
A Dhtr ibuhble APSE

S. Tucker Tart
Intarmctricr, Inc.
733 Concord Ave.

Cambridge, MA 02138

--...--.....-.----.--

for: The First Internationd Symposium on A d a for the NASA
Space Station, June 2-6 1986

Nassau Bay Hilton Hotel
Houston, TX

1. Introduction

A distributed Ada(r) Program Support Environment (APSE) t one in which programmers,
managers, customers, testers, etc., may work on deparate comkute:s, linked by a high-speed
network. I t also may imply that program development proceeds in a series of relatively
independent subsystems, which are then combined into larger A d a programs as p a t of final
integration. (This reminds one of the frequent similarity between the structure of programs
and the structure of the organizations that build them.)

This paper will discuss an approach to the implementation of a distributed APSE which provides
for parallel development on separate cornputen while sharing "cat.alogs" of compiled units, b u t
avoiding global locking o r naming bottlenecks.

2. T h e A& Pmgrarn Library

Ada a a language is somewhat unusual in that a "program Iii-ary" must be maintained across
separate compilations, holding compiler- produced information necessary not only for later
linking, but also for later compilations. To support a distributed APSE, it is essential that the
A d a program library may itself be "distributed," because it is too expensive in disk space andior
compile-time to maintain on each computer a copy of the entire program library.

Even on a single computer, there are r p u o n s to "distribute" the A d a program library. A s
defined in the Ada. Reference Manual (A R M 10.4) the program library holds the "universe" of
compilation units available for "WITH" references at compile time, and for eventual linking into
an A d a program. Conceptually a t least, the library includes all the language-defined packages,
such ia TEXTJO, CALENDAR, e k . There by themselves represent a major investment in
compile-time and disk space, and most Ada compilation systems have devised some way to
sharp such compiled packages across program libraries.

2.1 Program Library an Network of Cabloga

As a generalization o f sharing language-defined compiled packages, we have defirled a

conceptual Ada program library as a net of interconnected "catalogs," some o f which may be
connected into o t h e r prograrir libraries as well. Each catalog holds a s e t of (compiled)
compilation i ini tn r rprewnbcl i n a D I A N A lorm, .w well a.. a more conventional o h p r t m o d \ l l e
form. A conceptual library is constructed from a read/write "primary" ca tdog plus links to a s e t
of read only "resource" catalogs.

Every program library must provide the language-defined packages, which in our case are

B.3.6.1

https://ntrs.nasa.gov/search.jsp?R=19890006925 2020-03-20T03:44:11+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42829689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

gathered together to form the "RTS" (run-time system) resource catalog. A typical law1
program might have a series of other resourcr eatdogs for utilities, like a DBMS catalog,
MATH catalog, a DEBUG catalog, etc., plus one catalog for each major subsystem.

Each resource catalog is actually part of a se t of revisions. Two revisions may share some (1 1
their compiled unita, and differ in othera. We therefore provide for both sharing of cornpilei:
units across digerent program libraries, as well as across revisions of the "same" conceptl1;l:
program library. .-

3. T h c H I F

To support this distributed program library structure in a host independent way, we have
defined a standard Host Interface (HIF) to a (distributed) database system. The Hif database is
organired as a s e t of "nodes", partitioned by "Hif user' (where a Hif user maps to a user or
sub-project on the Host system). There is a "top-level node" associed with each Hif user,
analogous to the "home directory" of a conventional file system.

Hif nodes have string-valued at t r ibukr , and relationships from one node to another. The
relationships are uni-directional, meaning that they can be viewed as directed arcs in a graph of
nodes. A subset of the relationships, called the "primary" relationships, form a strict tree
reaching every (n o n top-level) node by exactly one path. The "secondary" relationships forri
an arbitrary graph.

5.1 H I F Node Kinds snd Partitions

Two kinds of HIF nodes exist: structural and file. File nodes have a host file associated with
them (typically containing the DIANA o r OBJMOD representation of an Ada compilation
uni t) , while structural nodes serve only as connectors between other nodes, and as carriers of
attributes.

The subtree of nodes beneath the top-level node associated with each H I F user, plus all of the
host files associated with these nodes form a partition of the HIF database. The information
necessary to represent a user's partition is gathered into a single host directory. The n o d e -
structure database is represented by 3 files: a B t r e e of nodes, a hash-table o f
relation/key/attribute identifiers, and a heap of attribute values. The file-node host files are
assigned HIF-generated names i n the host directory.

3.2 Program Librsry Implementation via the IIif

The program library is implemented using Hif nodes, taking advantage of the partitioning by
/{if user. The s e t of revisiuns o f a resource catalog, plus all of the conipiled u n i b included irl
o n e or more of the revisions, are comhined into a singlc Hif partition.

In addition, some number o f primary catmlogs may coexist in the same Hif partition. In
particular, the primary catalog used to create the next revision o f the resource catalog must be
ir i this same partition.

I t is posfiihle to put more than one resource catalog revision s e t in a single I l i f partition.
t[owcvcr, maximum flexibility o f tlistrihotinn results from defining B separate Hif user Tor each
r e s o u r r e . Separate partition? for testiriK l ic lp further, by keeping the resource partitions free o f
test stubs and drivers.

13.3.5.2

I

4. Unique Identiflerr

G i v e n M Ada program library dis t r ibuted u n o n g primary and resource catalogs, and a H i f
database diatr ibuted a m o n g partitions, a n u m b e r of interest ing technical p r o b l e m s arise in the
a r e a of u n i q u e naming.

U n i q u e ident i f iers are n e e d e d for cornpilation u n i t revisions to correct ly d e t e r m i n e when a
compi la t ion u n i t g o e s out-of-date. T h e compi le r m u s t record the uniqlle identifier o f all
compi la t ion u n i t revir ions referenced while compil ing the uni t (e.g. the "W1TH"ed s p e c s) , and
t h e n w h e n these a re replaced in t h e (conceptual) program library, the u n i t m u s t appear o u b o f -
date .

U n i q u e identifiers are also needed for subproBrams, so tha t references at calls rnay
to t h e appropriate body. Overloading m e a n s a simple s t r ing will n o t suffice.

Finally, u n i q u e ident i f ien are needed for each A d a type, so t h a t s t r o n g type checking and
over load analysis m a y be per formed correctly. L o n g identifiers and potentially d e e p nes t ing
m a k r the fu l l A d a n a m e an inappropriate choice.

r * . ~ ~ ~ l i c t l

In each case it is desirable tha t the unique identifier be relatively s h o r t (e + 32 o r 84 bits) s ince
there are a very large n u m b e r of references, m d y e t be distinguishable f rom all o t h e r identifiers
in the diatr ibuted program library. This is made m o r e difficult when compi l ing is proceeding
independent ly o n separate computers , presuming there is n o central ized assigner of globally
u n i q u e identifiers.

4.1 Contur tdependent Unique Identiflerr

W e have so lved each of these unique identifier problems by using the c o n c e p t of c o n t e x b
d e p e n d e n t identifiers, with c o n k x t d e p e n d e n t translation per formed a3 par t of moving t h e
identifier f rom o n e c o n t e x t to the next .

4.2 Node I&, Partition I&, and Partition Map.

T o uniquely identify compilat ion uni t reviaions in the dis t r ibuted A d a program library, we rely
o n the genera l Hif node identifier, which consists of two integers , a "partition" id, and a nodt ,
id. T h e partition id is s imply an index into a "partition map," select ing an e n t r y which idrnt i f ics
the locat ion of the h o s t files represent ing the partition within the host file s y s t e m , as wel l ;IZ

which partition m a p (if different f rom this one) to use for interpret ing partition-ids appearing
within t h a t partition. T h e node-id is used aa a key into the B t r e e (h o s t) file which represents
the par t i t ion, and is aasigned sequent ia l ly within the partition an nodes are created.

Each c o m p u t e r can maintain ita own partition m a p relatively independent ly , ass igning its own
part i t ion ids. W h e n a reference is created to a partition o n a n o t h e r c o m p u t e r t h a t is not yet i n
the par t i t ion m a p , a partition-id is ansigned for use from the referencing c o m p u t e r . T h e en t ry
in t h e partition m a p indicates the location of the partition, as well M the locat ion o f the
partition m a p to he used to in te rpre t its partition references. W h e n a node reference
(par t i t ion- id , node-id pair) is copied f r o m a partition o n o n e c o m p u t e r to a partition o n the
o t h e r c o m p u t e r , the partition-id is translated according to the corr t ispondence be tween t t i r

partition maps o n the two cornpiiklrs.

B.3.6.3

4.2.1 Ezporfing Parfikbnr and Partilion Map8 T h e puti t ion map mechanism makes f o r a
convenient method for exporting a ret of put i t ions on tape, by simply including the partition
map on the tape. Then , when the puti t ions .n read . a& in off the tape, so is the partition
map. The partitions are entered into the 5nuterm puti t ion map on the receiving computer , and
their entry in the partition map indicates that when interpreting partition references within
them, t6 use the partition map also copied from tape.

For convenieiice, a partition doer - o t embed itr own partition id in self-references, but rather
user the special partition-id aero. This way, if the partition is totally self-contained, there is n o
need to ship the partition map when shipping the partition all by itself.

4.8 Unique A&-Entity Idcntifierr

A second kind of unique identifier, an Ada-entity idenlifier, mus t specify a particular Diana
node, which represenb the entity, among all of the Diana nodes in all of the compilation units
in the (distributed) program library. Nevertheless, since there are many thousands o f such
references in a large program, the node identifiers ("locators") mus t be kept M small as possible
(e.g. 32 b i b) . This apparently conflicting set of requirements was resolved by making each
Diana file its own context for interpreting the locators.

4.3.1 Diana Node Locaton; Scqmcnt + Offact Node locators are broken up into two halves,
16-bits of segment index, and 16-bib of segment o8set. When the segment index is positive, it
u an intrkfile reference, and the segment index simply selects in which 64K segment of the file
the Diana node appears. The segment offset always gives the byte offset within segment. a

0

When the segment index is negative, it hp an inter-file reference, and the absolute value o f the
segment index selecb the element in the Diana file's "external segment definition table" which
identifies (with a Hif relationship) the compilation unit being referenced, and the segment
within it.

This mechanism allows each compilation unit to refer to 32K other compilation unit segments,
each of which is up to 64K bytes in length. However, it means that a locator must always be
interpreted relative to the file i n which it resides. To simplify the manipulation of locators by
the compiler, a "master" segment definition table is deGned, and all locators are translated to
"master" locators as they are retrieved from a Diana file. By design, the master segment
definition table becomes the external segment definition table for the Diana file being created at
that time, meaning that n o additional locator translation need be d o n e o n storing i n t o the file
being created.

5 . Summary a n d Expericnw

A distributed A d a program library is a k e y e lement in a distributed APSE. To impleulent this
successfully, the program library "universe" an deGned by the Ada Reference Manual must he
broken up into independently manageable piecen. This in turn requires the support of a
distributed databaqe system, a.9 well M a mechanism for uniquely identifying compilation units.
linkable subprograms, and Ada types in a decentralired way, to av falling victim to the
hottleriecks o f a global datahaw and/or global unique-idenlifier nanager .

W e have found the ability to decentralize Ada program library activity a m a b r advantage in the
management of large Ada programs (i n particular, Lhe multi-t.ugcted/iiiulti-hosted . Ida
compiler itself). We currently have 18 resource-catalog revision sets, each in its own tiif
I'artition, plus 18 partitions f o r testing each of these, plus I 1 partitions for the top-level

8.3.5.4

compiler/linkcr/progrun-libru~mrnyer componentr. Compiling and other development work
CUI proceed in p u d l c l in each of there putitfonr, without ruffering the performance
bottleneckr of global lock8 o t global unique-identifier generation.

B.3.6.5

