@ https://ntrs.nasa.gov/search.jsp?R=19890006916 2020-03-20T03:32:13+00:00Z

7

) N4
S - e - -~ Jo703 %
N89-16287 ., p

” An Ada Prograasing Support Enviromment

Al Tyrrill
A. David Chan

North American Aircraft Operations
. Rockwell International
. Lakewood, California

ABSTRACT

This paper describes the toolset of an Ada Programming
Support Enviromment (APSE) being developed at North American
Aircraft Operations (NAAO) of Rockwell International. The
APSE 1is resident on three different hosts and must support
develomment for the hosts and for embedded targets. Tools
and developed software must be freely portable between the
hosts,

The toolset includes the usual editors, compilers, 1linkers,
debuggers, configuration managers and documentation tools.
Generally, these are being supplied by the host computer

‘ vendors, Other tools, for example, pretty printer, cross
referencer, compilation order tool and management tools have
been obtained fram public-domain sources, are implemented in
Ada and are being ported to our hosts.

Several tools being implemented in-house are of interest,
these include an Ada Design Language processor based on
compilable Ada. A Standalone Test Enviromment Generator
facilitates test tool construction and partially automates
unit level testing. A Code Auditor/Static Analyser permits
Ada programs to be evaluated against measures of quality.
An Ada Comment Box Generator partially automates generation
of header comment boxes.

1 INTRODUCTION

Rockwell International North American Alrcraft Operations (NAAO) is
constructing a facility for the develomment of Ada software, The facility will
support an avionics integration laboratory where both simulation and embedded
avionicas software are to be developed. Ada software development will occur on

three different hosts.

1. A supermini widely used in the aerospace and scientific conmunities.

2. Another supermini noted for high "number crunching"” horsepower. This
‘ processor model will support the simulations and simulation development.

- B2.2-1 =~

3. A proceasor designed apecifically for Ada software development, on which
all system software has been implemented in Ada.

Each of the develomment hosts will interface to a user maintenance console that
supports aseveral of the embedded avionics processors. The maintenance console
can pass data between the target processor memories and the hosts and control
execution of the targets.

The avionics processors are connected to each other, various actual aircraft
hardware and the simulation host by means of several high speed data busses.
Sof tware in the avionics processors can be tested with actual hardware online
or with hardware simulated by models in the simulation host.

The hosts are to be networked with an Ethernet line so that software,
associated products and development tools can be easily transported.

Rockwell 1s constructing an Ada Programming Support Enviromment (APSE) for the
develomment facility. The APSE consists of a set of tools whose objective 1is
to support the production of a well-organized, structured and maintainable
software product, in a cost effective manner. The APSE 4itself must be
constructed in a cost effective manner,

The cost requirement on the APSE dictates that available tools be used as much
as possible, This reduces the potential level of tool integration, as tools
implemented in isolation from each other generally will not share common
interfaces. The interface that is shared by most of the tools is the Ada
language, however, and its rigid standardization makes assembly of a toolset
from disparate sources feasible.

2 APSE COMPONENTS

This section summarizes the components of the NAAO APSE oand indicates the
sources from which the tools will be obtained. Section 3.0, Locally Developed
APSE Components, describes in more detail some cf the components that are to be
implemented at NAAO.

2.1 Development Tpols

These tools support the design and coding phases of the software develomment
process, They are an Ada Design Language, text and program editors, compilers
and assemblers, a library of primitives and common packages, and link editors.

2.1.1 Ada Design Language

The objective of the NAAO Ada Design Language (DL) is to provide a means of
expression for both control flow and data structure and relationships. The Ada
language 1tself provides an excellent means for expressing data structure, but
some other means of describing control flow is necessary prior to actually

committing a design to Ada code.

- B2.2-2 -

o~

Accordingly, the Ada DL uses compilable Ada to represent data structure and a
traditional Program Design Language (PDL) to represent control flow. The PDL
statements are embedded as comments within the Ada specifications so that the
entire Ada DL description is compilable. Several tools are available to
support construction of Ada DL designs. These include a "TBD" package, the Ada
DL pr:prooeasor, the prooessor for the traditional PDL and an Ada body part
generator,

The Ada DL is described, along with its use in object oriented design, in more
detail in section 3.1, Ada Design Language.

2.1.2 Editipg Tools

Several tools support the editing of Ada DL, Ada code and documentation files.

2.1.2.1 Text Editors - Text editors are provided for editing of documentation
and other non-Ada files. These were obtained with the system software on each
of the hosts,

2.1.2.2 Ada Syntax Sensitive Editors - A syntax sensitive Editor is one that
contains the syntax equations of the target language in 1its database.
Templates are expanded to their syntactic substructure. The means exists to
traverse between templates and delete templates for optional constructs.

Two of the three hosts have Ada syntax sensitive editors available fram the
system vendor. In one of these, initial entry of a file begins with the
template (compilation], which by repeated expansion and replacement of
templates with text, is converted to the desired code. The templates have the
same names as the syntax equations fram the Ada LRM. When adding to an
existing file, it is necessary to enter the starting template e.g.
[later_declarative_item], (statement] manually (and one must know what they are
called).

On the Ada based host, a construct is prompted by entering an initial keyword,
e.g. "procedure", "if", and requesting the editor format the file. It
identifies the construct and expands it into its components.

2.1.2.3 Source Formatter (Pretty Printer) - The source formatter reformats
existing Ada source into a consistent form. The level of statement indentation

is made proportional to the nesting depth. Spaces and line breaks are added to
improve readability. Declarations and line comments are aligned where
appropriate. The source formatter was obtained from a public domain source, is
written in Ada and will be modified to improve functionality. On the Ada based
host, the source formatter 1s integral with the editor.

2.1.3 Compllers and Assemblers

Program development will occur in different enviromments in the development
facility. Native mode code will be generated for initial program testing and
for tool implementation. Code will be generated for the simulation host on
that host. Ada written for the simulation host must interface with existing
FORTRAN code. Ada code will be written for the embedded processors. This code

must interface with existing JOVIAL code.

- B2.2-3 -~

- e

2.1.3.1 Ada Native Mode Compilers - Each of the development hosts has a
validated Ada ocompiler available from the system vendor. Each has an

associated library manager for creating and maintaining Ada program libraries.

2.1.3.2 Ada Embedded Processor Croas Compiler - Cross compilers for the
embedded processor are available or will be available for all our development

hosts, although none have been validated. For two of the hosts, the system
vendor will be supplying the cross compiler., for the other, one of several
possible third party vendors will be selected.

The different vendors products are currently being evaluated, The selected
product will hold a validation certificate or otherwise have been demonstrated
to correctly compile those features required by the avionics software.

2.1.3.3 JOVIAL Avionics Processor Cross Compiler - This compiler will
translate JOVIAL to the object code of the avionics processor. The object file
format will be compatible with that generated by the Ada compilers for the
avionics processors. It will be possible for JOVIAL to call Ada and vice versa
without the use of interface routines when the parameter types have analogues
in both 1languages. The JOVIAL cross compiler will be obtained from the Ada
cross compiler vendor.

2.1.3.4 Avionics Processor (ross Assembler - These assemblers will run on the

hosts and generate avionics processor object code. The object file formats
will be compatible with that generated by the Ada compilers for the avionics
processors. The Ada cross compiler vendors each have compatble cross
assemblers available.

2.1.3.5 Simulation Host FORTRAN Compiler - The native mode FORTRAN compiler on
the simulation host will generate object files compatible with those of that

host's Ada compiler, Such a compiler is available from the system vendor.

2.1.4 Library of Primitives and Common Packages

The library of primitives and common packages will be a collection of commonly
used functions in the areas of navigation, weapons delivery and math functions.
Initially, a set of primitives will be identified for inclusion in the library
and implemented when they are first needed. Additional primitives will be
developed as the need for them is identified.

Some type of ‘'browser™ utility that will enable the potential wuser to
intelligently search the library is being planned.

2.1.5 Link Editors

The linkers in the APSE shall have the means to determine that all modules
dependent on a module that has been recompiled have also been recompiled, or
that otherwise the full set of object modules involved in the 1link edit is in a

consistent state.

2.1.5.1 Host Link Editors - These linkers will link object files produced by
the hosts' native mode Ada compilers to produce an image executable on the
host. Each host system vendor has augmented its link editor to provide the

- B2.2-4 -

required consistency checking.

2.1.5.2 Avionics UProcessor Lross Linker - These linkers will generate
executable avionics processor images from object files produced by the Ada
cross compiler, the JOVIAL cross compiler and the avionics processor cross
assembler. The avionics processor images can be executed interpretively by
aimulators on the host or downloaded to an avionics processor.

2.2 Testing Tools

The Ada environments on the hosts will be integrated with the symbolic
debuggers provided with the hosts' operating systems. Symbolic debuggers will
be procured for the avionics processors which will support standard debugging
operations without incurring additional overhead in the target. A tool will
exist to create an enviromment in which to test Ada compilation wunits in a
standalone mode.

A data bus monitor will support the capture and display of selected bus data
and the simulation of bus transmissions to facilitate integration testing.

The development host will have the simulation and support tools necessary to
execute the avionics software in an integrated mode with the actual or
simulated aircraft hardware or in a software enviromment only. This includes a
host simulator designed to execute flight software in native code supported by
envirorment programs and I/0 simulated in software. The hosts will have target
processor simulation including input/output and interrupt simulation.

2.2.1 Host Symbolic Debuggers

These tools, used for debugging native mode programs on the hosts, supports
examination and deposit, setting of breakpoints and watchpoints, stepwise
execution and trace, all referenced to Ada source statements or declarations.
The debuggers are part of the host system vendora' software support packages,
but each has been modified to support tasking and other unique features of the
Ada language.

2.2.2 Avionics Processor Interface and Debugger

These tools supports downline load of executable images to the avionics
processors, execution control of the avionics processors and tranamittal of
status information back to the hosts. Symbolic debugging is supported from the
hosts. Symbol table information is maintained in the hosts and not downloaded
to the avionics processors. Target debugger support is provided by all the Ada
cross compiler vendors, but additional interfacing to support NAAO's particular
test enviromment will be required.

2.2.3 Standalone Test Environment Generator

This tool determines the inputs, outputs and external entry points of a set of
Ada programs under test. The tool prompts the user for inputs, executes one of
the specified programs and displays the outputs. Pre-canned functions can be
specified for the inputs and the program executed repeatedly with variation of
an independent variable, such as time. Outputs can be plotted against 1inputs

- B2.2-5 -

or the independent variable,

The Standalone Test Environment Generator will be implemented in-house at NAAO,
aud is described in more detail in a subsequent section,

2.2.4 Data Bus Monitor

The bus monitor will interface with the various data busses in the avionics
integration laboratory and perform the following functions. The bus monitor
will be implemented by augmenting existing capabilities,

Generate real time displays of selected bus data.
Generate profiles of bus data by message type and subtype.
Generate simulated bus data for test stimulation.

2.2.5 Host Avionics Processor Simulator

Simulators for the avionics processors will be available to support the testing
of avionics processor images that would otherwise require the actual hardware.
A conventional simulator will interpret executable images down to the
instruction field level. A faster simulator in which the Ada code is compiled
into procedure calls on the host that duplicate the computations of the
avionics processors without actually interpreting at the bit level is also
being acquired. Both of these are available from the Ada crosa compiler
vendors.

A simulator is being implemented in Ada inhouse that will be capable of
concurrently simulating several avionics processors, with interprocessor
communications implemented as transfers through common memory buffers.

2.2.6 Documentation Support Tools

The documentation generators will construct data dictionaries from sets of Ada
programs, They will construct trees of calls and context references (WITH's).
A header comment box generator will summarize that information in the program
headers that can be extracted automatically from the program source. These
processors will accept a list of files, or scan a link editor command file and
process the sources for all the input modules for the linking of the executable
image. A report formatter/word processor will be available for general

document preparation.

2.2.6.1 Ada Data Dictiopnary Geperator - This tool scans a set of Ada program
source files and records the full context of declarations, recognizing Ada

scope and visibility rules. It generates a data dictionary with locations of
declarations, set references and use references in a format compatible with

required documentation. This will be implemented by augmenting public domain
software, implemented in Ada.

2.2.6.2 Ada Called-by/Withed-by Generator - This utility does a scan of a set

of Ada source programs. For subprograms it constructs trees of calls and
called-by references. For packages, it oonstructs trees of context clause
(WITH statement) references. The generated reports are in a format compatible
with required documentation. This tool will also be obtained by augmenting an

- B2.2-6 ~

existing public domain program,

2,2.6.3 Header Comment Box Geperator - This tool scans the source of an Ada
compilation unit for that information which is required to be in the header
comment box, such as inputs and outputs, subprograms called and called-by,
imported data structures and routines, and other resources used. It creates a
new header comment box or updates the existing one. This tool 1s being
implemented in-house in Ada and is described in more detail in a subsequent
section,

2.2.6.4 Report Formatter - These utilities process a file of text with
interspersed formatting commands. They perform word processing functions such
as right margin alignment, indentation, assignment of heading numbers, table of
contents generation and others. Several of these are already installed in our
facility, from various sources. They are the most widely used support tools in
the laboratory.

2.2.7 Configuration Management Support

These tools support the adherence to software standards and the controlled
maintenance of source and documentation files,

2.2.7.1 Code Auditor/Static Apalyser - The code auvditor scans the source for
an Ada compilation unit and generates a report of areas of non-conformance to
software standards, as specified in the Ada Style Guide that was developed
Jointly by several Rockwell divisions.

2.2.7.2 Lonfiguration Control System - The configuration control system wisl
create and maintain libraries of controlled files, which can be Ada DL scurce.,

program source, documentation cr any other textual material. It will track
changes by associating them with retrieval and replacement of library elements.
It will monitor access and be able to generate a historical record of the
accesses to each element in a library. Each host has such software available
from the system vendor.

3 LOCALLY DEVELOPED APSE COMPONENTES

The following sections describe in more detall some of the tools that are being
inplemented in-house at NAAO. Of particular interest are the following.

1. Ada Design Language processor, that will permit embedding a traditional PIL
within compilable Ada specifications.

2. Standalone Test Environment Geuerator, that will determine the inputs and
outputs of a program under tcst, then generate input values, execute the
program and capture and display the outputs.

3. Code Auditor/Static Analyser, which will permit Ada programs to be checked
for conformity with software standards, and be evaluated against various
measures of quality.

- BT - GRIGINAL PACE IS
OF POOR QUALITY

ORI

4, Ada Header Comment Box Generator, which will automate collection of some of
the information required to be in the header comment box of program units.

3.1 Ada Design Language

Traditional PDLs, like those widely used in the computing community over the
past decade are good at describing control flow, but poor at describing
structure, hierarchy, data relationships and interfaces.

Ada specifications are good at describing these things, but do not describe
control flow. Use of compilable Ada to describe control flow is awkward, at
best, because it does not permit specification of detail to be deferred.

The idea of using compilable Ada as a design language 1s gaining acceptance
because it specifies at design time what the software product will loock like.
I.e. the Ada specs are a form of "contract™ for the software that is to be
implemented.

Traditional PDLs are coming to be regarded as a decade old technology that 1is
little more than an improvement on flowcharts.

The NAAO Ada Design Language combines compilable Ada with Reconfigurable Design
Language (RDL), a traditional PDL with an Ada-like syntax, to obtain the
benefits of each. RDL was implemented at another Rockwell division in Ada and
can be installed on any host with a validated Ada compiler. Aside from the
syntax change to make it more Ada-like, 1t 1is similar in appearance and
capabllities to a commercially available PDL widely used in the computing
community for over a decade.

3.1.1 Use of the Ada DL
Use of this design language consists of the following steps.

1. Description of the structure, operation and interfaces of a design wusing
Ada specifications.

2. Construction of the Ada bodies, starting with the specifications, then with
further development.

3, Description of the control flow within units, using RDL statements in
specially marked comments.

3.1.1.1 Development of Ada Specifications - The design language user first
identifies the objects to be implemented. These suggest the top level package
structure of the design. Then, the actions to be performed on these objects
are identified, these suggest the procedures and functions these packages will

support,

Externally visible data structures are identified, then Ada types and objects
are defined to represent these, Parallel event streams suggest creation of
tasks to support them. Textual comments are added to further explain the
purpose of the constructs so defined.

- B2.2-8 -

3.1.1.2 Develomment of Ada Bodies - Then, using an Ada body part builder,body
parts for the specifications are created, Data structures not to be visible

externally are defined within the bodies of the packages and subprograms. Use
of the available “TBD" package permits the user to defer assigning specific
types to Ada objeots,

3.1.1.3 Davelopment of AHDL Descriptions - The control flow within the
subprogram bodies is now designed and specified with RDL procedures. The RDL

statements are enclosed in specially marked Ada comments to keep the entire
design description compilable., Reference to data defined in the pure Ada part
can be made by the RDL. Use of RDL permits the existing RDL rrocessor to be
used to generate data dictionaries and calling trees,

Large designs may require several iterations of this process before the design
is oomplete., The completed design consists of Ada specs with embedded textual
conments and Ada bodies with embedded RDL procedures and comments.

3.1.2 Ada Design Lapguage Utilities

Several tools and utilities are available to assist in the generation of Ada DL
desariptions,

3.1.2.1 IBD Package - This TBD package, which 1is public domain software,
provides types, objects, functions and a procedure which can be referenced in a
design when the actual type of the object or subprogram parameter is not known.
TBD values for the quantities in package SYSTEM, such as maximum integer,
smallest fixed point delta, etc. are also defined. As a design is evolved, the
TBD quantities are replaced with the actual objects., All names in the package
contain the substring "TBD" so they can be located with an editor search.

3.1.2.2 Body Part Generator - This tool generates a body part from an Ada
specification. It 1is available as a primitive on the Ada based develomment
host, and also from a public domain source for any processor with a validated

Ada compiler,.

3.1.2.3 Ada DL Preprocessor - This wutility, which will b implemented
in-house, scans the Ada Design Language descriptions and records all the type,
object, subprogram and task specifications. It extracts the RDL procedures
from the Ada bodies and generates RDL declarations for the objects declared in
the Ada and referenced in the RDL. It formats the RDL into a form acceptable
to the RDL processor and submits it for generation of an RDL report.

3.1.2.4 RDL Prooessor -~ The RDL processor, currently installed on two of our

hosts, generates a formatted report from an RDL description., It also produccs
a data diotionary and calling trees for the segments (subprograms).

3.2 Standalone Iest Environment Generator
Traditionally, unit level testing is done by implementing specisl purpose data

generators and data monitors, linking everything together, running the program
under test, then analysing the data. The next routine requires new data

generators and monitors,

- B2,2-9 ~

The Standalone Test Enviromment Generator (STEG) being developed at NAAO will
aot as data generator and monitor for a large class of subprograms and will
partially automate the unit test process,

A unit to be tested includes a subprogram and its dependent units. They are
first compiled cleanly.

The STEG will scan the unit under test, identify the calling parameters, then
determine those objects declared at a higher scope that are used but not set
(inputs) and set but not used (outputs). It will detect those that are both
set and used, as these could be inputs, outputs, both or neither.

The STEG will prompt the tester for the names of inputs and outputs not
identified in the scan. It will then generate an Ada shell that supplies the
program's inputs and captures its outputs. This will be compiled and 1linked
with the program under test. Stubs will be provided for subprogram that are
not provided. An OUT parameter from a stub is regarded as an input.

The STEG will then prompt for the values of the identified inputs and pass them
to the target program. It will execute the program under test, then display
the values for the identified outputs. Exceptions returned from the target
program will be identified., Facility to generate an exception fram a stub will
also be supported.

A command language will be provided for repeatedly executing the program under
test while varying the values for selected inputs. The command language will
be a subset of Ada. Plotting and data reduction features are to be provided.

3.3 Code Auditor/Static Analyser

The purpose of this tool is to support the enforcement of software standards
and good programming practices. It will gather statistics that may be
indicative of the use or non-use of these standards and practices and prepare a
report that might serve as the starting point for a code review or structured
walkthrough. The code auditor will gather the following types of statistics.

1. The amount of commentary relative to the amount of code will be determined.
Textual comments will be distinguished from delimiting comments (blank

lines and lines of dashes, etc.). Of course, 1t will be wunable to
distinguish a wuseful comment from something like "-~ Mary had a little
lamb",

2. Measures of program complexity will be developed, such as nimber of nodes
in a program's directed graph, then statistics will be developed from our
experience with implementing and maintaining these programs relative to
their measured complexity.

It 1is generally regarded that overly complex program units cause

maintenance problems. However, simpler programs mean more program units
are necessary, and this complicates the integration process.

- B2.2-10 -

(- The number of subtypes and derived types defined and their frequercy of
reference versus the frequency of reference of the predefined types, Use
of subtypes and derived types makes better use of the strong typing
features of Ada,

4. For subprograms, the number of parameters passed versus the direct
references to objects declared at & higher scope (global variables). Use
of global references is regarded by some as producing harder to rread code.

5. Statistics on identifier length will be gathered. Average length,
distribution of lengths and frequency of reference of various lengths will
be recorded. These statistics will be gathered for various classes of
identifiers, e.g. scalars, record components, FOR loop indeces, subprogram
formal parameters, etec. Use of overly short identifier names 1is regarded
as a poor practice, but it is not clear that longer is always better.

6. Use of PRAGMAs, particulary PRAGMA SUPPRESS, will be recorded and
summarized.

7. Placement of more than one type or object declaration on a 1line, or more
than one executable statement on a line will be flagged. Code so written
1s l1ikely to be harder to read.

8. Types and objects declared but not referenced, objects declared at a higher
. scope than necessary and uninitialized objects will be flagged.

9. The number of declarations and executable statements for each subprogram
will be recorded. These values will be provided both including and
excluding nested subprograms. The maximum nesting depth for control
structures, subprograms and tasks will also be determined for each program
unit.

10. The number of GOTOs and jump target labels (<<LABEL>>, not LABEL:) will be
counted, and a measure of the "branching complexity" of a routine will be
determined.

11. Unlabelled blocks and loops will be flagged. Use of these labels often
provides a valuable form of commentary.

12. Declaration of typed constants vs. universal numbers will be flagged when
appropriate,. Use of a DELTA other than a power of 2 for fixed point types
will be detected. Use of a radix other than 2, 8, 10 or 16 will also be
flagged.

3.4 Header Comment Box Generator

Sof tware standards at NAAO specify that each compilation unit be headed by a
comment box that contains detailed information about the unit.

Among other things 1t is required that the comment box 1list all sets and
references to global variables (objects declared at a higher scope), all
subprograms and tasks called, task entries, exceptions generated (other than
‘ the usual Ada exceptions) and exceptions handled, and all packages, tasks and

- B.2-11 -

subprograms defined internally.

The header comment box generator will detect the presence of these features and
create the part of the header comment box that describes them, If already
present, the existing comment box will be revised.

Gathering this information for the comment box s a tedious task which
implementers do without enthusiasm, and thus without attention to correctness
and detail. PFrequently the information is ignored when it is needed (say, by a
tiger team called in to fix a high-priority problem) because it is assumed to
be incorrect ana out of date, Automating 1its generation shoull) greatly
increase its reliability and usefulness.

4 CONCLUSIONS

The Ada development enviromment described here meets most of the needs of our
current and near future development requirements. The objectives of a cost
effective APSE implementation and a versatile development enviromment are
expected to be satiasfied.

- B2.2-12 -

