In the dynamic semantics the distinction between operations defined
axiomat.ica1ly and denotational formulae will be studied further. It
seems as if the optimal solution (whatever this may be) has not been
found yet.

Finally, fo r both sorts of semantics, some ways of modularizing formulae
is needed in order to enhance the readability. The static semantics
already to some extent is modularized, but more is needed and the
dynamic semantics need more modularizing in step 1. Furthermore, the
formal definition has to be updated w.r.t. the commentaries from t h e
Language Maintenance Committee, a task which is timeconsuming and nrit
always straightforward.

References.

Astesiano et a1 1985
E. Astesiano, G. F. Mascari, G. Reggio, M. Wirsinq
On the Parameterized Algebraic Specification of
Concurrent Systems.
TAPSOFT Conf. , Berlin
Springer Verlag
Lecture Notes in Computer Science, vol 185, 1585

B J ~ r n e r and Oest 1980
D. Bjorner, Ole N. OeSt
Towards a Formal Description of Ada
Springer Verlag
Lecture Notes in Computer Science, vol. 98, 1 - 8 G

Bjarner and Jones 1982
Dines Bj0rner and Cliff B. Jones
Formal Specification and Software Development
Series in Computer Science, Prentice H a l l 198,'

DDC and CRAI 1 9 8 6
E. Astesiano, C. Bendix Nielsen, N. B a t t a , A . F ~ I - : : ~ . ~ . ! . :
A. Giovini, K. W . Hansen, P. Inverardi, E. W. K a r l s . . : . ,
F. Mazzanti, G. Reggio, J. Storbank Pedersen, E. Z i : - , . i
Static Semantics of a 'Difficult' Example Ada St ; i>s<! : ,
and
Dynamic Semantics Of a 'Difficult' Example A d a : i : : t , : . , . -
1 9 8 6

I N R I A 1 9 8 2
Honeywell inc., Cii Honeywell Bull, a n d INKIA
Formal Definition of the Ada Programming Language
1982

c.3.9

Recent Trends Related t o t h e U s e of
Formal Methods i n Software Engineering

Sorren Prehn
Dansk D a t a m t i k Center
Lundtofteve j 1 C
DK-2800 Lyngby (Copenhagen)
Denmark

Abstract :

An account is given of sane recent develapnents and trends related t o t h e deve l -
opnent and use of f o m l methods i n software engineering. The paper focuses G I :

ongoing a c t i v i t i e s i n Europe, since there seems t o be a notable difference i n
at t i tude towards industr ia l usage of formal methods i n Europe and i n t h e U.S.

A more detailed account is given of t he currently mst widespread formal metnr :
i n Europe: the Vienna Develo-t ethod. A currently ongoing project, R4IUii:.,
aiming a t developing a second generation formal method and related t o o l s l:i

described.

Finally,
methods, and t h e potentihl for constructing Ada-specific tools based cn :..
methods is considered.

Lhe use of Ada" is discussed in re lat ion t o t h e application of fcm,< t :

Ada is a registered trademark of the U . S . Government
(Ada Joint Program Office)

C . 4 . 1

-#v. ,.. , , , . , ,
. . : :'. . & ? , . L ~ * p

1. Introduction and Background

It is well-known that the increasing use of software systems of an incrcasingly
complex nature h,.roses greater requirements to the quality of software, its
documentation and maintainability. It is also well-known that since the term
"software crisis" emerged, little progress has actually been made in industrial
software developnent environments towards meeting these requirements.

In this paper, we advocate the viewpoint that industrial software engineering
today really is not engineering, and that real progress is to be sought in the
maturation of present software production technology into a true engineering
discipline.

It is believed that the characteristics of a true engineering discipline are
twofold:

- the discipline must have a mathematical foundation
- the day-to-day practises of the discipline are not necessarily truly formal

This is to be understood in the following way. The requirement for a matnema-
tical foundation is triggered by the desire to be able to reason about the
objects created during software developnent (such as specifications, programs,
and design decisions) in a way that allows one to detexmir.e whether any such
reasoning is valid or not; in particular one would like to be able to reason
about the functional correctness of a program with respect to a specification.
On the other hand we believe, in particular when one considers industrial
software developnent, that such formal reasoning will mainly take place in order
to establish ("once and for all") general rules and techniques whose correctness
and soundness are verifiable. On a day-to-day basis there is presently no hop
that developnent of any but trivial (small) programs can be thoroughly
reasoned about in a formal way: the combinatorial conplexity is sirrrply too hiqL.
Thus we advocate the daily use of rules and techniques whose formal
correctness and soundness have previously been established.

TP.is is well in accordance with the way established engineering disciplines
work. For example, electronics engineering has a rather firm basis in
mithematics (e.g.: the use of Complex Calculus to describe qwsi-stationary
circuitry) and makes heavy use of various formal notations (such as diagrams,
being a language with a precise, mathematical meaning (and a graphical syntax)).
In daily life, the electrorLcs engineer goes about his job mainly on the basis
Qf previously established design principles, without considering the formal
prfjofs of their soundness. However, from time to time, it is necessary to bring
i n formality, to make mathematical analysis and conduct proofs. This typically
?.a;Jpens when a cmpletely new sort of circuitry is being considered, or when
requirements to circuitry functionality and reliability are particularly strict.

C.4.2

.
.__....-

Here it is worth noting that only the fact that electronics engineering has it
mathematical basis makes this pogsible; it would not have worked to base d a i l y
practises on informal notions, and then bring in formality from time ta time.

1 .
The analogy offers another interesting observation: there seems to be t.wo
different styles of work involved: one style is based on using sound dcvcloyxrcrtt
rules, anather on formally analysing (e.9.: proving the correctness of) art
otherwise constructed object (such as the design of an electronic circuitry). Wr-
shall return to this dichotcmy.

It is not surprising that developnent has not yet evolved into a tnw
engineering discipline. The trade is relatively young, and the requirements i

the (complexity of the) software systems to be produced are ever increasirq.
Mathematics and formality has, though, been successfu!ly applied to varir,ii,,
aspects of software developnent. The availability of EX? g r m r s and par.,'
generators is the classical, convincing example.

software

The scene is, however, beginning to change. In Europe, infomt ion technolc(j;t
industry in general dmnstrates a growing interest for formal specification r j r r ' i

design languages, for formal developnt rules, and for formal verificat 1 ,r
techniques. This, we believe, is in contrast to the trends in V.S. i n fon r~3 t1c r
technology industries, where the erphasis appears to be on tools, workstatirxlc,
and erzironments, rather than on the methods they should support.

The purpose of this paper is to outline current trends in Europe. Giver! I I , .

space av ilahle, it is impossible to give a complete and covering picture, I t . !

alone tcj go into much technical detail. It is hoped, however, that the material
presented will stimulate discussions on introducing formal methods into indu-
strial software engineering environments.

In section 2, an overall scenario is presented, and a nwnber of re1eva:it
research and developnent projects are mentioned. In section 3, an account- ::.
givr i of the so-called Vienna Developnent Method (VDM) , which was the f 1 I:;*

purportedly formal method to reach any industrial significance, despite
shortcomings. I n section 4 , an account is given of the RAISE project, who:>l.
explicit objective is to provide formal languages and techniques for s o f t w a r t .
enqiner-ring (in the above sense) as well as support tools. Finally, in sect : . :.
5, perspectives specifically concerned with Ada are discussed.

c.4.3

2. The European Scene

Although there has been sane industrial interest in formal software developnent
m&m% in the European information technology industry over the past decade,
and even a few successful attenp?ts to seriously apply such methods on "real"
projects, formal software deve1-t methods have had no pervasive impact.
There has been a distinct, and partially well-founded, belief that formal
methods were not sufficiently industrialized. Also there has been an asswion
that formal methods probably were not worthwhile to apply or even harmful.

However, f ~ m a l methods are now beginning to come about in industrialized fGm,
and it is becaning increasingly clear to industry that software developnent
practises must be seriously -roved if the potential and challenges offered by
the continuous hardware technology evolution are to be met.

Also, European academe has a strong tradition for research in the formal methods
area, and there is today a strong desire to trar.sfer the acquired knowledge ano
expertise to industry.

Probably, the most visible evidence of this trend is the joint industrial and
academe support of and participation in projects, concerned with formal methods,
sponsored by the Camnission of the European Communities (CEC) . It is interesting
to note that these projects typically involve cooperation between some four to
six partners, industries as well as universities.

In order to give an idea of the range of activities and institutions involved we
list a n m r of projects, totalling several hundred psrson years of effort,
sponsored under the ESPRIT program [ESPFUT 861 (European Strategic P r o g r m for
Research and developnent in Information Technology). For each project, name,
title, and participants are indicated:

FORMAST
Formal Methods for Asynchronous Systems Technology
Advanced System Architectures (United Kingdom)
Erno (West Germany)
Imperial College (United Kingdom)
Univerrity of Kaiserlautern (West Germany)

GRASPIN
Personal Workstation for Incremental Graphical Specification
arid Formal Implementation of Non-Sequential Systems

@ID (West Germany)
01 ivetti (Italy)
Siemens (West Germany)

PROSPECTRA
Program Developnent by Spcification and Transformation
University of Bremen (West Germany)
University of Saarland (West Germany)

c.4.4

ORIGINAL PAGE tS
OF ?OOR QUALITY

System KG (West Germany)
University of Dortmund (West Germany)
Syseca Logiciel (France;
University of Passau (West Germany)
University of Stratchclyde (United Kingdom)

RAISE
Rigorous Approach to Industrial Software Engineering
Dansk Datamatik Center (Denmark)
Standard Telephone and Cables (United Kingdom)
Nordic Brown =veri (Denmark)
International Camputers Limited (United Kingdom)

METEOR
An Integrated Fornal Approach to Industrial Software Developnent
Philips (Nether lands
CGE (France)
AT-T .5 Philips (Belgium)
Stichting Matematish Centrum (Netherlands)
COPS Europe (Ireland)
Tech. Software Telematica (Italy)
Univer:-;ty of Passau (West Germany)

GENESIS
A General Environment for Formal Systems Developnent
Imperial Software Technology (United King-)
Imperial College (United Kingdan)
Phi 1 ips (Netherlands)

It is not within the scope of this paper to ellborate on the actual contents G I

the individual projects. However, section 4 describes one of the projects
(RAISE) in more detail. Another major project that should be mentioned is thc
Munich CIP project carried out at the Technical University of Ifunick
[Bauer 76, CIP 851.

In Europe, the interest in fo-1 methods appears to concentrate more on fonn2!
specification and f o m l developnent than on verification. That is, there is
belief in the transformational programning paradigm: i f an mlementatian ::j

produced solely by applying a series of transformations, each of which art.
correctness-preserving, to an initial specification, the inplcmentation will
necessarily be correct with respect to the initial specification, thus eliminat-
ing the need for verification. The interest in this style of developnient is
connected with two Concerns: firstly, it tends to eliminate an earl.!,
introduction of (design) errors, and secondly, recording the series Llf

transfomtions applied produces invaluable documentation of the system desiL;l>
process.

c.4.5

3. The Vienna Developnent Method (VDM)

VDM originated in the IBM Vienna Laboratories in the early seventies and was
developed in connection with a project aimed at developing a production quality
p L / I compiler. The project group initially worked on giving a formal semantics
for PL/I; this effort probably constitutes the first example of successfully
applying formal techniques to a fairly large-scale problem in an industrial
environment [Bekic 741.

During the late seventies, VIM w a s further developed, and an increasing nwber
Of developnent projects using VDM emerged. Areas in which M)M was applied
camprised not only programning languages and caopilers, but also databases,
operating systems, hardware specification, business aFplications, etc.

[Bjramer 831 contains an overview of M?M basics and an extensive bibliography.

[Bjamer 821 contains numerous major examples of VDM specifications.

Today, there is a rather pervasive interest in VIM in Europe, as witnessed by
the formation of 'W Europe", an interest group sponsored by the CEC and
drawing participants frm a fairly substantial nunbr of European industries and
universities, and by the formation of an industrial panel in the United Kingdom
working towards making the VDM specification language into a British
Standard.

Technically, VDM is -sed on the techniques developed fo r giving denotatioca-
semantics of programming lalguages. A denotational semantics is given as a
homomorphism f r a an algebra of syntactic abjects to an algebra of semantlc
objects, or, somewhat sinplified, maps pieces of syntax onto semantic objects
such as state transformations (functions fra states to states). The principle
readily adapts to numerous applications: many systems may conveniently be
characterised by a state, which is manipulated by operations. Names of opera-
tions and their arguments are then considered to L>e syntactic objects.

VDM is model-oriented. By this is meant that the objects (syntactic and
senantic) are explicitly constructed in terms of given constructors such as
sets, lists, rnaps, and functions. This is in contrast to property-oriented
specification approaches, such as algrebraic specification approaches, where
objects defined -licitly by the equational rules for the operations that
ran ipu 1 at es them.

are

It is strongly believed that this aspect of VDM has been crucial for l a rge r
applications, and for the acceptability of VDM in industrial environments:
model-oriented specifications tend to appeal much more to software engineering
intuition than does property-oriented specifications. On the other hand it also
clear that a model-oriented specification methodology may easily be abused to
prqduce very operational "specifications" and presents a prevalent danger of
over-speci f ication.

C . 4 . 6

OCHGINAL PAGE CS
OF f O O R QUALITY

4 . The RAISE Project

The RAISE project (Rigorous Approach to Industrial Software Engineering) is a
115 person-year effort undertaken by a consortium consisting of Dansk Datamtik
Center and Nordic Brown &veri (Denmark), and Standard Telephone and Cable:.
p.1.c. and International Camputers Limited (United Kingdom). The prolect I S

partially funded by the Comnission of the European Ccmrmnities under the ESPRIT
progrme, and is carried out in the period 1985 to 1989. An overview of ttjI:
RAISE project is given in [Meiling 851.

The RAISE project will provide an environment consisting of

- a wide spectrum language in which one can express abstract, formal specifi-

- means for expressing and affecting transfomtions of such entities
- proof systems and techniques serving to verify the correctness of such
- a comprehensive tool set

cations, designs, and algorithms

transformations

Also, the project has been designed to include production of educaticr.c:. ,
training and technology transfer material alongside with the developnent of :.,-

above.

In RAISE, Rigorous hints at the underlying dogma that, although the RAISE L:+:..-
guage is formally defined and in principle enables the user to proceed s t r i Y :,:
formally in developiny a software system, practical conditions and req.:i rc:.C::
force one to choose, pragmatically, to carry out various parts of a cieir : I -

ment with varying degrees of formality. The philosophy behind the design of ?..
RAISE tool set is to facilitate such a working style rather than to force a E>-.:

into unmanageable formality.

RAISE encourages developnent by application of correctness preserving era:.!:: :
mations, and allows for the developnent and verification of such t ra : isr , ::' :
tions. The choice of csing a specifically dosigned wide spectmr, is:..;'. . .
implies that most of a developnent can be carried out independentlr c : ::
perspective implementation language: only a final step in a developmmt w : . .
carry a detailed, operational design into code. Typically, the CP& : :

software system will therefore not exploit all the bells and whistles ;': :: , ,
implementation language; indeed, it is hoped that only rather w e 1 1 - i - > t , k : . , i ' L ' :

systems will then result.

In RAISE, Industrial hints not only at the above-mentioned pragnutic chc:I-t,-,
that should be catered for, but also at truly quality tools and nlan-mac-h:i:r
interfaces, usability of methodologies for "real" software systems, inclu,dLm;
the ability to obtain efficient end-products. In order to ensure confcrm.~n,-c~
with these requirements, the project has been designed to include a I;W.LX~L ' :
indus tr ia l t r i a l s , i .e. applications of (intermediate versions of) l L m , ~ ~ ~ < 3 . ; L :;,

methods and tools during the course of the project; such industrial trials c i ~ L .

to t ake place in actual industrial project:; not otherwise connected with m~si:.

c.4.7

5. Some Future Perspectives

At present, it is fair to say that the industrial use of formal methods in
Europe is beginning to happen. There is, though, still a long way to go. The
major obstacles we are facing are:

- insufficient matureness of formal methods
- lack of management awareness
- lack of educational material and capacity
- lack of tools

A nunber of projects have been mentioned which atterrlpt to seriously work towards
more mature formal methods, keeping the more pragmatic requirements to the p-
tential for industrial usage in focus. These projects were designed to bring o u t
the best of earlier formal methods, combined with the most recent advances i n
research. It is believed that the next 2 to 5 years will bring about radical
progress.

By the term "management awareness" we primarily think about first and second
level managers' willingness to allow or force formal methods to be introduced
into projects and divisions. The present, rather widespread conservatism is well
understandable: although a number of successful projects having employed fornnl
methods can be identified, it is, in all fairness, characteristic for s u c h
projects that they have been carried out in particularly friendly envir-
onments. Will formal methods actually port to "real" industrial environments?
The most important part of the answer, we belie\.e. ' s reflected in our rlt'xt
cc7nsern.

Availability of educational material and sufficient well-qualified personnel t 1,

aid in the introduction of new technology are invariably a major concern in m l '
situation of evolution, and indeed also for the introduction of formal metho(is.
However, we beleive that availability of text books, workshops, and courses i : i

not sufficient. It appears to be a general experience that the introduction O I

f o m l methods should happer, (1) in connection with a real project, (2) t , , ,

preceeded t-y intense education (not just training), and (3) -- crucially -- DI'
supported by on-project consultancy provided by experienced pract it ionel-s .

For the moment, few tools supporting formal methods are available. So, basicall).
experiences today have been painstakingly acquired using paper and k i d
scepticists may reasonably ask whether one can have more confidence in f o r n i l
specifications and designs not checked by tools than in programs not checked b y
a compiler. Nevertheless, projects based on 3 levels of paper-arid-pm-I 1
description (specificat ion, high-level and low-level designs) pteccwdin~j I 11:-
irrplemcntat ion have proved to come up with rather startling net: product i v i t !+

ficpres and low error r a t e s . With really good t-ools, we should tw able. t c) <i t)
even bet.ter. It is important to us, however, that method desiqn, under-:,t aiikiin,i
and exper i c n w preceed the const mct ion of tools.

F ' t n c i l .

C . 4 . 8

The Perspective for Ada and Formal Methods

Ada is prabably one of the most complicated programning languages ever designed.
The canplexity is clearly witnessed by the imnense amount of resources that has
been requird to bring about a reasonably debugged reference manual, compilers,
and so on.

The canplexity mainly stems fromthe rather large number of language concepts
and features and, in particular, their general interaction. ~n often-noted
prablem is, as an example, that concurrency (tasking) interfere with the
semantics of otherwise well-understood constructs such as function calls in d

rather non-transparent way: the effect of tasking is not clearly bound to t h e
syntax of Ada. It is to be fearedthat the complexity of Ada may impart 3

serious threat on the ability to construct and maintain correct and reliable
software systems. With the widespread acceptance of Ada as the preferred
programning language for military and space applications it is mre urgent thar.
ever to be serious about true engineering techniques and tools that will enable
industrial construction of correct and reliable software.

We believe that there are two (canplementary) lines of developnent to be
pursued: adoption of the transformational progrdng pradigm, and provicLr-4
usable techniques and tools for analysis (including verification) of pro3rzi-s.
These two lines will probably be effective at different points in time: altta-j,
powerful transformational programing systems are currently being developed, 1~

will invariably take some time before such systems cane into widespread use --
hence there is an extremely urgent need for providing tools that can assist i r
analysing Ada programs having been produced by mre traditional techniques.

If such tools are to be of an interesting quality they must be based on a fcrza:
understanding of Ada. It is hoped that the ccmpletion of the Draft Foms?
Definition of Ada [Hansen 86) will provide the necessary foundation.

c.4 .9

6. References

[Bauer 761 F.L. Bauer: "Pzvgramning as an Evolutianazy Process"; in:
Lecture Notes in C-er Science, Vol. 46, Springer Verlag ,
1976

[Bekic 741 H. Bekic et.al.: " A Formal Definition o f a P L / I Subse t":
IBM Vienna Laboratories TR25.139, December 1974

tBJ0rner 821 D. Blamer & C.B. Jones: "Fonnal s p e c i f i c a t i a n and S o f t w a r e
&velciycment"; Prentice-Hall International Series in Computer
Science, 1982

[BJ0rner 831 D. Bjrarner & S. Prehn: " S o f t w a r e E n g i n e e r i n g Aspects of UM':
in: D. Ferrari et.al. (eds.) : "Theory and Practice of Software
Technology", North-Holland Publishing Canpany 1983

[CIP 851 F.L. Bauer et.al.: "The M L r n i c h P r o j e c t CIP - Volume I: The
Wide spectrum Lenguage CIP-Ln; Lecture Notes in Canputer
Science, Vol. 183, Springer Verlag ,1985

[ESPRIT 861 "ESPRIT P r o j e c t Synopses , S o f t w a r e Technolcy"l: Cdssion of 0 the European Ccnmunities, January 1986

[Hansen 861 K.W. Hansen: " S t r u c t u r i n g the Formal Definitian o f Ada":
these proceedings

[Jones 801 C.B. Jones: " S o f t w a r e Developnent - A R i g o r o u s w r o a c h " :
Prentice-Hall International Series in Ccmputer Science, 1980

[Meiling 851 E. kiling et.al.: "R4ISE P r o j e c t : Rrndamental I s s u e s and
Requirements"; RAISE/DDC/EMl/v6, 1985-12-10; Darsk Datamat i k
Center, 1965

C.4.10

MANAGING ADA DEVELOPMENT
I

James R. Green
Manager, Standard Products

Systems and Software Engineering Operations
Dalmo Victor Incorporated

The Singer Company
6365 East Tanque Verde Road

Tucson, Arizona 8571 5
Phone: (602)721-0500

D . 1 . 1 . 1

anaaina - Ada De veloDment James R. Green

Introduction

The Ada programming language was developed under the sponsorship of the
Department of Defense to address the soaring costs associated with
software development and maintenance. Ada is powerful, and yet to take
full advantage of its power, it is sufficiently complex and different from
current programming approaches that there is considerable risk associated
with committing a program to be done in Ada. There are also few
programs of any substantial size that have been implemented using Ada
that may be studied to determine those management methods that resulted
in a successful Ada project.

As the Manager of Standard Products, I have the responsibility for
developing software products that will be offered for sale on the open
market. One of the products which has been developed is implemented
entirely in Ada and its success demonstrates that a project can be
successfully done using Ada. The program itself comprises over 130,000
source lines of Ada code. This project, although not large by today's
standards of software development, did cause me to face the frustrations
and the difficult management tasks associated with implementing an
entire program in Ada at a time when the Ada development environment
was less than desirable. The items presented in this paper are my
opinions which have been formed as a result of going through this
experience. The difficulties faced, risks assumed, management methods
applied, and lessons learned, and most importantly, the techniques that
were successful are all valuable sources of management information for
those managers ready to assume major Ada developments projects.

D.l .l. 2

Manaaina Ada Develooment James R. Green

People - A Key Ingredient

Projects are implemented by people. The right people are definitely a key
ingredient to the success of any project. Ada is no different. Management
must realize this at the beginning of a project and ensure that "the right
people" are selected. Ada has new concepts which are different from other
languages. Concepts such as packages, specifications, body, information
hiding, generics, instantiation, and multi-tasking are all examples of
concepts and features of the Ada language. Since many of these concepts
do not exist in other languages, management must be prudent in selecting
personnel for assignment to the Ada project itself.

The real power of the Ada language lies in the concepts not necessarily
available in other languages. The people in key positions of the project
must relate to these concepts and management must ensure that the
people that are initially selected do relate to these concepts. It is
possible to write code in Ada that utilizes only the most elementary
concepts. An analogy to this would be writing Ada code using only the
constructs allowed by FORTRAN. Clearly, the code may work, but you will
not realize the benefits of the Ada language.

Those people selected to work on an Ada project most probably will have
prior working experiences in other languages. Their effectiveness on the
Ada project will be related to how easily they accept the new language
features and strive to use them effectively. As a manager, you do not
want the powers afforded by Ada, to be eclipsed by an engineering staff of
parochial vision.

I have found that people who have recent degrees in computer science
relate well to these concepts. In addition, personnel who are well versed
in Pascal programming, seem to transition quite easily into the Ada world.
In my experience, I was fortunate to find talent that related these
concepts. At the beginning of the project, no one on my team had any Ada
experience, and further, few of them had any knowledge of what Ada was

D.1 .l. 3

anaaing Ada D e v e l o m n t James R. G%!2!2l

all about. The success of this project is a tribute to their talents.

Management must seriously scrutinize the qualifications of those people
they select to implement Ada projects, Selecting the right people will
definitely increase your probability of implementing a successful Ada
project.

Trainina Proarams - A Kev lnaredient

Ideally, you would want to hire people who have performed successfully on
other Ada projects. However, there is a limited number of people who are
proficient in Ada and I highlight the word proficient. Proficient meails
that the people understand the complex concepts of this new language and
understand how to apply them. This is different than just knowing the
syntax and semantics of the new language. There is a large body of
software people that are well versed in FORTRAN, JOVIAL, COBOL, and
other well established, high-level software languages. Many of these
people will be transitioning to work in the Ada environment. Management
must provide a means for these people to transition successfully into the
Ada world. This leads me to the second key ingredient to success--
training programs.

The program which I managed began with people that were unfamiliar with
Ada. There was a wide variety of background experience among the people
selected for the project. It was clear at the outset that a key ingredient
to the success of the program would be the implementation of an effective
training program. The training program would provide two benefits. First,
it would establish a common baseline of knowledge for all people on the
project at that time. The varied experiences of the people, and their
k.nowledye of software engineering was an unknown. By covering these
topics in a training course, I could be sure that every one on the project
was in synch with respect to vocabulary, concepts, approaches,
methodologies, and techniques. The Ada programming language and the
concepts and methodologies to be used when designing Ada programs could
be covered in detail. In addition, there would be a benefit of discussing

0.1.1.4

4

appiication techniques--that is how to implement certain features using
the Ada language in practical applications. The training program that 1
implemented actually consisted of five courses and ~ o r r i ; ~ ~ Ised 1 2 2
classroom hours of instruction.

The courses developed and given were:

Introduction to Software Engineering 32 hours
Software Design Methodology 40 hours
Cbding Methodology .. 16 hours
Ada Programming Support Environment 4 hours
Ada Programming .. 40 hours

The Software Engineering, Design Methodology and Coding Methodology
courses were developed in-house. These courses are specifically
designated to provide a sound understanding of the software development
process, software life cycle and design methodologies. The Ada courses
used books and lecture material that was available at the time. It dwelied
primarily on !he syntax and semantics of the Ada language.

The length of time that was taken for training may seem excessive, and
indeed, at the time I thought it was excessive. However, during later
stages of the project, it was clear that the time spent at the front-end of
the project for training, was time well spent.

I cannot stress strongly enough the need for the development team to
understand good software engineering principles and design methodologes
To fully realize the power of Ada in your program, these principles must
be understood and used. Although, in my case, all individuals went through
the same level of training, I would recommend different levels of training
for different project people. I would recommend two to four weeks i)i

intense training for key technical people on the project, and possibly one
to two weeks for junior people. The Ada training for the junior people will
be augmented through on-the-job-training and the assignment of tasks
under the guidance of the more senior and more experienced project

D.l .l. 5

ana Ada De veloDment James R. Greea

personnel.

The training issued, and the time and monoy which should be allocated
during the project for training, is quite controversial. There are a number
of training programs currently available. However, many training courses
are short and cover the syntax and semantics of the language primarily.
For the training program to be truly successful, it must include the
software engineering and design principles needed b; those people
designing the Ada program. These people must understand these
principles, and they must understand how they relate to Ada and this
means that significant time must be spent on the software engineering
aspects of software design.

I recognize that the effectiveness of a training program is largely
realizable only after you are well into your project.

The 132 classroon hours that I allocated for training at the front-end of
my project, was excruciatingly difficult to justify at the time. I t
appeared for several weeks that the project was making no progress in
accomplishing its real objective of designing ana implementing a software
program. However, I now firmly believe that the time spent on the basic
fundamentals of software design reaped enormous benefits later in t h e
program. The issue of training must bs taken seriously by management as
well as the training programs themselves. How well the skills and
methodologies are learned by your personnel will greatly affect the
success of the project. The training must be effective and the perscimel
assigned to the Ada project must be aware that management considers the
training crucial to success and that they must take it seriously. I beliwe
that training related exercises may indeed be integrated with initial
project tasks in a sort of a real laboratory exercise.

0

At this point, you as a manager would theoretically have qualified people
who are trained and capable of implemeriting an Ada project. The next
issue you may worry about are the schedule issues. How can you best be
assured that the project is progressing on schedule and whether the

D.1.1.6

:c
anagina - Ada Oeve loomen t Jatnes R. Green

schedule is realistic. There are numerous models and rules of thumb
which apply for FORTRAN and COBOL and other languages as to the relative

the project, how much time is spent during the actual coding, and hcw
much time is spent during the test and integration portion of the project.

of the time is allocated to requirements and design, 20 percent to code,
and 40 percent to test and integration. It is my experience, however, that
when implementing a program in Ada, significantly more time and effort
should be sxpended during the requirements and design phase. Possibly as
much as 55 percent to 60 percent of the time should be allocated a n d
expected 10 be spenl during the requirements and design phase. Only 15
percent of the time need be allocated to code, and 25 percert to 30 percent
of the time should be spent in testing and integration.

amomt of time that is spent during the requirements and design phase of

I have traditionally used the 40-20-40 rule-of-thumb, where 40 percent e

It has beer: the experience of people on my project, that if the Ada code
compiles, chances are good that it will run. I had teams of workers
implementing different elements of the program. All of the parts of the
program had to work successfully together in order for the entire project
to work. We havc found that the test and integration phase is extremely
shortened using Ada. If a module compiles, chances are very high that i t

wil! run except if there are design errors which go back to the extra time
spent for requirements and design. You must ensure that your design IS
correct and sound.

There are many features in Ada which will result in the program being
accomplished very quickly. One of these features is a concept called
"generic." The concept of generics is that you design a template to do a
certain function, and each time the template is invoked at various places
in the program, it is instantiated or initialized to the values needed for
that particular function. Generics are extremely powerful. However, in

order to get the most benefit from this feature of the Ada language, a lot
of effort must be put in the design of these generic packages. This is an
example of how the training and the software engineering elements work
together to ultimately benefit you project schedule. Approximately, 50

D.l .l. 7

. ana- Ada Development James R. G reeq

percent of the program I was responsible for, is implemented in generics,
and the success of a particular generic was largely dependent upon the
amount of time that was spent in determining the requirements of each
instance that generic would be used and ensuring that the design of that
generic package was sound for all instances.

Another key consideration for successfully managing an Ada project, has
to do with creating an atmosphere which is conducive to accomplishment.
When management is planning the schedule for an Ada program, there r r A
be enough time at the front-end for the technical people to be accustomed
to and familiar with the new language. Progress on the project may be
excruciatingly slow during this time period, but as the technical people
become more accustomed to the features and capabilities of the Ada
language, they will be able to better apply this knowledge during the
actual applicatim required in the project. An atmosphere for
accamplishment, I believe, will encourage experimentation and pushing the
language to its limits. In my particular instance, the Ada compiler which I
had available at the time that training was occurring, was of poor quality
and several of my people found that the Ada compiler really did not
operate in accordance with the Ada Language Reference Manual. They tcok
it upon themselves, as part of their training exercises, to determine all
those features of the Ada Language Reference Manual which did work. 1
encouraged this sort of activity as it broadened their horizons and it held
their interest in the project during the period of time that training was
occurring. This atmosphere of accomplishment meant that the technical
people were not afraid to try things and risk new methods o f
implementation. They became less fearful of failure and concentrated
more on success. This attitude is extremely important to maintain for a
successful Ada project. The technical people will engage in frustrations
and difficult things, but they must be able to experiment and they must be
able to feel the freedom to try new things. You must develop a "can do"
attitude in your technical people.

Risks and Cost Considerations

D.l .l. 8

anmna Ada Development James R. Green

An area of major concern to management to committing a project in Ada is
the unquantified cost associated with it. There will be cost associated
with training, there will be cost associated with new compilers and
software tools, computers, and there is not guarantee that the people that
are hired on the project will be able to accomplish the project. Indeed, the
risks to doing a project in Ada are formidable. In order to control these
risks, and maintain the project on cost and schedule, management must
aggressively be involved with all aspects of the project. By this, I mean
you don't have to know how to program in Ada. Indeed, I do not. However,
you must be able to relate and understand those concepts and those
methodologies which are successful.

0.1.1.9

anaaina Ada OevelQgrnen t James R. Green

Management should consider that doing a project in Ada will involve many
risks that are not present in projects using other traditional languages.
The risks to be faced are not unmanageable, and as a result, the aggressive
manager--that is one who can quickly spot trends leading to success as
well as trends leading to failure and can direct actions appropriate to
either trend, will be able to successfully complete an Ada project.

Since risk equates to cost, the Ada project manager will want to reduce
risk as much as possible. I believe this may be done through prudent
selection of personnel, good training programs and agressive involved
management.

This short discussion on Managing a Program in Ada has touched only a few
of the elements management must be concerned with. These, however, are
keys to success.

D.l .l. 1 0

g.
LESSONS LEARNED: MANAGING THE DEVELOPMENT

OF A CORPORATE Ada TRAINING PROJECT

Linda F. Blackmon
Coordinator, Corporate Ada Training Curriculum

General Dynamics
Fort Worth, Texas

This paper discusses the management lessons learned during the
implementation of a corporate mandate to develop and deliver an
effective Ada training program to all divisions. The management
process involved in obtaining cooperation from all levels in the
development of a corporate-wide project is described; The problems
areas are identified along with some possible solutions.

D. 1.2.1

.'g ' I

Automated Fortran Conversion

Gregory Aharonian
Source Translation & Optimization

P.O. B o x 404
Belmont, Ma 02178

617-489-3727

What to do with a million lines of Fortran code? Managers
a t every major Fortran installation are asking this question
every day. Newer programming languages (C and A D A) , and newer
computer architectures (parallel, data flow) pose a serious
dilemma. How will the algorithms and mathematical techniques in
tens of thousands of Fortran programs be moved to these
environments? Further, since no language will dominate the
science and engineering arena, another question arises. With
strained programmino, staffs and budgets, how will algorithms be
maintained in multiple languages and architectures?

There are three solutions. The first is to hire additional
staff to translate programs across languages, to coordinate and
maintain large libraries of subroutines in the difierer::
languages using existing software tools. Most of the conversion
will be from Fortran to C and A D A , a project with many unresolved
issues (in particular array handling). The solution is
unfeasible economically, when you consider the number o f
combinations of environments (a language out of Fortran,C,ADA,any
other) with a new architecture (out of Cray, FPS, CSPI, Al l i a n t ,
etc.). The staff requirements and overhead will be excessive,
even if you could find enough people willing to do the v e r y
boring work of translating and maintaining software.

The second solution is to develop completely automatic
language translation programs, using all of the breakthroughs i n
software engineering, language theory, and artificidl
intelligence. The problems here are many. First n o o n e l \as
developed an efficient automatic translation system. The few ~ J I I

the market either are not completely automatic, or p r o d u c e vcbr-v
ugly and inefficient code. It is impossible for a computer (a i i d
even many humans) to translate a piece o f Fortran c o d e ~ 1 1 3 ~

operates o n different dimensioned arrays passed to the S ; ~ ; I I C

subroutine with some EQUIVALENCE and COMMON usage. Further y o u
don't want exact translations. Fortran programs were writterl
within the limitations of Fortran, when in the newer l a n g ~ a g e s
the algorithms can be expressed more clearly and efficiently.

D . 1 . 3 . 1

3. .
c' .

The third, and most practical solution, which STO and a few
others have adopted, uses an intermediate language that is easy
to translate Fortran into, and allows for source code in others
languages to be generated automatically. The intermediate
language is the union of all other programming languages (and the
trick i s to create a useful union) with some extensions that
reflect the nature o f the algorithms. The benefits o f this
approach are many. First the original Fortran program has to
rewritten only once, and then only parts o f the program; most
Fortrail code passes through without any change (i.e. assignmcf1t
and simple IF statements). Software tools arc provided to C ~ J S ~

this initial translation. Once in the intermediate langiinge, th(:
algorithm can then be obtained in any other language
automatically.

Some of the conversions (as options) include array indict,
reversal (where A(R(C,D),E(F,G)) in Fortran becomes i n I:
A[E[G][F]][B[D][C]]), many precision support (constants appc~iclr.(l
with E0,DO etc., subroutine and function names are suffixed,
ABSR, ABSD, ARSC), and insertion of timing/frequency analysis.
Manual conversion introduces errors, hindering the testing o f t.tir0
translated programs.

Figure 1 shows an example of a subroutine from the Eisp;ick
library in ten different languages. First, the subroutine is
rewritten in STO's intermediate language, and is shorter Lhan
most o f the final programs. Then, the subroutine is automatically
generated in the other languages (and back into Fortran). We
have successfully converted Linpack (and its test drivers), a n d
produced tested C, Pascal, Basic, and Fortran 77 versions (and i t
anyone has compilers for other languages, we will provide the
code for verification).

What are the disadvantages of this approach? There are t w o
main problems, which are present even if you adopt atiotticlr
solutiori to converting Fortran programs. The first probleni is
that m a n y of the newer languages are incapable of s u p p o r t i n g
numerical algorithms a s easily as Fortran does. Pascal does n o t
a l l o w subroutines to accept arrays of different sizes, m a k i r i g
subroutine libraries all b u t impossible (actually some P a s c i i l
compilers do, b u t there are at least two incompatible
implementations). Modula-2, a (weak) attempt to fix Pascal, a l s o
doesn't allow subroutines to handle different sized multiple
dimensional arrays (only ID). Neither Pascal nor Modula-2 allow
complex numbers (the suggested solution o f using records and
tiirning arithmetic expressions into scries of siihroutine or
function calls heing pathet-ic). 'I'hese languages also provide
limited m u l t i p l e precision slipport, and not the most useful
l o o p i r i g control struct.ures. Modula has no G O T O , and wtiilc most
C;O'TOs can be removed from Fortran subroutines, some very
i i n p o r t - a r i t . subroutines have G O T O s that are extremely diffi.cult to
r e m o v e . A t least in C and ADA you can use CO'l 'Os for thcse tricky
s ~ b r o u t i n e s (1 ikc t h e *INVIT algorithms in the Eispack library).
f : sul)ports Fortran programs well; its only deficiency i s the lack
o f C O M P I , I < X numbers used with t-*/ (h i n t A N S I committee! ! !) .

D . 1 . 3 . 2

OMQlNAL PAGE !?5
of rooR QUALITY

_. ~ >,
The other main problem arises with A D A , A D A has many

powerful capabilities that forces you to start from scratch t o
fully take advantage of A D A . Generics, exceptions, and other
features can only be generated if the intermediate language is as
expressive as A D A , in which case just use A D A / D I A N A to begin
with. Unfortunately there are many installations with millions
of lines of Fortran code that probably don't need all of the
power of A D A , in which case automated translation becomes
reasonable. Then languages like Occam (for parallel processing)
require additional design considerations (in this case to
efficiently use the parallel architecture).

At STO, we are undertaking a project to convert SLATEC to
multiple languages via the intermediate language: when
successful, packages such a s Spice, Nastran, and Gaussian 8 4 w i l l
be converted. These projects are quite important to the design
of the intermediate langauge in the translation challenges
provided. It is important to realize that the recoding is a
small part of the translation process. Creating software
environments f o r multi-languag- software maintenance is the more
critical task. To do s o will require flexible software
generation programs, in particular, %e based on the use o f an
intermediate language.

The approach taken by STO and others (Boyle at Argonnr,
Waters at MIT,de Maine at Auburn, Diana for ADA, Lexeme) o f u s i n g
an intermediate language and associated software tools will a l l u u
Fortran installations to move their Fortran programs i n t v n e w
environments with minimal problems. While not a p e r f e c t
solution, i t is less costly than having larger p r o g r a i n i n ~ r ~ g
staffs, and more realistic than relying on completely autoinaLir
translators.

D. 1 . 3 . 3

TYPE ARRAYlDR IS ARRAY (INTEGER RANGE <>) OF REAL;

INTEGER R A N G E <>) OF REAL1
TYPE ARRAYZDR IS ARRAY (INTEGER RANGE'<>,

PROCEDURE ORTRNR (N: IN INTEGER; LOW: IN INTEGER:
HIGH: IN INTEGER; A : IN ARRAYZDR;
ORT: IN OUT ARRAYlDR; Z : IN OUT ARRAYZDR) 1s

I, J, KL, MM, MP, MP1: INTEGER ;
G: REAL ;

BEGIN
--
-- EISPACK SUBROUTINE ORTRAN IN ADA --
--

FOR J IN 1..N LOOP
FOR I IN 1..N LOOP

END LOOP ;
Z(J,J) := l.OE+O ;

Z(1.J) : 5 O.OE+O ;

END LOOP ;

FOR MM IN 1..KL LOOP
KL := HIGH - LOW - 1 ;

MP : p HIGH - MM
IF A(MP,MP - 1) i= O.OE+O THEN

MP 1
FOR

END
FOR

END

:= MP + 1 ;
I IN MPl..HIGH LOOP
ORT(1) := A(I,MP - 1) ;
LOOP ;
J IN MP..HIGH LOOP
G := O.OE+O ;
FOR I IN MP..HIGH LOOP

END LOOP ;

FOR I IN MP..HIGH LOOP

END LOOP ;
LOOP ;

G : = G + ORT(1) * Z(1.J) ;

G : = (G / ORT(MP)) / A(MP,MP - 1) ;

Z(1,J) : = Z(1.J) + G * ORT(1) ;

END IF ;
END LOOP :

E N D :

ORTRND (N , LOW, H I G H , A , ORT, 2)
int N, LOW, H I G H :
d o u b l e * * A ; . . I

d o u b l e **Z, *ORT ;
(

/ * * /
/ *

. .

i n t I, J, KL, MM, MP, MPl :
d o u b l e G ;

EISPACK SUBROUTINE ORTRAN I N C

* /
for (J - 1 ; J <= N; J +- 1) (

for (I - 1 ; I <= N ; I +=I 1) (

1
Z [I J [J] = O.OE+O ;

Z [J] [J] = l.OE+O :
1
KL = HIGH - LOW - 1 ;
for (MM = 1 ; M M <= KL; M M += 1) (

MP = HIGH - M M ;
i f (A [M P) [M P - 11 ! = O.OE+O) (

MPl = I!P + 1 ;
f o r (I = MP1; I <= HIGH: I +n 1) (

1
f o r (J = MP; J <= HIGH: J += 1) (

ORT[I] = A[I][MP - 11 ;

G = O.OE+O :
for (I = MP; I < = HIGH: I += 1) (

1
G = (G / ORT(MP1) / A[MP][MP - 1) ;
f o r (I - MP; I < = HIGH; I += 1) (

Z [I I [J l = Z [I I [J l + G * ORT[I]:
1

G = G + ORT[I] * Z [I] [J] :

1
1

1
1

D . 1 . 3 . 5

SUBROUTINE ORTRND (N,LOW,HIGH,A,LDA,ORT,Z,LD~)
INTEGER LDA, LDZ
INTEGER N, LOW, HIGH
DOUBLE PRECISION A(LDA.1)
DOUBLE PRECISION Z(LDZ,l), ORT(1)
INTEGER I, J, KL, MM, MP, MP1
DOUBLE PRECISION G

C
C
C
C
C

190

210

290

3 4 0

3 8 0
390
400
4 1 0
4 1 1

EISPACK SUBROUTINE ORTRAN IN FORTRAN

DO 210 J = 1 , N
DO 190 I = 1 , N

CONTINUE
Z(J,J) = 1.ODtO

CONTINUE
KL = HIGH - LOW - 1
IF (KL .LT. 1) GOTO 411
DO 410 MM = 1 , KL

Z(J,I) = O.ODtO

MP = HIGH - MM
IF (A(MP - 1,MP) .EQ. O.OD+O) GOTO 400

MP1 = MP t 1
DO 290 I = WPl , HIGH

CONTINUE
DO 390 J = MP , HIGH

ORT(1) = A(MP - 1.1)

G = O.ODt0
DO 3 4 0 I = MP , HIGH

CONTINUE
G = (G / ORT(MP)) / A(MP - 1,MP)
DO 380 I = MP , HIGH

Z (J , I) = Z(J.1) + G * ORT(1)
CONTINUE

G = G t ORT(1) * Z(J,I)

CONTINUE
CONTINUE

CONTINUE
CONTINUE
RETURN
END

D.1.3.6

PROCEDURE: ORTRNR ()
INTEGER ARC: N
INTEGER ARG: LOW
INTEGER ARG: HIGH
ANY ARG: A
ANY ARC: ORT/VAR
ANY ARC: Z/VAR

END PROCEDURE
PUBLIC: ORTRNR

PROCEDURE: ORTRNR
INTEGER : I, J , KL, MM, M F , MPl
REAL : G

2 6 0 REM
262 REM
264 REM
266 REM
270 REM
3 20
340
360
380
4 0 0
4 2 0
4 4 0
4 59
4 6 0
4 8 0
500
520
5 4 0
560
5 8 0
600
6 2 0
6 4 0
6 6 0
6 8 0
7 0 0
7 2 0
7 4 0
7 6 0
780
so0
8 2 0
H Z 1
8 4 0

EISPACK SUBROUTINE ORTRAN I N BASIC

FOR J = 1 TO N
FOR I = 1 TO N

NEXT
Z(J,J) = l.OE+O

Z(1,J) = O.OE+O

NEXT

IF KL < 1 THEN GOT0 821
FOR MM = 1 TO KL

KL = HIGH - LOW - 1

MP = HIGH - MM
IF A(blP,MP - 1) O.OE+O THEN 800

blPl = MP + 1
FOR I = MP1 TO HIGH

N E X T
FOR J = MP TO HIGH

G = O.OE+O
FOR 1 = MP T O HIGH

N E X T
C = (G/ORT(MP)) / A(MP,MP - 1)
FOR I = MP TO HIGH

Z (1 , J) = Z(1.J) + G * ORT(1)
N E X T

ORT(I) = A(1,MP - I)

G = G + ORT(1) * Z(1,J)

N EX'T
R E M E N D OF IF BLOCK

N EX'I'
K E M E N D 01.' 11: I ~ I . O C K
R E M R E T U R N

E N D P K OC 1: D U K F

D . 1 . 3 . 7

0 O R T R N R :
P R O C (N. LOW. HIGH. A . O R T , Z) ;

, DCL (N ; LOW, H I G H) FIXED BIN 0 5) ;
D C L A (* , *) F L O A T DEC (6) :
DCL (Z(*,*), OR"(*)) F L O A T DEC (6) ;
D C L (I , J , K L , MM, MP, MP1) FIXED BIN (1 5) ;
DCL G F L O A T DEC (6) ;

I 'X

E I S P A C K S U B R O U T I N E OKTKAN 1 N PLI

" I
D U J = l T O N ;

DO I = 1 T O N :

END :
Z (J , . J) = 1 . O E t O :

Z(1,J) = O.OE+O ;

END ;

I F KL >= 1 THEN DO;
DO M M = 1 T O KL ;

MP = H I G H - MM :
LF A (M P , M P - 1) ! = O.OE+O THEN DO:

KL = H l C H - LOW - 1 :

M P 1 = M P + 1 :
DO I = MPL T O I t I G I I ;

O R T (1) = A (I , M P - 1) :
END ;
DO J = MP TO H I G H :

G = O.OE+O :
DO I = MP T O H I G H :

C; = G t ORT(1) * Z (1 , J) :
END *

G = (i / O R T (M P)) / A (M P , M P - 1) ;
DO I = MP T O H I G H :

E N D :
Z(1,J) = Z (1 . J) + G * O R T (1) :

E N D :
E N D ;

E N D :
E N D ;

E k ' D O R T R N K ;

D . 1 . 3 . 8

P R O C O R T R N R (N, LOW, HIGH, A : ORT, 2); BEGIN
ITEM N S :
ITSM LOW S ;
ITEM HIGH S ;
TABLE A[*,*] F ;
TABLE Z [* , *] F ;
TABLE ORT[*] F ; '
ITEM I S ;
ITEM J S ;
ITEM KL S ;

L ITEM MM S ;
ITEM MP S ;
ITEM MP1 S ;
ITEM G Y :

I 1 II

I t I t

II

11 II

II I t

EISPACK SUBROUTINE ORTRAN IN JOVIAL"

FOR J : 1 BY 1 WHILE J < = N ;BEGIN
FOR I : 1 BY 1 WHILE I <= N ;BE?IN

END:
Z[J,J) = 1.OEtO;

Z[I,J] = O . f -) E t O ;

END:
KL = HIGH - LOW - 1;
IF KL >= 1 ; BEGIN
FOR M M : 1 BY 1 WHILE MM < = KL ;BEGIN

MP = HIGH - M M ;
IF A[MP,MP - 1 1 < > O.OE+O; BEGIN

MP1 = MP t 1 ;
FOR I : MPl BY 1 WHILE I <= HIGH ;BEGIN

END:
FOR J : MP BY 1 WHILE J < = HIGH ;BEGIN

ORT[I) = A[I,I.!P - 11:

C = O.OEtO;
FOR I : MP BY 1 W H I L E I <= H I G H ; B E G I N

G = G + ORT[I] * Z[I,J];
E N i) :
G = (C; / ORT[MP]) / A[MP,MP - 1 1 ;
FOR I : MP BY 1 WHILE I < = HIGH ;BEGIN

E N D ;
Z[I,J] = Z[l.J] t G * OR1'[I];

E N D ;
END

\ID;
. .* .
1 . ' I t N ;
E N D

D . 1 . 3 . 9

TYPE ARRAYlDR - SU?ER ARRAY [I . . *] OF REAL8;
TYPE ARKAY2DR - SUPER ARRAY [1 . . * ,1 . . *) OF REAL8;

PROCEDURE OKTRNR (N:INTECER; L0W:INTEGER;
H1CH:INTEGER; VAR A:ARRAYZDR;
'JAR 0RT:ARPAYIDR; VA R Z:AERAY2DR);

VAR I, J, KL, MM, MP, MP1: INTEGER ;

BEGIN
(*

G: REAL8 ;

EISPACK SUBROUTINE OZTRAN IN PASCAL

" >
FOR J := 1 TO N DO BEGIN

FOR I :- 1 TO N DO BEGIN
Z[I,J) := O.OEtO ;

END ;
Z[J,J] := 1.OEtO ;

END ;

IF (K L > = 1) THEN BEGIN
FOR MM := 1 TO KL DO BEGIN

K I A := HIGH - LOW - 1 ;

MP : = HIGH - MM ;
IF (A[MP,MP - 1) < > O.OEtO) THEN BEGIN

MP1 : = MP t 1 :
FOR I := MPl 1:' HIGH DO BEGIN

OKT[I] := A[I,MP - 1 1 ;
END :
FOR J : = MP TO HIGH DO BEGIN

G : = O.OE+O ;
FOR I := MP TO HIGH DO BEGIN

G : = G t ORTII] * Z[I,J) ;
END :
C, := (G/OR'T[MP]) / A[MP,HP - I] ;
FOR I := YP TO HIGH DO BEGIN

Z [I , J] := Z [I , J] t G * ORT[I);
END :

E N D :
END :

END ;
END :

E N D ; (PRTRNRI

CONST NEIG -
TYPE ARRAYlDR = ARRAY [l..NEIG] OF REAL;
TYPE ARRAYZDR = ARRAY [l..NEIC,l..NEIC] OF REAL;

PROCEDURE ORTRNR (N:INT ; L0W:INT ; H1GH:INT;

\
A:ARRAY2DR; VAR 0RT:ARRAYlDR;
VAR Z:ARRAY2DR);

VAR 1, J , KL, MM, MP, MPl: INT ;

(*
G: REAL ;

EISPACK SUBROUTINE ORTRAN IN MODULA-2

"1
BEGIN

FOR J := 1 TO N DO
FOR I := 1 TO N DO

Z[I,J] := O.OE+O :
END :
Z[J,J) := l.OE+O :

END :
KL : p HIGH - LOW - 1
IF (K L >= 1) THEN
FOR MM := 1 TO KL DO

hi' := HIGH - MM ;
IF (A[MP,MP - I] < > O.OE+O) THEN

MP1 := MP + 1 :
FOR I := MP1 TO HIGH DO

ORT[I] A[I,MP - 1) ;
END :
FOR J := M P TO HIGH DO

G := O.OE+O ;
FOR T := MP TO HIGH DO

G := G + ORT[I] * Z[I,J] ;
END :
G := (C / ORT[MP]) / A[MP,MP - 11 :
FOR 1 := MP TO HIGH DO

Z[I,J] := Z[I,J] + G * ORT[I] ;
END ;

END ;
END ;

END ;
END :

END

D. 1.3.11

a- - *

-aaWmmmk-,-nw,-=
XtkltE~lIlDR', %P OH'khRRATTDP,
-VAR 2:ARRAYZDR)

-VAR I, J, KL, MM, MP, MP1: -1NT
%
%
% EISPACK SUBROUTINE ORTRAN IN TURING
%
%

G: -REAL

-FOR J : i . . ~
-FOR I : i . . ~

-END FOR
Z(I,J) := O.Oe+O

Z(J,J) :- l.Oe+O
-END FOR
KL : p HIGH - LOW - 1
-IF KL >6 1 -THEN
-FOR MM : 1..KL

MP := HIGH - MM
-IF A(MP,MP - 1) -NOT - O.Oe+O -THEN

MP1 := MP + 1
-FOR I : MPl..HIGH

-END FOR
-FOR J : MP..HIGH

ORT(1) := A(1,MP - 1)

G :- O.Oe+O
-FOR I : MP..HIGH

G :- G + ORT(1) * Z(1,J)
-END FOR
G := (G/ORT(MP)) / A(MP,MP - 1)
-FOR I : MP..HIGH

Z(1.J) := Z(1.J) + G * ORT(1)
-END FOR

-END FOR
-END IF

-END FOR
-END IF

-END ORTRNR

D.1.3.12

-PROC ORTRNR = (-INT N, -INT LOW, “INT HIGH,

-wlXr)l ‘co

[,]-REAL b , -REF []-REAL ORT,
REF [,] REAL 2) - V O I D :

EISPACK SUBROUTINE ORTRAN IN ALGOL-68

-co - INT I , .I, KL, MM, MP, ElPl :
I -REAL G

-FOR J -+ROM 1 -TO N -DO
-FOR I -FROM 1 -TO N -DO

. Z[I,J] := O.Oe+O ;
-OD :
Z [J , J] := 1.0e+0 :

-OD :
KL := HIGH - LOW - 1 :
- I F KL -GE 1 -THEN
-FOR CIM -FROM 1 -TO KL -DO

I.1P := HIGH - MM ;-
-IF A[MP,MP - 1 1 N E O.Oe+O -THEN

ClP1 : = CIP + 1 :
-FOR I -FROW MPl -TO HIGH -DO

URT[I) := A[I,MP - I] ;
-OD :
-FOR J -FROM MP -TO HIGH -DO

G := O.Oe+O :
-FOR I -FROM MP -TO H I G H -DO

G : = G + ORT[I] * Z(I,J] ;
G := (G/ORT[MP])-/ A[MP,MP - 1 1 ;
-OD :

-FOR 1 FROM MP TO HIGH -DO

-OD :
Z[I,Jl := Z[I,JI + G * ORT[I]:

-OD :
- - F I :
OD :

- F I :
- K E T U R N : ;

E N D

D. 1.3.13

\
GSPC M a Programming Guidelines

1

.

Daniel H. Roy, Robert V. Nelson

1 INTRODUCTION

A significant Ada effort has been under way at Coddard for the last
tvo years. To ease the center's transition tovard Ada (notably for
future space station projects), a cooperative effort of half a dozen
companies and NASA personnel vas started in 1985 to produce
programming standards and guidelines for the Ada language.

2 APPROACH

Two parallel tracks were pursued:

1. Coding style and Ada statement format.

2 . Portability, efficiency and vhole life cycle issues.

Two documents have been produced so far, one for each track followed.
This paper more specifically deals vith the second one. Both
documents are similar in structure (closely modeled on the Ada LRN)
and were greatly influenced by Nissen and Wallis guidelines ((NV]).
Other documents also had some influence:

o The rationale for Ada [Rationale].

o The IEEE Ada PDL recommended practices document [IEEE-9901.

o Intermetrics BYRON user's guide [Intermetrics].

o Ada in practice (Ausnit, Cohen, Goodenough, and Eanes)
I Sof tech].

o Using Selected Features of Ada INTIS].

o Intellimac's Ada style (Intellimac].

o Regulation for the management of computer resources in
defense systems (MIL-STD-2167) 12167).

Both drafts are currently being merged i n t o an Ada Style document
use by all projects at the NASA Goddard Space Flight Center.

for

D.1.4.1

3 STRUCTURE OF THE DOCUMENT

It was decided early on to model our guide on the Ada Language
Reference Manual (LRM) for the following reason:

1. The LRH gives us a frame of reference that is a standard.
2. By following the LRM, ve can reasonably expect to be

thorough.

3. We intend to illustrate the L R M jargon with good Ada code
examples.

Therefore, the document follovs the numbering of the LRM as closely as
possible, including the appendices. Hovever, in spite of this
convention, our Ada Programming Guidelines are sufficiently self
contained that they can be read without the LRH.

Chapters 1 to 14 of our document closely follov the corresponding LRH
sect ions.

Appendix A of the document (Language Attributes in the LRH) describes
the recommended documentation keywords both for design (user oriented)
and code (programmer oriented).

Appendix B of the document (Predefined Pragmas in the LRH) illustrates
the usage of pragmas.

Appendix C of the document (Predefined Language Environment in the
LRH) gives the Ada source code of a decision deferral package (package
TBD).

Appendix D of the document (Glossary in the LRH) is a glossary of
terms used in the guide and not defined in the LRH.

Appendix E of the document (Syntax Summary in the LRH) is a place
holder for the definition of "Ada LINT", an Ada style and programming
practice analyser. After a consensus has been reached about the
specification of the tool and its command language, this appendix vi11
include:

1. The APSE tool command language syntax and semantics
definition.

2. The directives embedded in Ada documentation, style
specification files, etc.

Appendix F (Implementation Dependent Characteristics in the LRH)
identifies the links, waivers or modifications to the company
standards made necessary by these guidelines.

D.1.4.2

, ,.. ~ ' !. .I.. . I , rc,:: , .I , . .I . ,

.

.

Appendix G is a place holder for the definition of a "pretty printer"
Utility. After a consensus has been reached about the specification
Of the tool and its command language, this appendix will include:

1. The APSE tool command language syntax and semantics
definition.

2. The directives embedded in Ada documentation, format
specification files, etc.

Appendix H is an annotated bibiiogtaphy.
The illustrated, recommended practices and guidelines suggest rules
and provide examples of good Ada design and coding formats to promote
readability, aaintainabili ty and, therefore, portability and
reusability of Ada code.

An effort was made to alleviate the bureaucratic burden (that so often
mars software standards) by concentrating on the programmer's "need to
understand1@ and relying on automated tools for the mechanical (and
subjective) aspects of programming such as indentation, alignment of
tokens, etc. Most such rules are to be localized in an Appendix
(Pretty - printer Definition).
Automated support from simple code templates and comment constructs to
the definition of APSE tools are also considered.

4 EXCERPTS FROM THE GUIDELINES

Figure D.1.4-1 introduces the recommended comment constructs that
allows simple tools to extract PDL or documentation from the Ada
design or code.

The document strives to complement the LRH by illustrating its jargon
with examples whenever possible. Unless the rule is particularly
obvious, a rationale is given (possibly in the form of a bibliography
reference), and an exanrple is proposed. The rules are classified as
either suggestions or strong recommendations. The latter are
underlined for emphasis.

Figure D.1.4-2 to D.1.4-5 show the typical form2.t of the rules given.

The document also draws on the IEEE 990 document (Ada as a Design
Language) to show the smooth progression from Ada design to Ada code
where practical. Figures D.1.4-6 and D.1.4-7 show tvo examples
adapted from the IEEE document.

Finally, because efficiency issues pervade the LRM, the guide
addresses the tradeof fs betveen readability, portability and

D.1.4.3

Y

efficiency vhere appropriate.

5 CONCLUSION

The great richness of the Ada language and grammers for
good-style examples, make Ada programming guidelines an important tool
to smooth the Ada transition.

- - he need of pr

Because of the natural divergence of technical opinions, the great
diversity of our government and private organizations and the novelty
of the Ada technology, the creation of an Ada programming guidelines
document is a difficult and time consuming task. It is also a vital
one.

Steps must now be taken to ensure that the guide is refined in an
organized but timely manner to reflect the groving level of expertise
of the Ada community.

____________-- - - -________
Daniel Roy is a senior member of the technical staff at Century
Computing Inc. vhere he has been working since 1983. He received the
Diplome d'Ingenieur Electronicien (HSEE) from ENSEA in 1973 and the
Diplome d'Etudes Approfondies en Informatique (HSCS) from the
University of Paris VI in 1975.

Robert W. Nelson is a member of the technical staff in the Softvare
Engineering Section at NASA's Coddard Space Flight Center. He
received a B . S in Mathematics from Drexel Institute of Technology and
an H.S. in Numerical Science from Johns Hopkins University.

Authors current address:
Century Computing, Inc., 1100 West street, Laurel, Hd., 20707.
Tel: (301) 953 3330.

Goddard Space Flight Center, Code 522, Greenbelt, Hd. 20771.
Tel: (301) 344 4751.

D.1.4.4

i
\ 2.7 COMMENTS

Comments should convey information not directly expressible in Ada.
The conventions given b e l w are used throughout this document.

(a) Use "--I" to indicate documentation (Intermetrics].
See Appendix A for the recommended documentation template.

(b) Use n--*n to indicate PDL construct [Intermetrics].

Using Ada as a PDL has numerous advantages. See [IEEE-990].

In the example of a function stub belov, the three lines of the
function specification are both documentation and PDL.

subtype INQUIRED VAR TYPE is TBD.SOHE TYPE;
function INQUIRE-INT-(--I Emurate DCL verb for integers --*
PROMPT : STRINE --I ,-*
) return INQUIRED VAR TYPE is --I -,*
type TRY RANGE is range 1 .. TBD.HAX; -- Nr try
INQUIRED-VAR e : INQUIRED - - VAR TYPE := 0;

--* Displays "prompt (min. .max): ''

for TRY in TRY RANGE loop
--* Get unconstrained value
--* Validate and translate unconstrained value
return INQUIRED VAR ; --*

end loop ERROR LOGP; --*

- -

-- Value returned --
begin --* INQUIRE INT

ERROR LOOP: --* Until good data or nr errors > max --*

- end INQUIRE INT ; --* -
See Appendix C for the definition of the decision deferral package
(Package TBD).

Figure D.1.4-1: Rule for comments.

D.1.4.5

3.2.2 Number declarations

(a) DO not use numeric literals except in 5 constant declaration Of
when; ----- f i b r i m u m - gproprGte.
This yields more readable and more maintainable code since a change in
value will be localized to the constant declaration.

-- Circle object characteristics
RADIUS : constant := 10.0; -- meters (constant object)
PI : constant := 3.14159; -- (This is a named number)
CIRCLE AREA := PI * (RADIUS ** 2); -- (2 better than "TWO") -

As a rule, using a constant object is better than using a named number
vhich itself is better than using a numeric literal [NW].

Illustrating the LRM jargon. Figure D.1.4-2:

4.4 EXPRESSIONS

(a) Use parentheses to enhance the readability of expressions [NW].

X := (A + B) * (C / ((D ** 2) + E)) ;

(b) Use static universal expression for constant declaration JNW].

Universal expressions maximize accuracy and portability. Static
expressions eliminate run time overhead.

SMALL-STUFF : constant := 12
KILO : constant := 1000;
MEGA : constant := K ~ L O * KILO;

-- Better than "constant INTEGER : - I '

Note that the declaration of object "MEGA" vould be less portable had
KILO been declared as INTEGER since INTEGER'LAST could be less than
one million on some target systems.

Also note that the folloving declarations are more readable than they
would be using the constants MEGA and KILO above.

type MASS TYPE is FLOAT range 1.0 .. 1.OE12; -- Grams
GRAMS : constant MASS-TYPE := 1.0;
KILOGRAMS : constant MASS TYPE := 1 000.0 * GRAMS;
TONS : constant MASS-TYPE-:= 1 - 000.0 * KILOGRAMS;

Figure D.1.4-3: Discussing the rules.

D.1.4.6

CHAPTER 9

TASKS

(a) Use a task for:

o modeling concurrent objects (such as airplanes in an airport
simulation).

o asynchronous IO (other tasks may run while the IO task is
blocked).

o buffering or providing an intermediary link between
asynchronous activities (buffer, active link between two
passive tasks).

o hardware dependent, application independent functions (device
drivers, interrupt handlers).

o hardware independent, application dependent functions
(monitors, periodic activity, activity that must wait a
specified time for an event, vigilant activity, and activity
requiring a distinct priority).

o programs that run on a distinct processor.

It is imperative that the methodology selected to develop multitasking
systems minimize the number of tasks and provide guidance in the usage
of the numerous tasking features of Ada. See [Cherry-841 for details.

Figure D.1.4-4: Rules and bibliography.

D. 1.4.7

(b) Encapsulate priorities in a package (W] .

The LRH does not specifiy the number of priority levels.
- -

with SYSTEl4;use SYSTEM;
package PRIORITY - LEVELS is
--I Raise:
--I
--I
--I
--I Purpose:
--I
--I Portability:
--I
--I
--I
--I Notes:
--I Change Log:
--I Daniel Roy 1-mar-86 Baseline

-- Makes sense here to shorten declarations
- - I Implementation dependent

The folloving declarations can raise CONSTRAINT ERROR on
some implementations since the number of priori’iy levels
is not defined in tte LRH.

Encapsulate implementation dependent priority definitions.

Some declarations may have to be modified for systems featuring
less than 16 levels,
nay have to become equal to * - LOW in-an 8 levels system.

For instance * HIGH and * HED priorities

LOWEST : constant PRIORITY := PRIORITY’FIRST;
HIGHEST : constant PRIORITY := PRIORITY’LAST;
NR PRIORITY LEVELS : constant POSITIVE := HIGHEST - LOWEST + 1;
AVERAGE : constant PRIORITY := NR - PRIORITY - LEVELS
IDLE : constant PRIORITY := LOWEST;
BACKGROUND LOW : constant PRIORITY := AVERAGE - 6;
BACKGROUND-HED : constant PRIORITY := AVERAGE - 5 ;
BACKGROUND-HIGH - : constant PRIORITY := AVERAGE - 4;
USER LOW : constant PRIORITY := AVERAGE - 3;
USER-HED : constant PRIORITY := AVERAGE - 2;
USER-HIGH : constant PRIORITY := AVERAGE - 1;
FOREEROUND LOW : constant PRIORITY := AVERAGE + 1;
FOREGROUND-HED : constant PRIORITY := AVERAGE + 2;
FOREGROUND-HIGH : constant PRIORITY := AVERAGE + 3;
SYSTEH LOW-: constant PRIORITY := AVERAGE + 4;
SYSTEM-HED : constant PRIORITY := AVERAGE + 5;
SYSTEM-HIGH : constant PRIORITY := AVERAGE + 6;

2;

end PRIORITY - LEVELS; - - I

-- Using priorities
vi th PRIORITY LEVELS;
task NASCOH SERVER is --I Distribute NASCOM blocks
pragma PRTORITY (PRIORITY - LEVELS. SYSTEM - LOW) ;

end NASCOH - SERVER;

Figure D.1.4-5: Adding to Nissen and Wallis.

D.1.4.8

10.2.1 Example of subunits

The following example is adapted from [IEEE-9901 and shovs how t o
defer decisions at design time, using Ada as a PDL.

with TRACKER DATA TYPES; use TRACKER DATA TYPES;
procedure TAfiGET - TRACKER is - - I Raaar e:ho processing

ECHO : ECHO TYPE;
SMOOTHED RAN-GE : SMOOTHED RANGE TYPE;
SMOOTHED-ANGLES - t SMOOTHE~ - ANGLES - TYPE;
package FILTERING ALGORITHMS is - - I Could be later extracted from

--I here and "wi th'ed"
-- I
--I
--I

-
function RANGE SMOOTHING (
RAW ECHO : EFHO TYPE
) return SMOOTHED - RANGE - TYPE;

function ANGLES SMOOTHING (-.-I May be a generic SMOOTHING
RAW ECHO : ECiO TYPE --I function could be written.
) return SMOOTHED - ANGLES - TYPE; --I

end FILTERING - ALGORITHMS; -- I
-- The following postpone implementation decisions -- Simple stubs could be written
function IS - ECHO VALID (
RAW ECHO : E C H ~ TYPE
) return BOOLEAN is separate;

--I
- - I
-- I

package FILTERING-ALGORITHMS is separate;

begin --* TARGET - TRACKER
if IS ECHO VALID (ECHO) then --*

else --* decoy ?

SHO~THED-RANGE : = FILTERING ALGORITHMS. RANGE SMOOTHING (ECHO) ; --*
SMOOTHEDIANCLES : = FILTERIN~-ALGORITHHS. ANGLES-SMOOTHING (ECHO); --*

--* log decoy candidate coordinates
null;

--* IS ECHO - VALID end i f ; -
end TARGET - TRACKER; - - I

Figure D.1.4-6: Using subunits and the TBD package.

D.1.4.9

Note that all types from the TRACKER DATA TYPE; package may have been
fully described (using Ada as a da?a definition language and
TRACKER DATA TYPES as a data dictionary). Another solution is to use
the TBD-packgge I

with TBD;
package TRACKER - DATA TYPES is --I data dictionary
--I Notes:
--I Preliminary desjgn

suhtype ECHO TYPE is TBD.RECORD TYPE:
subtype SMOOTHED RANGE TYPE is TBD.REAL TYPE:
subtype SMOOTHED-ANGLES TYPE is TBD.ARRA-Y-'i'YPE: - -

-- I end TRACKER DATA TYPES; - -

Figure D.1.4-6 (cont.): Using subunits and the TID package.

D. 1.4.10

3

I
t

Decision deferral
Members of the list
Can be INTEGER or ENUMERATION type
We knov more about type nov

but we still defer decisions
about index and element types

l We now knov ve'll need to overload ' I ("

I for our type.

(b) Use generics as a decision deferral technique during design.
[IEEE-990]

generic --I Decision deferral
type LIST TYPE is privatei --I Don't want to bother with details now

function SOfiT (-- I
LIST : LIST TYPE --I
) return L I ~ T - TYPE; --I

- - I Notes:
--I Preliminary design

function SORT (--I --*
LIST : LIST TYPE --I --*
) return LIST TYPE is --I --* - - - I Notes:

--I Preliminary design stub
SORTED LIST : LIST TYPE;

begin --* SORT - -
SORTED LIST := LIST;
return-SORTED LIST; -,*

end SORT; --I -,* -

The above generic unit can be further refined at detailed design time
using the same kind of technique:

-- Adapted from [JEEE-990]
generic --

type ELEH TYPE is private;
type INDEz TYPE is (<>);
type LIST TYPE is array (

wi t h function-"<" (

--
--

INDEX-TYPE range <> --
) of ELEM TYPE; --

LEFT : ELEH TYPE; --
RIGHT : ELEH TYPE --
) return BOOLEAN; -_

function SORT (--
LIST : LIST TYPE --
) return LIST TYPE; --

--

--

- - - I Notes:
- - I Detailed design

Figure D.1.4-7: Using generics to defer decision.

D. 1.4.11

Ada EDUCATION IN A SOFTWARE LIFE-CYCLE CONTEXT

Anne J. Clough
Ada O f f Ice

The Charles Stark Draper Laboratory, Inc.
555 Technology Square

Cambridge, Hassachurtttr 02139
(61 7) 258-2748

ABSTRACT

T h i s paper d e s c r i b e s some of t h e e x p e r i e n c e g a i n e d t o d a t e f rom a
comprehensive e d u c a t i o n a l program under taken a t The Char les S t a r k Draper
L a b o r a t o r y t o i n t r o d u c e t h e Ada’ language and t o t r a n s i t i o n modern s o f t -
‘,‘“re eng I neer i ng techno logy i n t o t h e development o f Ada and non-Ada
a k p l i c a t i o n s . I n i t i a l l y , a c o r e group, w h i c h i n c l u d e d managers, e n g i -
n e e r s and programmers, r e c e i v e d t r a i n i n g i n Ada. An Ada O f f i c e was
e s t a b l i s h e d t o assume t h e ma jo r r e s p o n s i b i l i t y f o r t r a i n i n g , e v a l u a t i o n ,
a c q u i s i t i o n and benchmarking of t o o l s , and c o n s u l t a t i o n on Ada p r o j e c t s .
As a f i r s t s t e p i n t h i s process, an in-house e d u c a t i o n a l program was
u n d e r t a k e n t o i n t r o d u c e Ada t o t h e L a b o r a t o r y . L a t e r , a s o f t w a r e e n g i -
n e e r i n g c o u r s e was added t o t h e e d u c a t i o n a l program as t h e need t o
add ress i s s u e s spanning t h e e n t i r e s o f t w a r e l i f e c y c l e became e v i d e n t .
E d u c a t i o n a l e f f o r t s t o d a t e w i l l be summarized, w i t h an emphasis o n t h e
e d u c a t i o n a l cpproach adopted. F i n a l l y , l essons we have l e a r n e d i n
a d m i n i s t e r i n g t h i s program w i l l be addressed.

I n t r o d u c t i o n

E a r l y i n 1984, a l a b o r a t o r y - w i d e commit tee was s e t u p a t t h e Charles
S t a r k Draper L a b o r a t o r y , I n c . i n Cambridge, Massachuset ts , t o assess t h e
impact of Ada and t h e advances i n s o f t w a r e techno logy t h a t t h i s new
DoD-mandated language would impose o n t h e development of s o f t w a r e . As a
r e s u l t o f recommendations of t h i s commit tee and s u p p o r t o f u p p e r - l e v e l
management, a c o n c e r t e d e f f o r t i s b e i n g u n d e r t a k e n t o b r i n g t h i s t e c h -
n o l o g y in-house. A m u l t i - l e v e l e d u c a t i o n and t r a i n i n g program has been
s e t up, Ada p r o d u c t s a r e b e i n g e v a l u a t e d and p rocu red , c o n s u l t i n g and
s u p p o r t s e r v i c e s a r e b e i n g p r o v i d e d as Ada p r o j e c t s become a r e a l i t y a t
t h e L a b o r a t o r y . T h i s paper w i l l c o n c e n t r a t e on t h e e d u c a t i o n and t r a i n -
i n g e f f o r t s t o da te .

Ada i s a r e g i s t e r e d trademark of t h e U . S . Government (Ada J o i n t P ro -
gram O f f i c e) .

0.1 .5 .1

:..

sma 1
for

At the heart of Draper's educational plan was the formation of a
1 , highly motivated and qual if ied group of individuals responsible
supporting the introduction of Ada technology throughout the Labora-

tory. A team of instructors from Raytheon/tiid-Atlantic Systems Faci 1 i ty
and Raytheon/Equipment Development Laboratories assisted in this effort.
Two courses were offered - a 16 to 20-hour Fundamentals of Ada tutorial
for managers and an 80-hour Designing and Programming with Ada course
for engineers and designers. Twenty managers and thirty
engineers/designers participated in this initial phase. This groupI
chosen from a wide cross-section of projects in the Laboratory, contin-
ues to provide support to Ada activities. An Ada Advisory Committee
chosen from this core group provides essential advice, feedback and sup-
port to the overall effort.

In order to coordinate, plan and implement all Ada-related activ-
ities, an Ada Program Office was established. Education, training, and
the acquisition of basic tools were first priorities. Video courses and
computer-aided instructional aids were evaluated and purchased to s u p
plement more formal education. An in-house course was developed, and
compilers and other support tools were evaluated and acquired. In addi-
tion, the Ada Office has followed closely and participated in the larger
Ada community and publishes an Ada newsletter to keep the Draper techni-
cal staff informed of developments in this area. Figure 1 presents the
initial plan for the acquisition o f Ada technology at $he Laboratory,
and in fact, quite accurately describes what has happened during the
past two years.

A N 0 COURSES

S O F X A R E ?nOJ€C-
A 1 CSDC

E V A L U A l I O N A N 0
ACOUISlTlON

DEVELOP A D A
C W I S E S 6 0 1

C E l S O N N f L
CSDL S o r w A R E counscs

-
I I I I
0 6 m m m I "..I 2 *..n

rIGURE 1. ADA TECHU%OGV ?LbN O V E R V I E W

D . l . 5 . 2

Daveloping an In-House Ada Currlculun

Because Ada is a very large language and at times complex, i t was
felt that tradltional trainlng techniques might not prove adequate. A
three-tiered method was adopted which essentially takes a top-down
approach to introducing the language. The first "pass" through the lan-
guage presents an overall view. It concentrates on the need for a new
approach in developing software and presents the history, development
environment, and features of Ada. Initial exposure concludes with a
look at simple, but complete, examples. The second pass studies Ada's
features in more detail, but still does not emphasize syntax or grammar
rules, or the more obscure, difficult, or infrequently used aspects of
any language feature. A third and final pass then carefully examines
each feature in detail dith sufficient time allowed for discussion,
questions, and programming practice.

In practice, this approach has proved to be very effective for
several reasons. First, because of the structure of the course, it i s
possible for students to choose the level of participation desired.
Participants who attend the first portion of the course receive an over-
view of the goals and features of Ada. Administrators, for example,
often choose this level and find it appropriate for their purposes: they
can exit the course with a cohesive set of knowledge. Those attending
the first two segments of the course will learn to develop and recognize
high quality software design in Ada from a conceptual viewpoint, rather
than with an emphasis on detailed rules. This might be an appropriate
level of detail for software project managers. Those participating in
the entire course receive thorough hands-on training in the effective
use of Ada, an essential requirement for the software practitioner.

A second reason that this approach proved effective is the direct
result of the richness and complexity of the language. It is necessary
to understand language features at a high level. "Why do we have this
feature?" "How will it benefit me as a developer of software to be able
to use this feature? "Whare - in what context - will it be used?" If
the instructor is not Careful t o address these issues a t t h e beginning.
it becomes very difficult to differentiate the forest from the trees, or
lose sight of the trees themselves while we focus on a small portion o f
one tree. In addition, the very fact that we "visit" a language feature
at least three times during the entire course makes the practitioner
ultimately comfortable with that feature. Initially, he/she may be
struggling with the concept itself ("just what a generic?"), but
ultimately it becomes familiar and the software developer can begin to
realize and appreciate the extra capabilities that many of these unfa-
miliar Ada features provide to the developer.

Texbooks selected for this course are: "Software Engineering with
Ada" by Grady Booch and "Programming with Ada" by J . G. P . Barnes.
These are supplemented by pertinent articles and materials throughout
the course. The bibliography at the end of this paper lists some of the
materials that have been used both in this course and in a separate
software engineering course.

0 .1 .5 .3

Homework is an integral part of the Course. Students design and
implement Ada applications of increasing complexity as the course Pro-
gresses. Though first sessions of the in-house course and the core
course that preceded it were hampered by the lack of a validated compil-
er or even compiler that could handle the full Ada language, the
availability Of a DEC VAX/VAX compiler now makes assignments more moan-
ingful. Certainly hands-on work using a competent, t~lly-validated com-
piler Is essential. Certificates are awarded to a ! ' participants in the
course w h o Satisfy homework requirements. This certificate is added to
their Personnel records, thus providing more incentive to complete all
homework assignments and enabling the Laboratory to identify those staff
members with Ada expertise.

Sixty hours of instruction are required for the entire course.
Classes meet for 2 1/2 hours two mornings a week during working hours.
Three sessions of the entire course have been given - approximately 110
people have participated, 45 have completed the full course.

Developing a Software Engineering Curriculum

Ada education at Draper Laboratory is very definitely software
neerirlg with Ada. The emphasis throughout is on "engineering" software
for large systems and all features are introduced and taught in that
context. Ada, of course, is unique in that it has been expressly
designed with features to encouraze modern programming and software
engineering practices. Designed for portability and reuse, prOviding
effective encapsulation and data abstraction facilities, Ada has the
potential to substantially change the way software is produced. As
such, it is imperative that the importance of software design, the
development of an appropriate Ada style, and the proper use of this lan-
guage be emphasized in any Ada educational effort. Developing the "Ada
mind-set" is important. As emphasized by many Ada experts and practi-
tioners, a syntax-driven educational approach will not work and will
most likely produce poorly constructed programs, disappointing results,
and consequently negative feelings about the language itself. Software
engineering therefore becomes a priority in our educational efforts
throughout the entire Ada course, with each language feature discussed
within this context. In addition, special sessions deal with Ada as a
program design language, object-oriented design techniques, and investi-
gating whether or not, and how well, Ada does meet the goals of software
engineering.

Having emphasized that our Ada educational approach is heavily soft-
ware engineering driven, it is nevertheless necessary to assert that one
course cannot d o it all. It is not possible to provide in a single
course of any reasonable length a complete treatment of Ada and a com-
prehensive treatment of software engineering at the same time. Nothing
less than changing the model of software design, development and mainte-
nance acquired from previous language experience will suffice. Each
sequential phase of the life cycle must be evaluated in terms of what

D . 1 .5.4

skills are required for effective and efficient production of software
and the proper use of Ada.

The Ada course introduced software engineering concepts that may not
have been conscloutly considered by students before that time. However,
the need for w software engineering knowledge became apparent. To
that end, comprehensive software engineering training, not foreseen in
the original Ada program plan, is being developed by the Ada Program
Off ice.

A software engineering course which deals with the entire life cycle
has been added to Draper's educational program. Topics ranging from
system definition, software costing and software standards to require-
ments analysis, design, testing, maintenance and configuration manage-
ment are covered. Tools that can aid or automate various portions of
the life cycle are presented.

The course was initially conceived as having a complete Ada orien-
tation, both because it grew out of the Ada course and because it is
being developed by the Ada Program office. However, widespread interest
in software engineering by both Ada and non-Ada software developers led
to a course that has both language-independent and Ada-dependent por-
tions.

An integral part of this course is a workshop that allows partic-
ipants to apply both software engineering principles and Ada implementa-
tion techniques to a real application as the course progresses. A space
station command and control problem, adapted from an aDplication
designed and implemented for MITRE Corporation by a Boston University,
College of Engineering student team,2 was used for this purpose. An
exercise had to be chosen that could be completed in a three-month time
span but yet would be interesting enough and challenging enough to moti-
vate the workshop members. Teams of approximately eight members each
are given the documentation that has resulted from the system definition
and scheduling phase of a project . This documentation is not complete;
therefore one of the first things each team must do is get back to the
"customers" -- (the instructors in this case) -- and f i 1 1 in the gaps
that remain in the system description. Each team then develops the
application -- conducts requirements analysis. designs the software
architecture, does low-level algorithmic design, codes and tests the
solution. A t this point, the two teams swap Software and documentation,
and each verifies the other team's software. Since the application is
developed in Ada, the design portion of the course concentrates heavily
on design methodologies and techniques sui table for developing Ada
applications. Software requirements reviews, preliminary design
reviews, detailed design reviews as well as testing and final reports
are presented during regularly scheduled class sessions so that all mem-
bers of the class can benefit from seeing the application progress
through all stages of the life cycle.

2 Ruane, Michael F . and Vidale. Richard F . . m s s i n a M a : 1-
on o f TYDiCal C o m m a n d r t o n t r o l Soft-.

0 . 1 . 5 . 5

Each presentat ion of a l i f e cyc le top ic i s comp le ted b e f o r e t h e
workshop g r o u p begins work i n t h a t port ion of t h e l i f e c y c l e . C lasses
meet for 2-1/2 hours two morn ings a week d u r i n g w o r k i n g h o u r s f o r t h i r -
teen weeks. The workshop t h e n continues fo r an add i t i o n a l month a t
which t i m e t h e e n t i r e c l a s s r e c o n v e n r . ~ t o r e v i e w t e s t i n g and f i n a l
r e p o r t s b y the workshop p a r t i c i p a n t s . The workshop schedu le m i r r o r s a
30-30-13-25% 1 i f e c y c l e model -- one month f o r r e q u i r e m e n t s a n a l y s i s ,
one month for des ign , 2 weeks f o r c o d i n g and 3 weeks f o r t e s t i n g .

As i n t h e Ada course, members can choose t h e i r l e v e l o f p a r t i c -
i p a t i o n cons is tent w i t h the i r own r e q u i r e m e n t s and schedu les . A p a r t i c -
i p a n t c a n t a k e p a r t i n t h e language independent p o r t i o n s o n l y or i n t h e
e n t i r e c o u r s e w i t h or w i t h o u t t i l e workshop. E x e r c i s e s a r e p r o v i d e d so
t h a t a l l p a r t i c i p a n t s , whether or n o t t h e y a r e members o f t h e workshop,
w i l l g a i n e x p e r i e n c e a p p l y i n g t h e concep ts t h a t a r e p resen ted . C e r t i f -
i c a t e s w i l l a g a i n be p r e s e n t e d t o i n d i c a t e p a r t i c i p a t i o n and f u l f i l l m e n t
o f c o u r s e r e q u i r e m e n t s .

Lessons Learned -- Ada E d u c a t i o n

A v e r y p l e a s a n t outcome o f t h e Ada e f f o r t t hus f a r i s an ever-grow-
i n g g r o u p of p e o p l e w i t h i n t h e L a b o r a t o r y who a r e b e i n g exposed t o Ada
and who a r e becoming e n t h u s i a s t i c about t h e language. T h i s g roup
i n c l u d e s p e o p l e a t a l l l e v e l s and ac ross a w ide v a r i e t y o f a p p l i c a t i o n
a reas . Many were f r a n k l y s k e p t i c a l i n i t i a l l y and have been impressed by
Ada and i t s power and promise, e s p e c i a l l y i n t h e a rea o f t h e m i s s i o n -
c r i t i c a l embedded systems t h a t a r e an i m p o r t a n t p a r t o f t h e L a b o r a t o r y ' s
a c t i v i t i e s .

A t t h i s po in t , we have had enough e x p e r i e n c e i n Ada e d u c a t i o n t h a t
we c a n b e g i n t o assess i t s e f f e c t i v e n e s s . We can l o o k c r i t i c a l l y a t our
c o u r s e m a t e r i a l s and see where they have been s u c c ? s s f u l and where
improvement i s needed. We l i s t e n c a r e f u l l y t o t h e commerb+s o f ou r s t u -
d e n t s and a t t e m p t t o t a i l o r t h i s course so t h a t i t meets OUI c u r r e n t and
f u t u r e needs. Some of what we have l e a r n e d i n t h i s p rocess t o l l o w s .

I n t h e Ada cou rse , two areas o f d i f f i c u l t y f o r t h e b e g i n n i n g s t u d e n t
have caused u s t o make ad jus tmen ts i n t h e p r e s e n t a t i o n o f cou rse m a t e r i -
a l . The f i r s t , t h e s t r o n g t y p i n g o f Ada, wh ich i s i n i t i a l l y f r u s t r a t -
i n g , a c t u a l l y becomes one o f t h e f i r s t p l e a s a n t s u r p r i s e s f o r t h e
s t u d e n t . Ada a l l o w s us, a c t u a l l y u r g e s us, t o d e f i n e ou r own d a t a
t y p e s . An o b j e c t i s g i v e n a t y p e when i t i s d e c l a r e d . T h e r e a f t e r , an
o b j e c t ' s t y p e i s i n v a r i a n t t h roughou t program e x e c u t i o n . Values o f one
t y p e canno t be ass igned t o v a r i a b l e s o f ano the r t ype . S tandard opera -
t o r s canno t be used w i t h v a r i a b l e s o f d i f f e r e n t t ypes . For t h e s t u d e n t
accustomed t o w o r k i n g w i t h languages t h a t do n o t have s t r o n g t y p i n g f e a -
t u r e s , t h i s seems v e r y r e s t r i c t i v e and he i s a t l e a s t i n i t i a l l y annoyed
eve ry t i m e t h e c o m p i l e r f l a g s a t y p i n g e r r o r and makes h im e x p l i c i t l y
c o n v e r t v a l u e s from one t y p e t o ano the r b e f o r e an o p e r a t i o n can be p e r -
formed o r an ass ignment s ta temen t can be executed. However, t h e f i r s t
t i m e t h a t t h e c o m p i l e r ca tches a t y p i n g e r r o r t h a t would have f o r m e r l y

D.1 . 5 .6

L

s l i p p e d through and become an e l u s i v e bug i n a l e s s s t r o n g l y - t y p e d l a n -
guage. a new c o n v e r t t o s t r o n g t y p i n g i s won.

The second d i f f i c u l t y for t h e new s t u d e n t i n v o l v e s t h e i n p u t / o u t p u t
f e a t u r e of Ada. T h i s has n e c e s s i t a t e d more emphasis o n i n p u t / o u t p u t
e a r l y i n t h e c o u r s e i n r e c o g n i t i o n t h a t even s i m p l e programs need some
r u d i m e n t a r y I/O. S i n c e input/output i n Ada uses packages and g e n e r i c s
as w e l l , I/O can be c o n f u s i n g and can seem n e e d l e s s l y awkward t o a s t u -
d e n t accustomed t o w o r k i n g w i t h a language w i t h b u i l t - i n i n p u t / o u t p u t
f a c i l i t i e s . Time spen t f a m i l i a r i z i n g t h e s t u d e n t w i t h e x a c t l y how t h i s
works i n Ada not o n l y eases h i s f r u s t r a t i o n s b u t a l s o p r o v i d e s h im w i t h
a n example and model o f a n use o f packages and g e n e r i c s . T h i s can be
v e r y h e l p f u l i n u n d e r s t a n d i n g and u s i n g these concep ts l a t e r on.

The p rob lem of p r e s e n t i n g t o p i c s i n an optimum sequence i s n o t a
t r i v i a l one, both i n terms o f m a i n t a i n i n g c l a s s i n t e r e s t and a p p l y i n g
t h e c o n c e p t s p resen ted . As a n example, i n o r d e r t o cove r Ada t y p e s com-
p l e t e l y , much m a t e r i a l must be p resen ted . However, i f some e f f o r t i s
not made t o d i s p e r s e t h i s m a t e r i a l t h roughou t t h e d e t a i l e d p o r t i o n o f a
course, r a t h e r t h a n p r e s e n t i t i n a s i n g l e b l o c k , i t w i l l s u r e l y be d i f -
f i c u l t t o m a i n t a i n i n t e r e s t . The " d i v i d e and e v e n t u a l l y conquer"
approach t o Ada's t y p i n g t o p i c s a l s o b e n e f i t s t h e s t u d e n t when d e r i v e d
t y p e s a r e p r e s e n t e d a t enough d i s t a n c e f rom t h e concep t o f subtypes s o
t h a t t h e two do n o t become h o p e l e s s l y muddled. An a d d i t i o n a l c o n s i d e r -
a t i o n i s t h a t o f a l l o w i n g s u f f i c i e n t t i m e t o a p p l y those f e a t u r e s cov-
e r e d a t t h e end o f any cou rse . T h i s can be a s e r i o u s p r c b l e m i f t a s k i n g
i s t h e l a s t t o p i c p r e s e n t e d as i s t h e case i n many Ada c u r r i r u l u m s .
S i n c e most programmers t e n d t o t h i n k i n a s e q u e n t i a l manner and tend t o
have t h e most d i f f i c u l t y d e a l i n g w i t h concur rency and t h e i ssues concur -
rency r a i s e s , p u t t i n g t h i s t o p i c t o t h e end o f a cou rse w i l l n o t g i v e
t h e s t u d e n t s u f f i c i e n t t i m e t o a p p l y these new concepts. Not o n l y w i l l
s t u d e n t s be u n a b l e t o a p p r e c i a t e Ada's t a s k i n g f a c i l i t y , b u t they w i l l
a l s o have r e a l h e s i tancy t o use t h i s f e a t u r e a t a1 I when b e g i n n i n g t o
d e s i g n systems i n Ada.

We have found t h a t s t u d e n t s a t a l l l e v e l s want more complete and
c o n c r e t e examples o f good Ada systems. "Real" w o r k - r e l a t e d examples a r e
e s p e c i a l l y h e l p f u l . The exper ienced programmer wants t o c o n c e n t r a t e on
t h e u n i q u e f e a t u r e s of Ada - - he p r e f e r s t o l e a r n on h i s own t h e s i m p l e
s ta temen ts , c o n s t r u c t s and exp ress ions t h a t a r e s i m i l a r t o those found
i n most h i g h o r d e r languages. S tuden ts would l i k e each Ada c o n s t r u c t t o
be accompanied by many examples o f i t s use - - t h e Language Reference
Manual s y n t a x fo rma t supplemented by many more examples wou ld b e u s e f u l .
The Ada-unique packag ing and g e n e r i c f e a t u r e s have p roven t o be a c c e s s i -
b l e t o most s t u d e n t s who v e r y q u i c k l y p e r c e i v e t h e i r power and b e g i n t o
use these f e a t u r e s e f f e c t i v e l y . E x c e p t i o n h a n d l i n g , and t h e way Ada
implements i t , a lways i n i t i a t e s l i v e l y d i s c u s s i o n . W h i l e q u i t e v a \ i d
cancerns about t h e misuse o f t h i s f e a t u r e a r e o f t e n expressed, s t u d e n t s
soon produce code t h a t uses t h e e x c e p t i o n h a n d l i n g f e a t u r e e f f e c t i v e l y .

T a s k i n g i s perhaps t h e most d i f f i c u l t f e a t u r e f o r new s t u d e n t s o f
Ada. Many t r a d i t i o n a l languages do n o t have f e a t u r e s t h a t a l l o w p a r a l -
l e l p r o c e s s i n g . Because o f t h i s . most programmers have a g r e a t d e a l o f
e x p e r i e n c e - - o r a l l o f t h e i r e x p e r i e n c e - - i n s e q u e n t i a l programming.

D . l . 5 . 7

This lack of experience in programming concurrent p r o c e ~ s e s ~ coupled
with the unique problems that can arise such as deadlock, starvation and
timing considerations, make this feature a difficult one to both teach
and learn. I t has been necessary to expand this portion of the curric-
UlUm. A tool developed at Draper, which graphically shows tasks Operat-
ing concurrently and explicitly shows such things a s actuation,
suspenrlon of tasks, rendezvous, and termination, has helped the educa-
tional effort in this area. However, an advanced Ada course which would
concentrate in large part on tasking should perhaps be considered.

Lessons Laarncd -- Software Engineering Education

Although we have not had as much experience with the software engi-
neerlng course as with Ada education, the first session of this course
has been very successful. Participation, as has also been the case in
our Ada educational efforts, has included a wide cross-section of the
Laboratory both in terms of application areas and job level. Managers
are participating both in the course and in the workshop, as are entry-
level engineers and programmers. A great deal of enthusiasm centers
around the workshop approach as this provides a convenient mechansim to
apply techniques and tools discussed in class in an essentially "no-
risk" situation. There is a great deal of learning that takes place in
the workshop groups, as people with diverse backgrounds and experience
are taking part. In the classroom as well. much information exchange is
taking place and a wide range of expertise is being tapped. This combi-
nation has resulted in a very effective learning forum. The Ada Program
Office is coordinating the course and supplying most of the instruction:
however, a number of presentations given by experts both within the Dra-
per community and outside as well, have greatly enhanced the course
offerings. Through the very active participation of its members, all
participants in the course are being challenged to think about the way
they are currently developing software. In addition, any new methods
being presented, whether they be requirements analysis, design or test-
ing methods, are subjected to the most rigorous scrutiny. "Will this
method work as advertised by its proponents?" "Will it work in the type
of application that I develop?"

As mentioned earlier, participants can choose their own level o f
participation. Though course developers had assumed that members who
had no familiarity with Ada would choose to participate in the lan-
guage-independent portions only, in actuality most members have opted
for the entire course. Because of this, several sessions were added to
familiarize non-Ada participants with Ada's unique features. An unex-
pected side effect appears to be a group of people interested in regis-
tering for our next Ada course.

Have we presented these two courses in the correct order? Shouldn't
a software engineering course precede a course in Ada? Although this
will be the case for the group of people just mentioned, in general, the
opposite approach has worked quite well. First of all. the Ada course
has a good amount of software engineering content. In addition, having

D.1 . 5 . 8

t h e m a j o r i t y o f course p a r t i c i p a n t s conversant w i t h Ada has enab led US

I n this second course t o conrlder a number of d e s i g n me thodo log ies
U n i q u e l y s u i t e d t o Ada, has enabled us t o conduc t a n o n - t r i v i a l workshop
i n Ada and has al lowed us t o d e a l w i t h some of t h e more advanced and
d i f f i c u l t a s p e c t s of t h e language, e s p e c i a l l y i n t h e t a s k i n g area.

Future P l a n s

.
AS Ada a p p l i c a t i o n s c o n t i n u e t o be i n t r o d u c e d in to t h e L a b o r a t o r y ,

t h e Ada Program O f f i c e w i l l c o n t i n u e i t s e f f o r t s i n e d u c a t i o n and i t s
e f f o r t s t o p r o v i d e a more s u p p o r t i v e programming env i ronmen t . I n Ada
i t s e l f , an advanced cou rse c o n c e n t r a t i n g h e a v i l y on t h e t a s k i n g aspec ts
o f t h e language and p r o v i d i n g more guidance o n d e v e l o p i n g embedded
a p p l i c a t i o n s may need t o be added t o t h e c u r r i c u l u m a l r e a d v developed.
U t i l i z i n g t h e l o w - l e v e l f e a t u r e s o f t h e Ada language may need c l o s e r
e x a m i n a t i o n as w e l l . For t h e cou rse a l r e a d y "on t h e s h e l f , " t u n i n g and
t a i l o r i n g f o r D r a p e r ' s p a r t i c u l a r requ i remen ts w i l l be a c o n t i n u i n g p r o -
cess. The top-down, t h r e e - l e v e l approach has p roved q u i t e e f f e c t i v e .
Perhaps a s e p a r a t e course f o r a d m i n i s t r a t o r s o r a s e p a r a t e course f o r
managers w i l l need t o be g i v e n a t some point i n t h e f u t u r e -- ou r essen-
t i a l l y modular approach wou ld make t h a t v e r y easy t o p repare . Con t inu -
i n g seminars sponsored by t h e Ada o f f i c e p r o v i d e an o p p o r t u n i t y f o r
t hose who w i l l n o t be u s i n g Ada immed ia te l y t o keep t h e i r Ada s k i l l s up
t o d a t e and enab le those p r e s e n t l y i n v o l v e d i n Ada a p p l i c a t i o n s t o keep
in fo rmed about new Ada methodologies, t echn iques and t o o l s .

S o f t w a r e e n g i n e e r i n g w i l l c o n t i n u e t o be emphasized. Growing i n t e r -
e s t w i t h i n t h e L a b o r a t o r y ensures 3 r e p e t i t i o n o f t h e s o f t w a r e e n g i n e e r -
i n g cou rse d i s c u s s e d i n t h i s paper. I n f u t u r e sess ions , d i f f e r e , \ t
a p p l i c a t i o n s may be g i v e n t o each team so t h a t , i n t h e t e s t i n g phase,
teams can t e s t a p p l i c a t i c n s t h a t t hey have not developed. S ince t h e
ma jo r t h r u s t o f t h e s o f t w a r e e n g i n e e r i n g cou rse i s on t h e requ i remen ts
a n a l y s i s , d e s i g n , imp lemen ta t i on and t e s t i n g p o r t i o n s o f t h e l i f e c y c l e ,
f Q J r t h e r cou rses o r i n t e n s i v e seminars c o u l d be added on t h e system d e f i -
p i t i a n and s c h e d u l i n g phase. The s o f t w a r e p l a n n i n g phase and s o f t w a r e
c o s t a n a l y s i s c o u l d be covered ir: more d e t a i l . Review techn iques , main-
tenance, s e c u r i t y and c o n f i g u r a t i o n management a r e o t h e r p o s s i b l e t o p i c s
f o r f u t u r e i n - d e p t h coverage. P o s s i b i l i t i e s f o r f u r t h e r g rowth i n
t r a i n i n g and e d u c a t i o n s u r e l y e x i s t .

C o n c l u s i o n s

Exper iences i n e d u c a t i o n and t r a i n i n g a t Draper L a b o r a t o r y i l l u s -
t r a t e s t h e e f f e c t i v e n e s s and l o n g - t e r m b e n e f i t o f e s t a b l i s h i n g an i n -
house c a p a b i l i t y i n t h i s area. Many t r a i n i n g o f f e r i n g s a r e a v a i l a b l e
t h a t p r o v i d e i n t e n s i v e , s h o r t - t e r m t r a i n i n g i n Ada: fewer o f f e r i n g s a r e
a v a i l a b l e i n s o f t w a r e e n g i n e e r i n g . The long - te rm e f f e c t o f some o f
t h e s e o f f e r i n g s i s o f t e n q u e s t i o n a b l e . C e r t a i n l y a f i v e - d a y o r two-week

D . 1 .5 .9

intenrive approach to teaching Ada will not really allow Stu-
dents to either become comfortable with the new concepts presented Or to
grapple with the more dlfficult issues. A course spread over a longer
period of time -- our courses traditlonrlly have a 3-4 months Span --
allow the student ,time to assimilate new Ideas, raise questions and most
importantly get real hands-on experience wi th non-trivial SPPl ications.
In addl ti on, havi ng i n-house support for Ada and sof tware eng i n e w i ng
ensures that, long after a course has been completed, the instructor or
instructors are available for consultation and assistance. This latter
advantage cannot be overemphasized when new technology i s being i ntro-
duced I f the desire is to truly assimilate and integrate that technology
into the software development process.

a

D . l .5.10

1. Albrccht rnd Caffney, "Software Function, Source Lines of Code and
A Software Science Validation", LLLT

o n S o f t w a r c i n - r i n g , Vol. SE-9, No. 6 , November
Oevelopment Effort Prediction:

1983, pp. 639-648.

2. Ausnit, Cohen, Goodenough & Eanes, "Ada in Practice", Springer-Ver-
log, 1985.

3 . "An Object Oriented Design Handbook for Ada Software", EVB Software
Engineering, Inc., 1985.

4. Barnes, J.G.P., "Programming in Ada", Addison-Wesley Publishing Co.,
1984.

5. Boehm, B., "Software Engineering Economics", Prentice-Hall, 1981.

6 . Boehm-Davis & Ross, "Approaches to Structuring the Software Develop-
ment Process", General Electric Company, October, 1984.

7. Booch, Grady, "Software Engineering with Ada", Benjamin/Cummings
Publishing Company, Inc., 1983.

8 . Brooks, Frederick, "The Mythical Man-Month", Addison-Wesley Publish-
ing Company, 1975.

9 . Buhr, R.J.A., "System Design with Ada", Prentize-Hall, Inc., 1984.

I O . Fairley, Richard, "Software Engineering Concepts", McGraw Hi 1 1 Book
Company, 1985.

1 1 . Freeman & Wasserman, "Tutorial on Software Design Techniques", I E E E
Computer Society Press, 4th Edition.

12. Helmbold & Luckham. "TSL: Task Sequencing Language", ProcPPdi-
n a t i m l f e r c n c e . 1985, Cambridge University Press,

Cambridge, pp. 255-274.

13. Mardrioli, Zicari, Chezti and Tisato, "Modeling the Ada Task System
by Petri Nets", (lomouter -, Vol. 1 0 , No. 1 , pp. 43-61, 1985.

14. Hyers, Glenford, "The A r t of Software Testing", John Wiley & Sons,
1979.

15 . Pressman, Roger S., "Software Engineering: A Practitioner's
Approach", McCraw-Hi 1 I Book Company, 1982.

16. Ruane, Michael f . & Vidale, Richard F . , "Assessing Ada: Implementa-
tion o f Typical Command and Control Software", Boston University,
College of Engineering, Boston, M A , 1984.

D . 1 .5.11

17. Snaufer, Joseph E., lbPractical Cuidel ines for Testing Ada Programs"r
Hastet's Thesis, Arizona State Universi ty, 1085.

18. Szulewtki 6 Sodano, "Design Hatrics and Ada", P L Q C S ~ ~ ~
a1 Wa- A-, Sponsored by A M , 1984, PP.

105-1 14.

19 Wegner , Peter, "Sal f -Assessment Procedure VIII",
l h c , Vol. 24, No. 10, October, 1981.

20. Weiner t Sinovec, "Software Engineering with tlodula-2 and Ada",
Wiley & Sons, 1984.

1 . Ichbiah, Barnes and Firth on Ada, Alsyt, Inc., 1984.

2 . Software Engineering Training Curriculum, R . S . Pressman &
Associates, Inc., 1985.

1 . Lessons on Ada, Volume I and 11, Alsys, 1983 and 1984.

0 .1 .5 .12

Towards A Software Profession
by Edward V. Bcrard, EVB Software Enginccring, Inc.

"Between the amateur and the professional ... there is a diflereticc not only in degree but in
kind. The skilyul man is, within the function of his skill, a different intc,,jration, a d#irc.nt
nervous and muscular and psychological organization ... A tennis player or a warclimakcr
or an airplane pilot is an automatism but he is also criticism and wisdom."

Bernard Dc Voto
from "Across the Wide Missouri"
119471

"Liberty trains for liberty. Responsibility is the first step in responsibility. "

William Edward Burghardt Du Bois
from "Th: Legacy of John Brown"
[19091

"The absurd man is he who never changes."

Auguste Maseille Barthelelmy
from "Ma Justification"
[18321

"A professionul makes ir look easy."

Source Gnknown

"Old age and treachery will overcome youth a d skill."

Julian Levi
Motto for the "65 Club"

"Computer programming," as we know i t today, is a little more than 35 years old. You
might even say that, as an occupation, it is in its "late adolescence." Programmers.
themselves, have been known to exibit all the symptoms of adolescents, e.g., arriving ;it

work at odd hours, dressing in a unconventional manner, spouting technical gibberish th;it
is 4 d o m understood by anyone other than another programmer, refemng to themselves as
"gurus" or "wizards," and an extreme loathing to accept anything that even vaguely
.zsembles responsibility. These items may be collectively referred to as the "Ke;il
Programmers Don't Eat Quiche" syndrome.

To be fair, an increasing number of programmers have attempted to change their image.
They have made i t plain that they wish not o d y to be taken seriously, but they also wish [o
be regarded as "professionals." Even the term "programmer" has become passe'. Man).
programmers, and their companies, now refer to programmers as "software engineers."
(Note that this change in nomenclature is seldom accompanied by a corresponding change
in job description.)

OEVB Software Enginccring, Inc. 1986 I
5301 Spcctrum Drive
Frcdcrick, Maryland 21701 (301) 695 - 6960 I) . 1 . 6 . 1

0
OCHGiNAC PAGE %
OF POfX QuAuM

Put simply, changing the image of "programming" and programmers is a "tall order." Both
the Software and the people who deal with it suffer from a severe case of "Rodney
Dangerfield Syndrome," i.e., they get little if any respect. Hardware professionals oilen
look at software as something that one "slathers on the hardware" to get the real product
(i.e., the hardware) out the door. Even programmers have few qualms about stealing
Software. People, in general, have a hard time recognizing software as a product.

The attitude that "anyone can be a programmer" is still very prevalent in our culture. The
only credentials one seems to need to call oneself a programmer are a general familiarity
with the syntax of a programming language, a rudimentary knowledge of a text editor, and
enough exposure to an operating system to invoke a compiler. Most programmers are
totally lacking in skills such as software design, software testing, software maintenance,
software quality assurance, error analysis, metrics, and configuration management.

Our work seems to be cut out for us. If we wish software professionals to be considered
professionals in every sense of the word, two of the major obstacles we will have to
overcome will be: the inability to think of software as a product, and the idea that little or no
skill is required to create and handle software throughout its life-cycle.

Professions and Professionals

If we are going to address the issue of professionalization, we must first define what i t is
we mean by a profession and by a professional. A logical place to start is the dictionary.
The 1979 version of Webster's New Collegiate Dictionary provides two common
definitions for a profession:

"a calling requiring specialized knowledge and often long and intensive
academic preparation," and

1.

2. "a principle calling, vocation, or employment."

Unfortunately, the second definition more accurately describes the "software profession" a s
i t exists today. There are, however, a small, but growing, number of organizations whrrc
the first definition is more appropriate. These organizations have found that an engineermg
approach to the software life-cycle is not only less chaotic, but cost-effective as well.

Our dictionary also provides two definitions for a professional:

1 . "one that engages in a pursui' 3r activity professionally," i.e., one wlio
conforms "to the technical or ethical standards of a profession," and

"engaged in by persons receiving financial return." 2.

I f you have any dcdbt that the second definition more xcurately reflects the "soft\wrc
professi~nal," of today, rnercly ask a software profesbional to list (or give a spccit'ic
reference to) "the technical or ethical standards" of the profession. The Computer Socicty
of the Institute flw Electrical and Electronics Engineers (IEEE-CS), has made a good st;^ ;I[
defining some Oi the technical standards for the software profession. 'The Institute I'or
Certification of Cwnputer Professionals (ICCP) rcquires that those who pass a written
examination and "subscribe to the ICCP Codes of Ethics, Conduct, and Good Practic.c"
may use the designation "CCP' after their names. These last two poirts illustrate t h a t
attempts already have been made to establish technical and ethical standards for software
professionals.

6 E V U Software Enginccring. Inc. 1986
0 2

S301 Spcctrurn Drivc
Frcdcrick, Maryland 21701 (301) 695 - 6960 I). I .h.2

URGINAC PAGE IS
of rooR Q U A l l N

e &. We should also note that there will robabl be a need for paraprofessionals in the
software industry for some time. (We i d ster's efines a paraprofessional as "a trained aide
who assists a professional person.") While we will acknowledge the probable need for
paraprofessionals in the software industry, we will not discuss their required qualifications
in this article.

Characteristics of a Profession and Professionals

If you were to interview a number of different professionals (doctors, lawyers, teachers,
nurses, airline pilots, electrical engineers, and certified public accountants), you would find
that their professions placed a number of requirements on anyone who wished to be
considered a professional, including:

0 a minimal level of training for entrance to the profession . Many profession\
require a minimum of a four-year college degree from an accreditcd
institu:ion. Even those that do not specifically require a college degrec often
require many hours of training which may take years to accomplish.

examination for lawyers, the CPA examination for accountants, and board
Certification for medical doctors. I n many professionr, certificarion is nor (i

one-rime affair, with professionals having to re-ccrirh, every one to rlircu
years.

0 some form of formal certification. The classic examples are the bar

0 some form of conrinw'ng education or training . Just because a professional
has acquired a college degree does not mean that he or she is finished with
formal education. Teachers, lawyers, nurses, and other professionals ;ire

often required to take a minimum number of courses per year to mainrain
their certification. (Even if college courses are not required, t i i n s !
professionals must keep current with their profession. Imagine ;it1

accountant who is unaware of the most recent changes in the tax laws, or :i
doctor who was not up-to-date on the latest findings on a particul;ir
antibiotic she was prescribing.)

many forms. For example, it shows up as "publish or perish" for colle:c
and university professors, successful diagnosis and treatment for doctors,
and the won/lost record for attorneys. Professionals must demonstrcirc t i i t ir
rhey can pracricnll-y apply thc trainin# rcquircd for their prcgkvsinn.

0 some minimal level of proof of perjbrmunce. Proof of performance can take

. conjhrmance roprofession~il srurulclrds . Prior to admission to a profcssioii.
a candidate will probably be made aware of the standards (e.~:. .
methodologies, metrics, and levels of quality) for the profession. I'hc
certification process will most likely test the candidate's knowledge ot rlicsc
standards. U p o n being accepted into the profession, the professional will bc
expected to conform to the existing standards, and to keep abreast of ~ i i i y
changes to these standards.

0 adherence to professionul ethics. Webster's defines ethics as "a set of moral
principles or values." Professional ethics involve such items as the
professional's obligations to his or her client, the social responsibility of the
professional, the relationship of p ro fes s io~~~l s to their employcrs, and acts
which might discredit or degrade the profession.

0 Q E V B Saftwarc Engineering. Inc. I'H6
5301 Spcctrum Drive
Frederick, Maryland 21701 (301) 695 - 6960

3

I) . I . h . 3 ORiQlNAL PAGE Is
of: rCOOR QUALITY

the taking of responribiliry and acceptance of liability. Professicrlals take
direct rcsponsibility for their actions. The profession, as a whole, usually
provides some form of established guidelines and acceptable limitations on
responsibility to guide the professional. Professionals may also be required
by some municipal, state, or federal laws to take on some amount of
additional responsibility. Examples of professional responsibility can be
found almost daily in any newspaper account of an event which caused
harm to one or more individuals, or in which some law was broken. Classic
examples include plane crashes, bank failures, and medical malpractice
cases.

The profession itself typically provides a number of benefits to its members, including:

the establishment of a number of professional societies. Professional
societies provide a number of services for their members. (In fact, when
people speak of a profession they are often refemng to the professional
societies for that specific profession.) They sponsor continuing education
for their members, publish professional journals and other periodicals,
provide a forum for the members to express opinions and influence the
profession itself, and generally represent the interests of their members.

used in a malpractice suit is that the professional was "following generally
accepted professional procedures and guidelines." Professions also provide
guidance in such areas as rights of ownership, items which will directly
affect current practices, and career advancement.

0 providing protection for its members. One of the the most common defenses

maintaining public respect for the profession as a whole. The words
"profession" and "professional" usually have positive connotations in thc
mind of the public. This is no accident. Professions (both the professional
societies and the membership in general) continually strive to maintain, and
improve, the image of the profession in the mind of the general public. This
translates into increased status and financial gain for the professionals
themselves.

Cook and Winkle (in their bwk, Auditing PIiilosophy and Technique) observe that :
"Professions are characterized also by the performance of intellectual services, as
contrasted with manual and artistic labor. In addition, professions recognize a duty of
public service and adopt a code of ethics generally accepted as binding upon their
members." Later, in the same book, they make an interesting observation regarding thc
American Institute of Certified Public Accountants (AICPA): "Frequently. state regulations
are modeled after AICPA pronouncements. Many court decisions use the statements from
the AICPA as criteria to evaluate public accountants and their work." This is (I po~vct-fi~l
statement. It illustrates a precedent for a profession to directly influence outside
governmental regulation of the profession.

GEVB Software Engineering, Inc. 1986
5301 Spcctrum Drive
Fredcrick. Maryland 21701 (301) 695 - 6960

4

I) . I .0 .4

q-; e

.

Professionalization

fiofessionalization may be loosely defined as the establishment, and adherence to, a
professional model where one either did not previously exist, or was not firmly entrenched.
In a professional model, the individuals who refer to themselves as professionals exhibit
most, if not all of the characteristics of professionals mentioned in the previous section
Further, there is a "professional atmosphere" which is established jointly by both the
individual members of the profession and the existing professional societies. This
professional atmosphere exhibits the characteristics of the profession, also described in the
last section.

A number of steps occur in the process of professionalization. These steps need not occur
sequentially (i.e,, some may occur concurrently and some may even occur "out of order"),
and (ideally) they should make use of work which has already been done. The following
list of steps is usually required for pmfessionalization:

1. n of for orofessionallzatron. This usually occurs when
the need for highly-skilled, uniformly-trained individuals is recognized,
i.e., the work performed by those already in the field becomes increasingly
critical in nature.

fo- of tbrofesslon . . .
2. * . This will include establishment of

standard terminology for the profession, creation of job titles and
descriptions for profession members, and identifying relationships (e.g.,
profession to profession, professional to client, and the relationship of the
profession ta the general public).

rdentlflcatlon of ke- societia. These societies will
hopefully have already achieved some degree of formal status (e.g., the
respect of the professional community, the publication of useful periodicals,
and the conducting of local and national meetings). These societies will
prove invaluable in aiding the rest of the professionalization process.

4. t of criteh. This must include such issues
as: minimal formal education, minimal experience (apprenticeship), and a
certification process.

5 . on of -. These
can include existing college curricula and profession-approved continuing
education programs.

The certification process must be based on the minimum amount of uscl'ul
skills and knowledge required by a "typical" professional. Tlic I C -
certification process should be directed towards the career paths available to
the professionals. The certification and education processes will obvioiisl!
directly affect each other.

. 3.

. .

. .

. . . 6. the e w l ishmnt of fo-nification (a nd re-certif icarion) uroc SdlIr'c.>

7. the co Ilectinr and p r o m u l ~ i o n of profess ion al sta ndards. Professiori;il
standards encompass such items as: procedures, methodologies. metrics,
acceptab!e performance levels, and tools.

OEVB Software Engineering, Inc. 1986
5301 Spcclrurn Drive
Frederick, Maryland 21701 0 (301) 695 - 6960

5

I). 1.6 .5

8.

9.

10.

11.

12.

13.

h-varelevan t ' . A code of ethics for the
profession must be establish-, and adhered to by the
profession. Ideally, the profession's code of ethics will be incorporated into
the certification process.

a d to meet
s for rk

(and hopefully exceed) some minimal set of performance goals to maintain
their professional status. They must have some way of knowing how well
they are doing in their chosen field. The profession must continually strive
to improve itself as a whole (e.g., a decrease in the average error rate per
member).

. .

. . identifi~tion of r u i r e d -P educdon (m a c o n t i n u l ~ v. No professions are static, especially the technical
professions. The useful life of much professional knowledge continues to
shrink. For example, it has been said that the technical knowledge of the
human race doubles every four years. Typically, professionals are required
to take a minimal number of prescribed courses per year to maintain their
professional status.

.

.
Professionals must be aware- to their clients, their

ies and IiabilitieL.

employers, other professionals, and to the profession in general. Further,
they must be aware of the liabilities which come along with responsibility.
Only people who are legally insane are not held accountable for their
actions.

f ie est- for f l h of prie vances. rem0 V a l of
Lndlvlduals frm the p r o h o n . a n d e a l i n ? both. The status of a
profession is diminished by the inclusion of individuals who no longer meet
standards established by the profession.

hment a-ce of a ve ~u bl IC imap -g. A profession
with a positive public image can command better benefits for its members,
including higher levels of compensation.

. .
* . .

. . . .

While all of the above obviously take time to occur, they can be accomplished in a relatively
short time, say within three to four years. This time can be further shortened by a focused
effort on the part of the professionals themselves.

Examples of Professionalization

Examples of professionalization abound. Outside of the software industry, wc I1ave ;IS
examples: the legal profession, the accounting profession, the medical profession, and the
teaching profession. The professionals in these areas are lawyers, certified public
accountants, doctors and nurses, and teachers respectively. Even a c a w n l conversation
with any individual associated with these professions would reveal that most, i f not all, of
the pints covered in the previous section are relevant to their profession. The mechiinisins
and the nomenclature may vary from profession to profession, but the points thernselvcs
still remain relevant.

government. Quite surprisingly, professionalization'does not seem io occur at any
consistent time in the existence of a discipline. For example, it took literally thousands of
years before civil engineering became professionalized in the modem day sense, while
ektrical engineering became professionalized almost as soon as it was recognized as a
separate discipline.

A major factor in the speed with which a discipline becomes professionalized seems to be
the environment in which it functions. For example, when electrical engineering first came
into existence, other scientific and engineering professions were already f i i y in place.
These established professions provided paradigms for the creation of the electrical
engineering profession. When one views the handling of software (and related issues)
throughout its life-cycle as an engineering problem, we can easily see that paradigms
already exist for the professionalization of those who are directly responsible for software.
Further, this professionalization process should be taking place now, i.e., definitely much
before 1990.

Some of the steps necessary for professionalization are already in place. We have a number
of professional societies. Computer science curricula at colleges and universities have been
in place for snore than twenty years. (Although some schools offer some "software
engineering" courses at the undergraduate level, it appears that none are offering
undergraduate degrees in software engineering, and only a few are offering advanced
degrees in the topic.) The IEEE-CS is actively involved in defining standards for the
engineering of software. The Institute for the Certification of Computer Professionals
(ICCP) and the Certified System Professional Program (CSPP), among others, have
established model programs for the certification of software professionals. The Ada Joint
Program Office (APO) has established a working group in Ada and softwaie engineering
education. One of the issues that this group is looking at is the certification of Ada
professionals. Finally, the Europeans are also exploring the idea of certification of
computer professionals.

Software Engineering and Computer Science

For purposes of this article, I will restrict our attention on professionalization to threc:
general categories of potential software professionals: computer scientists, software
engineers, and software engineering management. It is not our intention at the moment to
provide in-depth definitions of each of these professions. Instead, we will provide quick
sketches of each, and leave the details to a later article.

In discussing computer scientists and software engineers, we will differentiate the t \ v o
using the paradigm of more "conventional" enginecrs and scientists. A scientist is chiell!,
concerned with explaining current phenomena, predicting future phenomena, and general 1).
improving the state of technical knowledge available to the human race. An engineer t:tkc\
the information supplied by scientists, and others, and uses this information to produx
cost-effective, paragmatic solutions to real-world problems. (These are obviou\
oversimplifications, but they will suffice for now.)

c. 'kVB Sri l~warc Enginccring. Inc. I986
5301 Spcctrum Drivc
f:rcdcriLk. Maryland 21701 (301) 695 . 6960

7

I) . 1 . h . 7

ORIGINAL PAGE
OF KK)R QUALITY

A computer scientist might be looked upon (most simply) as an applied mathematician.
Some would rightly say that, with the disappearing differences between hardware and
software, that some areas of computer science encompass a good deal of computer
hardware technology. For ow purposes, a computer scientist has a minimum of a four-year
degree in an approved computer science curriculum (e.g., the ACM 1978 curriculum) from
an accredited college or university. (Remember, the degree alone is not enough to make one
a professional.)

A computer scientist might specialize in compiler design, queueing theory, operations
research, or language-driven hardware architectures. While a computer scientist might
focus on the details of some aspect of computer science (e.g., algorithm design), he or she
might not have an immediate practical application for the technology they are uncovering. It
is very likely, though, that this uncovered technology can be used in some existing, or
soon to exist, practical application. (Just as a physicist studying the quantum mechanics of
molecular collisions might produce results which have applications in gas lasers.)

Just as "conventional" scientists build on the work of other scientists, a computer scientist
most often builds on the work of other computer scientists. This means that an error
introduced via carelessness or faulty analysis on the part of one computer scientist can have
drastic consequences even outside of that computer scientist's immediate area of
specialization. Keep in mind that software permeates our very existence. (It has been said
that the average American comes into contact with at least "two dozen computers" every
day.) In addition, computer science technology is being used in increasingly critical
application areas (e.g., pacemakers, cruise missile guidance systems).

Software engineering, like any engineering discipline, involves a mixture of technologies.
The basic background of a software engineer requires: computer science, mathematics,
engineering disciplines (e.g., design methodologies, metrics, error analysis),
communication skills, imagination, problem solving skills, ingenutiy, and a respect for
simple, pragmatic solutions to real-world problems. Software engineers, like their "more
conventional" counterparts, has a minimum of a four-year degree from an accredited
college or university. Unfortunately, the few software engineering degree programs that
currently exist are almost exclusively graduate programs.

Software engineers may be charged with any number of tasks, e.g., the developing,
testing, maintaining, measuring, or assuring the quality of a particular software system.
They constantly find themselves integrating different technologies, making tradeoff
decisions, and dealing with many different types of people (users, other engineers,
managers). Most of the time they have a very tangible goal in sight. This goal must be
reached within the (often unreasonable) limits on time, money, and other rcsourccs
established at the begining of the project.

Like computer scientists, software engineers build on the work of other software engineers
(wirh the same serious implicarions). Like computer science, software engineering is a
rapidly growing, rapidly changing discipline. The software engineer is being asked to
apply his or her skill to increasingly critical applications, e.g.. life-support systems or the
Strategic Defense Initiative ("Star Wan").

6 E V U Software Engineering. Inc. 1986
5301 Spcclrurn [>rive
i'rcdcrick, M a r y l d n d 21701 (301) 695 - 6900

8

I) . I .6.8

Even with thc best-trained computer scientists and software engineers, the success of a
project is not guaranteed. Poor management can ruin any project. The benefits of a truly
professional technical staff cannot be realized without the support of professional
management. While a successful professional software project manager need not be a
technical wizzard, he or she must know who to hire, what to ask for, and what can
reasonably be done with existing technology. We must be just as concerned with the
professionalization of technical management as we are with the professionalization of the
technical staff.

As you can see, I have described a huge task: professionalization of software personnel,
Le., computer scientists, software engineers, and technical managers. I want to now
further narrow the scope of this discussion to the professionalization of software engineers.
This is done primarily to keep this article from "becoming a short novel." However, much
of what we have to say about software engineers will hold true for computer scientists and
technical managers.

The US. Department of Defense (DoD) has advocated a software engieering approach to
their Ada@ effort. In fact, Ada is but one small piece of the DoD's Software Technology
for Adaptable Reliable Systems (STARS) effort. We will use this a basis for our discussion
for the professionalization of software engineering. Virtually everything we have to say
will apply to the professionalization of all software engineers, regardless of whether they
use Ada or any other language.

The Motivation for the Professionalization of Ada Software Engineers

There are several people who have a vested interest in the professionalization of Ada
software engineers:

0 the contracting office,

. the software engineer's employer,

0 the general public.

0 the software engineers themselves, and

One of the most difficult tasks for a contracting office is determining the real capabilities o f
a potential contractor. A university degree is somewhat meaningful, but often thc
contracting office is more interested in the actual "on-the-job experience." On-the-jot7
experience is usually measured in the types of projects the personnel have previously been
associated with, and the lergth of time the personnel have logged on each project. Tllcsc
are, unfortunately, very crude metrics.

If software engineers were professionalized, however, the contracting office's job would
be somewhat easier. For example, i f a potential contractor identified an individual as a
software engineer, the contracting office might be able to make the following assumptions
about that individual (depending on how the profession and its professionals have been
defined) :

%Ada I) a rcgisicrcd uadcmark of the U S Govcrnmcnl (Ada Joint Program Office)

,:FVR Soltwarc Enginecring, Inc 1986 0 5301 Snccirurn Drive
FrcdcrrLk, hlaryland 21701 (301) 695 - 6960

9

I) . 1 . 0 . 9

r

b he or she has had a minimal amount ofducation at an accredited institution .
Further, this education covered a specific set of known topics which were
dinctly relevant to their job.

0 he or she has known professional standarcis (ul(i guidelines to follow,

he or she has gone through some known form of certijkation (and re-

he or she must abide by a known set of professional ethics,

he or she has had to exhibit some minimal level of performance in order to

he or she will take direct responsibility (and liability) for their work, and

he or she will be required to take a minimal amount of continuing educarion

0

cempcarion) process,

0

0

remain in the profession,

0

0

each year.

In essence, the software engineer becomes more of a known quantity. (It is important ro
realize that professionalization guarantees only minimal levels of quality. While this might
not seem like much, remember two things. At present there are ILQ guarantees of any level
of quality for any software "professional." Second, establishing a "floor for performance",
tends to raise the "ceiling of performance" for the profession as a whole.)

The employer of the software engineer has a number of reasons for being extremely
interested in the professionalization of software engineers, including:

all of the reasons lisred previously for the contracting agency. This makes

while a professional might cost more than a non-professional rhey ure

hiring much easier.

usually much more cost-effective (i.e,, productive) than non-professionals.
This does not mean that all non-professional software engineers are not very
productive. I t means, depending on the effectiveness of the
professionalization process, that the odds are greater that a professional will
be more productive because he or she will most likely have been exposed to
productivity increasing techniques.

a professional is more likely ro hove a more mature, business-like (i.e I
professional) arrirude.

Software engineers will, of course, be interested in professionalization. Some of the morc
important reasons, include:

the ability IO know, in advance, the minimal crireria for entrarice urd
advancement in rhe profession. There will be a number of secondaiy
benefits along this line. For example, i t will be easier to coordinate college
and university curricula with the demands of the job market. In addition, the
requirements for advancement along 3 specific career path will be better
defined .

0 lijEVCI Software Engineering, Inc. 1986 -
5301 Spcctrum Drivc
Frederick, Maryland 21701 (301) 695 - 6960

IO

1). 1.6.10

the ability to determine how much an individual software engineer has
improved over time. At present, few software enginecrs know how they
"stack up" against their fellow software engineers. They also have little idea
about how to improve their status (worth) in their chosen field.

continuing basis. An active re-certification program will encourage (and
obligate) software engineers to remain current in their field.

the chance to learn new things, which are relavent to their profession, on a

the protection and advice ofthe profession,

known standardr, guidelines, and practices which are established by the

the respect given to professionals, by the public, and by other

0

profession (i.e., not by some organization wirh little, or no, familiarity wirh
current technology),

professionals.

The general public will be interested in the professionalization of software engineers for a
number of reasons, including:

0

0 as taxpayers and consumers, the public is keenly interested in acquiring
high quality software at the lowest possible price. We should not have to
belabor the point that software is consuming an ever-increasing chunk of
every tax dollar, and of every new modern appliance.

are the result of erroneous sofware. If the general public had any idea how
much of their daily lives, and their national security, depended on software,
there would be an immediate large public outcry for professionalization.

(e.g., airline pilots, doctors, lawyers).

0 professionalization reduces the chance of major (and minor) disasters which

0 the public, as a whole, is more comfortable dealing wirh professionds

Who and What Needs To Be Certified

The item which will probably evoke the most controversy in the professionalization process
is that of certification. Before we go any further we should define what we mean by
certification. The certification process for the software engineers and technical managers
themselves will probably be not unlike that currently used in other professions, i x . :

0 It will require that the candidates have a minimum level of formal educarion

Candidates may have to serve an apprenticeship (residency) for some prc-

A written examination, possibly spanning several days, will def'initcly be ;I

Personal and professional references may have to be supplied.

.
specified period of time.

requirement.
0

0

0 The candidates will have to sign a document saying they will adhere to a
professional code of ethics.

GEVB Software Engineering, Inc. IY86
5301 Spcctrum Drive
Frcdcrick. Maryland 21701 (301) 695 - 6960

I 1

L). 1.6. I 1

P

Other documents that may have to bc signed might Kddress items such as
professional conduct, acknowledgement of professional responsibility and
liability.

b The candidates may have to demonstrate that they are covered by any

If this is a re-certification process, the candidate will have to demonstrate

appropriate insurance policies (e.g., malplractice insurance).

that he or she has taken appropriate continuing education courses within the
time limits specified by the profession.

If, for example, we focus on the Ada community, we find that certification can be applied
to a number of items, including:

b Ada and software engineering courses,

Ada and software engineering cumcula,

the instructors for these courses and cuIiicula,

b

b

b the graduates of these courses and curricula (managers as well as
technicians) and,

e the software, standards, and procedures created by, or used by, members of
the profession.

How Can Professionalitation Be Accomplished

We have previously discussed a number of things that will be necessary for
professionalization. To assure that the process itself is as effective as possible, we will
have to consider the following:

b There must be some form of quality assurance for the entire process.
Transcripts will have to be verified. The quality and appropriatenesq of any
written tests will have to be monitored.

0 Someone will have to track and analyze the results of the professionalization
process. For example, certified professionals will have to be interviewed to
identify weaknesses in the system.

0 /ndusrry, academia, und the government must be constaiirly polled f i) r
constructive feedback.

0 The process must he icpciclted in a regular and tiniely nuriner.

The Impact of Professionalization on the Ada Education Process

The first large impact of the professionalization process will probably be in the area of Ada
education. Why? The thrust of Ada technology is not the Ada language itself, rather i t is the
overall improvement of the handling of software throughout its life-cycle. An examination
of the STARS effort shows that a large part of that effort is focused on the improvement of
human resources.

O E V R Softwarc Engincering, Inc. 1986
5301 Spcctrum Drive
Frcdcrick, Marylaiid 21701 (301) 695 - 6960

0 12

I). 1 . 6 . 1 2

.

Although Ada educators have been aware that Ada had something to do with software
engineering, most have given token attention to the topic, c.g., !hey mentioned the terms
"abstraction" and "information hiding" frequently during their courses, but failed to address
topics like software quality assurance, testing, design methodologies, and software
engineering mctrics. Profaswnalization will urrcioubtedly require an increased emphasis on
sofware engineering, mathematics, and computer science in Ada curricula.

One of the major mistakes made by Ada educators is the assumption that software
engineering "will be taught in a separate course immediately prior to (or following) the
'Ada course'." Professionalization will require that software engineering (along with
ethics, standards, and mathematics) permeate the entire Ada cumculum. This wifl hqve a
definite impact on the selection of instructors, and students, for these courses.

Instructors will have to exhibit some qualifications in addition to a knowledge of the syntax
of the Ada language. Indeed, the qualifications of an "Ada technology instructor" will be
have to be quite vaned. Probably the least important part of the instructor's qualifications
will be the knowledge of Ada syntax. Further, these instructors will have to go through
some sort of certification process before they are allowed to teach.

The students in a professional-onented Ada cumculum will find that they must meet some
enmnce criteria before being admitted. In addition, they will most likely be graded during
the course of their training, and may fail, Le., not be given credit, even though they
attended the training.

The Re-Certification Issue

Re-certification does not mean giving the same test over again. Neither does i t mean giving
a "slight" variation on the same test to an individual who has previously taken, and passed.
an earlier version of the test. Re-certification involves two broad areas: the recognition that
software technology is extremely dynamic, and that a software professional may wish to
advance along any one of a number of career paths.

It has been said that, in 1963 the technical knowledge of the human race was doubling
every ten years. In 1983, someone observed that the technical knowledge of the human
race seemed to be doubling everyfour years. There is little doubt that our knowledge 01'
software technology is increasing at a faster pace than technology in general. (Ironically,
most software practicioners seem to be "stuck" somewhere in the 1960s ir, terms of the
way they deal with software.) Therefore, like other professionals, software professionals
will have to demonstrate that they are aware of the significant current trends in their
industry. Further, they will have to demonstrate proficiency i n some of this I I C W
technology, i.e., that which is directly related to their immediate job.

This can be accomplished in a number of ways. Software professionals will, of coursc, bc
required to take and pass a number of continuing education courses on a yearly basis.
There will also have io be some way that they can successfully demonstrate proof of
performance at their jobs. (As yet we have few metrics for his, e.g.. management and IXCF
evaluation.) A n actual re-certification test will be required on a regular basis (possibly
yearly, or every eightteen months).

5301 !;pcLlrum Drive
I:rcdcrlck, Maryland 21701 (301) 69s - 6960 0

13

I) . 1 . o . I:!

Like any other professional, software professionals may wish to advance along a given
care,er path, or change paths, Here one of the advantages of professionalization becomes
obvious. The requirements for advancement along a given path, or for changirig career
paths will be well-defined (at least much better defmed than they currently are). In the event
that a Software professional wishes to change career paths, the re-certification process will
require continuing education and a re-certification test as before. However, the
demonstration of proof of performance may now encompass an apprentice period in the
area of the new career path.

The Difficulties Involved In Professionalization

Even thcse who are favorably disposed towards professionalization will admit that a
number of barriers to the process exist. It is important to realize, however, that most, i f not
all of these barriers can be successfully overcome. Here are a few of the more interesting
problems we can expect to encounter:

Deciding on methoh, procedures, and metrics will be one of the first
obstacles we will encounter. The important thing to remember here is that
there is no guarantee that we will recognize the best methods, procedures,
and metrics when w e see them. This means we will have to pick some
"good-looking" trial examples and be prepared to change them.

these costs will pale in comparison to the costs of ignoring the need for
professionalization, e.g., the cost of malpractice suits and insurance.

the number of areas for which they will be needed, Le., we will have to
develop separate tests for software engineers, computer scientists, arid
technical managers.

Fortunately, we will probably have to define success as part of the
justification process for professionalization. This means that this problem
will be considered early (and solved early).

current programmers and managers, will be a major (if not the major)
difficulty we can expect to encounter. However, the impact of this difficulty
will be lessened by two facts: most programmers and managers want to do
the best possible job, and programmers are very goal oriented. Don't forget
the advantages we listed earlier.

prove to be an interesting problem. For example, what recourse does a
certified professional have when he or she is instructed to do something
which violates existing professional standards or ethics?

The cost and logistics of professionalizarion will be staggering. Yet even

The development of meaningful tests for certification will be complicated by

Defining and determining success will be one of the biggest problems.

Extreme initial resistance from those currently involved with sofware , i .e.,

The interaction of certified professionals with non-certified managemerit will

Mainraining a high level of quality throiiglwiit the entire professionnlizarion
process is yet another item. This will be a classical "who will watch the
watchers" problem. It can be solved by appointing an independent group of
quality assurance people at the begining of the process, and giving them the
authority needed to accomplish their mission.

9 E V B S(;ftwarc Enginccring. Inc. 1986
5301 Spcctru- Drivc
Frcdcrick, Maryland 21701 (301) 695 - 6960

14

I) . I . O . 14

@
a Alternatives to Professionalization

One of the more obvious questions is: "What happens if we ignore the issue of
professionalization? Will it just go away?" Unfortunately the answer is m. In addition to
not realizing all of the benefits listed earlier in this article, there are two main problems we
will have to deal with: the very real possibility of government regulation of the software
industry, and an increased impetus for the automation of the software process.

One of the main reasons the AICPA was founded was the realization that the federal
government was seriously considering the regulation of the accounting profession. By
accomplishing formal professionalization (via the AICPA) accountants tealized two goals.
First, the accounting profession was able to provide its own regulation, instead of being
regulated by those with little knowledge of their industry. Second, whenever municipal,
state, or federal governments must develop laws which directly or indirectly affect the
accounting profession, they consult the AICPA. It is not uncommon to sei A ICPA rules
and regulations quoted directly in laws governing the accounting industry. It would not be
V U . . software inshay c o w l i s h the sam~ goa Is via its own
vofe ss1 onallzatlon.
The forces that shape technology are seldom technological. They are more often political,
economic, or sociological. If the software industry generally refuses to advance itself
through professionalization, the public may react by placing an increasing emphasis on
automating as much of the software process as possible, e.g., the increased use of fourth
generation languages and off-the-shelf software. This can, and will, mean a direct loss of
jobs in the software industry. (This will occur anyway. However, we do not necessarily
wish to accelerate the process.)

Recommendations

What recommendations are to be made? The following will serve as a starting set of
recommendations:

0 We must begin at o n w with positive results to be visible within two years .
Specifically, the "average programmer" and the "average manager" shou Id
be affected by the professionalization process before the end of 1987.

ar:;lysts, managers, educators, government, professional societies. and
other, more established professions.

e We must solicit input from many source s. Included must be programmers,

The process midst be pithlicized and iiigiily visible.

. A professionalization maintenance committee must be establi.shcd. Tt ic j ob
of this committee will include tracking changes to the professionaliz~tioii
process, introducing these changes in an orderly manner, and acting ;is ;i
"supreme court" for any professionalization matter disputes.

0 Encourage the esruhlishmetrt of software engineering cirrric.iilri 0 1 1 ti; l

undergruduate level. Further, encourage the concept of professimalisni or1
all forms of software education.

GIlVfI Softwar? Enginecring, Inc. 1980

Frcderick, Maryland 21701
5301 Spcclrum Drivc

(301) 695 - 6960

IS

I). I .h. 15

e
f

\

Bob MacDonald
NASA Lyndon B. Johnson Space Center

This presentation will provide a report on the status of the
NASA training for the Ada Programming Language.

D. 1.7.1

The Inpact o f Camon c\psE Interface Set Specifications on
Space Station Information Systems.

by
Jorge L. Dia t -Her rera and Edgar H. S i b l e y

George Mason U n i v e r s i t y , Fa i r fax , VA

ABSTRACT
C e r t a i n t y p e s o f s o f t w a r e f a c i l i t i e s a r e needed i n a Space S t a t i o n

I n f o r m a t i o n Systems Environment; t he Common APSE I n t e r f a c e Set (CAI:) has

been p r o p o s e d as a means o f s a t i s f y i n g them. T h i s p a p e r d i s c u s s e s how

r e a s o n a b l e t h i s may b e b y e x a m i n i n g t h e c u r r e n t C A I S , c o n s i d e r i n g t ? e

changes due t o t h e 1 a t e s t R e q u i r e m e n t s and C r i t e r i a (RAC) document, and

p o s t u l a t i n g t h e e f f e c t s on t h e new CAIS 2.0. F i n a l l y a few a d d i t i o n a l

comments a re made on the problems inhe ren t i n t h e Ada (*) language i t s e l f ,

e s p e c i a l l y on i t s d e f i c i e n c i e s when used f o r i m p l e m e n t i n g l a r g e

d i s t r i b u t e d process ing and database app l i ca t i ons .

1. INTROOUCTION
C e r t a i n types o f sof tware f a c i l i t i e s a r e needed i n a Space S t a t i o n In fo rma t inn
System E-ivironment (SSISE). Not the l e a s t o f these are:

a. the d i s t r i b u t i o n o f t he t a r g e t and hos t f a c i l i t i e s f o r b o t h the run- t ime and
development environment,

5. t he abso lu te need fo r good con f igu ra t i on management methodology t o c o n t r o l
t h e development and use of the many vers ions o f t he so f tware and t o o l s ,

c. t h e need t o develop and modify systems wi th in d i s t r i b u t e d environments ~ s i n 3

s o p h i s t i c a t e d t e r m i n a l interfaces,
d . a consequent need fo r good in te r faces and standards, a b s t r a c t data t y p i n q in

a d i s t r i b u t e d system (i n c l u d i n g develoement and run- t ime b ind ings) ,
e. a r e a l - t i m e d i s t r i b u t e d so f tware development methodology, and correspondin?

language support and opera t i ng environment and t o o l cons t ruc ts ,

f. good human t o human and machine t o machine communication techniques.

-_-----------
* Ada is a Reg is te red Trademark of t he US. Governmenk,

Aaa J o i n t Program O f f i c e

D.2.1.1

ORJGiNAL PAGE rS
OF fOOR QUALITV

&cause SSISE development w i l l use Ada as i t s imp lemen ta t i on language, i t Would

b e e x t r e m e l y u n f o r t u n a t e i f ' i t s needs were n o t a d d r e s s e d I n t h e Ada

Set (CAIS). This paper is s t r u c t u r e d around the f o l l o w i n g t h r e e major aspects:
1. How w e l l a r e these needs addressed within t h e c u r r e n t CAIS s p e c i f i c a t i o n ?

Indeed, would a poor f i t have a bad e f f e c t on the Space S t a t i o n so f tware?

2 . What improvemen t can be e x p e c t e d due t o changes mandated b y t h e l a t e s t
Requirements and C r i t e r i a (RAC) document?

3. W i l l t h i s t r u l y a f f e c t the nex t CAIS (ve rs ion 2.0)?

environments now under s p e c i f i c a t i o n and development: t h e Common APSE I n L a - C ? c ?

2. SPACE STATION IWOWATICN SYSTEMS ENVIl?C"T fEEDS A N I ME CAIS
The Space S t a t i o n S o f t w a r e Work ing Group and NASA s o f t w a r e s p e c i a l i s t s have

r e c e n t l y de f ined t h e i r needs fo r support o f space s t a t i o n so f tware development

[D i x o n 851, and p roduced a d e f i n i t i o n o f t h e space s t a t i o n s o f t w a r e s u p p o r t

environment requirements [Chevers 861 i n e a r l y 1986. The major i ssues i n c l u d ?

a s p e c t s a b o u t g e n e r i c e l e m e n t s o f t h e e n v i r o n m e n t , t o o l c h a r a c t e r i s t i c s and

c o n s i d e r a t i o n o f the f o l l o w i n g major questions:
- Should a un i fo rm NASA So f tha re Development Environment fo r space s t a t i o n be

de f ined and developed? Issues r e l a t i v e t o t h i s inc lude:

* Sof tware development fo r the space s t a t i o n w i l l be h i g h l j d i s t r i b u t e d ,

* Major so f tware p o r t i o n s w i l l be managed by var idus centers and no t by a

with no l o c a l i z e d s i n g l e dwe lopment group.

s i n g l e NASA center.

these need comple te ly separate sof tware environments.
* I m p o r t a n t f u n c t i o n a l d i f f e r e n c e s e x i s t between major s o f t w a r e systems;

- How much o f the space s t a t i o n so f tware development environment should 3t
fu rn ished by NASA?
* T n i s had a major impact because NASA has never developed i t s own SDE.

2.1 THE S I S E AND ITS REQUIRfM3JTS

Desp i te the fac t t h a t the s p e c i f i c a t i o n o f a s i n g l e standard environment may
i n v o l v e s o l v i n g many p r o b l e m s , t h e w o r k i n g g r o u p f e l t t h a t t h e p o t e n t i a l

advantages fa r outweigh the d i f f i c u l t i e s . There was the re fo re a recommendation

for the d o f i n i t i o n o f a we l l -de f ined development environments w i th c a p a b i l i t y

fo r two classes of user:

0.2.1.;2

- SDE interfaces to support software developers and their managers. These

were to consist of:
Mail and Telecommunication support (e.g., editors, file systems,
communications aids, etc.)
Technical management/control aids (e.g., cost models, project management
and planning systems)
Data base support (e.g., file management, retrieval, control, 9tc.I
Modeling/simulation aids (e.g., Architecture models, testing aids, etr.)
Prototyping aids (e.g, requirements, specs, man/machine interface, etc.)
Oocument preparation aids
Requirements specification validation and analysis aids
Design specification aids (e.g, PDL analyzers, data dictionary, etr..;
Code construction and control aids (compilers, linkers, configuration
managers, etc.)
Program &alysis/testing and integration aids (path coverdge/tzsC
generators, symbolic executors, etc.)
Metrics (quality, complexity, cost and reliability measures)
Man-machine interface support (interface and use of the environment,
help, tutorial, etc.)

- An SDE interface to support NASA software managers responsible for s o f t w 3 : ?

requirements/acquisition/acceptance; this required essentially the ~ d l n r)

capabilities as those above, with changes in emphasis or tailoring t ’ i e

relative importance, complexity of function and response needs. Thus the

management controls should be more heavily directed towarj sc’3erlulps,
planning, project management, and PERT, while the modeling, p r o t o t y p i n q , c i r i 1

simulation aids would be minimal ar unnecessary.

Theso two interfaces can thus result from a single CONF ISURABLE t3nv i r t ,o t* I~” i ’

w’lich is tailored to the specific necrls o f each work station and local??.

2.2 THE CUFiREEcT CAIS
Several needs in the above list have not been addressed in the CAIS 1.5

specification. These issues have been discusst-” at length in KIT (KAPSc

Interface Team) and KITIA (K I T Industry and Academia Support) group rneetinqs
but a r e , as yet, only partially resolved. In fact, many o f t h e s e der t ’
deliberately excllJderl from discussion in the current CAIS document. They 3re:

__-_. ~ .-._.fl-....- ..-. -.1 --.. . ~ . I

* A p a r t i c u l a r Conf igu ra t ion Management Methodology
* S o p h i s t i c a t e d Device Con t ro l and Resource Management Capabi l i t Les

* D i s t r l b u t e d Environments
* I n t e r - t o o l I n t e r f a c e s
* I n t e r o p e r a b i 1 it y

* Typing Methodology
* Archiving
These and o t h e r i s s u e s a r e each d i scussed i n t h e dpt ,3 i led s e c t i o n s below.

2.3
A l t h o u g h t h e r e q u i r e m e n t s o f t h e f i r s t v e r s i o n o f t h e CAIS were n e v e r
e x p l i c i t l y d e f i n e d , t h e y wqre a m i x t u r e o f t h e s p e c i f i c a t i o n and p a r t i a l

i m p l e m e n t a t i o n o f t h e ALS p r o v i d e d by S o f t e c h and t5e A I € u n d e r d e s i g n b y

I n t e r m e t r i c s . Thus , !-JF?C.3lJS2 these two e f f o r t s w9re a l r e a - l y f u n d e d , t"ley
in t roduced s e v e r a l problems !]?cause the CAIS s p e c i f i c a t inn team were at tempt , ing
t o p r o v i d e a s much c o m p a t i h i l i t y a s p o s s i b l e ' w i t h t n e s p t w o , s o m e w h a t

d i f f e r e n t , a r c h i t e c t u r e s o f an e n v i r o n m e n t (w i t h d i f f e r e n c e s a l s o i n tnFj i7
s c o p e) . I n g e n e r a l t h i s a t t e m p t may h a v e i n t r o d u c e d 3 r o b l e m s o f u p w a r q

c o m p a t i b i l i t y . Thus t h e f u t u r e CAIS w i l l e i t he r ' lave t o i g n o r e t h e n o r m a l
needs of a "s tandard" i n dea l ing w i t h 9 r equ i r ed "upward c o m p a t i b i l i t y " or e l s f ?

admi t t o s e r i o u s d e f i c i e n c i e s and p o s s i S l e poor i n t e r f a c e s i n f u t u r e s y s t i n s

due t o l a c k of adequate c o n t r o l s and func t ions .

THE EFFECT OF THE RAC

The new r e q u i r ? m e n t s were w r i t t e n t o a l l o w m o r e f l e x i 3 i l i t y and i ~ ? t : . ? r
i n t o r f a c e s , w i t h an a t t e m p t t o h 3 v e b e t t o r f u n - t i o n a l i t y . T h u s t Q e E n t i t y

Mmagsment Support (s e c t i o n 4. of t h e RAC) r e q u i r ? s a suapor t t h a t pa rod ie s t w
d e s z r i p t i o n o f a n o r n a l da ta5ase management system wi thout s p e c i f i c a l l y S 3 y i - l : j

c.13: i t i s n2eded. Some 3f :?e needs a r e q u i t ? s p e c i f i c and (t iout2h CI,I&:I * . -

i n t e r p r e t a t i o n) qlJite e n c o m p a s s i n g ; ~ 3 . 3 . ~ " impose a l a t t i c e S t r 1 J l ; t ' ~ r e nn : . I ? - '

t y p e s d h i c h i n c l u d e s i n h e r i t a n c e o f a t t r i b u t e s , a t t r i h u t ? v 2 l u o r 5 : i g : x

(posc>ibly r e s t r i c t e d) , r e l a t i o n s h i p s and a l lowed opera t ions ."

Another type o f problem arisec, hie ? ? wish t o al lovJ t' ie CAIS t n be oper3910 on
a lmos t any c u r r e n t COmm?rcial atrd e x ~ i ? r i m e n t a l o p e r a t i n g system: vliz, 'IT%?

5 v c i f i c a t i o n sh311 be machin? independent and i m p l l 1 n e n t ~ t i o n independen:. The

CAI5 5n211 9e i v p l e m e 7 t a S l e on bdre m a e h i n e s and on m a c h i n e s w i t h any ? E a

0.2.1.4

.

variety of operating systems.1f This could restrict the design in many
unfortunate ways.

2.4 TI€ E X l CAIS
It is difficult to peer into the future, and thus the following predictions for
the next CAIS may prove incorrect, however, the degree of effort and choice of
contractor (Softech) allows us to make some early assumptions.

First, it seems unlikely that the contractor would make a new specification
that would not allow the current ALS to be considered an "almost complier witn"
or "minimal fix away fromt1 the new CAIS.

Second, the level of funding and staffing is not one that would be expected :r,

allow anything but the narrowest extension o f the currerlt CAIS.

Third, it is somewhat doubtful whether the politics o f the situation wou! 1

allow a large diversion from the Army's ALS.

Fcrurth, the contractor has already suggested that divergence from some o f - -) e

old C A I S Specifications to go to the RAC statements would be difficillt. T ~ P -

discussion of such issues at recent KIT/KITIA meetings has not been encour?:in;
to a feeling of extension of the role o f the CAIS.

3. SPECIFIC DEFICIENCIES

3.1 W I G U R A T I O N HA"T
The lack of a particular Configuration Management Met!lodology means t - l C i e

several vendors could provide incompatible but "standard" systems. These i s q o a G

seem, primarily, t o devolve on a need for a long time naming continuity am!, i l
gen?ral, software configur3tion management. The first issue is t h a t i f

providing "Unique Names" across geographic and time boundaries. Tho t 2rmn

"l.rnique name" (UN) !>as Seen used to define an immutable name fnr an erititq;
e.3., 3 compilPr should be uniquely identified 5y a UN, which neit:7er ci>a,i,lt=c;

nqr is "recycled". Thus a UN is given out once to an entity and remains it.;
name; i f tile

CMICUMAL PAGE 1s
of POOR QWITY

entity is deleted/removed, then the UN will still identify t t l e

D.2.1.5

e n t i t y , b u t an a t t e m p t t o r e t r f e v e i t w i l l r e s u l t In a statement t h a t I t i s no
I longer a v a i l ab l e .

There a r e two p o s s i b l e problems:

1. IS any s o r t of change a l l owed t o an e n t i t y w i t h o u t I t s UN changing?
N o r m a l l y , the c o n t e n t s o f t h e e n t i t y may b e a l t e r e d , but t h i s c o u l d meqn

t h a t i t is no longer even s i m i l a r t o i t prev fo i i s "parent" e n t i t y . C e r t a i n l y ,

i t seems reasonable t h a t a program may be debugged w i t h o u t changing i t s name

f o r each e r r o r detected. This would suggest that. the unique name was r e a l l y

a run - t ime UN, which cou ld be s a i d t o remain constant d1Jrh-g programming end

debugging. However, i f the UN were f o r a da ta e n t i t y , t h e e f f e c t o f a chanqe

i n any one o f its v a l u e s w o u l d b e a new " v e r s i o n " o f t h e e n t i t y , and thi,;

Could be impor tan t enough t o be considered a new " e n t i t y " though the normdl

way of d e a l i n g wi th t h i s i s t o consfder the da ta e n t i t y t o be " t ime and d a t 3

s tamped ' ' w i t h a n a i i d i t t r a i l t o a l l o w t h e p r e v i o u s e n t i t y t o b o
recons t ruc ted (e.cj., f o r r o l l back).

2 . How are UN r e l a t e d fo r the same (but changed) e n t i t y ?

There must be ;3 method fo r data e r l t i t y recons t ruc t i on -- r o l l Iiack from arl

a u d i t t r a i l , however, the data i n a t r a d i t i o n a l database must n o t he c a l h j
by p h y s i c a l l o c a t i o n , b u t 5y "name po in te rs " or indexes or " l o g i c a l " k p y s --
tnese m i g h t be c o n s i d e r e d t h e IJN f o r da ta . On t h e o t h e r hand, t h e o n l y

" a u d i t t r a i l " f o r programs i s n o r m a l l y p r o v i d e d b y t h e c o n f i g l ~ r = ~ + ~ [J T

lnanagement sys tem (CMS). I n fact., t h e i d e a o f v e r s i o n i n a C M S i s a n o t i ? r

way o f l o o k i n g a t the unique name; i.e., the UN i s l o g i c a l l y equ iva len t t o 3

user name concatenated w i t h the ve rs ion number (or equivalent) .

What !-as been suggested above about 3 UN f o r bo th program and data c w l d 315'1

ho ld for c o n t r o l s t ruc tu res .

3.2 SOPHISTICATED DEVICE CONTROC

S o n e o f t h e b i g g e s t p r o b l e m a r ? u n d o u b t e d l y g o i n g t o be t h e i n t r o d u c t i o n I J ~

more s o p h i s t i c a t e d input /ou tpu t and o the r spec ia l dev ice dependent int;.t Faces
(e .q . , f o r a mouse). T h i s w i l l be a p r o b l e m when t h e r e a r e u n o s ~ ~ a : 3 1 ~ t

s c g h i s t i c a t e d i n t e r f a c e s t o dyvices and sensors. Un fo r tuna te l y , this issue wil l
r,3qtJir? t oo much d i s w s s i o n t o f i t here and requ i res a paper o f i t s own.

0.2.1.6

3.3 OISTRIBUTED ENVIROENNTS
The development o f Space Station Information Systems is bound to be highly
distributed with no single group solely responsible for the required software
systems. This could result in difficulties when looking at large and complex
development and run-time environments. Discussions on space station softwarrJ
development must address Distributed Environments (Host and Target) and
particular ways to distribute data as well as control. The Ada Prograrnininij
Support Environment (APSE), however, - does recognize such a need, and s t d t ~ ,

that additional software tools are necessary i n order to allow "indepenrltwt"
program to communicate wit3 each other dynamicalty, in a "natlJr?l" doc!

controlled way. The RAC states, however, that: " C A I S proqram v x f 2 r u b i o f ~

facilities shall be designed to requiro no additional functionality in thP A%I

Run-Time System (RTS) from that provided by Ada semantics. Consequently, t l t J

implementation of the Ada RTS shall be independent of the CAIS". ..

TIiere are some problems here with Ada itself. A distributed system c a n 1 1 1 ,

designed and implemented in Ada from two different points o f view, namely a s , I

single program or as a collection of cooperating proqrams. The first o f t h?v

altornatives, single program, is particularly useful when considering t iqhr- i f

coupled mu1 t iprocessor systems. Inter-processor communication a i l ' !

synchronization can then be naturally achieved by using rendezvous. The mi

alternative is to design the system as several icdependent programs (O I W , I :!-

processor). The Ada language, however, does not support the idea of indt~p:ivkii
programs dynamically cooperating with one another (i . ~ . , no const.r~I':t~., d r . '

provided fo r inter-program communication).

Both approaches require further support from the environment. F o r ~ ? x . j m p l r - . ,

Specific target-oriented tools (e.$, loaders) are needed, to assist in to.'
actual implementqtion on the distributed architecture. An Ada solution t.o til.: ; I '

problems may be in the form O F a set of inter-program communication p r i m i t i v ~ .

provided a t the APSE level in the program library. In qeneral, the d t 2 5 i q 1 i ,in 1

implemontat ion of a multi-processinq system as a collert ion of indt?pt.liilt!:l!
programs present a number of inconveniences resulting in the fo l l r jw in11 i t ; (; t J (: ; :

- Creat.im of "lingc~istic:" facilities to enable internrogr?ln colnlntIniI:at i I m
- Provision 'OF a rnet.hodoloqy f o r designing Distributed Systerns (Js inrJ t ! l f ? L : t '

r~ i 9' i r ? r - 1 e vr: 1 p r i in i t i ve 5 ,

0.2.1.7

3.4 INTER-TOOL INTUFACE!j, I V I L I T Y , AN) TYPlffi).fFHOOOLOGV

These three issues represent the generic problem o f the tool builder. When
Several tools must interchange data, they must either do it via the Standard
interfaces or else be designed as a suite of tools with total knowledge of the
data requirements and functionality of the other tools in the suite. In
general, there are problems i n defining inter-tool interfaces, Oecause a change
to One tool may cause a ripple effect. However, reliance on interoperability
interfaces entails passage of abstract data types across tool interfaces. This
could have serious security and integrity repercussions.

Interoperability also has severe impact on distributed systems, where the
passage o f abstract types may be essential for accurate and reliable datd
interchange between the various nodes. Without a good typing methodology, it is
obviously impossible to provide such features or to deal effectively with data
base management and similar issues. The alternative to such methodology is o f

course straight ASCII interchange, with negligable checking. Again, theso
topics deserve a paper of their own.

3.5 ARCHIVING
This is an important issue in any configuration, but more so in a distribclt?<j
environment of the kind mentioned here. However, for the purposes o f t'7is
paper, it will be left as another undiscussed issue.

3.6 CENTRALIZATION AN) DECENTRALIZATION ISSUES
Tne really tough problems of unique names of any of the types o f entiti9s
occurs when they are (in some way o r another) decentralized. As an exdrn i i l ? ,

when a compiler is moved to a new node, does its UN change? And whether i t c;:ot35

or not, which node controls or restricts the change? Obviously, the a1sw.r t 1
such questions involves policy and method of control. It is importdnt tiat t w
controlled use o f a distributed environment be effected through distributed
kernels operating locally. It is conceivahle that one or more nodes woultl bP

designated as decision making kernel(s1, while other nodes will b e merely
servers. T h i s seems to provide a reasonable compromiw between centr--ll i7e 1

(high communication costs and high vulnerability) and dcceritralized (w i t h i t 5
cjnnecessary control burden on every node).

D.2.1.8

4. ADA LAK;uAGE IsslEs
As d i s c u s s e d ear l ier , there are some s e v e r e p r o b l e m s i n u s i n g Ada i n
m u l t i p r o c e s s i n g and d i s t r i b u t e d s y s t e m s . From Ada ' s p o i n t o f view, a
m u l t i p r o c e s s o r s y s t e m which u s e s a common memory c a n be v i ewed a s a
"uniprocessor system which implements m u l t i t a s k i n g i n a more e f f i c i e n t manner.''
I n t h i s case, t h e e n t i r e system is des igned and b u i l t as a s i n g l e Ada p r o g r m
with c e r t a i n p rocedura l a b s t r a c t i o n s implemented a s t a sks . Each o f these t a s k s
r e p r e s e n t s the work o f o n e l o g i c a l p r o c e s s o r , and may e v e n t u a l l y r u n on a
d e d i c a t e d p h y s i c a l p rocessor . In t e r -p rocesso r communication and s y n c h r o n i z a t i J n

can then be n a t u r a l l y achieved by us ing rendezvous. However, be fo re t h e progrdm
is run on the t a r g e t mul t i -processor environment , the d i f f e r e n t t a s k s need til

be " a s s i g n e d " t o the i r c o r r e s p o n d i n g p r o c e s s o r s . And t h i s is n o t e x p l i r i t l y

suppor t ed by the language. The use o f PRAGMAS has been sugges ted here . O n t h ?

o t h e r hand, a d i s t r i b u t e d system may be suppor ted by Ada cs a c o l l e c t i o n o f Ada

p r o g r a m s c o m m u n i c a t i n g t h r o u g h i n t e r m e d i a r i e s . One way would be t o pr3 'J i d s

l i b r a r y packages t o ina in ta in "mailboxes" and whose "procedures" (which cou ld 711'

i m p l e m e n t e d a s t a s k s) c a n be c a l l e d from s e v e r a l p r o g r a m s . I n any c 2 7 = :

s t a n d a r d p r o t o c o l i s needed.

An Ada s o l u t i o n t o these problems may be i n t h e form o f a set of inter-?r)j :1ln
c o m m u n i c a t i o n p r i m i t i v e s prov ided a t t h e APSE l e v e l i n t h e pto3rarn l i ' J r 3 t : J .

S a s i c a l l y , wha t we a r e t a l k i n g a b o u t here is a g e n e r a l f a c i l i t y b), w - I ~ L : ' :

programs c3n communicate and s y n c h r o n i z e t h e i r a c t i v i t i e s . These f a r i l i t i ::.

m u s t be d e s i g n e d i n s u c h a way t : , a t t h e y c o u l d be a q p l i e d i n a nllm22r .1f

s i t u a t i o n s us ing d i f f e r e n t programs. Thus, t h e s p e c i f i c a t i o n m u s t be ! I ~ : F I - ~ 1

e n o q h a s t o h i d e t h e i d e n t i f i c a t i o n o f t h e orogrsms involved , and yet p r o v i , k
wsys t o i d e n t i f y a p a r t i c u l a r s i t u a t i o n . Ada ' s gene r i c u n i t s g rqv ic l e ! 1,'

a n s w e r . They a r e g e n e r a l a t the d e f i n i t i o n l e v e l , and p a r t i c u l a r ? t : ' ; "
ins tan t . i a t ion leve 1.

U n f o r t u n a t e l y , t h e u s e o f g e n e r i c s here presents a number o f inconve: l i l ' : lc . , , - .
s ince the ide r l t i t y o f the a c t u a l programs us ing t h e t o o l s is not known t,:1.,

t ime o f w r i t i n g t h e t o o l , these t o o l s c a n n o t be t a s k s themselves. The Ad,]

t a s k i n g model dof ines an 3Syminet r iC i n t e r - t a s k communication mechanism i n whii:ij

the i d e n t i t y o f tne c h l l ~ e must he known t o the c a l l e r . I n o t h e r words, t o hav-.

t r u e l i h r a r y tasks (where the i d e n t i t y o f the c a l l e r s / c a l l e e s is n o t reve.3lt?d),

9.2.1.9

we need t o in t roduce e x t r a programs. For example, if we wan t t o c o n n e c t t w o

l i b r a r y programs and run them i n p a r a l l e l , we have t o d o so t h r o u g h a t h i r d

i n t e r m e d i a r y program. This is f e a s i b l e because t h e i d e n t i t y o f t h i s t h i r d

Program is known t o the o t h e r two. The f a c t t h a t these u n i t s run i n o a r a l l e l i s

an imp lemen ta t i on dec is ion , which is b e s t hidden i n s i d e the uni t body (an J d r f 4

b e n e f i t) ,

a

The f i r s t a l t e r n a t i v e seems more e f f e c t i v e , s ince we c o u l d use the f u l l power

O f the language a t compi le t i m e (e.g., t ype checking) and a t run-tim? (a t l e a s t

t h e s y s t e m c a n b e t e s t e d on a u n i p r o c e s s o r e n v i r o n m e n t) , and i t does not.

r e q u i r e any t t s p e c i a l t t f e a t u r e s f rom t h e p rog ramming language (i n f a c t , mos t

a v a i l a b l e i m p l e m e n t a t i o n s w i l l n o t even s u p p o r t m u l t i - g r b c e s s o r t a r g e t s

d i r e c t l y) . The second a l t e r n a t i v e , however, may be more convenient and e legant ,

r e f l e c t i n g the r e a l w o r l d s i t u a t i o n (Le., independent p a r a l l e l progrsms each

r u n n i n g on i t s own CPU), b u t r e q u i r e s a w e l l - d e f i n e d ’5TANDARD d i s t r i b u t e d
systems methodology.

5. coNcLusIws
Accommodating he terogene i ty i n a s o f t c a r s devalopment envirsnment r e q u i r i s t : i a t

0
t he system be w r i t t e n for a number o f d i f f e r e n t machines and be ab le t o support

numeraus s o f t w a r e packages a s s o c i a t e d w i t h v a r i o u s o p e r a t i n g end r u n - t i m e

systems. I t i s pos tu la ted t h a t c o n t r o l o f such system must be e f f e c t e d through
d i s t r i b u t e d k e r n e l s o p e r a t i n g on a l o c a l b a s i s . The r u n - t i m e sys tem i s b e s t

o rgan ized f o l l o w i n g the layered model provided t h a t we are ab le t o h i g h l i g h t :

- the r e l a t i o n s h i p betveen the d i s t r i b u t e d and l o c a l ope ra t i ng systems

- t h e r e l a t i o n s h i p be tween t h e d i f f 3 r e n t t y p e s o f d e c i s i o n s made b y thi’

j u x t a p o s i t i o n o f the two c o n t r o l domains (i.?., l o c a l and g l o b a l)
- t h e v i s i b i l i t y necessary t o e f -ec t the var ious imp lementa t ion issues

O b v i o u s l y , t h e APSE approach is t h e way t o go, b u t pe rhaps i t w i l l need t o i1e
m o d i f i e d t o reso lve d i s t r i b u t e d computing issues such as:

- network transparency a t the u5er l e v e l

- in te rp rog ram (in te rnode) communic3tion mechanism

- except ion hand l i ng mechanisms encompassing d i s t r i b u t e d c h a r a c t e r i s t i c s

- ;~v(aren~!ss o f a p p l i c a t i o n o b j e c t i v e s

9.?. 1.10

- f a u l t tolerance s t r a t e g y Over t h e p l a c e m e n t and u p d a t e s o f back-up
c o p i e s of i n fo rma t ion

What we need here therefore is an e x t r a l a y e r , t h e DAPSE, i n between the MAP%

and KAPSE. Th is w i l l p r o v i d e a s t a n d a r d i n t e r f a c e for such a system s u p p o r t
environment.

6. EER€tC€S

Chevers,E. V A S A Space S t a t i o n Software Requirements" (JSP, Jan. 1986)

D i x o n "Open Forum on Space S t a t i o n Software I ssues t t (NASA, Jonhson Space Cen te r
Houston, Texas, Feb. 1985)

K I T / K I T I A ttDoD Requirements and Design Criteria for t h e Common APSE I n t e r f s c e
Set (CAIS) September 1985

K I T / K I T I A W l i t a r y Standard Common APSE I n t e r f a c e Set (C A I S) Vsrsion 1 . 4

October 1984.

7. -
The a u t h o r s would l i k e t o thank Dr . Ann E. Reedy o f P l a n n i n g R e s e a r c i i

Corporation fo r d i scuss ion of many of t h e Standards and Unique Naming issues.

0.2. I . 11

.. , ,

A Risk Management
!/,jd -.%f

Approach to CAIS Development .-
Hal Hart

Judy Kerner
Tony Alden
Frank Bel2

Frank Tadman

TRW Defense Systems Croup
Redondo Beach, California 90278

ABSTRACT

The groposed DoD standard Common APSE Interface Set (C A I S) has been developed as

a framework set of interfaces that will support the transportability and interOperAbility

of tools in the support environments of the future. While the current CAIS versiori is a

promising start toward fulfilling those goals and current prototypes provide adequate

testbeds for investigations in support of completing specifications for a ful l CAIS, t h e r r

are many reasons why the proposed CAIS might fail to become a usable product a111(1

the foundation of next-generation (1990's) project support environments s u c h a3 K A S A ' Y

Space Station software support environment. The most critical threats to the v ia t i i l i 1 y

and acceptance of the CAIS include performance issues (especially in piggybnck(Sc1

implementations), transportability, and security requirements . To make the situaiiorl

worse, the solution to some of these threats appears to be a t conflict with the s o l u t i o i ~ ~

to others.

TRW's CAIS development is a risk-managed approach planned to gather Infornlat 1011

uarly about critical threats, and, based on that information, to identify and pursuc r i l i k -

reduction development approaches. This is an application of Barry Boehm's "Spiral

Model" of the software devrloprnent process, which integrates risk marragerrient i n t o a

generalization of systems developmen t processes. Risk-managed tipproaches typically

include prototyping to expedite acquisition of infoririation ir. critical risk areas. TI1 \i"?

i r i i t i i i l aqwwrrierit of r i q k q led to n c.oriiprchcrr.qive drsign phase for the prototype t,pforca

1) . ? . 2 . I
ORlGlNAL PAGE rS
OF KK3R QUALITY

coding based on two principal reasons:

0 1. the necessity to avoid a "narrow" prototype tha t accomplished wrne
objectives while impeding others (or at lcast to reduce auch conflicts In the
initial implementation and to reduce and asse8a costa In expanding the
prototype to serve broad risk-reduction objectivee), and

2. incomplete information about how to accompllsh tha t In a prototype (or
even what the threats really were and hence what the objectives should be).

This prototype design phase was the Erst traversal of the Spiral Model. T h e near-term

benefit of this approach is to direct initial prototyping activities toward are- with

highest payoff in risk-reduction information while retaining compatibility with

pursuance of other areas. The ultimate payoff of the T R W npproach will not be in

rapidness of prototype simulation of the initial CAIS, but in gathering information for

specification and implementation of a viable 1990's CAIS (and perhaps even putting the

C N S prototype on the direct evolutionary path toward such a production-quality

implementation).

0
Following are some of the risk-reduction directions determined by the TRW {',AIS

prototype design activities:

0 Performance: a key fact is that the CAIS is more complex than typical
1980's oper&!;ng systems, offering direct tool and user support in m a n y are-

not well (or directly) supported in most operating systems (e.g.,
configuration management support, inter-program communication and
synchronization, access :ontrol, etc.). Early intense effort is needed in such

key area9 to develop efficient algorithms and/or architectures in these n o t

.rcrweII-supported arells. Simulation htw been identified aa a time-asving
approach to rrrsess performacte of newly developed CAIS algorithms or

architectures without the complete expense of tool building or porting (and
qorrlr . t , irr ie.u wit!iout completely implementing the CAIS algorithms).
~ (j (j i t i o r i a I Iy , t tw tough goal of piggybacked implementations (atop existing

I). 2.2.2

,

operating systems) la crggru.vated by CAIS portability concerns

0 TransportabIlIty of CAI3 ImplementatIonsi the TRW CAIS design is

based on a mapping of CAIS functionality dlrectly to a machlne-Independent
underlying model called the "tool portability layer". This means tha t most
of the CAIS functionality can be implemented without regard tu the
undei-lying host. This approach isolates into the "inner portability layer" of

the CAIS those functions that are most host-dependent. This tlea in with
the goal of efficiency by allowing development of hostdependent
optlmizatlons in the inner layer, and hoseindependent higher-level
optimizations in the outer tool portability layer.

0 SecurItyt due to the time m d expense of developing a certifiably secure

CAIS (as on a bare machine), TRW's initial efforts will be investigations into
using components from TRW's Army Secure Operating System (ASOS)

project (scoped for A l) 89 a Trusted Computing Base upon which to
implement the inner portability layer. This looks like a promising
compromise between development costs of secure systems, and CAIS
transportabiiity and performance goals (because of reuse of the tool

portability implementation layer and its optimizations).

As demonstrated in the list above, a risk-managed approach can find developrrieri .

strategies which simriltaneously work toward solutions of the multiple critical threats to

CAIS viability. A prototype implementation approach incorporating these is ongoing

now, with il basic subset of the CAIS now implemented. Progress will be reviewed

agains' the risk list later this year, a t w6ich time risks may be re-assessed, new

alternative approaches hypothesized, and new directions aelected based on information

acquired in this phase of prototyping. This prototyping, risk re-assessment, a n d

replanning will constiti1 tc another traversnl of the Spiral Model.

I) . 2 . 2 . 3

Extending the Granularity of Representation
and Control for the MIL-STD CAIS 1.0 Node Model

Kathy L. Rogers
Rockwell International

Space Station Systems Division

Introduction

The Common APSE (Ada1 Program Support Environment)
Interface Set (CAIS) [DoD85] node model provides an
excellent baseline for interfaces in a single-host
development environment (see Figure 1) . To encompass
the entire spectrum of computing, however, the CAIS
model should be extended in four areas. It should
p r o v i d e the interface between the engineerinq
workstation and the host system throughout the entire
lifecycle of the system. It should provide a basis for
communication and integration functions needed by
distributed host environments. It should provide common
interfaces for communication mechanisms to and among
target processors. It should provide facilities f o r
integration, validation, and verification of test beds
ex tending to distributed systems on geographically
separate processors with heterogeneous instruction set
architectures (ISAs). This paper proposes additions to
the PROCESS NODE model to extend the CAIS into tnese
four areas.2

Rat ionale

T h e i n t e n t of t h e C A I S i s to promote'
t r an s P O I: tab i 1 i t y T he LI s t a r

interf .:e should provide the same view of the S f S t c : ! l i
for a remote workstation connected through a network d:j

for a directly connected terminal. Accessibility d n c l
finer granularity of the PROCESS NODE and QUEUZ f i l e
information could provide procc2:;sor performance
measures during the design phase of the project,
debugging information during the coding phase, and
assessments of hardware and sof twarr c-hanges during t‘ic

a nd i n t e r ope r a b i 1 i t y .

Ada is a registered trademark of the U.S. Governmelit,
Ada Joint Program Office (R J P O) .

2 I t is the intent of this paper to discuss some O E the
topics which were explicitly deferred in MIL-STD CAIS 1 . 0 .

D. 2 . 3 . 1

ORIQlNAC PAGE Is
OF rOOR QUAUTV

hl

m

hl

a

a Extending the Granularity of Repre8entatiOn
and Control for the MIL-STD CAIS 1.0 Node Model

maintenance phase.

CAIS-provided code and data sharing could prov ide
services (and entities) in a cost-effective manner to
more than one application or user. To implement
sharing, the node model must be able to manage data for
dictionary driven processes, maintain version and
revision information for library units, and provide
security to maintain the integrity O E the system. Data
management requires information such as location,
format, and access control of sharable resources. It
might also extend to "knowledge" regarding the use of
data, so that data may be relocated to facilitate
convenient access. PROCESS NODES should be able to take
advanta e of code (such as common packages) that can be
shared. 3

The PROCESS NUDE riiodel should accommodate the
communications necessary in a distributed environment.
Five types of communication interfaces should be added
to the current model: communication between parts of a
p r O C ~ S S executing on separate processors, be tween
processors (extending to processors with different
ISAs) , between the CAIS and the PROCESS (in both the
host and the target environment) , between different
CAIS implementations, and among PROCESS NODES. In order
to satisfy the Ada Language Reference Manual [LRM831
requirement that "several physical processors (may:
implement a single logical P K O C ~ S S O ~ ~ ' ~ effective
information interchange is vital. InEormation must f.e
communicated i n an understandable format between
heterogeneous ISAs. "Hooks" should be established so
that individual elements of a test bed, as well a s t*lt'
integrated test bed, can be monitored. The CAIS s h o u l d
b e e x t e n d e d to i n t e r a c t w i t h o t h e r CAI.';

Multiple copies of packages, such a s TEXT IO, w o u l i i
b e eliminated in favor of all processors at a s i t e
accessing the same copy. In a heterogeneous distributed
environment, this can extend to shared copies of SYS'rE1'1
p a c k a g e s and S T A N D A R D packages, i f a common d a t a
representation scheme is used.

--

Ada Language Reference Manual, Chapter 9, paragraph
5 .

D . 2 . 3 . 3

Extending the Granularity of Representation
and Control for the HIL-STD CAIS 1.0 N o d e Model

implementations. 5 When processes executing under the
auspices of two different CAIS implementations interact
and require CAIS services, a standard method should be
used to determine which CAIS should be called.
Interfacing to communication mechanisms, especially in
a geographically separate system, is an important
aspect of the CAIS.

Annotat ions for "non-funct ional"6 directives could
be handled by the PROCESS NODE model. These directives
include desired degree of fault-tolerance, scheduling
priority, desired level of status information, recovery
processes, performance measures, special hardware
requirements, and/or amount (and detail) of information
to be promoted. Fault tolerance could be supported to
ensure that sufficient resources are utilized to
maintain the level of integrity required by the
process. Scheduling of processes a c z 9 ~ d i n g to
priorities should be considered: algori+!lms i 3 r serving
processes according to their prio, ities could be
provided in a straightforward manner. Directives
stating the granularity of information required f o r a
P R O C E S S (which determines the amount of overhead
incurred) should be flexible.7 Directives should also
provide error recovery and rollback to the last "safe"
state at a level of overhead which is appropriate f o r
the PROCESS. Performance measures should be provided,
especial.ly for "time critical" processes which may need
to be routed to a processor based on the speed and
level of services available. The need to know the
execution efficiency of processes on target processors
is a major reason che CAIS services should be available
in the target environment. In some configurations,

Oberndorf, Patricia, Prototyping C A I S (Obern861.

"Non-functional" is used here to denote constraints
on functionality beycrld those which are explicitly written
into the code.

7 F o r e x a m p l e , i n f o r m a t i o n pertaining to the
current/last instruction or procedure executing might be
requested. In the same way, the status of entities
ranging from register values to values of user variables
might also be requested.

D . 2 . 3 . 4

- : ..*. , ,..-,.-,: --.=,.re. ,

a
1 Extending the Granularity of Representation

and Control for the HIL-STD CAIS 1.0 N o d e Model

security will b- important; security directives should
be provided and enforceable [LeGra86]. The CAIS can be
continually extended by providing additional handlers
to accommodate future "non-f unc t ioiial" directives.

The PROCESS NODE model should include capabilities
to query and to negotiate with other nodes. Negotiation
may be required in the case of a remote procedure
(subprogram) call where the size of the parameters
exceeds the capabilities of the receiving processor.
Query and negotiation procedures could detect this
problem and establish a piecewise transmission of data.
Processes executing on processors with different I S A s
could negotiate a standard data format for transmitting
data. Query capabilities are vital for processes which
have very specific processor needs. Query and
negotiation capabilities should b e provided to
determine the optimal processor configuration to
execute a process. Library management, in a system
containing heterogeneous ISAs and s p e c i a l i z e d
processors, creates demand for information such as
version/revision, intended ISA, special processing
needs or priorities, and other required support.8 Check
out, with locking mechanisms, must be maintained for
library units. Security for the items being managed is
also a concern. The level of access required to read or
update information must be established, including
altering access requirements after updates. Creation
and maintenance of multiple copies must be addressed
with respect to update9 procedures.

Recommendations

The current CAIS node model should be enhanced in
four ways. First, the PROCESS NODE state information
should be more descriptive. Second, there should be a
PROCESS NODE representation 0: the status of each

* Other support may include speed, space, and/or
secu r i ty requ i r ements , e tc .

9 Update is being used her e to encompass
all modification functions, addition, modi'ication,
deletion, e tc.

D . 2 . 3 . 5

Extending t h e Graunlarity of R e p r e s e n t a t i o n
and Control for t h e MIL-STD CAIS 1 . 0 Node Model

FIGURE 2
Snapshot of four PROCESS NODES

D . 2 . 3 . 6

. . - -.--

Extending the Granularity of Representation
and Control for the UIL-STD CAIS 1.0 N o d e Model

t h r e a d of c o n t r o l e x t e n d i n g t o a n y l e v e l o f
d e c o m p o s i t i o n , a n d a QUEUE a s s o c i a t e d w i t h e a c h
PROCESS NODE. T h i r d , t h e QUEUE NODE10 s h o u l d be a b l e t o
provide accessible s t a t u s measures b e y o n d t h o s e w h i c h
a r e " h a r d coded" i n t o t h e process. F i n a l l y , t h e QUEUE
NODE model s h o u l d p r o v i d e c a p a b i l i t i e s t o a c t o n t h e
i n f o r m a t i o n received.

A s a n e x a m p l e o f t h e i m p l i c a t i o n s o f t h e a b o v e
r e c o m m e n d a t i o n s , c o n s i d e r a PROCESS t h a t s p a w n s t h r e e
s u b o r d i n a t e t a s k s : a p r o d u c e r , a b u f f e r , a n d a
c o n s u m e r . F i g u r e 2 is a s n a p s h o t of t h e f o u r P R O C E S S
NODES; i t r e p r e s e n t s t h e s t a t e of e a c h t h r e a d o f
c o n t r o l c u r r e n t l y e x e c u t i n g o n b e h a l f of t h e " m a i n "
process. T h e o v e r a l l job, a s w e l l a s e a c h s u b o r d i n a t e
t ask i s dep ic t ed a s a PROCESS NODE, w i t h a n a s s o c i a t e d
QUEUE NODE. E a c h PROCESS NODE h a s s e v e r a l p r e d e f i n e d
a t t r i b u t e s i n c l u d i n g : CURRENT STATUS, PARAMETERS, a n d
RESULTS. O t h e r i n f o r m a t i o n , s u c h a s t h e l o g i c a l name of
t h e s i t e w h e r e t h e process is e x e c u t i n g , may a l s o b e
a v a i l a b l e . E a c h QUEUE NODE r e p r e s e n t i n g o n e o f t h e
s u b o r d i n a t e t a s k s h a s a r e l a t i o n s h i p t o t h e QUEUE NODE
a s s o c i a t e d w i t h t h e PROCESS NODE for t h e o v e r a l l job.
Note t h a t when t h e s u b o r d i n a t e t a s k s t e r m i n a t e , t h e i r
r e s p e c t i v e PROCESS a n d QUEUE NODES cease t o e x i s t .

I n o r d e r to a u g m e n t t h e PROCESS NODE, t h e p r o c e s s
s t a t e s s h o u l d c o n s i s t of " m e t a - s t a t e s " a s w e l l a s
" m i c r o - s t a t e s " . I n a d d i t i o n t o t h e c u r r e n t " m e t a -
s t a t e s " R E A D Y , SUSPENDED, ABORTED, a n d TERMINATED, a
n e w m e t a - s t a t e , R U N N I N G , s h o u l d b e a d d e d . T h e
m e t a - s t a t e s s h o u l d a l s o h a v e m i c r o - s t a t e s to p r o v i d e
a d d i t i o n a l i n f o r m a t i o n . T h e R E A D Y m e t a - s t a t e s h o u l d
i n c l u d e t h e m i c r o - s t a t e s W A I T I N G (f o r r e s o u r c e s) ,
COMPLETE (b u t n o t t e r m i n a t e d) , a n d B L O C K E D (a w a i t i n g
r e n d e z v o u s) . T h e TERMINATED m e t a - s t a t e s h o u l d i n c l u d e
t h e m i c r o - s t a t e s NORMAL a n d ABNORMAL.

T o i n c r e a s e t h e g r a n u l a r i t y of t h e PROCESS mode l ,
t h e PROCESS NODE, w h i c h r e p r e s e n t s t h e o v e r a l l job
s h o u l d a l s o p r o v i d e PROCESS NODES f o r e a c h " t h r e a d of
c o n t r o l " . T h a t is, a PROCESS NODE s h o u l d be a s s o c i a t e d
w i t h ? v e r y b o d y of a s u b p r o g r a m , t a s k , o r p a c k a g e i n a
s t a t e o f e x e c u t i o n . A l l PROCESS NODES s h o u l d be of t h e

10 T h e term QUEUE NODE i s u s e d (r a t h e r t h a n QUEUE F I L E)
i n o r d e r to desc r ibe t h e QUEUE a s a n e n t i t y .

D .2 .3 .7

*- . --

Extending the Granularity of Representation
and Control for the MIL-STD CAIS 1.0 Node Model

same form (complete with proposed extensions) .I1 The
P R O C E S S NODE for each thread of control should have an
associated Q U E U E N O D E . Information from QUEUE NODES
should be promotable upward to the Q U E U E N O D E
representing the next higher level of decomposition,
based on the amount of information required by the
higher level PROCESS/QUEUE pair. In this way, the
current C A I S P R O C E S S NODE i s maintained on the jr!b
level, but is also decomposable to provide more
specific information when needed.

Status information provided to the QUEUE12 should
be usable by other processes. In the current model,
data, procedures, o r tasks in one process cannot be
directly referenced from another process.13 QUEUE files
a r e c u r r e n t l y used a s h o l d e r s o f P R O C E S S
information.14 The level of detail for status messages
and the amount of overhead incurred, should be able to
be specified. Other specifiable information includes
the amount of information that should be promoted from
a QUEUE NODE at any level to a QUEUE NODE related to a
PROCESS at a higher level. Extensibility of the QUEUE
N O D E model can be provided by viewing the node as a
database which can be queried by applications (or
engineers). Additional information could be added to
the database in the future, which could be utilized by
processes which are aware of the enhancements. Status
information generated independent of the process (or
processor) is necessary in a distributed system, in the
event of process (or processor) failure.

T h e Q U E U E s h o u l d be more than a passive
information receptacle. It should be capable of being
u s e d to initiate procedures, such as recovery upon

0

l1 The PROCESS NODES should extend to any
level of decomposition necessary.

l2 C A I S Rationale and Criteria document.

l 3 MIL-STD C A I S 1.0 p. 14.

l 4 Three types of QUEUE files are defined. The QUEUE
f i l e s can opera t e in SOLO (write append, destructive read),
COPY (SOLO Q U E U E with initial contents), and M I M I C
(dependent upon another QUEUE file) modes.

D . 2 . 3 . 8

Extending the Granularity of Representation
and Control for the MIL-STD CAIS 1.0 Node Model

used to initiate procedures, such as recovery upon
detection of a fault in the system. Facilities such as
those necessary to terminate processes which are not
performing correctly could also be provided. Early
warning regarding process failure (rather than fault
detection upon request for service) provides the
calling process with a potentially greater number O f
recovery possibilities. Action in the event of failing
processes is essential in environments which require
fault tolerance, especially in unattended systems or in
those systems where life and property depend on
continuous, correct functioning of hardware and
software.

Conclusion

The potentially long lifetime and large number of
host development environments and target processor
configurations, using Ada, require a CAIS that promotes
transportability, interoperability, communication, and
extensibility. The CAIS should provide a constant view
(at an appropriate level of detail) of the supporting
hardware and the APSE tools. This view should be
provided to an engineer at a workstation, as well as to
a secure, fault-tolerant distributed process. The CAIS
should be extended to provide query and negotiation
capabilities among nodes. It should include mechanisms
for handling "non-functional" directives (in order to
address the spectrum of processing complexity). I t
should also accommodate sharing code and data, as well
as communication interfaces. These enhancements are
necessary to accommodate the potential changes that
w i l l occur throughout the l i f e c y c l e of A d s
applications. Some extensions to the CAIS model ~ L C

necessary. Recommendations include maintaininy more
descriptive PROCESS state information; viewing the
current PROCESS NODE model as a description at the
overall job level (and providing PROCESS nodes for
subprograms, tasks, and packages, while they possess d

thread of control); viewing the Q'JEUE as a resource
NODE rather than a logging file, and enhancing the
Q U E U E NODE to make it responsive to processinq
requirements. The proposed extensions to the C A I S model
maintain the job level view of the original CAIS design
and enhance it by providing decomposition to a finer
level of granularity.

D.2.3.9

Extending the Granularity of Representation
and Control for the MIL-STD CAIS 1.0 Node Model

T h e a u t h o r g r a t e f u l l y a c k n o w l e d g e s t h e
contributions of the Joint N A S A - J S C / U H - C L A P S E Beta
Test Site Team members, especially the expertise and
e n c o u r a g e m e n t o f the research team's t e c h n i c a l
director, Dr. Charles W. McKay.

D. 2.3.10

i. Extending the Granularity of Representation
and Control for the UIL-STD CAIS 1.0 N o d e Model

References

[DoD85] Department of Defense, Military Standard Common
APSE Interface Set (CAIS), 31 January 1985.

[LeGra86] LeGrand, Sue and Richard Thall, The CAIS 2
Project, Softech Incorporated, Proceedings of the First
International Conference on Ada Programming Language
Applications for the NASA Space Station, June 1986.

[LRM83] Reference Manual for the Ada Programming
Language MIL-STD 1 8 1 5 A , 1983.

[McKay84] McKay, Charles PhD., University of Houston at
Clear Lake lecture notes, Fall 1984.

[ObernBS] Oberndorf, Patricia, Prototyping C A I S ,
presented by Hal Hart: at the Los Arigeles S I G A d a ,
February 1986.

[Roger861 Rogers, Patrick and Di. Charles McKay,
Distributing Program Entities in Ada, University of
Houston at Clear Lake, High Technologies Laboratory,
Proceedings of the First International Conference on
Ada Programming Language Applications for the N A S A
Space Station, June 1986.

1. Overview

Experience with the CAIS

Michael F. Tighe
In te r me t r ics, I 11c .
Cambridge, Mass.

Intermetrics is currently using an earlier version of the CAB (based on CAIS 1.2) i n
the implementation of it's line of Byron'/Ada* APSE products. This proto-C' AIS
provides all the Byron tools, Ada compiler, linker-driver, Ada program library
manager, etcetera with a standard interface to the underlying operating system.
Written in Ada and using Ada language features to separate specification from irnple-
mentation, this proto-CAIS is curreutly implemented on four different operating s.5-

terns, representing two different machine architectures including

VAX/VMS (Digital Equipment Corporation)

MVS/370 (IBM)

CMS/370 (IBM)

U'L'S 3.5 (Amdahl U K U 3 derivative running under VM on the 370).

In progress is the task of moving the proto-CAIS (thus the Byron APSE,) to t h < *
Sperry 1100 series (a third hardware class and fiftii operating system).

In terrnetrics is using th i s technology to permit the primary developr~lent teani I O

proceed doing main-line development work on the Byron U S E , while r e h o s t tc; lr i~-

t,ake either source or object niodules (depending o n the target harrlware) allti i i i s t : i I I
the most recent version of the Byron APSE on these new machines for testing nrlci

2 .
1 .

3 .

Ada is a registered trademark of the U.S. Government Ada .Joint Prograin Otticr.
13yron is a registered tratleriiark 01 Interrnetricr, Inc.

' JNIX is a trademark of [Jcll Laboratories.

D.2 .4 .1

demonstration to customers. This process allows the various rehost teams to follow
the primary development team very closely, at times being only two or three weeks
behind the primary team in terms of supported capability. Each rdiost team
con thues work on developing contract- or host-specific fcaturcs for the ret iostd
c o rt l pi le r .

2. Proto-CAIS Usage in the Uyron/Ada Compiler

T h e proto-CAIS is the primary database used by the functions that irriplcrlielit I
Ada Program Library functions of the Byron APSE. The Program Library wrilairis

various representations of the Ada program as the compiler translates it from text, 10
object code. The retcritiori of theso representatioris i n thr Prograrri Library is i i i i d (a r

user control but usually include

an abs trac t syntaz t r e e (AST),

a Diana representation of the program,

an internal form used for code generation (called Bill),

and the linkable object module.

Each form of the program representation is kept for each smallest compilable u n i t of
the language, as the programmer can present his source to the Ada compiler in a n y of
a variety of sequences and portions. It is necessary to organize these representatioiis
in an orderly fashion w h i c h is related to the name of the entity that they represtlit.
Additionally, there are inter-rclatioiiships between the represvntations. For i~istaiicv.
each specific object module is derived from a c o r r c ~ s p o l ~ d i n g spec-itir U i l l
representation which is derived from a corresponding specitic Diana representation
ivhich in turn depends on i t s specific abstract syntax tree represenlation. Conipilatiuii
dependencies of the w i t h statements in the source are reprost~rited a s Clept~i i~ l t~ i ic* ic~~

between the Corresponding Diana representations. Date/tirne of compile arid ot hc.r
iriforrriation is kep t as well.

0

D.2 .4 .2

~- ~ _ _ _ _ ~
-- - ~ ~~~ . .

Y
Uh,

Each uuit is composed of a spec and a body, with the possible inclusion of a subunll .
Each spec or body is composed of the underlying representations (/om) of the source
(AST, Diana, Bill, Objmod).

One specific implementation detail is that all file objects (the CAIS f i l e node), whi(:h
represent the Diana or AST or Objmod, descend from the collection. The spec a n d
body forms of the unit have secondary (rather than primary) links to the file nodes.

This grouping of compilation information into catalogs with all the variolis
representations and attributes for each compilation unit represents the set of data
managed by the proto-CAIS. This information is stored by the proto-CAIS in
underlying host files. Each representation (AST, Diana, Bill, Objmod) of a
compilation unit is kept as a separate file on the host. Relationships and attributes
are stored in a sinble database represented by three files. The accompanying
diagrams are intended to be suggestive of the use that the program library makes of
the proto-CAIS rather than an exhaustively complete example.

Figure 2 - Catalog Internals

Intermetrics has recently had experience in replacing the p ro to -CdS with a totally
re-written implementation to improve performance of the too! set using the proto-
CAIS. Preliminary performance analysis indicated that the initial implementation of
the proto-CAIS w a s a drain on the performance of the system, and it was targeted
for a rriajor upgrade in Performance. The entire rinderlying irnpleriientation of t t i (%

proto-CAIS w a s redesigned and reimplemented in light of the pcrforniance data, and
the new implementation is currently installed in the latest version *>f the .-Ida
c*ompiler and its tools.

At present the new implementation is perforrriirig up to expectations with 110

silomalies reported due to differences in irnplerrierit;itiori. It is important to note tli;it
o n l y rrlinor changes (less than 500 lines of Ada code, excluding the new proto-(';\ls
code) were made in the corripiler and tool sources (40OKSLOC) to allow this r i e i s
iiriple~rien~atiori to be installed. by
c tiangt!d functionality o f the ricw irriplenientation of the proto-CIl1S whic-ti i v ~ ~ r c ~
intended to improve performance without loss of portability. Sonie sniall number of
rharigc:s were niadc to clear up anomalies i n the prelirtiirinry irnplernentation and
cl(-firlition of t t i v proto-C:A IS. llad I I O changcs ir i functionality been required, there

Most of tliese source changes were required

D.2.4.4

t ------..

would have been no source changes required in the sources of the tool set.
i

4. Conclusion

Intermetrics experience is that the Ada package construct, which a l lows separation of
specification and implementation allows specification of a CAIS that i s transpori,ahle
across varying hardware and software bases. Additionally, the CAIS is an excellent
basis for providing operating system functionality to Ada applications. By allowirig
the Byron APSE to be moved easily from system to system, and allowing sigriifirarit
re-writes of underlying code, Ada and the CAIS provide portability as well as
transparency to change a t the application/operating system in terrace level.

D.2.4.5

and

Richard ' h a l l
SofTech, Waltham, Massachusetts

Ihe -on APSE Interface Set (CAIS) is a proposed MIL-STD intended to
pranote the por tab i l i ty of Ada Rogramning Support Environment (APSE)
tools written i n Ada. 'Ihe standardized interfaces define a v i r tua l
operating system, fran which portable tools derive the i r basic services,
e .g . , f i l e management, input/output, cmun ica t ions , and process control .
In the Ma world, such a v i r tua l operating system is called a Kernel Ada
Frogrammitig Support lvironment (KAPSE). ?he CAIS is a standardized
interface between KAPSEs and tools. Ihe CAIS has been proposed a s a
s t a r t i ng point for standard interfaces to be used i n the NASA Software
S u p p r t hvironment (%E) for the Space Station Program. l h i s paper
describes the s ta tus of the CAIS standardization e f fo r t and p lans for
further developnent.

BACKGROUND

The proposed standard E13 was prepared, largely, by a volunteer group
composed of members of t h e KAPSE Interface Team (KIT) and KAPSE Interface
Team from I n d u s t r y and Academia (KITIA). ?he KIT/KITIA is composed of 60
representatives from U.S. government, i n d u s t r y , and univers i t ies , as well
as foreign governments and inst i tut ions. Che seat on the KIT has recently
been created for a NASA representative. A small core group of dedicated
KIT/KITIA volunteers was responsible for producing the proposed CAIS 1
standard i s sued i n January 1985. Public r e v i e w of CAIS 1 is now b e i n g
completed a s part of the normal mili tary standardization process. Ulless
insurmountable objections are recorded, CAIS 1 w i l l become a MIL-STD. A
number of prototype implementations of CAIS 1 have been or are being
constructed for experimentation and validation of t h e 'design. No
signif icant test of the design w i t h tools t h a t use the interfaces has yet
been under taken.

D.2.5.1

I

Design of a canyrehensive interface set is a la rge , canplex problem.
Since the resources of the or iginal volunteer group were severely
constrained, CAIS 1 effort was focused on the problem of d e f i n i n g the
major s t ruc tura l elements of t h e v i r tua l interfaces , i.e., the data
structuring model, the process control model, and input/output. Many
subjects could not be addressed i n the requis i te time. mese include
configuration management issues, device control , resource management,
issues related to dis t r ibut ion, interfaces between Ada tools , data
exchange between Emironments, data typing i n t h e f i l e s t ruc ture , and
graphically oriented input/output .
In l a t e 1985, a contract was awarded to SofTech, Inc. of Waltham,
Massachusetts for t h e continued developnent of the CAIS. Tne enhanced
CAIS is called CAIS 2. COmpusec, Inc. of San Diego, California is a
consultant to SofTech for issues relat ing to multilevel-secure operating
Systems and access control. ?he Naval bean Systems Center (NOSC) i n San
Diego, California, is t h e contracting organization acting i n behalf of the
Ada Joint Program Office. NOSC provides the technical lead for a l l
KIT/KITIA and CAIS-related programs.

CAIS 2 DEVELOPHEKT

The primary goals of the CAIS 2 project are to produce a standard tha t :

--

o meets practical requirements,

o is technically superior,

o is developed w i t h responsive public review, and

o h a s adequate supporting material.

The major products of t h i s project are a draf t CAIS 2 Standard and 3 f ina l
C A I S 2 Standard. 'Ihese are c u r r e n t l y slated for publication i n ear ly 1987
and 1988, respectively. Experience has shown tha t it is exceedingly
d i f f i c u l t to understand a software interface standard i n the absence of
considerable supporting docmentation as well as an operating model. For
t h i s reason, CAIS 2 w i l l be accompanied by a Rationale, a Guide for CAIS
Implementors', a Formal Semantic Description of CAIS 2, and a prototype.
Rationale docunents w i l l be published w i t h the d ra f t and f ina l CAIS 2.
Other supporting items w i l l becune available i n the year following the
publication of the f inal CAIS 2 Standard.

Public review meetings are planned a f t e r the publication of the d ra f t and
f i n a l CAIS 2 Standards a s one method for obtaining constructive cr i t ic ism
from a wide audience. A more formal comnent mechanism w i l l a l so be
available d u r i n g these periods. A t other times, the KIT/KITIA ac t s a s the
sounding board for design issues. As a guide for CAIS 2 design, the
KIT/KITIA has published requirements for CAIS 2 [21. l'hese requirements
a re also subject to public review and c m e n t .

D. 2.5.2

CAIS - 2 -
A few of the major CAIS 2 requirements are paraphrased below w i t h
c m e n t a r y relating to NASA issues.

Ckneral Requirements

lhe CAIS services are intended to be sufficient to support tools used for
software developnent. mere are no requirements for real-time services as
might be required by many NASA applications. Except for m e aspects of
comnunications, software developnent has no time-critical component.
Support for testing of applications which have time-critical features is
not addressed by t h e requirements.

h e CAIS shall be independent of any specific operating system or
canputer. However, a reasonable level of modernity is assuned.

When implemented wi th sufficiently sophisticated hardware and software,
t h e CAIS shall be capable of supporting multilevel secure operations. In
other words, CAIS access control mechanisms must be sufficiently robust to
provide for the partitioning of data, users, and d.?vices which are
comningled i n a c m o n system, bu t operating w i t h differing levels of
security clearance. Some data and devices w i l l be shared, others m u s t not
be. ?his requirement is c r i t i c a l for Space Station operations where
classified m i l i t a r y and proprietary industrial applications m u s t a l l share
a conmnon fac i l i ty .

h e CAIS shall incorporate existing standards to the greatest extent
possible.

?he CAIS shall be designed to allow tools to operate i n distributed
environments. The least constrained model of distribution is a network of
computers, each having independent memory and f i l e storage. ?he database
can be shared among the nodes of the network. Ccmputers i n the network
may be of the differing tyws. ?his model should be sufficient to support
the SSE.

Pie requirements mandate support for d sophisticated f i l e system, v . . r ' ,
close to what is u s u a l l y c a l l e d a d a t a b a s e ma-rgernent system (DUMS). 111:.
DBMS is to support a very general structuring capability, e.g. \ j r !

entity-relationship model.

No specific configuration management capability is required; a l though i t
is tac i t ly assmed t h a t the structuring capability be general enough t '
support almost any configuration management method.

D.2.5.3

A database typing mechanism is required to control the name space of t h e
data objec ts , the a t t r i bu te s possessed by data objects , and t h e nature of
re la t ionships that can be created among objects.

b b u s t access control is required. In addition to t h e conventional
discret ionary access control, mandatory access control for multi-level
c lass i f ied material is required.

CAIS 2 is required to supply a mechanism by which cer ta in database
operations t r igger the execution of user-defined procedures.

CAIS 2 w i l l supply a means for grouping database operations i n t o
transactions. When transactions are used, the database is permanently
modified o n l y when an entire transaction succeeds. Failing transactions
result i n no change to the database. It is also a requirement tha t t h e
e f fec t of running transactions concurrently shal l be the same as r u n n i n g
them i n sane s e r i a l order.

CAIS 2 is required ta supp ly a mechanism for collecting and storing
information about how database objects were generated. For exanple, the
h i s t o r y of an object module would include the names and revision nunbers
of a l l source f i l e s used i n the canpilation, the name and revision nunber
of the compiler used, and the parameters given to the compiler.

A standard data interchange format is required.

Frogran Ejtecution Requirements

Cne executing program can s t a r t , s top, suspend, and resume other processes
to which it has access.

Tne CAIS w i l l s u p p l y a means for interprocess synchronization and
c m u n ica t ion .
?he CAIS w i l l supp ly a means whereby one process can monitor the execution
of another process. This is useful for debuggers and other dynamic
analysis tools.

CAIS 2 PLANS ---
?he design of CAIS 2 has progressed to the point where some general
statements can be made about CAIS 2 and i ts relationship w i t h CAIS 1 . We
expect CAIS 2 ta address a l l issues expl ic i tyly deferred by the CAIS 1
team. We expect simplifications i n sane areas. bwever, since the scope
of CAIS 2 is s ignif icant ly larger than CAIS 1 , the overall complexity
level may be similar . The issue of inter-tool interfaces w i l l be
addressed by proposed standard representations for t e x t u a l and graphical
data . CAIS 2 designers do not believe t h a t standardization of inter-tool
interfaces more specific than these are w i t h i n the purview of the e f f o r t .

D. 2.5.4

C A I S 2 W i l l not alter the basic structure of the C A B 1 database model.
We expect, however, to conceptually simplify the discretionary access
control mechanism. A typing mechanisn w i l l be superimposed upon t h e
present entity-relationship model. mis mechanism w i l l allow new types of
objects to be created by reference to existing types . There w i l l be one
base type for a l l objects, so that tools which operate on a l l database
objects W i l l not be affected by t h e creation of new types of objects. As
a m i n i m u n , the typing mechanism will manage the name space of database
objects a s well as the allowed at t r ibutes and relationships. It is not
clear if the typing mechanism w i l l de31 wi th t h e representation of
database objects. A few additions to CAIS 1 database services are
expected for support of distributed databases.

CAIS 2 w i l l maintain the present process model, i .e. tree structured
process creation wi th a few embellishments. It is l ikely that some
changes w i l l be needed i n the area of interprocess comnunication and
control i n order to support distributed environments.

?he entire input/output model of CAIS 1 w i l l be streamlined. Tne present
model has b u i l t - i n services for specific classes of devices, e . & .
scrolling terminals, page terminals, and form terminals. Hot only does
t h i s approach proliferate the nunber of interfaces, b u t it f a i l s to
pranote the notion of device independence. For example, given a tool
written for a page terminal, it could be d i f f icu l t to redirect output from
that tool to a scrolling terminal. While it may not be possible to
achieve satisfactory operation of a screen editor from a W e 1 33
Teletype, we do not want the interfaces to encourage the construction of
device-dependent tools. To accmodate differing devices, we intend to
propose t h e notion of a logical device driver (LDD), An LDD is a program
fragment that converts information i n a standard representation to and
fran a stream of c m a n d s for a known device, producing the best rendering
possible, given the device constraints. Lhder t h i s proposal, CAIS 2 w i l l
have specific interfaces for L D B , i n addition to the normal tool
interfaces. If the LDD interfaces can be defined wi th the correct blend
of f l e x i b i l i t y and specificity, it should be possible to write L D b i n Ada
and transport them from one CAIS implementation to another. I n other
words, tools would be largely device independent b u t wsuld depend upon a
specific collection of device drivers. Tools m u l d be ported w i t h their
associated LDCs, if the LDDs are not already present on the new host. t k w
devices w u l d require new LDDs to be created; however, a new LDD should
allow most existing tools to be used w i t h the new device, unless the tool
3r the device has some unusual characterist ic. lhe LDD concept would
allow CAIS 2 implementations to ut i l ize new devices without circmventing
the Standard, or necessitating a change to the Standard,

D.2.5.5

~'
Like C A B 1, C A I S 2 w i l l supply a bridge to VO faci l i t ies defined by
QlaPter 14 of the Ads language standard. Bese f a c i l i t i e s a r e sufficient
for a l a rge nmber of tools, many of which w i l l exist pr ior to or outside
of 2 implementations. lhis bridge will allow such tools to be
imported i n t o C A I S 2 environments with minimal source code a l t e r a t ion .

0

We have proposed that CAIS 2 define a few standard data representat ions
sufficient for a l a rge proportion of tools. Che representation w u l d be
used for sophis t icated t e x t . It wu ld encompass the conventional ASCII

character stream, but augnlent it to support multi-font, multi-format,
multi-color rea l iza t ions . ?his representation muld be b i p a r t i t e ,
separating the text strean frm the descr ipt ion o f how the strean is to be
displayed. We have a l so proposed a standard representation for graphical
images. This representation would subsune the sophisticated text
representat ion. Final ly , we have proposed a standard language for
descr ibing how physical f i l e layout corresponds to the Ada f i l e
spec i f ica t ion . This muld allow f i l e s to be converted so that data can be
moved across the boundaries between canputers, operating systems, KAPSEs,
and compiling systems. A standard interchange representation will
c m p l e t e the capabi l i ty for moving data between CAIS implementations.
' k i S capab i l i t y is key to the success o f heterogeneous d is t r ibu ted systems
such a s SSE.

CAIS 2 designers hope to be able to apply the concepts o f standard
representat ions and L D B to other areas of the CAIS in order to build sane
re s i l i ence i n t o the Standard. A standard a s comprehensive a s CAIS cannot
s u r v i v e unless it can be rapidly adapted to changing hardware technology
a s well a s t h e demands of sophisticated appl icat ions such a s t h e $ace
Stat ion. 0

REFERENCES

[l] Mili tary Standard Common APSE Interface St (CAIS); 31 January
1985; Cepartment of k f e n s e , Washington , D. C. 20302.

[21 CoD Requirements and Cesign Cr i te r ia for the Common APSE
Interface Set (CAIS); 13 September 1985; Ada Joint Program
Office , Washington , D.C.

D.2.5.6

.I_-_.-.-.... - - -N89-16319 /q; - >- 'J

/ - /

TRANSPORTABILITY, DISTRIBUTABILITY, AND REHOSTING EXPERIENCE WITH A

KERNEL OPERATING SYSTEM INTERFACE SET

F. C. Blumberg, A. Reedy, and E. Yodis
Planning Research Corporation
1500 Planning Research Drive

McLean, Virginia 22102

For the past two years, PRC has been transporting and installing a software
engineering environment framework, the Automated Product Control Environment
(APCE), at a number of PRC and government sites on a variety of different hardware.
The APCE was designed using a layered architecture which is based on a
standardized set of interfaces to host system services. This interface set, called the
APCE Interface Set (AIS), was designed to support many of the same goals as the
Common Adar"' Programming Support Environment (APSE) Interface Set (CAIS):
transportability of programs; interoperability of data; and distributability of the
environment processes and data. However, the evolution of the AIS has been quite
different than that of the CAE. The AIS was designed to support a specific set of
lifecycle functions and to provide maximum performance on a wide variety of operating
systems.

The APCE was developed to provide support for the full software lifecycle. Specific
requirements of the APCE design included: automation of labor intensive
administrative and logistical tasks; freedom for project team members to use existing
tools; maximum transportability for APCE programs, interoperability of APCE database
data, and distributability of both processes and data; and maximum performance on a
wide variety of operating systems. The functions supported by the APCE include:
configuration management for lifecycle products; traceability; change and release
control; project control and reporting; management for all levels of testing including
integration and system testing; and support for standards enforcement. The AIS
design is critical in supplying transportability, interoperability, and distributability. The
AIS design is also critical in providing the basis for APCE performance.

This paper gives a brief description of the APCE and AIS, a comparison of the AIS and
CAlS both in terms of functionality and of philosophy and approach, and a
presentation of PRC's experience in rehosting the AIS and transporting APCE
programs and project data. Conclusions are drawn from this experience with respect
to both the CAlS efforts and the Space Station plans.

1Adam is a registered trademark of the U.S. Government Ada Joint Program Office.

0.2.6.1

The A W E has been designed based on a separation of concerns between the
functionality of the environment framework or architecture and the functionality
Of took. The environment provides control, coordination, and enforcement of
standards and policy and acts as repository for information (including software
lifeCYCle products). The tools assist the project members in the actual creation
O r modification of the products (software and associated documentation and
lifecycle products).

The APCE supports a software lifecycle process paradigm. The software
lifecycle is viewed as a series of development or maintenance projects. Project
members fall into three board categories: managers, developers, and testers.
Developers include all project members who create or modify lifecycle products:
requirements analysts, designers, coders, etc. Testers include the traditional
categories of configuration management and quality assurance personnel and
personnel involved in product reviews and audits. Projects have phases which
can be defined in terms of the products developed during each phase. The
APCE requires a testing process for the products of each phase. The paradigm
is illustrated in Figure 1 which uses Mil-STO-2167 phases and products as an
example. The APCE is configurable for different phases and products as well
as for different methods of integrating products (software or documents) from
components.

The functions provided by the APCE framework include:

0

0

0

0

0

0

0

0

configuration management of software, documentation, and test
procedures;

automated status reporting and tracking of product components,
work packages, and changes;

maintenance o! traceability from requirements through development
to code;

automated test bed generation and support for testing from unit
testing through system testing:

maintenance of project database;

automated integration and release control for products:

enforcement of selected standards and procedures through testing;

project specific environment configuration.

The user interface consists of a set of menus for the major subsystems. The
functions provided by the five major subsystems are summarized below.

0.2.6.2

. -.

D.2.6.3

w
3
CY w
v)

3
5
w
W
0:

0
0 a

Generation S m : The generation subsystem allows selected privileged
users to configure the APCE to the specific project in terms of user groups and
organization, work packages and schedule, project phases, products, and
product integration structure. The APCE can be reconfigursd to reflect changes
to the project structure and organization as needed. The generation subsystem
uses this information to organize the project database.

e

DeveloDment S u m : The development u x y s t e m allows developors to
Select the data or products associated with their tas4 a1.d 'c , xti.irn their finished
products back into the database when thrv 0-r . wiy 'x testing. The
developers can use the software tools a*..' (l ~ k : w i r host system or
workstation to work on the products. The curre ..! ~ 6 7 5 . ;I!? ArCE does not
direct!y control the use of these tools.

Test Su- : The test subsystem suoports the tastsrs in the bbilding,
execution, and reporting of the product tests. The test scbsystem allows the
testers to create test procedures, which are then managed by the APCE. The
APCE will build test beds and integrate product components for the testers, who
will then execute tests. The testing process provides the methods for
enforcement of standards and policies. The testers report the test results
through the test subsystem. Testers are also responsible for system release in
the APCE paradigm and the test subsystem performs this function.

Chanae Co ntrol Subsvsteq : The change control subsvstem allows managers
to enter change requests into the system and to define stop dates for release 0 support.

Peoort S u m : The report subsystem allows managers and other APCE
users to get reports on the current status of changes, test procedures, and
releases. I t also gives reports on project status by task or by product
component. Additional reports provides impact analysis for proposed changes
and other traceability information.

ENVIRONMENT GOALS

The goals of the APCE design are:

o to provide management and control for the full software lifecycle
process;

o to automate the labor intensive administrative and logistical
overhead functions:

o to allow full use of existing hardware, operating systems, file
management/DBMS, and communication resources.

The last goal implies a series of subgoals. An environment should be
distributable across heterogeneous operating system configurations,
heterogeneous file rnanagement/DBMS facilities and use the available
communications facilities as well as heterogeneous hardware configurations.

0.2.6.4

The control framework must be easily transportable to new hardware and host
systems at reasonable cost. The environment database, including the lifecycle
products and their relationships and attributes, must be easily moved between
environment instances. There must be no performance penalties for usjag the
environment. It must cooperate at some level with existing operating systems to
take advantage of their security and performance features. Finally, the
environment must allow the use of exist!ng software tools and allow flexibility for
retooling as necessary.

ROLE OF THE A P E INTERFACF SFT

The basic architecture of the APCE is best described as "Stoneman inspired but
data coupled". The system is layered as illustrated by Figure 2. The host
system (s) provide basic services such as operating system services, file
management system/access mechanism or database management system,
access controls, and cornmnications mechanisms as needed for the
configuration. The communications facilities are needed if distribution,
workstations, or remote test beds are desired. The software engineering
environment instance based on the APCE is layered on top of these services.
The instance provides users with project specific tools and procedures which
will usually exercise the host services directly and the APCE major subsystems
which exercise the host services through the APCE Interface Set (AIS).

Since the APCE major subsystems use AIS calls, !he APCE is transported to a
new hardware/OS/DBMS configuration by rehosting the AIS. Thus, the AIS
provides the Kernel interface described by Stoneman and supports the goal of
distribution. Since all database accesses must be made through the AIS, the
AIS also supports the interoperability of project data.

lMPLEMFNTATlON PHILOSOP H\1

The AIS design reflects the implementation philosophy of the APCE as a whole.
The architecture of the APCE is data coupled. That is, the APCE subsystems do
not interface directly witti each other; rather, they interface via the AIS to the
project database. The APCE adopts an open system approach ;awards the use
of third party tools. The APCE controls lifecycle products which are entered into
the database through user interaction with APCE subsystems. Thus, there are
no constraicts on the tools used to develop the products. For maximum
performance, the AIS is designed to function in conjunction with a modern
operating system rather than on a bare machine. Tools do not have to be
rehosted to tho AIS in order to be used.

The AIS was developed by deflnlng a set of transportabil ity r u l e s
that provide the maximum independence for applicolions (tools, programs. etc.)
from the run time environment. For maxlmurn transportabi l i ty, it wzs
determined that the applicatlon must have a logical view of the opera:lny
services, the database services, communications services and the data it uses.
The industry is evolving toward this conclusion, however, only a step at a time.

D.2.6.5

SEE

HOST
06, DBMS, & COMMS.

StW & HtW

I N STA LLA T I 0 N
CAPABILITIES

APCE

FIGURE 2: APCE STATIC VIEW

[I266

NO INTERFACE
ACROSS THIS L IkE I

As an example, currently UNIXW2 is considered transportable and i t does
provide hardware independence, However, i t does not provide applicatio 7

independence any more than any other operating system. Accepting a
operating system as the basis for transportability provides the application I

highly constrained set of system services, database services, and
communication services which may adversely affect the applications
performance. Therefore a set of logical service interfaces was implemented that
can be mapped to any operating system, file management /database
management system and communication protocols.

This AIS implementation has been proven transportable over a wide range of
operating systems, file management/database management systems, and
hardware. The AIS design approach assumes that the host system has been
developed by the vendor to take full advantage of the hardware features of the
computer. The host system should provide performance achievable on1 I
through intimate study of the hardware system. The AIS takes advantage of t t
host system performance and does not try to duplicate it. The performance
the AIS should be the same as that of the services supplied by the host systen

The AIS assumes that the following features t i e supplied by the host system'

o file management system/access mechanisms or dat abas

o access controls;

management system;

o command processor with command script feature;

o communications mechanism (e.g. VAXm3 DECnet) between host(s)/
workstations(s)/targets(s) if distribution or remote workstations or
remote test beds are desired.

The CAlS had no impact on the APCE development, however both the CAlS
and the AIS had similar goals. The intent of both interfaces sets was to achieve
transportability of tools between environments and to achieve interoperability of
data between environments. The CAIS was in response to a need in the DoD
for cost reduction and commonality of tools for software development. The
same requirement fostered the AIS developed within PRC. PRC has many
software development contracts running concurrently, and each contract has
different required hardware, tools, and methods. Therefore, PRC requires an
environment that is adaptable, transportable and allows interoperability of data
and excellent performance on any host system,

The AIS strategy is based on a layering of system services rather than on a
specific system service interface model (such as the node model of the CAIS).

2UNIXW is a registered trader ark of Bell Laboratories.
3VAXTM is a registered trademark of Digital Equipment Corporation.

0.2.6.7

ORlOlNAC PAGE t8
OF Pot? QUALITY

The APCE software is based on an interface into which the host system
setvices that satisfy the Interface specllicatlons are mapped. The AIS design is
based on the expected availability of certain host system services. If a service is
not directly available, then extra layers of software which provide the needed
enhancement are created below the interface layer to satisfy the requirement.

Both the CAlS and the AIS attacked the problem at the interface layer between
operating system services and the application programs. See Figure 3,
AWCAIS Comparison, for AIS/CAIS comparison. As the diagram illustrates,
the AIS provides services at a slightly higher level of abstractness than the
CAIS. In addition, the AIS already has additional interfaces operational (DBMS,
Communications) that the CAlS has not implemented as can be seen in Figure
4, CAIS/AIS Major Functions. The CAlS also requires a significantly greater
number of functions primary because of the node management requirement.
The AIS terminal I/O implementation currently only handles form management
functions, and therefore does not provide as rich a set of features as the CAlS
terminal I/O provides.

The primary difference between the AIS and the C A E is the concept of the
node model. The node model provides a method of organizing-files, directories,
devices, queues, and processes into a form that can be manipulated by any
APSE tool on any host that implements the CAE. The node model is similar to
the implicit node model within the UNIXW operating system with some
extensions. The AIS embraces the concept that applications (programs, tools)
require only a logical view of the services, Therefore, the interface functions
should be mapped into the existing system services providing these
capabilities.

The AIS provides only the logical view of the system services to the application
which accomplishes two goals, total application independence and improved
performance. Figure 5 , CAIS/AIS Implementation Differences, illustrates each
implementation.

Application independence is attained because dependence on structural or
physical implementation of each service has been removed from the
applications domain. This has not been attained in the CAlS because each
application has knowledge of the node mcdel and therefore any change to the
node model will require a change to all applications dependent upon that
structural knowledge.

The direct mapping of AIS services to system services enables an AIS
implementatlon to operate as efficiently its host system. The CAIS, however,
superimposed a control structure (the node model) on top of existing services
that may llmlt performance on a given CAlS implementation.

0.2.6.8

4

INCREASING
DEGREE O f
ABSTRACTNESI
FROM MACHINE
SP EClFlClTY

1 L - - b

CURRENT APPLICATION SOFfWARE

SYSTEM SERViCES

OPERATING SYSTEM
(01% DBMS, COMM.)

R t

IDEALLY, THE INTERFACE LAYER IS JUST WIDE
ENOUOH TO ACHIEVE THE DESIRED
FUNCTIONALITY AND MAXIMUM PORTABILITY

INCREASING
APPLICATION
SPEC1 F I C I N

IDEALLY, THE
INTERFACE
LAYER IS AS
THIN AS
POSSIBLE FOR
PORTABILITI

INCREASING
IMPLEMENTATION
SPECIFICIlY

FIGURE 3: AIS/CAIS COMPARISON

0.2.6.9

co
0
F

0.2.6.10

n

0.2.6.1 1

The APCE is currently available on six different computer systems:
VAX/VMSW4, ROLM/AOS.VS, IBMIMVSMS and VM, and Intel 310 with
XENIXW6. APCE processes can be distributed to the Macintosh'7 and soon to
the IBM PC. The rehosting process for the AIS takes approximately 2 calendar
months for a mainframe and 1 month for a mini- or micro-computer. Figure 6,
Current AIS Rehosts, illustrates the current systems the APCE is available On
and the time it took to accomplish this, both in months and staff months.

APCE transportability has been attained using the AIS and a 'C' compiler. All
APCE framework applications were designed using Adaw POL and
implemented in IC'. This was done because the Ada compilers were not
available on all the hosts targeted for the APCE. The use of 'C' has not been
without problems. Current implementations are using five (5) different 'C'
compilers and as each new compiler has been introduced a 'C' subset has
been defined. All APCE applications must be normalized to any new subset.
This has entailed a five to ten percent code modification for each new subset.
However, all new applications use the subset and are completely transportable.
Because PRC must validate each 'C' compiler used for APCE code, the APCE
will be recoded in Adam when validated compilers are available.

The APCE has the advantage that it can be installed in an existing configuration
with minimal distruption of the current way of doing business. It provides a clear
transition path into a better disciplined engineering process and allows new
advances in automated tools to be incorporated. It does not, however, shield
the users from a need to understand the native operating system or tool
command language. This is not viewed as a disadvantage at this time since
standardization of these features does not seem to be possible. Premature
standardization of these features by an environment may ensure its technical
obsolescence or, at best, enforce a delay while new tools are rewritten or
rehosted. Such standardization is also not possible for a software house which
works with a wide client base with widely differing requirements and standards
for their software development and maintenance projects.

The APCE also does not provide the tight integration of tools. The user is still
responsible for ensuring that the output of one tool is suitably modified to be
acceptable as input for the next. This is one of the areas in which future work
needs to be done to relieve the users of the more clerical types of work.

4VMSTH is a registered trademark of Digital Equipment Corporation.
slBM/MVSm is a registered trademark of International Business Machines, Inc.
6XENIXm is a registered trademark of Microsoft Corporation.
7Macintochm is a registered trademark of Apple Computer, Inc.

0.2.6.1 2

?

0.2.6.1 3

The APCE framework provides signiflcant advantages and can be used by a
project without new hardware or significant retooling. It provides an immediate
benefit without locking out future advances in software tools and techniques by
managing the process and products rather than focusing on tools. The APCE
provides a different approach to the software engineering environment problem.

PRC has been successful in rehosting the APCE to six different operating
systems, with 4 different file managemenVdatabase management systems that
use 2 different sets of communication services without affecting the APCE
applications. Since these different APCE Instances can exchange project data
and any APCE application is transportable between APCE instances, the AIS
attain3 true appllcatlon Independence.

The benefits of using an AIS llke Interface opens the options for the
Space Station Software Support Environment (SSE) configurations.
No longer constrained to only hardware Independence by operating
system transportability; now a truly heterogeneous SSE can be configured.
This environment will be able to take advantage of all the required
technology while maintaining a consistent single environment through the
SSE applications (tools and framework). The SSE will be truly evolvable
since host services are divorced from the SSE itself therefore allowing new
services (O/S, DBMS, communication and hardware) to be introduced and
obsolete services to be retired without dlsruptlon to operations,

D.2.6.14

CONSTRUCTING A WORKINQ TAXONOMY OF FUNCTIONAL Ada SOFTWARE
COMPONENTS FOR REAL-TIME EMBEDDED SYSTEM APPLICATIONS

Robert Wallace
Reseach Triangle Institute

Research Triangle Park, North Carolina

A major impediment to a systematic attack on Ada software
reusability is the lack of an effective taxonomy for software
component functions.
Ada software is considered too great to allow the practical
development of a working taxonomy.
this paper the scope of Ada software application is limited to
device and subsystem control in real-time embedded systems. A
functional approach is taken in constructing the taxonomy tree for
identified Ada domain. The use of modular software functions as a
starting point fits well with the object oriented programming
philosophy of Ada. Examples of the types of functions represented
within the working taxonomy are real time kernels, interrupt
service routines, synchronization and message passing, data
conversion, digital filtering and signal conditioning, and device
control. The constructed taxonmy is proposed as a framework from
which a need analysis can be performed to reveal voids in current
Ada real-time embedded programming efforts for Space Station.

The scope of all possible applications Of

Instead, for the purposes Of

D. 3.1.1

ABSTRACT

Visual izat ion, Daeign, and V e r i f i c a t i o n of Ada@ T a s k i n g
U d n g Timing Diagrams

RIP. Vidala*, P.A. Stulewaki**, and J . B . Weies**

T h i s paper recommends the u s e of t iming d iagrams i n t h e d e s i g n and

t e s t i n g of m u l t i - t a s k Ada programs. By d i s p l a y i n g t h e t a s k s t a t e s v s .

time, t i m i n g d iagrams can p o r t r a y the simultaneous t h r e a d s of d a t a f low

and control which c h a r a c t e r i z e t a s k i n g programs. T h i s d e s c r i p t i o n of t h e

s y s t e m ' s dynamic b e h a v i o r from c o n c e p t i o n t o t e s t i n g is a n e c e s s a r y

. adjunct to o t h e r g r a p h i c a l t e c h n i q u e s , such as structure c h a r t s , which

e s s e n t i a l l y g i v e d s ta t ic view of t h e system. A series of s t e p s i s

recommended which i n c o r p o r a t e s t iming d iagrams i n t o t h e d e s i g n p r o c e s s .

F i n a l l y , a description is provided of a p r o t o t y p e Ada M e c u t i o n Analyzer

(Am) which automates t h e p r o d u c t i o n of t i m i n g d iagrams from VAX/Ada

debugger o u t p u t .

1 .O I n t r o d u c t i o n

C o n c u r r e n t programming b r i n g s a n o t h e r d imens ion of c o m p l e x i t y t o

t h e problem of s o f t w a r e d e s i g n and t e s t i n g . Unlike s e q u e n t i a l p r o g r a n -

ming, where f u n c t i o n a l decomposi t ion allows the d e s i g n e r to concentrate on

one module a t a time, c o n c u r r e n t programming i n Ada r e q u i r e s t h e coordin...,-

t i o n of many modules (t a s k s) e x e c u t i n g i n paral le l . The r e q u i r e m e n t s f o r

task sequencing must be e s t a b l i s h e d e a r l y in t h e d e s i g n , and c a r r i e d

through i n t o t h e t r a d i t i o n a l domain of d e t a i l e d d e s i g n . An i n c o m p l e t e

u n d e r s t a n d i n g of t h e t a s k sequencing r e q u i r e m e n t s or t h e i r erroneous

i m p l e m e n t a t i o n is an i n v i t a t i o n to d i s a s t e r .

Doston U n i v e r s i t y , Boston, MA
*'The C h a r l e x S ta rk Draper L a b o r a t o r y , Inc . , Cambridge,
@ Ada is a r e g i s t e r e d t rademark of t h e U.S. COverrImerlt, M a Joitlt PrOtJram

O f f ice.

C#IIOINAL PAGL IS
Of POOR QUALIM

Most available s o f t w a r e development tools and t e c h n i q u e s , based on

func t iona l decomporition, do not adequately p o r t r a y time dependency and

t h u s do n o t help the developer visualize, d e s i g n , and v e r i f y task sequenc-

i W * Tasking , an a programming t e c h n i q u e , p r e e e n t a o p p o r t u n i t i e s to i m -

Prove Product iv i ty , m a i n t a i n a b i l i t y and p o r t a b i l i t y , b u t also i n t r o d u c e s

the possibility of programming errors unique to t a s k i n g . Incorrect d e s i g n

O r i m p l e m e n t a t i o n o f t a s k i n g w i l l produce unin tended t a s k sequencing which

a t best d e g r a d e s sys tem performance, a t worst r e s u l t s i n d e a d l o c k ,

d e a d n e s s , or s t a r v a t i o n .

W i t h i n t h e past t h r e e y e a r s , a number of o b j e c t - o r i e n t e d d e s i g n

methods have been proposed s p e c i f i c a l l y f o r Ada. See Booch 1BOOC831, Buhr

(BUHR841, and C h e r r y [CHER85] , f o r example. These methods a l l u s e t h e

s t r u c t u r e - c h a r t t y p e of diagram to d e s c r i b e t h e a r c h i t e c t u r e of an Ada

program. With t h e e x c e p t i o n of Buhr, whose d iagrams i n c l u d e some tempora l

n o t a t i o n s , t h e s e r e p r e s e n t a t i o n s are e s s e n t i a l l y s t a t i c , and as such a r e

o f l i m i t e d u s e i n v i s u a l i z i n g t h e o v e r a l l sequencing of t a s k i n t e r a c t i o n s

i n t e n d e d for a d e s i g n . Buhr d o e s make l i m i t e d use of t i m i n g d iagrams i n

h i s book (BUHRBQ] to i l l u s t r a t e the rendezvous, b u t d o e s not: i n c l u d e them

i n t h e d e s i g n p r o c e s s .

I t is t h e o p i n i o n of tho a u t h o r s t h a t t iming d iagrams are a neces-

s a r y a d j u n c t to s t ructure c h a r t s and should be used i n c o n j u n c t i o n w i t h

them f i r s t to d e s i g n an Ada t a s k i n g program, then l a t e r to v e r i f y t h a t i t

is behaving as e x p e c t e d . Ta i (TAIK861 h a s a lso recognized t h e v a l u e of

t i m i n g diagrams (rendezvous qraphs, i n his t e rminology) for debugging Ada

t a s k i n g programs but does n o t a d v o c a t e t h e i r use i n t h e d e s i g n p r o c e s s .

2.0 Timing Diaqramfl i n Program Development

Timing d iagrams a r e u s e f u l to Ada progrdm d e v e l o p e r s a t s e v e r a l

phases i n t h e l i f e cycle. D a m € l o w sequencing m u s t he c o n s i d e r e d d u r i n t ~

t h e r e q u i r e m e n t s a n a l y s i s , p r e l i m i n a r y d e s i g n , d o t a i l e d d e s i q n , dcbuqqincJ,

and t a s t i n q . W i t h taskir iq t h c p r o p o r t i o n of time devoted to d e s i q n , i n

r e l a t i o n to implement t i t ion , i s much y r e a t e r than f o r s e q u e n t i a l programs.

wc p r o p s e t h e f o l l o w i n q s t e p s for m u l t i - t a s k Ada program development f o r

c ja ininq c o n f i d e n c e i n the d c a i q n b e f o r e and a f t e r implemonta t ion .

f
!

t . 1. Vimualize objeotr and d a t a flows using *cloud diagrams” t o

reprerent ob jec t s i n the problem domain. Single threads of

d a t a flow can be shown by numbering them i n sequence, b u t

mult iple , i n t e r a c t i n g threads a r e d i f f i c u l t to show.

2. Use preliminary timing diagrams, which do not show d i r e c t i o n s

of c a l l a , t o ahow scenarios of required task i n t e r a c t ion.

Steps 1 and 2 a r e problem-domain r ep resen ta t ions ,

3. Define Ada da ta structures and code and compile g loba l d a t a

t y p e s

4. Transform the problem-domain o b j e c t s i n t o Ada program u n i t s and

portray these with s t ructure graphs showing c a l l e r - c a l l e e

r e l a t ionsh ips . Refine the preliminary timing diagrams t o show

c a l l e r - c a l l e e r e l a t i o n s h i p s with t a s k ready/blocked s t a t e

ir‘ormation.

5. Code the s t r u c t u r e graphs i n Ada as program u n i t trpecifica-

t ions.

6. Code c o n t r o l skeletons i n the program u n i t bodies to implement

the task i n t e r a c t i o n s v i sua l i zed i n the timing diagrams and

annotated s t r u c t u r e graphs.

7. Execute the code skeletons and generate a timing diagram.

8 . Compare timing diagrams aga ins t des i r ed behavior.

9. Revi se d e s i g n a s necessary.

10. Complete Detailed Design of program u n i t bodies.

I I . Generate timing diagrams t o ve r i fy .

3.0 Automated Timing Diagram Generation

Automatod s u p p o r t for the timing diagrams described i n the precccd-

ing sec t ion is not , t o these authors’ knowledge, p u b l i c a l l y a v a i l a b l e , b u t

would r equ i r e two forms: p red ic t ive and a c t u a l .

The preliminary timing diagrams would be predict ive of the

ptOgr(M'B behavior. Thaae diagram8 would be drawn before any code is

writ ten to guide the developer i n cons t ruc t ing t h e f i r s t level of t a s k

interact ion. Successive, nc tua l timing diagrams would be derived by

sirnulatin9 or executing program units and automatically extract ing task
trace infomat ion ,

To date , no work has been done to develop automated support for the

predict ive diagrams, which is still e manual procesu. I t is, however,

feas ib le tha t a system, using formal specif icat ion And an asser t ion

checker, could be developed to support t h i s ac t iv i ty , There has, howover

been some work done by the authors of t h i s paper i n the development of a

too l f o r generating actual t i m i n g diagrams of multi-taak Ada proqrams.

4 . 0 The Ada Execution Analyzer Prototype

The Ada Execution Analyzer (Am) Prorotyw has bcan developed at.

The Charles Stark Draper Laboratory, Inc. (CSDL), to exp l i c i t l y show the

r e l i t i c n s h i p of time, concurrent oper..tions, and task communication u s i n g

the timing diagram format for multi-task VAX/VMS Ada programs. The AFA

provides the capabi l i ty t o visual ly monitor the runtime execution of

m u l t i t a s k Ada programs developed i n the DEC VAX/VMS Ada Develnyinent

mvironment. The AEA is r u n as an extension to the VAX/VMS Symbolic

Debugger, and t h u s provides a l l the capabi l i t i es of tha t debugger plcs a

graphic display of task execution. 'Ihe AEA produce8 both an overview

timing diagram whlch shows up to 20 Ada tasks, and a d e t a i l e d tirni:rg

diagram which shows up to 5 selected tasks. An oxample Ovarview Timinq

Diaqram is shown i n Figure 1 and an example Detailed Timing Diac~ram is

qhown i n Figure 2. The symboloqy uaed i n both diacjrams is defined i n

T i i h l c s 1 and 2.

I

c

OCYGJNAC PAGE tS
OF cooc3 QUALITY

I

The AEA provides g r a p h i o t iming dibgrAm8 on demand from a program

run, s c g n i f i c a n t l y r e d u c i n g t h o debugging timo for mu1ti tar .k programs .
Tho a v a i l a b i l i t y of euch a tool make practical the method o u t l i n e d i n

Section 2.0.

The Am P r o t o t y p e i o writ ten i n VAX/Ada and wila r e l o a s e d for

icrternal use a t CSDL in mcamber 1985. As a r a p i d - p r o t o t y p e , t h e AEA was

produced q u i c k l y i n order to allow u a e r b erne f u n c t i o n a l i t y and t h e oppor-

t u n i t y to s u g g e s t enhancements. 'Lb date, the AEA h a s been used to debug

some small t a s k i n g programs f o r both real projects and in-house Ada t r a i n -

Jng problems. User crcceptanco of the tool h a s been g e n e r a l l y f a v o r a b l e

and the tool w i l l l i k a l y be m a i n t a i n e d as a corporate r e s o u r c e .

5.0 F u t u r e E x t e n s i o n s

m t e n s i o n s to t h e AEA f a l l i n t o t h r e e c a t e g o r i e s : short-term,

medium-term, and long-term. Short-term e x t e n s i o n s (w i t h i n 6 months) will
f o c u s o n making the c u r r e n t AEA implementa t ion more u s e r f r i e n d l y and

i n c l u d i n g some o p t i o n s t o reduce c l u t t e r i n the diagram8 by s e l e c t i v e l y
b l a n k i n g t a s k s fraa the diagram.

Medium-term e x t e n s i o n s (w i t h i n 18 months) w i l l f o c u s on t r a n s p o r t -

i n g the AVA t o a n embedded microprocessor development envi ronment i n order

to e x t r a c t t iming d iagrams f t a a a target p r o c e s s o r .

Long-term e x t e n s i o n s (beyond 18 months) might i n c l u d e a u t o m a t i c
t a s k sequence c h e c k i n g and a u t o m a t i c g e n e r a t i o n of program u n i t body con-

t ro l s k e l e t o n s . These e x t e n s i o n s r e q u i r e t h e u s e of a formal s p e c i f i c a -

t i o n t e c h n i q u e l i k e t h e Task Sequencing Language (TSL) [HmM851 d u r i n g

development .

6.0 C o n c l u s i o n s

Ada t a s k i n g adds a new dimens ion of c o m p l e x i t y which is hard t o

v i s u a l i z e u s i n g e s t ah l i shed g r a p h i c a l d e s i g n methods. With t h i s added

c o m p l e x i t y , it is e s s e n t i a l to work o u t t h e r e q u i r e d task s e q u e n c i n g e a r l y
i n t h e d e s i g n and have a means for v e r i f y i n g t a s k s e q u e n c i n g b e h a v i o r

d u r inlj tes t i n q .

D.3.2 .5

Timing d i a g r a m s are a natural , e a s i l y u n d e r s t o o d means of v i s u a l i z -
ing task sequencing i n t h e conceptual and t e d t i n g p h a s e s of c o n c u r r e n t
program development . Timing diagrams can e v o l v e w i t h t h e d a t a - f low

picture of a system. They c a n show time e x p l i c i t l y and c a n i l l u s t r a t e

multiple threads of c o n t r o l i n c l u d i n g t h e e f f e c t e o f time s l i c i n g . I n

t h i s manner t h e y can be used to i d e n t i f y s e r i o u s t a s k i n g errors l i k e

d e a d l o c k , race c o n d i t i o n s , and s t a r v a t i o n .

A p r o t o t y p e Ada Execution Analyzer , which produces t i m i n g d iagrams

from VAX/Ada debugger o u t p u t , h a s d e m o n s t r a t e d t h e v a l u e o f t i m i n g d i a -

grams i n u n d e r s t a n d i n g t h e b e h a v i o r of a n Ada program w i t h m u l t i - t a s k i n g .
The a u t h o r s b e l i e v e t h a t t h e expanded role for t i m i n g diagrams s u g g e s t e d

i n t h i s paper w i l l r e s u l t i n fewer d e s i g n errors i n m u l t i - t a s k i n g

a p p l i c a t i o n s u s i n g Ada.

REFERDICES

[90OC83

[BUHR84

lCHER85)

[TAIK861

[HELM851

Booch, G., 5
Benj amin/Cumm:

ftware Engineer ing w i h
igs P u b l i s h i n g Company, 19E

- ia , - Menlo Park , CA,

Buhr, R. J . A . , System Design w i t h Ada, P r e n t i c e - H a l l ,
n g l e w o o d C l i f f s , N J , 1984.

C h e r r y , G., and B. Crawford, “The PAMELA Methodology,” Thought
Tools, InC., Res ton , VA, November 1985.

T a i , K.C., “ A Graphical N o t a t i o n for D e s c r i b i n g m e c u t i o n s of
C o n c u r r e n t Ada Programs,” ACM Ada Letters, V o l . V I , N o . 1 ,
J a n . , Peb. 1986.

Helmbold, D., and D. Luckham, “TSL: Task Sequencing Language,“
Proc. of t h e Ada I n t e r n a t i o n a l Conference, Par is , France, May
1985

!

1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18
19
2 0

*

<C

a

<C

7
?
7
7
7
7
1
7
1
7
1
7
7
7
7
7
7
7
7
7

1 1 12 13 I4 IS 16 T7 11 10 110 I11 112 113 114 l t 8 1 f 6 1 1 7 7 0 119 120
P l p l p l pT p? p l p7 p l p l p l p l p? p7 p7 P? P7 P7 P l P l P7

0

a
a

. .

87924
BANK.TELLER(1)
EANK.lELLER(2)
EANK.TELlER(3)
EANK.TELLER(4)
BANK.TELLER(5)
BANK.TELLER(6)
BANK.0ISPATCHER
MAIN.CUSTOMER(1)
MAIN.CUSlFYER(2)
MAZN.CUSTbUER(3)
MAZN.CUSTOMER(4)
MAIN. CUSlOIKR(5)
MAZN.CUSTOUER(6)
UAZN.CUSTOMER(7)
MAZN.CUSlOMER(fJ)
Y A I N . C U S T O M E R (~)
UAZN.CUSTOUER(~O)
MAZN.CUSTOMLR(11)
M A ZN. CUSTOMER(12 1

R Z
I

i * .
<c
. .
. .
. .
. .
. .
. .
. .

. < I
I

--
Figure 1. A E A Overview Diagram

D . 3 . 2 . 7

w + , T p , . . . - r . . , .., .

TASK 1 (7)
BANK,
TELLER(1)

TASK 7 (7 TASK 8 (7)
BANK. BANK,
TLLLER(6) D ISPATCHER

I (CALL

(ACCEPT

TASK 9 (7) TASK 20 (7)
M A I N . M A I N .
CUSTOMER(t) CUSTDMER(1 2)

ACCEPT TASK 8
A S S I G N

I
C A L L

1
<ACCEPT

0

ACCEPT TASK 9
ASK

I
<CALL

0

0

ACCEP
ASK

i
<CALL

RNDZV TASK 2
A S S I G N

I
(CALL

TASK 10

ACCEPT TASK 3
R E A D Y

b

<ACCEPT

(CALL

RNDZV TASK 2
ASK

I

Figure 2. A E A Detailed Timing Diagram

D . 3 . 2 . 8

Y

- ---- . . < . * _,
*

TASK STATES

TIMING OVEXVIEW
DIAGRAM DIAGRAM
SYMBOLS SYMBOLS MEANING

TASK N (#) Rs Task number N wi th p r i o r i t y
P# 1

UNITeTASK-NAME
I

Logicdl name of program
u n i t t h a t d e c l a r e s TASK.
NA ME -
POINTS O F RENDEZVOUS:

ZNDZV TASK I R# Task has rendezvoused w i t h
task #

Task $.ENTRY NAME - CNTRY-NAME

LCCEPT TASK # A# Task has a c c e p t e d c a l l from
t a s k r)

A c c e p t ENTRY NAME W I R Y - NAME
.-

TASK STATES: c
c

c
Task i s running

Task is ready to run

0 Task is suspended

I I
TERM <T Task has t e r m i n a t e d

.,,._ . ._ .

. ,

~

TIMING OVERVIW
DIAGRAN DZAGRAH
SYMBOLS SYMBOLS TASK SUBSTATE MERNIUG

CCompleted[ab

:Comple t e d 1 ex

:Completed

 de l a y

:Dependents

, .

CAB Abnormal

<A Accept

<CA Completed[abnl

<CE Completed [exc]

<CO Completed

<DL Delay

<DP Dependent8

Task h a s been aborted.

Task is wai t ing a t an a c c e p t
statement t h a t is no t i n s i d e
a select statement.

Task is completed due to an
a b o r t s ta tement , b u t is n o t
y e t terminated. I n Ma, a
t a s k awa i t ing dependent
t a s k s a t i t s "end" is c a l l e d
"completed" . A f ter the
dependent t a s k s are termin-
a t e d the s t a t e changes to
t e rmina ted .
Task is completed due to an
unhandled except ion , b u t i s
n o t y e t terminated. In Ada,
a t a sk awai t ing dependent
t a s k s a t i ts "end" is c a l l q d
"completed". Af te r t he de-
pendent t a s k s are termin-
ated, the s t a t e changes to
te rmina ted .
Task is corcpleted. NL sbort
s t a t emen t w a s i s sued , and no
unhandled except ion occured.

Task is wa i t ing a t a de lay
s t a tement.

Task is wa i t ing f o r depen-
d e n t t a s k s t o te rmina te .

D. 3.2.10

Table 2. AEA Overview rnd Detailed Diagram Substates (Part 2 of 2)

TI M I NG OVERVIEW
DIAGRAM DIAGRAM
SYMBOLS SYMBOLS TASK SUBSTATE MEANING

<Dependents

<CALL

e

(Inva l id S t a t e

<I/O or AST

(Se lec t or d e l

<Se lec t o r Ter

<SELECT

<Shared resour

<Terminated [a

<Te rmf nated [e

< Termi nated

<Timed en t ry

<DE

<C

<IV

< IO

< SD

< ST

<S

<SR

<TA

<TE

<m

<TI

Dependents [excl

Entry ca l l

Inva l id s t a t e

I / O O r AST

S e l e c t or de l ay

S e l e c t or term,

Se lec t

Shared resource

Terminated [abnl

Terminated [exc]

Te rm i na t ed

Timed entry c a l l

Task is wait ing f o r
dependent tasks to allow an
unhandled exception t o
p ropdga te .
Task is wait ing f o r i t s
en t ry c a l l t o be accepted.

There is a bug i n the VAX
Ada run- time l i b r a r y .

Task is waiting f o r 1/0
completion or some AST.
(Asynchronous sys tem t rue 1 .

Task is wait ing a t a s e l e c t
staternent with a delzy
a1 t e rna ti ve .
Task is waiting a t a s e l e c t
statement with a terminate
a1 t e r n a t i v e ,

Task is waiting a t a s e l e c t
s ta tement with n e i t h e r an
e l s e , delay, or terminate
a l t e r n a t i v e .

Task is waiting f o r an i n -
t e r n a l shared resource.

Task was terminated by an
abort .

Task was terminated because
of an uhandled exception.

Task t ermina tcd norma 11 y .
Task is waiting i n a timed
en t ry c a l l .

D. 3.2.11

m N A C PAGE Is

c

- _ _

N89- 16322 / 6 ' 7 0 6 7 A

Ada* and Cyclic Runtime Scheduling

P h i l i p E. Hood
SofTech Inc.

Abstract

6 An ~mportant issue that must be faced while introducing Ada into the real
t h e world is efficient and predictable runtime behavior. One of the most
effective methods employed during the traditional design of a real time system
is the cyclic executive. Thia paper examines the role cyclic schedullng might
Play in an Ada application in terms of currently available implementations and
in terms of implementations that might be developed specifically to support
real time system development.

The cyclic executive solves many of the problems faced by real time
designers, resulting in a system for which it is relatively easy to achieve
appropriate timing behavior. Unfortunately a cyclic executive carries with it
a very high maintenance penalty over the lifetime of the software that i t
schedules. Additionally, these cyclic systems tend to be quite fragile when
any aspect of the system changes.

This paper presents the findings of an ongoing SofTech investigation into
Ada methods for real time system development. Section 1 discusses cyclic
scheduling in general - what it is and why i t is used. Section 2 examines how
cyclic scheduling might be applied to Ada real time systems. Methods of
introducing cyclic schedulers into applications without violating Ada
semantics is explicitly discussed. Several classes of cyclic schedulers will
be evaluated on their compatibility with the Ada world. Section 3 briefly
examines how future systems might use a cyclic scheduler without paying the
high price levied upon current systems. The topics covered include a
description of the costs involved in using cyclic schedulers, the sources of
these costs, and measures for future systems to avoid these costs without
giving up the runtime performance of a cyclic system.

1.0 Cyclic Executive Description -
A cyclic executive provides a mechanism for enforcing a predetermined

ordering of processing events in a system. All processing to be performed is
arranged within a schedule of finite duration. This schedule is repeated at a
specified rate called the major cycle. The major cycle is broken down into a
number (usually a power of two) of equal minor cycles. Each minor cycle is
assigned a processing frame containing a list O E processing elements
(routines) to be performed during the associated minor cycle, An example of
the basic cyclic executive structure is shown in Figure 1.

Ada is a registered trademark of the U.S. Government (AJPO)

D.3.3.1

Figure 1 - An Example Cyclic Executive Structure

D . 3 . 3 . 2

1
I

Although a l l CYOliO OXocutlvor rhar8 the structure we have described,
th8y vary in rlmort OV8ry othor arpout, Many types of cycllc executives have
b80n d8v8lOpod to rupport variour appllcrtlonr, and each one Is dlfferent from
the last. 80a8 O f these variations, much 111 mode changes, varying frame
assignments and handling frame overruns, are discussed below.

1.1 Mode Changes

One of the advantages of a cyclic executive is that the static schedule
can be tuned to optimize the system's timing performance for the expected load
conditions. The load on the system, however, may not be constant. A change
in the system load may cause the cyclic executive to allocate run time in a
very inefficient manner (a job with a long allocated run time may have little
or no processing to perform),

To solve this problem mode changes are introduced into the system. A
mode change can change both the processing to be performed and the cyclic
schedule. The more variation possible in the loading of the system, the more
mode changing operations will be necessary. Each mode change is expensive in
terms of new coding and tuning that must be performed and in terms of the
damage to the program structure that always accompanies tuning operations.

1.2 Varying Frame Assignments

Schedule variations do not always require a mode change. If the
variations can be localized to one frame, then that frame can use a local
scheduler to resolve the problem. This solution of course, requires the
overhead of some run time scheduling. Moreover, every possible scheduling
possibility must be verified during system tuning.

1.3 Handling Frame Overruns

The greatest amount of variation between cyclic executives lies in the
handling of frame overruns. We will consider the following four methods, b y
no means a complete list (many variations and hybrids exist): overruns
ignored, overruns logged, overruns suspended, and overruns terminated.

1.3.1 Overruns Ignored

In some systems the problem of frame overrun can be adequately addressed
during system debugging; these systems may choose to ignore overruns during
runtime. The designer 1s responsible for verifying that overruns can never
occur. This type of executive is typical of systems with either very simple
software or over-confident designers.

D . 3 . 3 . 3

* '18382 .Ovorrunr Logged ' (' I - J,',
' . b , 1 . .., !

is appropriate
when' 8 "framo overruns, This
approach resultr in asvery realistic oxocutivo for any rystem in which tuning
issues can bo adequately addressed, In a properly tuned cyclic executive
application, ftamer rhould not bo overrunning. Thur i t this type of scheduler
is inadequate, it implies that a cyclic schedule is not capable of providing a
reliable rchedule for that application and must be enhanced.

' T h h itratogy ir w e d in lrysIomr whore no runtime action
Tho overrun ir rocordod for handling o f t line,

I
8 L

I
!

1

1.3.3 Overruns Suspended

When a frame overruns in this type of system, it is suspended and the
next frarar is allowed to start on time. When ther8 is free time the suspended
frame is allowed to complete.

This method greatly complicates data access in the application software.
A built-in efficiency of a cyclic executive is the SynChrOnltAtiOn implied by
static frame assignments. Additional synchronization is normally unnecessary
during shared data references. When frame suspension is introduced, the
implied synchronization is disrupted, and consequently references to shared
data must include the appropriate synchronization mechanisms.

1.3.4 Overruns Terminated

When overruns occur in a system using this strategy, the overruning frame
is terminated. It is restarted from the beginning at its next scheduled start
time. This mechanism avoids the synchronization problems of the suspension
mechanism but introduces its own problems. Software components that could
possibly overrun frame boundaries must be written very carefully so that
valuable data is not lost. There is also a potential problem with data that
is incompletely updated when the frame is terminated - if this data is used by
other components, serious problems could arise.

2 . 0 Ada Implementation 02 Cyclic Executives -
Some varieties of cyclic executive fit very well into Ada, others do not

map so naturally into the language.

The basic cyclic structure is fairly easy to implement in Ada. Mactaren
(11 and Hood 121 show how to write simple cyclic executives in Ada. The basic
cyclic scheduler for this type of cxecutlve is shown in Figure 2. This type
of executive ignores the issues of varying loads and overrunning Erames.

D.3.3.4

-.? : R " i . \

with Frame-Package1
package body Executive is

task Cyclic-Scheduler i r

end Cyclic-Scheduler;

entry Minor-Cycle-Tickt
for Minor-Cycle-Tick use at BIL00054t;

task body Cyclic-Scheduler is
begin

loop --forever
accept Minor-Cycle-Tick;
Frame-Packaqe.Frame-1;
accept Minor-Cycle-Tick;
Frame-Package.Frame-2;
accept Minor-Cycle-Tick;
Frame-Package.Frame-3;
accept Minor-Cycle-Tick;
Frame-Packaqe.Frame-4;

end loop!
end Cyclic-Scheduler1

end Executive;

Figure 2. A Simple Cyclic Executive

0.3.3.5

The Simple 8tructure can bo easily expanded to incorporate mod* changes
and vatiable tram0 assignmentr. ~ i g u r e 3 showr A cyclic executiva with mode
Changing. Each modo i s represented by a complete list of frames to be
scheduled in that bode. At the beginning of each major cycle, the executive
decider which schedule to run. Varying frame assignments require no change to
the Cyclic schedulerr instead a local scheduler is created in the varying
frame as ehown in Figure 4.

Overruns can be logged by adding a task to receive the periodic interrupt
and to check whether or not the previous schedule has completed. This type of
scheduler is shown in Figure 5.

None of the cyclic variations discussed so far has been difficult to
implement in Ada. The last two variations, namely overrun suspension and
termination, are considerably more difficult. In both cases, these executives
could only be written if they were heavily supported by the underlying r u n
time system.

The only asynchronous scheduling point provided by Ada occurs when an
interrupt is received, so this fact must be used in both the Suspension &.Id
termination variations. Asynchronous response to an interrupt is not
guaranteed by the Ada specification, however any Ada implementation that has
any value in the development of real time systems have to provide asynchronous
interrupt handling. The only ways to terminate an executing piece of Ada code
are either to raise an exception or to abort the task, Asynchronous
exceptions are not allowed in the Ada semantics, leaving only the abort
statement. The abort statement is not guaranteed to stop the aborted task
from executing at any particular time. Therefore, a frame termination
executive could be written in Ada only if the underlying implementation
guarantees the immediate termination of aborted tasks.

The overrun suspension executive has similar problems. The only way to
ensure the new frame will have precedence over the old one is to introduce the
new frame as a task with higher priority than the old frame task. This
technique works for the frames in a given major cycle, but when the first
frame is reintroduced at the beginning of the next major cycle, it must wait
for all the frames from the previous major cycle to complete before starting.
This behavior is clearly not desirable. In order to implement this type of
executive in Ada, the implementation must provide some sort of dynamic
priority mechanism. Standard Ada priorities are not dynamic, thus a
additional priority scheme must be introduced. These new priorities can not
interfere with the workings Of the Ada priority system but can be used to
assign priority to tasks that either have no standard Ada priority,
o r have the same standard priority.

relative

In general, these executives require more control over the processing
resources than can be obtained Using a single thread of control (single Ada
task). The resulting cyclic executive must be implemented using Ada tasking
€acilities. Ada tasking facilities, however, lack support for the primitive
(and often dangerous) functions necessary for these variations of the cyclic
executive.

D.3.3.6

with FrameJackage;
package body Executive 1s

task Cgclic-Schedul*r is

end Cyclic-Scheduler;

entry Micx-Cycle-Tick;
for Mlnor_Cyclr-Tlck use at 81100054@;

task body Cyclic-Scheduler is
type Mode-Typo is (Mode-1 Modr-2) ;
Mode: Mode-Type := Mode-1;

begin
loop --forever
cage Mode is

when kiGde-1 =>
accept Minor-Cycle-Tick;
Frame-Package.Frame-1;
accept Minor-Cycle-Tick:
Frame-Package.Frame-2;
accept Minor-Cycle-Tick;
Frame-Package.Frame-3;
accept Minor-Cycle-Tick;
Frame--Packdge. Frame-4 t

accapt Minor-Cycle-Tick;
Frame-Package.Frame-It
accept Minor-Cycle-Tick;
Frame-Package.Frame-2:
accept Minor-Cycle-Tick;
Fra~o-Package.Frame-1;
accept Minor-Cycle-Tick;
Frame-Package.Frame-2;

when Mode-2 =>

end casei
end loop;

end Cyclic-Scheduler;
end Execut ive ;

Figurc 3. A Cyclic Executive with Mode Changing

D.3.3 .7

4 4
I

‘ G

I

'. tark 'CycliclSchedulet is
'entry Minor-Cycle-Tick;
for Minor-Cycle-Tick ure a t 8i1000541;

end Cyclic-Scheduler a

task body Cyclic-Scheduler ir

begin
Statu88 Frame-Package,Statur-Type I= Frame_Package.Status-Type'Firrti

loop --forever
accept Minor-Cycle-Tick;
Fraare-Package.Frame-1i
accept Minor-Cycle-Tick;
Frame-Package.Frame-2;
accept Minor-Cycle-Tick;
Frame_Package.Frame-3i
accept Minor-Cycle-Tickt
Frame-Package.Frame-4 (Status);

end loop;
end Cyclic-Scheduler1

end Executive;

separate (Frame-Package)
procedure Frame-4 (Status I in Status-Type) 1s
begin

0
C1SQ Status iS

whim Good 8 ,

Application-1;
Application-Zt

Application-1:
when others =>

end case8
end Frame-4;

Figure 4 . A Cyclic Executfve with Frame Level Scheduling

D.3.3.8

..". ..., *.

with drror-Handling_Pickrgr;
with Pram@-Packagrt
paCkag8 body EX8CUtiVO i8

' task Pick-Handlrr i 8
rnt r y Clock-P ic k ;
tor Clock-Tlck use a t 811000541r

f rnd Pick-Handlrt;
1

. task Cyclic-Scheduler is

end Cyclic-Scheduler;
entry Minor-Cycle-Tick;

&ask kuidg pld&JimL?ua d.s

loop -- forever
accept Clock-Tick;
select

else

end select;

Cyclic-Scheduler.Minor_Cyclr_Tick;

Error-Handling-Package.Log-Overrun;

end loop;
end Tick-Handler8

task body Cyclic-Scheduler is
begin

loop --forever
accept Minor-Cycle-Tick;
Frame-Package.Frame-1;
accept Minor-Cycle-Tick;
Frame-Package.Fcame-28
accept Minor-Cycle-Tick;
Frame-Package.Frame-38
accept Minor-Cycle-T'.ck;
Frame_Package.Frame_~~

end loop;
end Cyclic-Scheduler:

end Execut ive;

Figure 5. A Cyclic Executive with Overrun Logging

ORIGINAL PAGE S
OF rOOR Q U A l l N D. 3.3.9

1.0 Avoidinq the Cost & Cvclic Schedulinq

Cyclic scheduling ir very costly over the lifetime of a software System.
The reason is very rimpler cyclic systems require software to be developed in
modules according to their time consumption rather than according to
functional coneiderations. Two phase8 o i development are totally dominated by
the timing structure of a cyclic executlve; detailed design/coding stage and
tuning. During detailed design, frame assignments are designed and coded
SPecfficallY to fit into their assigned time slots. Functionality is traded
back and forth between routines and frames, depending on where there is time.

Tuning can be though of as temporal debugging, during which timing errors
are found and corrected. The correction methods include dividing up existing
routines and shifting functionality between frames and routines. The end
result io a very fragile schedule which meets the timing requirements but
suffers several drawbacks: minor changes are likely to have sufficient impact
on the schedule to require complete system retuning. Functional components
are so dispersed that to understand any single component requires knowledge of
the entire system. The structure of the software has been totally lost and
maintenance efforts can only degrade thn structure further. Finally, one has
a system in need of constant and expensive maintenance.

In order to reduce the cost of this type of system, the creation of the
cyclic structure must be separated from the cleation and maintenance of the
software components. Modern software engineering techniques can be applied to
the system development and maintenance issues, with an extra step added to
derive a cyclic implementation from a more general design. The code developed
would be structured according to functional rather than timing considerations.
The timing of the system would move from the detailed design and coding steps
into a new precompilation step.

This extra step might be implemented as a machine-assisted (programmer
directed) set of program transformations which parallel the cyclic design
process that would normally take place during the software design. The
transformational sequence as well as the the untransformed source would be
save for future rederivations after necessary program maintenance is
performed.

A tool assisted tuning system need not be limited to cyclic
transformations. While there may always be a class of real time systems
requiring cyclic runtime performance, there is an equally large number of
systems that do not require such extreme measures. Many of these systems
would benefit from the flexibility of an Ada style runtime scheduler. This
type of scheduling allows more flexibility in dealing with runtime loadinq
variations, and is far more robust when maintenance changes are made. These
systems still require tuning, although not to the same extent. For these
systems, other types of tuning transformations can be made available, such as
replacing monitor tasks with semaphores OK simplifying groups of tasks using
program inversion techniques [31. By applying these techniques, a system can
be tuned until the appropriate level of predictability and efficiency has been
reached,

D. 3.3.10

ORiQlPlAC PAGE IS
OF POOR QUACITY

-**--#.e I . . ' " . "

Conclusion

There will always bo system that have a need for the runtime performance
Of cyclic scheduling. Many of the cyclic scheduling models Lit well within
the Ada language. In order for the cost of a cyclic system to be brought
under control, new methods aurt be developed to for their creation. These
methods ought not be limited to tho creation of cyclic systems; however, they
should provide a more general approach to the development of real time
systemsr with cyclic scheduling as one of many options €or achieving real time
performance.

References

111 MacLaren *Evolving toward Ada in Real Time Systems," SIGPLAN Notices,
1980

[2] Hood, Philip and Grover, Vinod, Desisninq Real Time Systems
Technical Report 1123-1, SofTech Inc., Waltham, MA, January 1986.

[3] Rajeev, S., 9 Applying Ada to Real-Time Systems: The Inversion
Technique and Some Examples, Technical Report TP 148, SofTech, Inc.,
Waltham, MA, March 1983.

Adaf

(4 1 Rajeev, S., Certain Optimizations Ada Tasking Implementations

[SI Gonralezr M.J., Jr., "Deterministic Processor Scheduling,"

Technical Report 9074-2, SofTech, Walthamr MA, January 1983.

Computinq Surveys, Vol. 9 . , No. 3 . , September 1977.

D. 3.3.11

- 4 . , ' . , . . , .. ., .

2P 1%

:I I.

Choosing a so f tware des ign method f o r r e a l - t i m e Ada a p p l i c a t i o n s :
J S D Process I n v e r s i o n as a means t o t a i l o r a des ign s p e c i f i c a t i o n
to the performance requ i rements and t a r g e t machine.

James V. Withey, I n t a r m e t r i c s , Lnc. $' p*-

A b s t r a c t

The v a l i d i t y of r e a l - t i m e so f tware is determined by i t s a b i l i t y
t o execute on a computer w i th in t h e t i m e c o n s t r a i n t s of t h e
p h y s i c a l system i t is modeling. I n many a p p l i c a t i o n s t h e t i m e
e o n s t r a i n t o a r e so c r i t i c a l t h a t t h e d e t a i l s of process
schedu l i ng a r c e leva ted t o t h e requ i rements a n a l y s i s phase of t h e
so f tware development cyc le . I t is n o t uncommon t o f i r i d
s p e c i f i c a t i o n s fur a r e a l - t i m e c y c l i c e x e c u t i v e program i n c l u d e d
o r assumed i n such requi rements. We have found t h a t p r e l iminar:;
des igns s t r u c t u r e d around t h i s imp lementa t ion obscure the d a t a
f l o w of t h e r e a l wor ld system t h a t w e are model ing and t h a t :it: i r
consequent ly d i f f i c u l t and c o s t l y t o ma in ta in , update and rpiise
t h e r e s u l t i n g so f tware .

r

J

A c y c l i c e x e c u t i v e is a so f tware component t h a t ~ c h e d c t l e ~ \ ar\c'
-- i m e l i r i t l y ------- synchronizes t h e r e a l - t i m e so f tware th rough p e r i o c ! ~
and r e p e t i t i v e s jubrout ine c a l l s . I t guarantees a cons is ten t
p rocess ing r a t e h u t not tiomogcneaus data. Ada taski nq on t h i ?
o t h e r hand, can a s r s u r a t h e cons is tency o f t h e d a t a but n o t a
s t a b l e E'i:E!c:c\tiori frequency. Each scheclcrling par-,adigm has i t .
d i s a d v a n t a g ~ s :
e:.: @cut i ve , -i i t te r - and nondet er-mi n i sm for- Ada t a~il;: i ng . race-condi t i o n s and ma in ta inab i 1 i t y f o r the c.;.'c: 1 : :

We t h e r e f o r e seek a des iyn method t h a t a l l o w s t h e d e . f e r r a 1 i) t

p r o c ~ s s schedul i rig t o t l ie 1 a t e r s tages o f T h e cieci i gI\;.i!r.
m u s t be a b l e t o chose t h e a p p r o p r i a t e schedul i r rg paradigm IJ t ','P:I

t.he pcirfnrtnancts const:r-ai n t s , t h e target: env i ronmcnt and the
s o f t w a r e ' s l i f e c y c l e . Ada des ign nrrthnds mLlst, i n nrder t ~ l

si.\ppor-t t h e t a s k i n g fcatr.wes o f Ada, i n i t i a l l y s p e c i f y t h e
s o f t w a r e des ign a3 a s e t o f i n te rconnec ted c o n c L l r r e n t SeqL(erit. t ~ { l
processes. They shoi-lld a1 50 p r o v i d e a v e r i f i ab1 e t rans formdt 1 LJII

t h a t a l l o c a t e s t h i s design s p e c i f i c a t . i o n t o rnndulss based mri

el, t,her- a par- j .odic o r ever i t -dr iven schedu l ing par-adiym.

des i yn.

D. 3 . 4 . 2

IHPLEHBNTATION OF AN ADA* REAL-TIUE EXECUTIVE - A CASE STUDY

James 0. Laird
Dt. Bruce A. Burton

nary R. Koppes

Intermetrice, Inc.
Aerospace Systems Group

5312 Boles Avenue
Huntington Beach, California 92649

ABSTRACT
C u r r e n t Ada l a n g u a g e

i m p l e m e n t a t i o n s a n d r u n t i m e
e n v i r o n m e n t s a r e i m m a t u r e ,
u n p r o v e n and a r e a key r i s k
a r e a f o r rea l - t ime embedded
c o m p u t e r sys t ems (ECS). T h i s
s t u d y p r o v i d e s a t e s t - c a s e
e n v i r o n m e n t i n w h i c h t h e
c o n c e r n s of t h e r e a l - t i m e , ECS
c o m m u n i t y a r e a d d r e s s e d . A
p r i o r i t y d r i v e n execut ive is
s e l e c t e d t o be implemented i n
t h e Ada programming l anguage .
T h e m o d e l s e l e c t e d i s
r e p r e s e n t a t i v e of r e a l - t i m e
e x e c u t i v e s t a i l o r e d f o r
e m b e d d e d s y s t e m s u s e d i n
m i s s i l e , s p a c e c r a f t , a n d
a v i o n i c s a p p l i c a t i o n s . An
Ada-based d e s i g n methodology
is u t i l i z e d , and two d e s i g n s
a r e c o n s i d e r e d . T h e f i r s t of
these d e s i g n s r e q u i r e s t h e use
of vendor s u p p l i e d runt ime and
t a s k i n g s u p p o r t . An a l t e r n a t -
i v e h i g h - l e v e l d e s i g n is a l s o
c o n s i d e r e d f o r an implementa t -
i o n r e q u i r i n g n o v e n d o r
s u p p l i e d run t ime o r t a s k i n g
s u p p o r t . The former approach
i s c a r r i e d t h r o u g h t o impleme-
n t a t i o n .

A d a i s a R e g i s t e r e d
Trademark of t h e U.S. Govern-
ment (A J P O)

*

S i n c e t h e i n c e p t i o n of
t h e common DoD H i g h O r d e r
L a n g u a g e (H O L) e f f o r t i n t h c
m i d - 7 0 1 s , t h e Ada programming
l a n g u a g e h a s r e m a i n e d ir
c o r n e r s t o n e of t h e government
e f f o r t a t p r o d u c i n g sof t w d t c‘

i n a c o s t - e f f e c t i v e m a n n c i .
V a l i d a t e d Ada c o m p i l e r s a r e
b e c o m i n g a v a i l a b l e o n J

va r i e t y of d i f f e r e n t conipu t t‘ 1 :>
w i t h a t l e a s t 1 7 v a l i d a t e d
c o m p i l e r s now a v a i l a b l e a n d
m o r e s l a t e d f o r v a l i d a t i o n
d u r i n g t h e c u r r e n t Y C J I .
T h e r e a r e c u r r e n t l } . 3 7
d i f f e r e n t a , - f e n s e ~ L O C J K J ~ I ~ ,
u s i n g Ada, and this number 1 2
a n t i c i p a t e d t o e x c e e d 1 7 0
d u r i n g t h e n e x t fou r y c ~ ~ s .
W h i l e t h i s p r o g r e s : , I .
e n c o u r a g i n g , t h e s u c c e s s (1 1

t h e Ada l a n g u a g e i n mect I I I ~ I
t h e n e e d s of s p e c i f i c appl ii-Ll--

t i o n s w i l l h i n g e o n t t , t

c o n s i d e r a t i o n of t h e p o t e n t i , t I
r i s k s t h a t f a c e t h e i r i ip1c111~11-
t o r s of a g i v e n system.

1

T h i s p r o c e s s of r i s k i d e n t i f i -
c a t i o n s h o u l d be f o l l o w e d L y
d e v e l o p m e n t of r i s k m i n i n i i -
z a t i o n a n d a v o i d a n c e s t r a t c -
g i e s t a i l o r e d t o m e e t t h e
n e e d s of t h e s y s t e m . T h e
e m p h a s i s o f t h i s pape r i F iri

D . 3 . 5 . 1

ORIGINAL PAGE fS
OF rOOR QUUITY

t h e a r e a . o f t e c h n i c a l r i s k
i d e n t i f i c a t i o n and r e s o l u t i o n
f o r r e a l - t i m e E C S
a p p l i c a t i o n s . W h i l e t h e Ada
p r o g r a m m i n g l a n g u a g e i s
i n t e n d e d f o r r e a l - t i m e
a p p l i c a t i o n s , c u r r e n t compi l -
e r s a n d r u n t i m e systems a r e
u n p r o v e n f o r t h e s e t y p e s o f
p r o g r a m m i n g e f f o r t s .
C o n s e q u e n t l y , t h e impact and
i m p l i c a t i o n s of u s i n g t h e Ada
l a n g u a g e a n d A d a - o r i e n t e d
m e t h o d o l o g i e s i n e m b e d d e d
r e a l - t i m e development e f f o r t s
s h o u l d b e a s s e s s e d . While i t
is n e c e s s a r y t o examine how
wel l a n d t o wha t e x t e n t t h e
b u i l t - i n real-time f e a t u r e s of
t h e l a n g u a g e meet t h e n e e d s of
E C S a p p l i c a t i o n s ,
a d d i t i o n a l l y , we m u s t r e - e v a l -
u a t e t h e s t a n d a r d approaches
t o s o l v i n g r e a l - t i m e problems
i n l i g h t of t h e new c a p a b i l i -
t i e s and assess t h e impac t , i f
a n y , on t h e way w e d e s i g n and
i m p l e m e n t t h e s e s o l u t i o n s i n
s o f t w a r e .

P e r h a p s t h e m a j o r
c o n s i d e r a t i o n w i t h r e g a r d t o
the use of t h e Ada programming
l a n g u a g e f o r r e a l - t i m e ECS
a p p l i c a t i o n s is t h e cos t o f
d o i n g so i n t e r m s of memory
dnd p r o c e s s i n g ove rhead . T h e
r e l a t i v e c o s t s a s s o c i a t e d w i t h
t h e u s e o f A d a a n d i t s
r e a l - t i m e f e a t u r e s is espe -
c l a l l y r e l e v a n t t o s m a l l
r! 111 b e d d e d compu t e r s y s t em
< 1 p p 1 i c a t i o n s g i v e n t h e
p h y s i c a l a n d t e m p o r a l con-
s t r a i n t s i m p o s e d on t h e s e
t y p e s o f a p p l i c a t i o n s . T h e
c l c t c r m i n i n g f a c t o r i n t h e
O (t c i s i o n t o u t i l i z e a p a r t i -
c u l a r h i g h o r d e r l a n g u a g e
(i ! O I ,) f e a t u r e is o f t e n t h e

e f f i c i e n c y o f i t s implemen-
t a t i o n . I t is i m p o r t a n t t o
know wha t t h e u t i l i z a t i o n of
Ada w i t h i t s r e a l - t i m e t a s k i n g
p r i m i t i v e s , r e p r e s e n t a t i o n
s p e c i f i c a t i o n s , e x c e p t i o n
h a n d l i n g , a n d v a r i o u s o t h e r
f e a t u r e s t r a n s l a t e s t o i n
t e r m s of program s i z e , s p e e d ,
a n d e f f i c i e n c y . T h e a b i l i t y
t o s e l e c t i v e l y i n c l u d e r u n t i m e
s u p p o r t a n d i t s r e s u l t a n t
ove rhead f o r these f e a t u r e s an
a n ' a s n e e d e d " b a s i s i s
a n o t h e r i m p o r t a n t c o n s i d e r -
a t i o n . D u r i n g t h e c o u r s e of
t h i s i n v e s t i g a t i o n , answers t o
f u n d a m e n t a l q u e s t i o n s s u c h a s
t h e s e were s o u g h t .

I t i s i m p o r t a n t t o s t r e s s
t h e s i g n i f i c a n t c o n c e p t u a l
d i f f e r e n c e s between t h c two
a p p r o a c h e s invest i g a t e d w i t h
r e g a r d t o t h i s c a s e s t . u d y
i m p l e m e n t a t i o n o f a p r i o r i t y
d r i v e n Ada e x e c u t i v e . F i q u r e
1 s e r v e s t o i l l u s t r a t e t h e
a l t e r n a t i v e a p p r o a c h e s a n d
c o n c e p t s and t h e i r i m p l i c a -
t i o n s f o r t h e d e v e l o p e r of a n
Ada executive.

T h e t e r m s O.S., execu-
t i v e , and r u n t i m e s u p p o r t o r
s y s t e m (R T S) a r e o f t e n u s e t i
r a t h e r l o o s e l y when E C S t o p i c s
a r e d i s c u s s e d . T h e ambigu i ty
of t h i s t e r m i n o l o g y i n t h e ECS
e n v i r o n m e n t is p r i m a r i l y d u e
t o t h e o v e r l a p i n f u n c t i u n -
a l i t y p r o v i d e d by d i f f e r e n t
i m p l e m e n t a t i o n s f o r d i f f e r c n t
a p p l i c a t i o n s . A n a p p l i c a t i o n
r e s i d i n g on a b a r e machine may
i n t e r f a c e w i t h s o f t w a r e
p r o v i d i n g m i n i m a l e c h e d u l i n g
a n d memory mnnagement. This
s o f t w a r e is o f t e n r e f e r r e d t o
a 5 an "executive" o r run t ime

D . 3 . 5 . 2

RTS

FIGURE 1
RUNTIME SUPPORT (RTS)

AP PROACHE S

k e r n e l w h e r e a s t h e s a m e
s e r v i c e s p r o v i d e d on a n o t h e r
s y s t e m may be o b t a i n e d f rom
s o f t w a r e r e f e r r e d t o a s a n
O.S. T h e p r i m a r y d i f f e r e n c e
i n t e rmino logy is a t t r i b u t a b l e
t o t h e v a r i e t y and n a t u r e of
t h e s e r v i c e s p r o v i d e d by t h e
s u p p o r t s o f t w a r e i n q u e s t i o n .
T h e more m i n i m a l t h e R e r v i c e s
p r o v i d e d , t h e more l i k e l y t h a t
t h e t e r m s r u n t i m e s u p p o r t ,
r u n t i m e k e r n e l , o r execut ive
w i l l b e a p p l i e d . T r u e
o p e r a t i n g s y s t e m s i n t h e
s t r i c t sense a r e d i s t i n g u i s h e d
by two m a j o r f a c t o r s . T h e y
a r e t y p i c a l l y d e v e l o p e d
i n d e p e n d e n t l y of a n y c o m p i l e r -
/ a p p l i c a t i o n s s o f t w a r e and a r e
a c q u i r e d i n d e p e n d e n t l y r a t h e r
t h a n a s a p a r t o f il g i v e n
c o m p i l e r sys tem o r p a c k a g e .

The o t h e r major d i s t i n c t i o n is
i n t h e c o m p r e h e n s i v e n e s s o f
t h e s e r v i c e s p r o v i d e d by a n
O . S . f o r t h e t a r g e t machine ;
s e r v i c e s t h a t may be t a r g e t e d
a n d u t i l i z e d by a v a r i e t y of
d i f f e r i n g a p p l i c a t i o n s a n d
t o o l s a s wel l a s many d i f f -
e r e n t c o m p i l e r s y s t e m s . T h e
m i n i m a l r u n t i m e s u p p o r t f o r
a p p l i c a t i o n s deve loped under il
s i n g l e c o m p i l e r s y s t e m ma;'
i n t e r f a c e t o , and u t i l i z e , ttre
c o m p r e h e n s i v e s e r v i C C L

p r o v i d e d by a n 0,s. Ther l : -
f o r e , t h e RTS €or an ECS C A I)
be t h o u g h t of as p r o v i d i n q til<*
m i n i m a l r e q u i r e d s u b s e t I .) ! .

0,s. s e r v i c e s n e e d e d f o r .I

g i v e n a p p l i c a t i o n . A S s t i l t ec! ,
t h i s m i n i m a l s u b s e t c a n til'
prov ided by d i r e c t a c c e s s t (.)

t h e u n d e r l y i n g m a c h i n e U I

t h r o u g h t h e u t i l i z a t i o n of t t t r ,
s e r v i c e s p r o v i d e d b y ~ I I

u n d e r l y i n c j comprehens ive 0 . 5 .
The f o r m e r c a s e is t h e m u s t
t y p i c a l f o r embedded cornputc I

s y s t e m s . The t e r m "execu t ivt:"
i s most o f t e n used t o r e f t r t o
t h a t p a r t o f t h e HTS t i 1 , 1 1
p e r f o r m s t h e b a s i c s chedu l I I!$;

and memory management. ilt: t l q : !

p o r t i o n s o f t h e R T S I I I ~ I ' :

i n c l u d e 1/0 c o n t r o l , t i m e [, ' -
c l o c k m a n a g e m e n t , a n d , I
c e r t a i n a m o u n t o f s y s t ~ :
l e v e l r u n t i m e e r r o L , I I : (~

i 11 t e r r up t t r a p p i n y .
T h e R T S o f a n I t .

s u p p o r t s t h e e x e c u t l o t 1 I I
a p p l i c a t i o n p r o g r a m s and I tit.
programming language f e a t U I I . :
u t i l i z e d t o d e v e l o p ~ I ~ L J . , I

p r o g r a m s . As i l l u s t r a t 1 , t l 1 1 1

F i a u r e 1, t h i s s u p p o r t c a n l J <
i m p l e m e n t e d i n h a r d w a r t . ,
m i c r o c o d e , t h r o u a h d i t t : (. t
c a l l 8 t o an O.S., t h rouqh t i l l -
u s e o f r u n t i m e B U ~ P O I I
l i b r a r i e s , o r b y cornp1 I l . ~

OMWAL PAGE tS
OF rOOR QUALITY

g e n e r a t e d (i n - l i n e) code . The
o p e r a t i n g sys t em and RTS n e e d s
o f s m a l l e m b e d d e d computer
s y s t e m s a re t y p i c a l l y modest.
A l l t h a t s u c h a m a l l ECS
t a r g e t s u s u a l l y require is cn
" e x e c u t i v e " c o n s i s t i n g of
l i t t l e m o r e t h a n a b a s i c
s c h e d u l e r , memory manager and
some t y p e o f I / O manage r o r
c o n t r o l l e r . O b v i o u s l y ,
d i f f e r e n t a p p l i c a t i o n s may
h a v e s p e c i f i c n e e d s r e l a t i v e
t o memory management, I/O, o r
c l o c k s e r v i c e s wkich w i l l be
r e f l e c t e d i n t h e " e x e c u t i v e / -
0 . S " s o f t w a r e .

APPROACB
T h i s pape r a d d r e s s e s two

basic o p t i o n s o r approaches t o
t h e i m p l e m e n t a t i o n of an Ada
e x e c u t i v e and b r i e f l y d i s c u s -
s e s o n g o i n g a s w e l l a s
p roposed work i n a t h i r d a r e a
of r e l a t e d i n v e s t i g a t i o n . T h e
f i r s t o f t h e s e a p p r o a c h e s is
e x p l c r e d i n d e p t h (t h r o u g h t o
i m p l e m e n t a t i o n) a n d c o n s i s t s
Jf a combina t ion of a "pseudo
e x e c u t i v e " o r s c h e d u l e r a t t h e
a p p l i c a t i o n s l a y e r i n c o n c e r t
w i t h vendor s u p p l i e d e x e c u t i v e
s o f t w a r e a t t h e run t ime s y s t e m
l e v e l . T h e o b v i o u s b e n e f i t s o t
such a n approach - i m p o s i n g an
a d d i t i o n a l l a y e r of c o n t r o l
u p o n t h e r u n t i m e s y s t e m
s c h e d u l i n q mechanism - i n c l u d e
e a s e o f p o r t a b i l i t y , a n d
r e l a t i v e t a r g e t i ndependence
w i t h r e s p e c t t o t h e u n d e r l y i n g
: i c h e d u l i n g a l g o r i t h m a t t h e
N'rS layer. T h e s e b e n e f i t s as
w r : l l a s t h e t r a d e o f f s i n
o ~ (: r h e a d and consis tency from
~ m p l c r n c n t a t i o n t o implemen-
t , l t i o n w i l l be d i s c u s s e d i n

T h e s e c o n d o p t i o n is
e x p l o r e d a t a h i g h l e v e l
o n l y . T h i s a l t e r n a t i v e ,
t e r m e d t h e b a r e m a c h i n e
a p p r o a c h , i s cons i s t en t w i t h
t h e t r a d i t i o n a l a p p r o a c h t o
a v i o n i c s - b a s e d e x e c u t i v e s and
is c o n s i d e r a b l y mote l i m i t e d
i n scope t h a n t h e f i r s t i n t h e
s e n s e t h a t i t a s s u m e s rio
u n d e r l y i n g v e n d o r s u p p l i e d
r r n t i m e s u p p o r t . T h i s
e x e c u t i v e p e r f o r m s a l l
n e c e s s a r y s u p p o r t f o r t h e
e x e c u t i o n o f u s e r j o b s o r
" t a s k s n . ! ? o w e v e r , t h i p
approach is s i g n i f i c a n t l y morL
r e s t r i c t i v e t h a n t h e f i r s t
w i t h r e s p e c t t o t h e n a t u r e o f
what c o n s t i t u t e s a " t a sk" a s
well a s t o t h e use of c e r t a i n
Ada l a n g u a g e f e a t u r e s i n \ 91-
v i n g b o t h t h e Ada t a s k i n g
m o d e l a n d d y n a m i c m e m o r y
management a n d c e r t a i n o t h e r
r e a l - t i m e a s p e c t s o f t h e
l anguage .

T h e t h i r d o p t i o n i s
c o n s i d e r e d o n l y i n t e r m s c f
c u r r e n t and o n g o i n g i n v e s t i -
g a t i v e w o r k a n d p r o p o s e d
f u t u r e s t u d i e s based upon t h e
r e s u l t s o f p a s t i n v e s t i -
g a t i o n s . T h i s a p p r o a c h
d i v e r g e s f rom t n e o t h e r s i n
t h a t i t p r o p o s e s a m i g r a t i o n
t o t h e run t ime s y s t e m l a y e r i n
o r d e r t o p r o b e t h e issues of
e f f i c i e n c y and c i s k r e d u c t i on
f o r r e a l - t i m e Ada a p p l i c a -
t i o n s . T h i s o p t i o n emphas izes
t h e t a i l o r i n g and o p t i m i z a t i o n
of t h e e x e c u t i v e f u n c t i o n s
p r o v i d e d a t t h e RTS l a y e r .

A m u l t i - p h a s e d a p p r o a c h
b e g i n n i n g w i t h a r e q u i r e m e n t s
s p e c i f i c a t i o n was u t i l i z e d f O K
t h e d e s i g n and development of
t h e p r i o r i t y d r i v e n execu-
t i v e . The f u n c t i o n a l c a p a b i l -

D.3.5.4

ORlGlNAC PAG€ fS
OF POOR QUMITV

i t i e s t h a t ’ w e r e t o be p r o v i d e d
w e r e e x t r a c t e d f r o m a n
e x i s t i n g a v i o n i c s execut ive
implemented i n a c o m b i n a t i o n
of F O R T R A N a n d A s s e m b l y
l a n g u a g e . I t was d e t e r m i n e d
t h a t t h e s e Barn6 f u n c t i o n a l
c a p a b i l i t i e s would be p r o v i d e d
w i t h i n t h e e x e c u t i v e b e i n g
i m p l e m e n t e d i n t h e A d a
l a n g u a g e .

W h i l e p r o v i d i n g s u b s t a n -
t i a l l y t h e same f u n c t i o n a l i t y ,
t h e Ada e q u i v a l e n t c o n s t i t u t e d
a c o m p l e t e r e -des iqn u t i l i z i n g
Ada c o n c e p t s a n d f e a t u r e s
w h e r e p o s s i b l e . For t h i s
r e a s o n , t h e Ada e x e c u t i v e
p o s e d some u n i q u e p r o b l e m s
from t h e o u t s e t w i t h respect
t o use of t h e new Ada c o n c e p t s
a n d f e a t u r e s s u c h as t h e Ada
t a s k i n g m o d e l . T h e s e issues
a r e a d d r e s s e d i n t h e RESULTS
s e c t i o n of t h i s p a p e r .

T h e Ada p r i o r i t y d r i v e n
e x e c u t i v e w a s t o p r o v i d e
f a c i l i t i e s f o r t h e c r e a t i o n of
a c t i v e t a s k s v i a a s c h e d u l i n g
m e c h a n i s m . T h e s c h e d u l i n g
m e c h a n i s m w o u l d p r o v i d e
t i me - d e p e n d e n t s c h e d u l i n g
c a p a b i l i t i e s , p r e c i s i o n t i m i n g
of t a s k a c t i v a t i o n as measured
b y t ime b a s e g e n e r a t e d (TBG)
e p o c h s , a n d s i g n a l dependent
s c h e d u 1 i n g capa b i 1 i t i e s . T h e
Ada p r i o r i t y d r i v e n e x e c u t i v e
w o u l d p e r f o r m p r i o r i t i z e d
t a s k i n g a n d would h a v e t h e
o p t i o n o f e n a b l i n q a n d
d i s a b l i n q i n t e r r u p t s . T h e
. a p a b i l i t y t o d i r e c t l y c o n n e c t
t o a r e a l - t i m e c l o c k i n t e r r u p t
w o u l d be p r o v i d e d . I n t h e
a b s e n c e of s u c h a f a c i l i t y ,
t h e r e a l - t i m e c l o c k i n t e r r u p t
would be s i m u l a t e d w i t h t h c
s m a l l e s t g r a n u l a r i t y p o s -
s i b l e . I n s h o r t , t h e Ada

p r i o r i t y d r i v e n executive was
r e q u i r e d t o be a r e a l - t i m e ,
m u 1 t i - t a s k i n g p r o c e s s manager
w i t h i n t e r r u p t h a n d l i n g a n d
b o t h c y c l i c a n d a s y n c h r o n o u s
s c h e d u l i n g c a p a b i l i t y .

I n t e g r a l t o t h e d e s i g n of
t h e A d a p r i o r i t y d r i v e n
e x e c u t i v e was t h e s e l e c t i o n
and a p p l i c a t i o n of a s t a t e - o f -
- t h e - a r t , A d a - b a s e d d e s i g n
methodology. A somewhat n o v e l
d e s i g n a p p r o a c h was s e l e c t e d
t h a t was b a s e upon O b j e c t
O r i e n t e d De6ignB w i t h enhance -
m e n t s a n d m o d i f i c a t i o n s
s p e c i f i c f o r r e a l - t i m e
e m b e d d e d s y s t e m s 4 . T h e
methodology d e r i v e d was termed
R e a l - T i m e O b j e c t O r i e n t e d
D e s i g n (R T O O D) and drew upon
a n o t h e r r e a 1 - t ime , s y s t enis -
- b a s e d d e s i g n m e t h o d o l o g y
c a l l e d D e s i g n A p p r o a c h
Real-Time S y s t e m s (DARTS) .
T h e s t e p s u t i l i z e d i n this
h y b r i d m e t h o d o l o g y a r c
o u t l i n e d j i F i g u r e 2 .

f Y r

1. D.ltnltlorVrlrtrrnmi 01 ihm pfoairm

11. Informal r ~ t r ~ o g y (U O ~ I I I ~ ~ aprc1Itcat1onj

1 1 ’ 8 ~drnilly oblrolr and rnflbutrm

I V . t d r n ~ y Oporrilonr

V. Idrn~~ty oonaurrrnay ‘(DARTS)
Dwompoan‘on Inlo I a O k w p ~ c k r p ~ r
b u d on:

Ihe rmmhronoum naiuw 01 mqor tranrlotm. - v qurnllrl vm. coMuffmnI

rp.Cular1ly:
CO dwmndrnoy
IIN ofllbrl lunollona
oornpulrlbnrl faqulrmm.nia
luncllon whroIon
lrrnporrl oohrmlon
p ~ b d l a aswullon

VI . L.lrbllah the Intmtlrorr

vu. hP*mwrl lh. opurlbn.

‘ 1011711
OrW A i o l h h t
k.cnm eatarna

F l G U R E 2
REAL-TIME OBJECT O R I E N T E D

D E S I G N (WI”I’0lI) METHOLOLOGY

D.3.5.5

QRiQlNAL PAGE tS
OF boOR QUALITY

.. .
b !.:

Similarly, a high level
design was developed for the
alternate approach - termed
h e r e * t h e b a r e m a c h i n e
approach* - t o the development
o f a n A d a executive. T h e
"bare machine" model imple-
m e n t s i t s o w n c o n c u r r e n c y
through the executive while
disallowinq the use of the Ada
tasking model per se as well
as any difficult, and poten-
t i a l l y risk-prone, dynamic
s t o r a g e m a n a g e m e n t . T h e
potential benefits and risks
of each of these approaches
was examined with the former
approach being carried through
to implementation and limited
utilization.

RESLlLTS
L A D A EX ECUTIVE WITB VENDOR 0 RUNTIHE S O P P O ~

T h e capabilities of the
F O R'I'RA N/A s s e m b l y 1 a n g ua g e
i m p l e m e n t a t i o n and the Ada
language implementation are
summarized in Table 1. The
Ada language version consists
cf two major components - the
p r o g r a m code a n d t h e v e n d o r
supplied runtime system. In
b o t h i m p l e m e n t a t i o n s t h e
s c h e d u l i n g p r i m i t i v e s a r e
I J r O v ided by the executive, but
t h e ultimate responsibility
f o r c y c l i c / a c y c l i c t a s k
~cheduling lies with the user
(application) tasks. Note,
h o w e v e r , t h a t t h e t a s k
interleaving and task waiting
l n t5e Ada language version is
strictly under the control of
the Ada runtime system and not
~ n d e r t h e c o n t r o l of t h e
cxccutive as in the FORTRAN/-
A S I; e m bl y i m p l e m e n t a t i o n .
Furthermore, although tasking
could be prioritized dynam-

i c a l l y (c h a n g e d) i n t h e
P O R T R A N / A a s e m b l y implemen-
t a t i o n , p r i o r i t i e s a t t h e
r u n t i m e s y s t e m l e v e l a r e
s t a t i c in t h e Ada language
version. -
P i q u r e 3 d e p i c t s the major
functional components of the
A d a e q u i v a l e n t p r o t o t y p e
developed for the case study
i n v e s t i g a t i o n . T h e m a j o r
distinction between the Ada
implementation and the
F O R T R A N / A s s e m b l y m o d e l
depicted in Figure 4 involves
t h e interaction of the Ada
r u n t i m e s y s t e m w i t h t h e
p r i o r i t y d r i v e n e x e c u t i v e
functions.

I - I- m- I,,

W h i le the FORTRAN/Asse,d-
b l y model managed a l l state
t r a n s i t i o n s for user tasks
from inactive to executing a n d
all information associated
with these state transit ions,
t h e A d a i m p l e m e n t a t i o n
u t i l i z e s t h e A d a r u n t i m e
s u p p o r t s y s t e m (f o r t h e
tasking model) to manage the
active processing phase of any
user task as well as the body
of information associated with
a tasks' a c t i v e executian.
Specifically, the Ada runtime

ORJQINAL PAGE tS
OF rOOR QUALITY

D . 3 . 5 . 6

F I G U R E 3
ADA P R I O R I T Y DRIVEN

EXECUTIVE FUNCTIONAL
SCHEMATIC

s y s t e m m a n a g e s t h e i n t - r -
l e a v i n g o r t i m e - s l i c i n g o f
c o n c u r r e n t l y e x e c u t i n g u s e r
t a s k s a n d is r e s p o n s i b l e f o r
management of t h e a s s o c i a t e d
t a s k a c t i v a t i o n i n f o r m a t i o n .
The s t a r t of a u s e r t a s k s '
s c h e d u l e d e x e c u t i o n phase is
s t r i c t l y under t h e c o n t r o l of
t h e A d a p r i o r i t y d r i v e n
e x e c u t i v e a t t h e a p p l i c a t i o n s
l a y e r , y e t , t h e management of
t h e t r a n s f e r o f c o n t r o l
b e t w e e n any number of concur -
r e n t l y e x e c u t i n g u s e r t a s k s i s
b y d e f i n i t i o n u n d e r t h e
c o n t r o l of t h e vendor s u p p l i e d
Ada run t ime sys tem.

T o s a t i s f y t h e r e q u i r e -
ment f o r a cyc l i c c a p a b i l i t y ,
t h e e x e c u t i v e was r e q u i r e d t o
have some methQd f o r s p e c i f y -
i n g f i x e d - r a t e s c h e d u l i n g .
T h i s w a s p r o v i d e d o n t w o
l e v e l s . I n k e e p i n g w i t h t h e
s c h e m e u t i l i z e d i n t h e
o r i g i n a l m o d e l , t h e f a c i l i t y
f o r s c h e d u l i n g a t a s k f o r
e x e c u t i o n i s p r o v i d e d . A c t i v e

FIGURE 4

EXECUTIVE Fr 'YCTIONAL
FORTRA N/AS SEMBLY

SCHEMA1 I C

t a s k s c u r r e n t l y e x e c u t i n u mcl;,'

t h e r e f o r e u t i l i z e t h 1 s
f a c i l i t y t o r e - i n s e r t t h e n -
s e l v e s i n t o t h e s c h e d u l e f o r
f u t u r e e x e c u t i o n , o r t h i s n l ~ l '

be d o n e by some o t h e r a c : t 1 j S c
user t a s k .

I n t h e o r i g i n a l model ~l

v o l u n t a r y , n o n p r e - e m p t i - c
s c h e d u l i n g scheme was u t i l i z e d
among t h e u s e r t a s k s t h i i t
e n f o r c e d t h e n o t i o n t h a t
t r a n s f e r of c o n t r o l o r c o n t e x t
s w i t c h i n g among t a s k s C C I : ; ! , I
o c c u r u n e x p e c t e d l y . B c ~ t 1 1) ~ ;

i n m i n d t h a t h i t h i n a i) i t i i . 1

e n v i r o n m e n t t h e u n d e r l) 1 ' I
o p e r a t i n g o r r u n t i m e s) : ; t t
u t i l i z e s a n o t h e r l e v c l I

s c h e d u l i n g f o r t h e i n t t : t
l e a v i n g of c u r r e n t l y ; I L . C I , \

t a s k s , a t a s k p c i o r i t i z d t ~ ~ ~ l l
scheme among t h e s e tasks I . ,
t h e n r e q u i r e d t o e n f o r c e t
n o t i o n t h a t a p a r t i c u l a r t I l : ,h

is i n c a p a b l e of h a v i n q l t : ;
s c h e d u l e d e x e c u t i o n i n t c ~ -
r u p t e d once i t b e g i n s .

D.3.5.7

I n s'hort, w e h a v e a
scheduling scheme at the user
task level to specify fixed-
rate triggering of a task8'
processing and the Ada pragma
"PRIORITY" enforced at the
u n d e r l y i n g o p e r a t i n g o r
runtime system level to ensure
uninterrupted c m p l e t i o n of
that processing.

The major potential point
o f failure with respect to
this type of approach to task
schedulinq at the applications
level is at the underlying
runtime system level. The
issue is one of consistency
f r o m i m p l e m e n t a t i o n t o
implementation with respect to
time slicing of concurrently
executing processes of equal
priority. While fixed rate
triggering of task execution
c a n be g u a r a n t e e d v i a a
combination of algorithmic
control, prioritization, and
interrupt handlinq through the
"psuedo executive", no such
auarantee can be made with
iespect to the method of time
s l i c i n g u t i l i z e d by t h e
underlying runtime support for
concurrent tasks of equal
priority. This will vary from
implementation to implemen-
tation althouqh adhering to
t h e 59-called "FAIR" require-
n4clnr dictated by the language
s I c i f i cation. Gilten the

I ~ n q e n t nature of typical
I 1 :i performance and reliabil-
. t y r e q u i r e m e n t s , t h i s

i o t c : n t i a l i n c o n s i s t e n t
I t:t:avlor across i m p l e m e n -

~ t loris could pose a signi-
! * i n t r i s k .

0

handling eince external events
o f t e n d i c t a t e a n e e d t o
dynamically chanqe priori-
ties. The Ada rendezvous
occuri in a first in, f i r s t
o u t m a n n e r u s i n g a queue
structure for multiple eptry
calls issued for a n y given
t a s k e n t r y 1 oint (A C C E P T
state.nent). There is no way
to reoider and influence the
position a calling task m a y
occupy in euch a queue. It is
possible that with dynsmic
task prioritization this could
bc programmer controlled

f i c i m v r Smce The
FORTRAN/ Assembly language
implementation used as a model
in this case study was coded
in a little over 1 K (bytes)
of memory and accounted f o r
somewhat less than two percent
of the entire system. While
the entire Ada system congis-
ted of just over 700 lines of
code, the space requirements
varied with respect to t h e
host machine. The Ada version
required anywhere from 27 K to
38 K bytes of memory for thc
applications code alone . T h c
runtime kernel on one machine
imposed an additional penalty
of 200 K bytes to utilize the
Ada tasking model. I t should
be noted, however, t h a t t h e
executive wau developed f o r
functional realism and was not
optimized €or minimal p t o q t a n ~
size. The runtime k e t r i c l t :
were larqt?, a e much a 8 200K
bytes, but the runtime kcrnclt,
were intended for a rnain-frame-
environment, not a typical ECS
ap?l icnt ion.

Static prioritization of T h e sign i € ican t 1 eeuonti
A f I d t a s k s may be a problem in learned were in what optionu
' , o r i r : i n s t a n c e s of t a s k were available to optimize the
: c h r : d u l i n g o r interru1)l: size a n d speed of -the exccu-

0 D.3.5.8

t a b l e image . S i g n i f i c a n t
s av ings - approximately l O O K =
were a v a i l a b l e via a eelect-
i v e l y loadab le t a s k i n g kernel
in a t l ea s t one implementation
w h i l e o t h e r o p t i o n s r e s u l t i n g
i n s a v i n g s were no runt ime
c h e c k i n g (1-2K s a v i n g s) , and
no debugg ing ins t rumenta t ion
(SK r a v i n g s) . I n one p a r t i -
c u l a r imp lemen ta t i o n , t h e
o p t i o n f o r space op t imiza t ion
was o f f e r e d y e t y i e l d e d no
a p p r e c i a b l e d i f f e r e n c e i n t h e
s ize of t h e execu tab le image.

W h i l e t h e r e is no s t r i c t
l i n e a r r e l a t i o n s h i p w i t h
r e s p e c t t o o v e r h e a d between
hos t and ECS environments , t h e
s i g n i f i c a n t s a v i n g s r e a l i z e d
through c o n f i g u r a b i l i t y w i t h i n
t h e h o s t e n v i r o n m e n t s h a s
u i g n i f i c a n t p o s i t i v e i m p l i -
c a t i o n s f o r ECS environments
where e f f i c i e n c y c o n s t r a i n t s
a r e paramount.

I t was f o u n d t h a t t h e
t o t a l s t o r a g e p e n a l t y t o
i n c l u d e a minimal e x c e p t i o n
h a n d l i n g c a p a b i l i t y w i t h i n
e a c h Ada program u n i t was on
t h e o r d e r of 4-5 p e r c e n t of
t h e t o t a l p r o g r a m s t o r a g e
w h i l e t h e c p u o v e r h e a d t o
i n v o k e an e x c e p t i o n h a n d l e r
r a n g e d f r o m 3 0 - 5 0 0 m i c r o -
s e c o n d s . T h i s r e p r e s e n t s an
a c c e p t a b l e c o s t i n e i t h e r a
h o g t m a i n f came o r embedded
envircinment .

The overh-ad i n terms of
time t o u t i l r z r t h e rendezvous
m e c h a n i s m w i t h i n t h e h o s t
env i ron ,nen t was r a t h e r h i g h ,
b e i n g a p p r o x i m a t e l y 1 1 - 1 2
m i l l i s e c o n d s . G i v e n t h e
r e l a t i v e l y r a p i d frame times
of many rca l - t ime a p p l i c a t i o n s
(o n t h e o r d e r o f 4 0 - 1 0 0

m i l l i s e c o n d s) , a f e a t u r e t h a t
uaes a p p r o x i m a t e l y one t e n t h
a t t h e f r me t i m e p o s e u

However, based
upon c u r r e n t i n v e s t i g a t i o n s
w i t h Ada f o r embedded 1 6 and
32 b i t t a r g e t s , the c a s e can
be made t h a t t h i s i a a problem
s o m e w h a t l o c a l i z e d t o t h e
mainframe environment.

s e r i o u s r i s k 9

T h e a l t e r n a t e d e s i g n
a p p r o a c h p r o p o s e d i n t h i s
s t u d y f o r t h e Ada p r i o r i t y
d r i v e n e x e c u t i v e (s e e F i g u r e
5) i8 i n t e n d e d f o r a b a r e
mach inc env i ronmen t w i t h n o
r e s i d e n t o p e r a t i n g system nor
a n y v e . i d o r s u p p l i e d A d a
runkime s u p p o r t . The des ign
of s u c h an e x e c u t i v e r a i s e s
some i m p o r t a n t i ssues w i t h
r e s p e c t t o v a l i d a t i o n when
c o n s i d e r i n g w h a t m u s t be
p r o v i d e d t o s u p p o r t t h e
e x e c u t i o n o f an Ada a p p l i -
c a t i o n on s u c h a bare t a r g e t .
The i m p l i c a t i o n s of t h e t r a d i -
t i o n a l model of an execu t i ve ,
s u c h a s t h e o r i g i n a l
fORTRAN/Assembl y 1 a n g u a y c
implementation used a s a basis
f o r t h i s s ' u d y , a r e c o n s i -
de red

T h i s a p p r o a c h d i f f c t s
g r e a t l y f r o m t h a t whic.ti
u t i l i z e s an u n d e r l y i n g r u n t i m c
s y s t e m , T h i s approach implies
t h a t beyond t h e gene ra t ion u f
n a t i v e machine i n s t r u c t i o n : ;
from t h e HOL by some g c n e r i c
t r a n s l a t o r o r c o m p i l e r , i t
becomes n e c e s s a r y t o p r o v i d c
programmer s u p p l i e d s u p p o r t
f o r any HOL language f e a t u t c e
n o t d i r e c t l y i m p l e m c n t a b i c
throlrqb p r i m i t i v c e on t h e b a l e
t i d r d w a r e . I t t h e r e f o r c
b e c o m e s t h c . t a s k o f t h e

r u n t i m e supe rv i so r or execu-
t i v e software t o p r o v i d e t h i s
u n d e r l y i n g support f o r t h i n g s
s u c h a s c o n c u r r e n c y o r
m u l t i - t a s k i n g , I / O , d y n a m i c
s t o r a g e and memory management
t o name a few. I n a d d i t i o n ,
t h i s e x e c u t i v e m u s t n o t , i n
t u r n , r e l y on some u n d e r l y i n g
s u p p o r t f o r i ts own e x e c u t i o n .

V a l i d a t i o n is c e r t a i n l y
an issue w i t h respect t o t h i s
k i n d o f s u b s e t Ada approach .
W h i l e r e c o g n i z i n g t h e incom-
p a t i b i l i t y o f t h i s a p p r o a c h
w i t h t h e n o t i o n of v a l i d a t i o n ,
we c h o o s e n o t t o a d d r e s s t h e
t o p i c i n any d e t a i l o t h e r t h a n
t o a c k n o w l e d g e t h e c o n f l i c t .
Our f o c u s is on t e c h n i c a l r i s k
i d e n t i f i c a t i o n a n d m i n i m i -
za t i o n .

T h e d e s i g n o f t h i s b a r e
m a c h i n e e x e c u t i v e was p u r e l y
h y p o t h e t i c a l a n d no s p e c i f i c
e m b e d d e d t a r g e t was s e l e c -
t e d . F o r t h a t r e a s o n , o n l y a
h i g h - l e v e l d e s i g n was i t e r -
a t e d . C u r r e n t l y , t y p i c a l
v e n d o r s u p p l i e d Ada r u n t i m e
support p a c k a g e s f a c i l i t a t e
t h i n g s s u c h a s t s y s t e m
e l abora t ion o r i n i t i a l i z a t i o n ,
t a s k c o m m u n i c a t i o n a n d
: . c h e d u l i n g , e x c e p t i o n h a n -
r i 1 i n q , i n t e r r u p t , I / O , a n d
t v p e s u p p o r t . T h e amount of
o v e r h e a d v a r i e s w i t h e a c h
vr:ndor I s imp lemen ta t ion . T h e
d c s i q n p roposed is f o r an Ada
l ! x r _ . c u t i v e f u n c t i o n t h a t would
n l i n 1 m a l l y s u p p o r t t h e execu-
t . lcJn o f o t h e r Ada s o f t w a r e
c o n s t i t u t i n g j o b s o r
' ' t c l s k s " . H o w e v e r , t h e Ada
t a s k i n g model is no t s u p p o r t e d

t h e p r o p o s e d s u b s e t Ada

A 8 i n t h e t r a d i t i o n a l
model, concur r ancy is a c h i e v e d
v i a t h e e x e c u t i v e u t i l i z i n g a
n o n p r e - e m p t i v e , v o l u n t a r y
c o n t e x t swi t c h i n g mechanism.
C o n t r o l o v e r s c h e d u l i n g i s
t h e r e f o r e e x p l i c i t and known
t o t h e p r o q r a m m e r . I n
a d d i t i o n , any dynamic d a t a o r
s t o r a g e management is r e s t r i c -
t e d t o t h a t w h i c h s u p p o r t s t h e
e x e c u t i o n of t h e e x e c u t i v e
f u n c t i o n s o n l y .

I t m u s t be noted t h a t t h e
n o t i o n o f a n " a l l Ada execu-
t i v e " a t t h i s l e v e l is
f a l l a c i o u s . A c e r t a i n amount
o f p r i v i l e g e d a c c e s s i n g of
r e g i s t e r and s t a c k con ten t s by
t h e e x e c u t i v z f u n c t i o n s t o
f a c i l i t a t e t h e b a s i c c o n t e x t
s w i t c h i n g a n d memory manage-
ment would be r e q u i r e d . T h i s
is n o t d i r e c t l y a c h i e v a b l e
from w i t h i n t h e Ada l anguage .
T h e r e f o r e , a component of t h e
e x e c u t i v e s o f t w a r e (e .g . t h e
C o n t r o l - T r a n s f e r - P a c k a g e)
would by n e c e s s i t y be imple-
m e n t e d i n a l o w e r l e v e l
p r o g r a m m i n g l a n g u a g e . I n
c u r r e n t commerc ia l Ada run t ime
s y s t e m s f o r embedded t a r g e t s
s u c h a s t h e 1 7 5 Q A , t h i s
a c c o u n t s f o r a p p r o x i m a t e l y two
p e r c e n t of t h e vendor s u p p l i e d
r u n t i m e s u p p o r t . Ada packaq-
i n g c o n c e p t s f a c i l i t a t e t h e
e n c a p s u l a t i o n and i s o l a t i o n of
s u c h machine con t e x t s e n s i t i v e
Component E!.

T h e r a t i o n a l e f o r t h c
a p p r o a c h t o c o n c u r r e n c y
p r e s e n t ed i 8 s t r a i q h t f o I wa rd .
W h i 1 e c o n t c x t
s w i t c h i n g c a n be c o n c l i d e r e d
r i s k y , i t h a s c e r t a i n p o t e n -
t i a l b e n e f i t s . I t a v o i d s the
necessity of excessive l o c k i n q
s i n c u t h e p r o g r a m m e r knows

e x p l i c i t

D.3.5.10
ORIGINAL PAGE Is
OF W R QUAlIlY

e x a c t l y when c o n t e x t s w i t c h e e
a r e t o be per formed. Another
b e n e f i t is r e a l i z e d when a
h i g h p r i o r i t y e v e n t occurs
t h a t m u s t be h a n d l e d r a p i d l y
a s i s t h e c a s e i n m a n y
r e a l - t i m e s y s t e m s , W h i l e
h a n d l i n g such a n e v e n t , i t may
be d e l e t e r i o u s t o r e l e a s e t h e
p r o c e s s o r . F i n a l l y , t h e
a v o i d a n c e o f u n n e c e s s a r y
c o n t e x t s w i t c h e s a n d / o r
c h e c k i n g Q e s u l t s i n g r e a t e r
e f f i c i e n c y .

A d m i t t e d l y , h o w e v e r , i t
is r e a s o n a b l e t o q u e s t i o n t h e
f e a s i b i l i t y and a d v a n t a g e s of
u s i n g Ada w i t h o u t i t s t a s k i n g
f e a t u r e s and o t h e r r e a l - t i m e
c o m p o n e n t s v e r s u s u s i n g a n y
o t h e r h i g h - l e v e l programming
l a n g u a g e . I t s h o u l d a l s o be
n o t e d t h a t , w i t h s o m e
r e - w o r k i n g o f t h e d e s i g n ,
t h e r e is n o t h i n g t o e x p l i c i t l y
p r e v e n t t h e use of t h e Ada
t a s k i n g moCel and rendezvous
c o n c e p t , p r o v i d e d t h a t t h e
n e c e s s a r y r u n t i m e s u p p o r t is
s u p p l i e d a t a n a c c e p t a b l e c o s t
i n m e m o r y o v e r h e a d a n d
e x e c u t i o n e f f i c i e n c y . T h i s is
t h e m o t i v a t i n g concept d r i v i n g
o u r c u r r e n t a n d f u t u r e
i n v e s t i g a t i o n s w i t h r e s p e c t t o
Ada r e a l - t i m e sys t ems and w i l l
be d i s c u s s e d i n t h e f o l l o w i n g
s ec t ion .

F u t u r e I n v e a t i -
g a t i o n q T h e r a t i o n a l e f o r an
a p p r o a c h s u c h a s t h e b t , r e
m a c h i n e o p t i o n is t h a t g i v e n
t h e p r e s e n t s t a t e of tacking
s u p p o r t i n an envi ronment t h a t
s u p p o r t s f u : l Ada t a s k i n g ,
e x c e p t i o n h a n d 1 i n g and o t h e r
f ioL f e a t u r e s , t h e r e s u l t a n t
program s i z e may be u n s u i t a b l y
l a r g e f o r a n embedded a p p l i -
c a t i o n . W h i l e t h e a p p l i c o -

t i o n s l e v e l s t r a t e g y and tire
b a r e m a c h i n e a p p r o a c h r e p r e -
s e n t two a v a i l a b l e o p t i o n s , a n
a d d i t i o n a l a l t e r n a t i v e e x i s t s
t h a t h o l d s some p r o m i s e f o r
t h e d e s i g n o f c o m p a c t ,
e f f i c i e n t r e a l - t i m e systerris
a n d is t h e f o c u s o f o u r
c u r r e n t and f u t u r e i n v e s t i -
g a t i v e work. T h i s c o n s i s t s o f
a m i g r a t i o n t o t h e HTS l a y c r
i n p u r s u i t of o p t i m i z a t i o n and
r i s k r e d u c t i o n a t t h i s l eve l
w h i l e m a i n t a i n i n g t h e c o m p l e t e
(or n e a r l y c o m p l e t e) f u n c t i o n -
a l i t y of t h e l a n g u a g e . T h e
f o c u s i s o n t a i l o r a b l e ,
c o n f i g u r a b l e r u n t i m e s u p p o r t
f o r t h e d e s i g n of e f f i c i e n t
r e a l - t i m e sys t ems i n Ada.

I t is h i g h l y l i k e l y tt
t h e f u l l f u n c t i o n a l i t y of t taL
t r a d i t i o n a l m o d e l o f a
p r i o r i t y d r i v e n e x e c u t i v e curl
be a c h i e v e d i n t h i s manner tJy
m i n i m i z i n g t h e r o l e of a
programmer s u p p l i e d execu t i v c
a n d r e l y i n g on t h e e f f i c i e n t
i m p l e m e n t a t i o n o f t h e A d a
t a s k i n g model a t t h e o p e r a t i n c :
o r r u n t i m e s y s t e m l e v e l .
W h i l e i t may s t i l l be neces-
s a r y t o p r o v i d e c u s t o m r z c d
r u n t i m e / e x e c u t i v e s u p p o r t ,
t h i s caii be p r o v i d e d p r i u n a r i l y
t h r o u g h t a i l o r i n g of e x i s t i n l j
S y s t e m 6 a t t h e RTS l e v e l t u
mee t s p e c i f i c p e r f o r m a n c c
r e q u i r c m e n t s t t l c l n

e x e r t i n g a d d i t i o n a l c o n t r o l \ ~ t
t h e a p p l i c a t i o n s l d y e r .

r a t h e r

Our c u r r e n t e f f o t t s c ~ ~ c
f o c u s e d f o r e m o s t on proof (I !
c o n c e p t - t h a t we can d e s l y n
a n d i m p l e m e n t f a s t , compac t ,
e f f i c i e n t , r e a l - t i m e sys t c~ l lu
i n Ada - w i t h a s e c o n c l a l) .
e m p h a s i s on t h e v a l i d a t i o n
i s e u e s . T h e s t e p s w e h a v e
i d e n t i f i e d as b e i n g ncccss i l ry

t o t h e success o f t h i s e f f o r t
i n c l u d e :

0 O b t a i n V a l i d e d Vendor

0 M a i n t a i n S t a b l e R T S

S u p p l i e d RTS

I n t e r f a c e

0 Modify I n t e r n a l s t o g a i n

0 A d d r e s s (Re) V a l i d a t i o n

R e q u i r e d Per formance

issues

CONCLUSION

A l t h o u g h s e v e r a l of t h e
issues t h a t f a c e d e v e l o p e r s of
r e a l - t i m e ECS a p p l i c a t i o n s i n
Ada a r e d e s i g n i s s u e s o r
p r i m a r i l y r e s o l v e d t h r o u g h
e d u c a t i o n , t r a i n i n g and good
p r o g r a m m i n g t e c h n i q u e , many
i s s u e s remain t h a t pose r i s k 0 t o t h e d e v e l o p m e n t o f
r e a l - t i m e s y s t e m s i n Ada.

We h a v e i d e n t i f i e d a
number of key r i s k a r e a s and
i s s u e s f o r r e a l - t i m e E C S
a p p l i c a t i o n s and have e x p l o r e d
t h e s e i s s u e s , and s o l u t i o n s ,
w i t h i n t h e c o n t e x t o f a
s p e c i f i c Ada l a n g u a g e a p p l i -
c a t i o n . W i t h r e s p e c t t o t h e
i s s u e s t h a t were s u c c e s s f u l l y
a d d r e s s e d w i t h i n t h e s cope of
t h i s c a s e s t u d y , t h e f o l l o w i n g
c o n c l u s i o n s can be made.

Many i s s u e s of c o n c e r n
e x i s t d u e t o t h e i m m a t u r i t y
a n d q u a l i t y o f Ada l a n g u a g e
i rnp 1 emen t a t i o n s and unce r t a i n -
t i e s r e g a r d i n g p e r f o r m a n c e .
The p e r f o r m a n c e o f t h e c o d e
g e n e r a t e d by e a r l y c o m p i l e r s
may be poor and may r e s u l t i n
p o o r s y s t e m per formance . How-
e v e r , a s Ada l anguage Systems
mature and c u r r e n t l y ~ a v a i l a b l e

0 - - .

0

0
e

p t i m i z i n g t e c h n o l o g y i s
m p l o y e d , l a r g e r u n t i m e
v e r h e a d w i t h r e s p e c t t o

m e m o r y u t i l i z a t i o n a n d
e x e c u t i o n s p e e d s h o u l d
c e r t a i n l y become l e s s o f a n
i s sue . T h i s i s i n f a c t t h e
c a s e w i t h some o f t h e Ada
l a n g u a g e s y s t e m s c u r r e n t l y
under development .

C u r r e n t i n v e s t i g a t i o n s
w i t h a v a r i e t y o f d i f f e r i n g
c o m p i l e r s y s t e m s and run t ime
env i ronmen t s f o r 1 6 and 32 b i t
embedded t a r g e t s have r e v e a l e d
t h a t k e r n e l r u n t i m e s y s t e m s
c u r r e n t l y e x i s t t h a t a p p e a r t o
b e p r o v i d i n g t h e m i n i m a l ,
c o n f i g u r a b l e s u p p o r t n e c e s s a r y
t o accommodate Ada l a n g u a g e
f e a t u r e s i n a t i m e l y a n d
ef f i c i e n t manner . S t a n d a r d -
i z e d k e r n e l run t ime s u p p o r t on
t h e o r d e r o f 2K p r o v i d e d b y
m i n i m a l s y s t e m s e r v i c e
i n t e r f a c e s i s c u r r e n t l y
a v a i l a b l e (e .9 . VRTX) and can
b e t a r g e t e d a n d u t i l i z e d
e f f i c i e n t l y by Ada c o m p i l e r
s y s t e m s f o r a v a r i e t y o f
embedded t a r g e t s .

P l o b l e m s remain w i t h t h e
n o n - s u p p o r t among many Ada
i m p l e m e n t a t i o n s o f c e r t a i n
r e a l - t i m e f e a t u r e s of t h e Ada
l a n g u a g e . A c a s e i n p o i n t is
t h e v e c t o r i n g of i n t e r r u p t s t o
t a s k e n t r i e s v i a t h e Ada
r e p r e s e n t a t i o n s p e c i f i c a t i o n .
T h i s c o n t i n u e s t o be a conce rn
t o t h e r e a l - t i m e a p p l i c a t i o n s
c o m m u n i t y a l t h o u g h i t i s
s o m e w h a t l o c a l i z e d t o t h e
ma i n f f a m e e n v i r o n m e n t .
A d d i t i o n a l problems a r e r o o t e d
i n t h e l anguage s p e c i f i c a t i o n
i t s e l f (M I L STD 1815A) w h i c h
f a i l s t o p r o v i d e c e r t a i n
f e a t u r e s d e s i r a b l e i n t y p i c a l
r e a l - t i m e systems.

u. 3.5.12

ORIGINAL PAGE fS
OF POOR QUMnV

8

While'alternatives exist,
this lack of certain explicit
l a n g u a g e p r i m i t i v e s poses
unique problems for many type8
of real-time applications.
S p e c i f i c a l l y , t h e lack of
explicit language pr imitives
t o a l l o w dynamic "discon-
nection" and "connection" to
i n t e r r u p t s w i t h o u t t h e
termination or creation of a
program u n i t (task) and the
inability to utilize dynamic
task prioritization are of
major concern to ECS devel-
opers. Furthermore, the lack
of precision in the specifi-
cation of exact delays as well
as the lack of alternatives or
a b i l i t y t o time-out during
initiated rendezvous' may be
an impediment to the develop-
ment of efficient, reliable
real-time systems in Ada.

T h e r e is a continuinq
need for a clear, c o n c i s e
d e s i q n m e t h o d o l o q y f o r
r e a l - t i m e e m b e d d e d A d a
applications that includes a
criteria for the identifi-
cation of concurrency and a
g r a p h i c means of depicting
concur rent relationships with
t i m i n g and synchronization
information at any given point
in the system. While helpful,
t h e hybrid method utilized
during this case study f a l l s
short o f f u l f i l l i n g such a
broad requirement.

We are currently contin-
uinq our real-time investi-
g a t i o n s t o e v a l u a t e t h e
effectiveness of Ada language
systems f o r real-time embedded
applications within realistic
host and target environments.
This work is being carried out
with a focus on the 1750A and
68000 compiler a n d runtime

e nv i r o nme n t 8 .
The focue of our in i t i a l

case etudy waa at the appli-
c a t i o n s l evel although o n
alternative was proposed f o r a
prohibitively restrictive Ada
e x e c u t i v e t h a t f u l f i l l e d CI

subset of the runtime r e s p o n -
s i b i l i t i e s t o support t h e
execution of concurrent ~ d a
programs. The current approach
calla for migration to the RTS
level to investigate optiml-
z a t i o n a n d t a i l o r i n g o f
e x i s t i n g s y s t e m s to a l l o \ r
e f f i c i e n t u s e of the A d a
t a s k i n g m o d e l and o t h e r
r e a l - t i m e features within
r e a l i s t i c target e n v i r o n -
ments. I t is in this manner
t h a t w e w i l l a t t e m p t t o
address and seek additional
information and solutions to
those issues left unanswered
i n o u r p r e l i m i n a r y A d a
r ea1 -t ime inves t i qa t i ons .

O p t i o n s f o r f u t u r e
e f f i c i e n c y improvement a n d
r isk-reduct ion include :

0 H i g h l y C o n f i g u r a b l c
Runtime Support S y s t e m s

0 S t a n d a r d i z e d R u n t 1 1 1 t
Suppoc t Systcnis

0 Support in Silicon

0 C u s t o m RTS C o n i y o n (* r l t :
Libraries

T h e a u t h o r 5 w i s t t t i l
acknowledqc thc support , l t l i i

a d v i c e o f t h e yeroonncl ;It
I n t e r m e t r i c s , I n c . i n t t l v
preparat i o n of t h i s m , \ n i i -

script .
D.3.5.13

Vol. 2 0 , No. 9 , S e p t -
ember 1 9 8 5 .

1.

2 .

3 .

4 .

5.

6.

7 .

8.

J u d g e , J . F . , " A d a
P r o g r e s s S a t i s f i e s DoD",
Defense E l e c t r o n i c s , J u n e
1 9 8 5 .

B o o c h , G r a d y , S o f t w a r e
F n q i n e e r i n a w i t h A d a ,
Ben jamin/Cummings, Menlo
Park, C a l i f o r n i a , 1 9 8 3 .

D a v i s , R., " F D A Program
C o n c l u s i o n s " , I n t e r -
m e t r i c s I n c . , Hunt ing ton
B e a c h , C a l i f o r n i a ,
A u g u s t , 1 9 8 5 .

L a i r d , James D . , " Imple-
m e n t a t i o n o f a n Ada
R e a l - T i m e E x e c u t i v e : A
D e t a i l e d A n a l y s i s " ,
I n t e r m e t r i c s I n c . ,
H u n t i n g t o n Beach, C a l i f -
o r n i a , March, 1 9 8 5 .

Gomaa , H., "A S o f t w a r e
D e s i g n M e t h o d f o r
R e a l - T i m e S y s t e m s " ,
C o m m u n i c a t i o n s o f t h e
A C M , V o l . 2 7 , N o . 9 ,
September 1 9 8 4 .

T e m t e , M a r k , " O b j e c t
O r i e n t e d D e s i g n a n d
B a l l i s t i c s S o f t w a r e " , ACM
A d a L e t t e r s , V o l . I V ,
No. 3 , Novembe r/Decembe r ,
1 9 8 4 .

U n i t e d S t a t e s Department
o f D e f e n s e , pe f e r e n c q
M a n u a l f o r t h e A d a
proqramminq L anquaqe M I &
S T D i e 1 5 A l Ada J o i n t
P r o q r a r n O f f i c e , March ,
1983.

B i n d i n s , C a r l , " C h e a p
Concur rency i n C " , ACM
S I C P I d A N N 0 T I C E S I

D . 3 . 5 . 1 4
ORIGINAL PAGE 1s
OF POOR QWln

...“-e---
(-!],) > ,

(Informal Presentation)

Dick Naedel, President
Intellimac

Rockville, Maryland

Real Time Ada in a MC68XXX System

This presentation will present recent results of running Ada
programs in a Motorola based embbedded computer system.

D.3.6.1

OBJECT-ORIENTED DEVELOPHENT

by

Donald G. Firesmith
Software Hethodologiet

Hagnavox Electronic Syeteme Company
Advanced Software Syetems Division

1313 Production Road
Fort Uayne. IN 46808

(2 1 9) 429-4327

1) WHY IS OBJECT-ORIENTED DEVELOPMENT (OOD) IMPORTANT?

O O D ie one of the extremely feu eoftuare development methode
actually deeigned for modern Ada (* I language. real-time.
embedded appllcatione.

O O D is a eigniflcant improvement over more traditional functional
decomposition and modeling methode in that OOD:

a) Better managee the eize. complexity. and concurrancy

b) Better addreeeee important eottuare engineering
of today’s syeteme.

princlplee euch as abetract data types. levele of
abstractionr and information hiding.

real i ty.

data end thue limiting the impact of requlremente changes.

c) Producee a better deelgn that more closely matchee

d) Producee more maintainable eoftuare by better localizing

e) Specifically exploite the pouer of Ada.

2) VHAT IS OOD?

OOD ie a eyetematic. etep-by-etep eoftuere development method that:

a) Hae an optimal domain of application -- the development of
b) Covere alle or a m a j o r portion. of the eoftuare life-cycle.
c) Supporte exteneive parallel development.
d) Henagee the complexity of large development efforte.
e) le supported by detailed etandarde and proceduree.
f) Requtree training and eupport to be effective.

modern Ada appllcatione (e.~.. real-time. embedded eoftuare).

O O D ie:

a)
b) Ada-oriented.

Obj ec t-or i ented.

(i t) Ada ie a regietered trademark of t h e U . S . Government (AJPO). a
D . 4 . 1 . 1

, , , , _ . _ . : . .
<

E N T I T Y - A T T R I B U T E R E L A T I O N S H I P
D a t a b a s e T e c h n o l o g y (1 9 6 0 ' s) -

c) Based upon modern aoftuaro engineering.
d) Recursive. globally top-down, hierarchical COHPOSITION

e) Revolutionary in approach.
f) A "grab and go" method.
gl Relatively eaey to learn.
h) Being aucceeefully used by several companlee.
i) Still evolving (Bee figure 1) .

method.

.
L E V E L S OF ADBSTRACTION
D t j k s t r a (1968)

ABSTRACT DATA TYPES
L (s k o v , G u t t o g , Show (1970's)

FORMAL TECHNIOUES
R o b t n s o n , L e o v l t t (19771

INFORMATION H I D I N G
P a r n a s (19721

r
NOUNS AND VERBS
A b b o t t (19811

Figure 1 : The evolution of OOD

D . 4 . 1 . 2

1

AFATDS EXPERIENCE
M o g n a v o x (1985)

OBJECT-ORIENTED DEVELOPMENT
F t r e s m t t h , e t . a l . (1985)

OOD ia NOT:

A functional, hierarchical DECOHPOSlTlOW method.
A modeling method.
Easily mated with much methode.
Effective without adequate training.
Conetrained to the claaeical muaterfall" lifecycle.
Consietent with DOD-STD-2167 and related pre-Ada etandarde.
Standardized acroer the indumtry.
Yet adequately eupported by commercially available eoftWare
tools.

3) OOD IS OBJECT-ORIENTED.

An OBJECT ie an entity that:

a) Hae a value (e.g. . data) or state (e.g. Ada taek).
b) Suffere and/or caueee operatione.

OOD producee:

a) Ada objecte that correepond to objecte in the real world.
b) Ada typee (i.e.. object templatee).
c) Operatione that operate on theme objecte.

OOD emphaeizee the implementation of objecte in terme of
ABSTRACT DATA TYPES. OOD groupe. in the eame Ada package:

a) A mingle type and
b) A l l operatione that operate upon euch objecte.

OOD producee a eubetantially different eoftuare architecture
than traditional functional decompoeition method8 euch am
Structured Deeign which generate untts. each of which implements
eome FUNCTION of the requirement8 epecification.

4) OOD IS ADA-ORIENTED.

Ada ie an object-oriented high-level language.

Packagee. which are the main building blocke of properly designed
Ada eoftuare. are ale0 the main building blockm produced by OOD.

The physical design produced by OOD ie top-down in terme of Ada:

a) Neeting and
b) Context (i.e.. the Ada "uith" etatement).

OOD eeparately develope Ada epecificatione and bodies.

O O D * e low-level teeting naturally accounte for Ada compilation
order conetra 1 nte.

D . 4 . 1 . 3

OOD Diaqrame clearly identify the vmrious Ada programming iinite.

Ad8 PDL ir an intogral part o f OOD'r dorign 8nd coding rtope-

The Object8 produced by OOD aro implemented in Ada ae:

a) Constants and variables
b) Abetract data typor
0) T a s k r

The operatione producmd by OOD mro implemented i r i Ada primarily

a) Subprograms
b) Taek entries

5) OOD IS BASED UPON HODERN SOFTVARE ENGINEERING.

OOD specifically addresses each of the following eoftuare
engineering principlee or concepts:

a) ABSTRACT DATA TYPES. i) HODULAR ITY.
b) ABSTRACTION LEVELS. j) Organizational Independence.
c) Coheeion. k) Readabi 1 i ty.
d) Concurrency. 1) Reusability.
e) Coupling. m) Structuro.
f 1 INFORHATION HIDING. n) Teatability
g) Localization. 0) Verifiability.
h) HAINTAINABILITY. 0

6) O O D IS RECURSIVE, GLOBALLY TOP-DOVN, HIERARCHIAL COHPOSITION METHOD.

Traditional software development methods are reetricted to the
claeeic wuaterfall* life-cycle (eee Figure 2) in which:

a) The eoftuare requiremente are analyzed firet.
b) The preliminary deeign ie developed eecond.
c) The detailed deeign followe.
d) And eo on.

csc I
lES l I f f i 1

Figure 2: The claeeic "uaterfall" life-cycle

D.4.1.4

Bocauoe tho eoftw8ro 1. dmvoloped in 8 top-down manner only within
the boundrier of 08oh lif~-cycIm phmre, theme aethode are at beet
only locally top-down.

OOD 1. a rocurrlve~ globrlly top-doun. hierarchial compoeition
method. Itr roftumre lifo-cyclm (om. Figure 3) diftors eignificantlY
from the cl8eeio “uaterfalla life-cycle becauee rt le baeed upon
reCUr0iOn and tWO concepte unique to OOD: tha Booth and SubbOOCh.

A BOOCH is t h e collection of a11 eottuare reeulting from the
recursive application of O O D to o mpecific met of coherent
eottuare requiresente -- roquirernnte that rpecify a mingle
well-defined problem.

A SUBBOOCH ie a emall. onnagable eubset of a booch that ie
identilied and developed during a eingle recureion of OOD.
See Figure 4.

Note that theme two concepte have no obvioue natural relationehip to
the DoD hierarchical decompoeition entitiee CSCI. TLCSC. and LLCSC.

Beginning with the higheet abetraction level and progreeeing
steadily dounuarde in terme of nesting and *uithingw. the booch
le deeignedr coded. and tested in incremente of a eubbooch. Thug.
the eoftwere groue top-down. eubbooch by eubbooch. via the
recureive application of ODD until the entire softuare tree
ie completed.

Locally. however. OOD employe the appropriate technique
(top-down or bottom-up) depending upon the epecific requirement8
of each individual development activity.

This alloue very significant parallel development baoed upon the
“Deeign a little. code a little. teat a little“ concept.

7) AESPONS I B I L I T I ES.

The follouing pereonnel have OOD reeponeiblitiee (eee Figure 5) :

a) Hanagement
b) Softuare Development Teams. each coneistino of a:

- Designer
- Programmer
- Teeter

c) Hetrice Collectore
d) Softuare Puality Evaluation
e) Softuare Syetem Engineering

8) SUBBOOCH DEVELOPHENT

The eubbooche that compriee each booch are recureively developed
in a globally top-down fashion. The development of each eubbooch
coneiete of the following three EUbph86ee:

D.4.1.5

0

0B.ECT- W T W A R E SYSTEM
OAIENTED
DEVELOPrENT AN0 TEST AND TEST

INTEGRATION INTEiFAlIm I BUILD L 1 BUILD L 1 BUILD L

Figure 3: Tho OOD eoftuare life-cycle

D . 4 . 1 . 6

I I

I I
I I

I I
I I

I

TERTIARY SUBBOOCH
RESULTING FROM
THE USE OF
RECURSION

WHEREI 0 REPREKNTS A SUBPWXRAM A N 0 REPRESENTS A MPENDENCY I
REPRESENTS A PACKAGE

Figure 4: Sample Booch structure

D . 4 . 1 . 7

I H I Softwmrm I
Objmot-Orlmntmd Dmvmlopmmnt Proammm I G I Dmv. Tmmm I I s

Step I Tit 10 I T l D l P l T l C l E
= = = = = = = = = = ~ - = = = - - = - ~ = - = - = - - - = - = - - -

- - - - - - - - g - o ~ ~ g ~ g ~ ~ ~ g ~ ~ ~ ~ ~ o ~ g ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ n I----------- I H I Q

1 I INITIATION OF BOOCH DEVELOPXENT 1 1 1 I l l 1 4

2 I SUBBOOCH DEVELOPHENT I---------------------"

2 - 1 I SUBBOOCH REQUIREHENTS SUBPHASE I-----------------------
2.1.1 I Inltimtlon of Subboooh Dmvmlopmmnt 1 1 1 I 1 1 1 4
2.1.2 I Inltimtlon of tho SDF 1 3 1 1 1 1 I 1 4
2.1.3 I Problmm Statmmont 1 3 1 1 1 2 1 2 1 1 4
2.1.4 I Rrpuirmmsntm Analymim 1 3 1 1 1 2 1 2 1 1 4
2.1.5 I Subbooch Roquirmmmntm lnmpmction 1 1 1 2 1 2 1 2 1 1 4

2.2 I SUBBOOCH DESIGN SUBPHASE I-----------------------
2.2.1 I Loglcml Dmmign 1 3 1 1 3 2 1 2 1 1 4
2.2.2 t Object Anmlymim 1 3 : 1 1 2 1 2 1 1 4
2.2.3 1 Opmrmtion An8lyrir 1 3 1 1 1 2 1 2 1 1 4
2.2.4 I Unit Id., 0rg.r and Dependonciom 1 3 1 1 1 2 1 2 1 1 4
2.2.5 1 Subboooh Prmliminmry Deoign Inmpmction I 3 I 2 1 1 I 1 I 1 4
2.2.6 I Dmoign Analymim 1 3 1 1 1 2 1 2 1 I 4
2.2.7 1 Coding of Unit Speoificmtione 1 3 1 1 1 2 1 2 1 1 4
2 .2 .8 I Subbooch Dmt8iled Dmmign Inmpmction 1 3 1 2 1 1 1 2 1 1 1 4

2.3.1 I Coding of Unit Bodire 1 3 1 3 1 1 1 2 1 1 4
2.3.2 1 Subbooch Tmrt Plan 1 3 1 2 1 2 1 1 1 1 4
2.3 .3 I Subbooch Tmmt Software 1 3 1 2 1 2 1 1 1 1 4
2.3.4 I Subbooch Tmmt Procrduras 1 3 3 2 3 2 1 1 : : 4
2.3.5 : Subbuoch Code Inrpection 1 3 1 1 1 2 : 2 : 1 : 4
2.3.6 1 Initial Subbooch Teeting 1 3 1 2 1 2 1 1 1 1 4

3 1 BOOCH INTEGRATION AND TESTING I-----------------------

3.1 I BOOCH INTEGRATION 1 3 1 I I 1 1 : 4
3.2 I BOOCH FUNCTIONAL TESTING 1 3 1 I 1 1 1 1 4
3 .3 1 BOOCH DELIVERABLE DOCUHENTATION 1 2 1 1 1 1 1 1 : 1 4
3.4 1 BOOCH REVIEV 1 1 : 2 1 2 : 2 1 1 : 1

---------------o-------g-----o------g-----------------------------------

- - _ - - - o - - _ o -

.

.
@ 2 .3 1 SUBBOOCH CODE AND TEST SUBPHASE I-----------------------

---.---------------------------
-

..
HGHT - Hanagement 1 - Primmrv or major rmmponolbility

D = Deeigner(e) 2 = SrOond8ry rrrponmibility
P = Programmer(e) 3 m tlanageriml reeponeibility
T = Teeter(e) 4 = Indmpmndmnt mudit responeibility

NC = Hetrice Collector(0)
SPE = Software Puelity Evaluation

FIGURE 5: OOD Reeponeibilitiee

D.4.1.8

‘ m
a) Subboooh Rmquirmmmntm.
b) Subbooah Dmmigtz.
a) Subbooah Cod. and Tmmt.

Thm SUBBOOCH REOUIREHENTS SUBPHASE h8m tho following rtope:

INITIATION OF SUBBOOCH DEVELOPHENT - Tho Hmnager initimtoe
mubboooh dmvolopmmnt by idmntifying the mombere of the
8eSOt~iated Softw8rm Devolopment Toam and t8mking them to
meet an 8mrigned oahmdulm 0 2 mubbooch milmstonee.

INITIATION OF SOFTWARE DEVELOPHENT FILE (SDF) - The Deeigner
initfatom thm aeoooiatmd SDF by obtmining an ompty SDF
binder 8nd inmorting tho initial Soitw8re Engineering Form.
(S E F S) that make up the covmrp8ges.

PROBLER STATEHENT - Tho Softuoro Dovolopmont Te8m jointly
atate in a eingle eentrnce the problam to be eolved during
the current recureion.

REQUIRERENTS ANALYSIS - The Softuare Development Team jointly
col lect. analyze. clari iy. organize. and identify the eubbooch
requi rrmente.

SUBBOOCH REQUlRE?fENTS INSPECTION - The Deeigner prepares the
SDF f o r inepoction. Tho Hanager echeduleo the apreocioted
meeting. The Hanager. the Programmer* and the Teeter perform
the inepection. The Software Development Team takee any
8ppropriate corrective action.

The SUBBOOCH DESIGN SUBPHASE has the following mtepe:

LOGICAL DESIGN - The Software Development Team (under the
leaderehip of the Deeigner) devralope in a eingle paragraph
a logical design that properly eolvoe the problmm of the
current recureion and identifiee the relevant object6 and
operatione.

OBJECT ANALYSIS - The Software Development Team (under the
leadarehip of the Deetgner) anrlyzee a11 relevant ObjeCte
in the logical deeign perrgrrph. determinee and documente
their relevancy. and providee the relevant objecte uith
valid Ada identifiere- brief deecriptione, and a liet ot
aeeociated ottributee.

OPERATION ANALYSIS - The Software Development Team (under the
leaderehip of the Doeigner) 8nmlyzeo all relevant operatione
in the logical deeign paragraph. determines and documente
their relevancy* and providee the rrlevent operatione uith
valid Ada identifiers. brief dercriptiono. and a liet of
aeeociated at t ri butee.

HODULE IDENTIFICATION. ORGANIZATION. AND DEPENDENCIES - The
Software Development Team (under the leaderehip of the
Deeigner) organizee all relevant objecte and operatione

D . 4 . 1 . 9

by typm8r idontifimm thm non-nmmtmd unitm for maoh muoh
Or98niz8tionr nmmtm thm orgmniamd objmctm and OpmratiOnm
within thmro unitr. 8nd dmtmrminom tho vimiblo dmpmndmnoimo
bmtuoen thmmo unitm.

SUBBOOCH PRELIHINARY DESIGN INSPECTION - Thm Dmmignmr prmparmm
the SDF for inmpmotion. Thm Progrmmmmr and Tmrtmr pmrform
thm Inmpmotion. Thm Softuarm Dmvmlopmmnt Imam takmm m y
approprimtm oorrmotivm action.

DESIGN ANALYSIS - Tho Softuarm Dmvmlopment T m 8 m (undmr thm
lmadmrmhip of thm Dmsignmr) analy~oe tho dmmignr idmntifiom
the typm of thm nemtmd unitm. oommon moftuarm* and nertmd
unite requiring rmureion. mto.

CODING OF UNIT SPECIFICATIONS - The Softwaro Development Te8m
tundor tho 1madarsl.ip of the Demignor) implmmmntm and
compiler. in bottom-up manner in t e r m m of unit dmpondenciomt
the Ada epeoiticatione of all unite. Thim includmm the
development of epecification hmadere. PDL. commantm. and
code from ekoleton unit epooificatione.

SUBBOOCH DETAILED DESIGN INSPECTiON - The Derigner prepmrem
the SDF for inepmction. The tlotriar Collootor colleotm.
eummarizee. and reportm the eubbooch design motrice.
The Programmer end Teeter perform thm Inmpmction. Thm
Softuere Development Team takes any rppropri8tm oorrrctivm
action.

The SUBBOOCH CODE AND TEST SUBPHASE ham the following stepe:

CODING OF UNIT BODIES - The Software Development Team (under
the leaderehip of the Programmer) implement. and compilom*
in a top-down manner in terme of unit dependenciem. thm
Ada bodiem of all unite to be implementod during thm currmnt
build. Thio tncludee the development of body hemderm~ PDL.
cornmente. and code from ekeleton unit bodiee ueing the
technique ot etep-uiee retinement.

SUBBOOCH TEST PLAN - The Software Development Team (under
the leaderehip o f the Teeter) develope the teet plan by
determining. creating file0 of. and documenting the tset
input and expected teet output date required f o r all
aubbooch teeting end documenting the allocetion of theme
teat camem to specific eubbooch teeto.

SUBBOOCH TEST SOFTVARE - The Software Development Team (under
the leadership of the Teeter) demignm. implemrnts. rnd
cornpilee all teet eOftWare program8 required f o r subbooch
teeting echeduled for the, current build.

S I J B B O O C H TEST PROCEDURES - The Softuare Development Team (under
the leaderehip of the Teeter) develope the detailed stmp-by-
etep proceduree f o r performing 011 eubboooh tmmtr moheduled
Zor the current bui Id.

D.4.1.10

SUBBOOCH CODE INSPECTION - Tho Progrmmmer proparen tho SDF for
inrpootion. Tho Hotrior Colloator oollootml mummarizom~
mnd rmportr tho rubboooh oodo motriam. Tho Softuaro
Dovmlopmont Trmm porform tho inmpootion. Thm Softuare
Devolopmont Tomm tmkor mny approprieto corrootive action.

INITIAL SUBBOOCH TESTING - The Softuarm Development Team
(undor tho lomder~hip of tho To~tor) perform and document
tho rorultr of a11 initial rubboooh torte.

9) PRACTICAL EXPERIENCE.

The uee of O O D at Hognavox on the AFATDS Project (over 50K
linea of Ada code eo f e r) hee rmsultad in the follouinQ leoeone
1 earned :

Avoid overe:mcrfying the requirementfa uith cexplicit or
implicit deeign information of a functional decompoeltion
nature.

I f e functional decompoeition method ie ueed to produce the
top-level deeign. It uill be incompatible uith the deelgn
produced by O O D at the lower-levele and numeroum interface
problem6 wi 1 1 roeul t.

Replacing the previoue functional decompoeition mindeet isa
difficult. primarily among the more experienced deeignere.

The concept of recureion re fairly difficult to meeter.

OOD training and eupport in t1.e method need.e to continue
beyond the c 1 aeeroom.

000 needs to be further refined. primarily in the area of
object-oriented requirement@ analyeie.

Ada-oriented teet traininn le as necemsary ae training
in Ada-oriented deeign mntl programming.

O O D improves deeigne due to:

- Proper abetraction levele.
- Proper information hiding.
- High modularity.
- Improved interfacee.
- Good eupport f o r etrong typing.
- Good correepondonce to the, real uorld.

OOD improvee productivity due to:

- Fnhanced parnllel development.
- Reliee of code.
- Eaey coding from deeigri intormation.
- Eoey modification Of deeion and code.

D . 4 . 1. 1 1

