Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

N8§ - 16301 70 L

J A

A Computer-Based Specification Methodology

Robert G. Munck

The MITRE Corporation
Bedford, MA 01730
Munck@MITRE-Bed ford ARPA

ABSTRACT

It is becoming clear that our standard way
of writing specifications -- requircments,
design, test, and other types -- is
inadequate for large, complex, and long-
lived systems, The process by which they
are crcated is unstructured and often
cursory, and the resulting paper documents
are bulky, vague, inconsistent, and
difficult to publish, distribute, and update.
We are especially bad at writing under-
standable, consistent, and sufficiently-de-
tailed requirements specifications.

Part of the problem comes from the
shortcomings of written English and the
essentially linear sentence/paragraph/chap-
ter structure of specifications; it has been
aggravated by widesprecad usc of word
processors that support nothing but text.
Text will always be a part of
specifications, but there are other forms of
expression that can be more sux(ablc for

other parts: data-flow, SADTIROSSTS] ang
Buhr!BUHRE4] d:agbmms non-linear text or
"hypertext,"[VAN DAMTO) spreadsheet-

supported tables, charts, and graphs,
animation of algorithms and procedurcs,
geometric modeling. and voice and videco
processing. All of these become viable
possibilitics in the high-capacity, display-
oricnted workstations of the proposcd
Space Station Data Management System.

The use of exotic, "high-tech” presentation
media in specitications will not
automatically make them casy to produce
and understand; it 1S more important that
there be a methodology for crcating them
that emphasizes corrcctness and clarity of
presentation, and which supports
coopcrative work over a nctwork. The
most complclc and mature such
muhodology is Sof Tech's SADTTM. SADT
is unique in the amount of attention it
pays 1o the way pcople work together and
as individuals and in ats facilities for
specifving requirements independent of
any particular implementation.

SADT's most widely-uscd component is the
hierarchical box-and-arrow diagram
notation. In the full methodology, that
notation is supported by an "infrastructurce”
of procedures, formats, protocols, and
"ways of thinking" that make it possibic
for many pcople to work together on a largc
project. For example, the Reader/Author
Cycle is a peer review procedure that
emphasizes constructive criticism and a
disciplined exchange of ideas. Reader Kits
and their associated Kit Files provide a
mechanism for working on part of a
specification without losing sight of its
relationship to the whole AND for tracking
the evolution of the specification over
time.

The paper proposes a network-based system
for writing, reviewing, and publishing
multi-media specifications with tools and
procedures based on SADT methodology. |t
envisions pcople at universitics, companics.
and NASA sites all over the world working
together to prepare a requirements or
dcsign specification and discusses the
possibility of semi-automatic conversion ol
such a specification to Ada! code,
currently under investigation at MITRE.
The computer-bascd SADT tools developad
in that project will be described.

1 Everybody's Talking

Natural language has evolved over the
millennia as our most powertful tool, that
which truly separates us (rom animals.
However, it is becoming apparent that
"writtcn English” using traditional forms
and mcdia (chapters and paragraphs, paper
and ink) is insufflicient to communicate the
very large, complexly-interrelated concepts
of a modern computcr-based clectronic
system. To put it another way, our

1 Ada s a registered teademark of the Uinted States
Government {Ada Joint Program Office)

- B4d40 -

ORIGINAL PAGE 18
OF POOR QUALITY

https://core.ac.uk/display/42829684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

specification documents vary from
"unsatisfactory" to "horrible® in doing what
they are supposed to do.

1.1 Words in a Row

Written English (or the language of your
choice) is essentially the spoken form
translated from sound to ink patterns on a
word-by-word basis and laid out in linear
form. As such, it makes many of the same
assumptions as speech; for example,
pronouns are based on the assumption that
the listener has a high-speed short-term
memory that can match a pronoun to the
last object named, thus reducing repetition
of names. Unfortunately, in technical
writing the use of pronouns is
overwhelmed by the great number of
objects needing to be named. Names of
things arc thercfore repeated over and
over, and are often long proper noun

phrases containing several capitalized 1 —Linre

;djcctivcs and adverbs. The resulting text
is much like a road containing frequent
potholes and boulders.

Graphical languages such as SADT boxes-
and-arrows and Buhr diagrams reduce the
nced to repeat names by using two
dimensions instead of the lincar onc-
dimensional representation of written text.
That is, an object can be associated with
things above, below, right, and left of it,
not just to the left. SADT also generalizes
the noun - verb - object sentence structure
of English into two dimensions, thus bctter
approximating the way people think, In a
simple example, the SADT fragment

is the equivalent of the English "noun-1 is
verhbed to make noun-3 as controllicd by

ORIGINAL PAGE IS
OF POOR QUALITY

noun-2". A more complex c.x:':mpl’c. which
demonstratcs the generalization, 1s

which says "noun-1 is verb-1'cd to make
noun-5 as controlled by the noun-3 aspect of
noun-2; noun-5 is verb-2'cd to make noun-6
as controlled by the noun-4 aspect of
noun-2". A somcwhat more rcal example:

(4]

csorhit elewents

-l'nrlnr ot
orientalion,
mass distribution
dats

oorrection

Put into English, it says (approximately):

The star locator image is
used to detect drift by using
the desircd heading from the
orbit clements to calculate a
drift vector. The drif't
vector is then used to
compute a correction from it
and the steering jet and mass
distribution data from the
orbit clements Jata.

A complcte SADT diagram, such as this;

- B4.42 -

c‘_.nquoﬂ for change or addition to model
™~
~sOPErARdS
basic
" fobJeats ey, ~operand errors
erand t
2> ~sEe
ots as hasic
mods)) el
construction ‘,nod'l structure
4 A
’“:i'ata ’br ,,oporator errors
ﬂt:‘e‘c_ ‘!nto n.‘.-fo t-02
operationg Lnex(bhasic
operation
geometric |
“? v ture '
"
~basic ohjects ox-m:to struc .
~ t onr?uonl b
~model structure J
NO D E LIV X FIGUAA Do _Dasic Operations I C - NUMBER LR ELLTEIDIT 1

Might transiate into a page or more of normal
unrcadable as text specifications normally are.

The diagrams shown above all have
activitics, actions, or verbs in their boxes
and data, things, or objccts as their arrows.
There are 1n fact four kinds of diagrams,
of which these are only one, called the
Activity Diagram. There are also Data
Diagrams, State Diagrams, and Transition
Diagrams. Data diagrams, in which the
arrows arc¢ activitics, arc similar to those
drawn in Data Base design and Object-
Oricnted Design. State and Transition
diagrams arc useful in real-time systems.

1.2 What It's All About

Fuman communication 1s bascd on the fact
that we have a vocabulary in common with
cach other. Unfortunatcly, that com-
monality is only approximate; we ¢an ncver
be entirely certain what somconc clsc
mcans by "red” or "big" or "Multi-modal
Phased Radar Array Scrial Interface.”
Technical specifications can be
characterized as a semi-ordered sct of
terms and the definitions of thosc terms --
in the ultimate the entire specification is a
definition of its title. The problems that
arise include multiple and conflicting
definitions, the definition of a term being
“far away" from its usage and difficult to

text. That text would be as rcadable or

find, and multiple terms having the same
dcfinition.

Dcfinitions of terms often themselves
contain terms that nced definition. SADT
uses the hicrarchy resulting from this as its
organizational backbone. Each box on a
diagram contains a word or term that has
some meaning to the author of the
diagram; it may have a diffecrent mcaning
to a reader of it. If the author fcels that
rcaders mxght Lasve a different meaning l'ur
a box than tig intent or not know what 11
mcans, he crecates a new (child) diagram
that "cxplains” or "defines” the box in
greater detail. Boxes on the child diayram
that nced further explanation are
themselves expanded into diagrams, unti
all terms in all unexpanded boxcs are 1
common parlance and unambiguous.

Onc of the strengths of natural languagce iy
that words can have different meanings 11
diffcrent contexts. This reduces by several
orders of magnitude the number of
diffcrent words we neced. However,
specification writers often attempt to give
certain important words rigid definitions
for all contcxts, placing those definitions
in a glossary. Thosc rcading th.
specification must, in effect, memorize the

- Bd443 -

ORIGINAL PAGE IS
OF POOR QUALITY

entire glossary for the duration of their
reading; otherwise they will have to flip
back and forth to it continuously, with no
way to know if they need to look up a
particular word. In SADT, there is an
indication on each box if it is expanded.
Boxes on different diagrams containing the
same word or phrase may have the same or
different expansions. This is the SADT
equivalent of the common notion that a
word or phrase may have different
mcanings when used in different contexts.

1.3 SADT Media and the Message

SADT was originally designed for use with
no computer support; a tcam having
standard office supplics and a copicr could
create very large, very high-quality
specifications. In fact, users tended to
resist having their diagrams cven typed or
typeset; a diagram produced with a good
pen, a straight-edge or flowchart template
(for the curved corners), and legible
handwriting scemed more "comfortable.”
An carly attempt to computerize the
production of diaﬁrams using a time-shared
mainframelSMITH8I a5 ynsatisfactory due
to slow response time.

Despite the power of the SADT filing and
archive system (discussed later), large and
long-term projects found the maintenance
of a large sct of diagrams (thousands) to be
burdensome. Fortunately, the personal
computer has now become powerful enough
to support SADT, and in fact is proving to
be an extremely valuable addition. There
arc at least four announced orflanncd
SADT systems on the markct [SAIB8S]

The SAdalMUNCKES] sygiem, implemented by
the author as an [R&D project at MITRE,
runs on an IBM PC or cquivalent. A
satisfactory system with the nccessary
graphics and telecommunications can be
bought for $2500 hardwarc costs; a "super”
system with a big color display and laser
printcr might cost $10,000.

2 The Way We Work

Ihe above discussion has shown a.fcw of
the many ways that SADT makes it
possible to have a readable. understandable

technical specification. In general, it docs
so by relaxing or gencralizing English
grammar, sentence and paragraph .
structure, and the division into sections,
appendices, glossaries, anncxes, and
volumes of normal specifications. With
SADT, the most complex systems that we
are capable of building can be specificd
understandably. Among the most complex
system specificd in SADT to date is the
financial system of the Department of
Energy. The complete specification took
more than 25 analyst-years to write and,
printed double-sided, was cver two fect
thick. Because it was done on paper before
computer support was available, the
document is quite intimidating by its sheer
mass, but still vastly preferable to a text
equivalent.

Of course, there is no free lunch.
Specifying a complex system well with
SADT takes a great deal of hard work by
trained, c¢xpericnced, smart pcoplc. That
work is made as productive as possible by
other features of SADT that deal with the
way pecople work together and individually.
These features might be called the
“management” or "sociological” aspects of
SADT.

2.1 All Together Now

The crecation of specifications is usually a
qQuite chaotic process in most organizations.
A common fcature is the "brainstorm
scssion” at which a number of people
present idcas, argue, and fill blackboards
with scribbling. At the end, several
participants are charged with "writing up
the results.” However, they will capture
only the last sct of ideas proposed and not
rcjected; other good idcas disappear
forever the next time the blackboard is
crased or ncver appear because their
concciver is absent or doesn't communicate
well 1n noisy mectings. The basic ideca of
brainstorming is good: communicating
"half-baked" idcas quickly to others who
can grab the good ones and add their own
improvements. We need a better process
and medium than the noisy mecting and
blackboard.

SADT includes the Reader/Author Cycle to
replace this aspect of writing
specifications. It works as follows:

- Bd444 -

ORIGINAL PagE 1g
POOR QuaALTYy

—r——

1. One analyst, called the Author,

creates a small number of diagrams.
His SADT training tells him to limit
the diagrams to one major thought
or amount of information,
approximately a half-day’s work on
his part to create and an hour's
work to read. This amount is
typically one parent diagram and
three to five child diagrams. The
SAda drawing tool helps him create
the diagrams using a mouse and
keyboard such that his thinking is
about the subject matter, not the
mechanics of drawing; there is no
need to sketch diagrams on paper
and enter them into the computer as
a separate step.

The Author assembles these
diagrams into a Reader Kit and
sends the kit to a small number (1-4)
of his colleagues, called Readers.
These diagrams are transmitted by
clectronic mail and appear in a “to-
be-read” directory in the Readers’
machines.

Each Reader reads the kit within
one working day. He writes
comments on the diagrams with
arrows and circles indicating where
they apply, using the mouse and
keyboard. SADT Rcaders are
traincd at great length to make their
comments constructive and non-
threatening; in effect, there is a
"code of courtesy” for writing
comments. Note that the Author
docs not have a large "psychic
investment” in the diagrams; he has
spent a celatively short amount of
time creating them. This contrasts to
the difficulty of criticizing
somcthing that somconc huas spent
weeks or months producing.

Readcrs who are also traincd to be
Authors comment on the format and
undcrstandability of the diagrams as
wcell as their technical content,

The Peader transmits his comments
back to the Author.

The Author ycads the comments
from cach Rcader within onc
working day and writes a reply to
cach onc. lHere again, the Author is

trainced to write replies that are
constructive and helpful, not
argumentative. While doing this, he
also makes notes on the diagrams
indicating changes to be madc that
the comments have inspired.
Comments, replies, and notes arc
overlays or windows that can be
added and removed from tac
diagram on the display; on a color
display, they appear in color.

6. The Author transmits each Recader’s
comments back to him.

7. The Reader reads the replics and
adds additional notes of his own.
The diagrams, comments, replies,
and notes are added to his files.

8. If necessary, the Author revises his
diagrams and sends them out again,
starting another cycle. This time,
however, the Readers have the
previous revision with the comments
and replies. They can therclore
check that problems they noticed
have becn fixed.

The Cycle is "kept going" in the manual
system by the Librarian, a cierk trained in
SADT procedures. He does the mechanical
tasks such as copying and filing, and
makes sure that the participants do their
jobs in the time allowed. In the computer-
based system, no Librarian is nceded, and
the participants may be lar apart
physically on a loosely-coupled network.

The Reader/Author Cycle has been shuwn
to be an extremely powerful organizing
influcnce on technical work of all kinds
Many organizations that were cxposcd 1o 1l
through SADT training now usc it I'ur mos:
or all of thcir work, cven when other
aspects of SADT arc not involved It
appcars to be a good match to the needs
and organization of NASA.

When used with the "code of courtesy” and
other aspects of SADT, the Cycle brings
out the best, most creative thoughts ol the
participants, reduces conflict, and captures
the processes by which decisions are made.
not just their results. People who have
worked on successful SADT projects wend

-B445 -

ORIGINAL PAGE 1S
OF POOR QUALITY

to urge others to use it with the fervor of
rcligious converts,

2.2 In Organization There is Strength

We have mentioned the two-dimensional
aspect of diagrams and later a third
dimension, that of expansion of boxes into
diagrams. There is also a dimension of
time, in which each diagram has a pointer
to the diagram that it replaced and to the
one that replaced it, and notes by the
author explaining why it was replaced.
The result is a fairly complex data
structure, but one that proves ecasy to
nuvigate with the right computer support.

A single set of diagrams related
hierarchically, starting from a single "top
level” diagram, is called a model. A model
is a top-down exposition of a single aspect
or part of the system as seen from a single,
stated viewpoint. For example, we might
have models of a single instrument from
viewpoints such as a user, a maintenance
technician, a programmer, a tclemetry
system, and a power system. Each of these
models will emphasize the parts that are
important from its given viewpoint and
will kave pointers to other models for
other par’s and to models of other aspects
of the system to which it is related.

3 Make it Run

As done on paper, an SADT specification
can be an extremely rcadable document,
lecading to .nuch better implementation. In
the computer-bascd system, there are even
morc possibilitics:

- A modcl of the activitics of a
project, with cstimated time and
manpow.r attachced to cach box, can
be analyzed by the machine to
determine a schedule and indicate
which activitics arc on the critical
path. This projcct modcel can be
maintained by the program office as
the master project schedule, with
pointers from cach box to the
currcnt status report for that
activity. Onc would be able to
review progress informally and

conveniently by browsing through
the model.

- A model of a piece of software can
have execution time and resource
usc estimates attached to cach box.
It can then be "executed” as a simu-
lation Iouprcdict Pcrfor-
mance [BUCHERT8L] The simulator
could "animate" the model on a
graphic display as it executes. Small
meters or bar charts could be
attached to boxes and arrows on the
display to show current values such
as processing rate, queuc length,
frequency, and values of variables.

- A detailed model of a piece of
software can be converted into
skeleton AdalAda83l code defining the
task structure. Each lowest-level box
can then be coded by an Ada
programmer (or the appropriate
function found in a library) and
combined with the skeleton to make
a running system. The SAda project
at MITRE is beginning to explore
this possibility.

- A model could be connected to its
implementation, hardware or
software, by diagnostic or metering
probes. It could then "run” in the
same way that the simulator
animation discussed above did. A
person monitoring the system could
move up and down between levels of
detail.

- A detailed model might be able to
be converted mechanically into a
custom integrated circuit or picce of
wafer-scale integration. This model
might also have run as a simulation
or been converted into running Ada
code.

Most of the above suggestions have been
tricd in onc way or another, and all
showed promise. The time is ripe to begin
work on an infrastructure or support
environment on which the tools llor writing,
rcading, and "cxercising” computer-bascd
specifications can be integrated. It is clear
that such spcc-writing support
cnvironmcents would have a great deal in

- B4.46 -

ONGINAL Pace 1g

OF POCR QuaLITY

common with programming support
environments, to the point of both being
part of a single larger system.

4 Conclusion

Standard practices for creating and using
system specifications are inadequate for
large, advanced-technology systems. We
need to break away from paper documents
in favor of documents that are stored in
computers and which are read and
otherwise used with the help of computers.
An SADT-based system, running on the
proposed Space Station data management
network, could be a powerful tool for
doing much of the required technical work
of the Station, including creating and
operating the network itself.

References
[Ada83] U.S. Department of Defense
Reference Manual for the Ada
Programming Language,
ANSI/MIL-STD-1815A-1983.

[BUCHERTS1]
Buchert, R.F,, K. H. Evers, and
P. R. Santucci, "SADT/SAINT
Simulation Technique,” National
Acrospace and Electronics Con/.
Proc., 1981.

(BUHR 84)
Buhr, R.J.A, System Design With

Ada, Prentice Hal. knglewood
Cliffs, NJ, 1984

[COMBELIC78)
Combeclic,D,, "Uscr Expericnce
with New Softwarc Mcthods
(SADT)," Proc. NCC, Vol. 47,
1978, pp. 631-633.

[MUNCK85]
Munck, R, "Toward Large
Software Systems that Work,"
AIAA/ACM/NASA/IEEE
Computers in Aerospace V Proc.,
Oct. 21-24, 1985.

[ROSS75] Ross, D, ¢t al, SADT Structured
Analysis and Design Techunique
Author Gulde, Sof Tech, Inc.
6490-1, October, 1975, Waltham,
MA.

[SAIB85] Saib, S., "A Life-Cycle Environ-
ment,” ATAA/ACM/NASA/IEEE
Computers in Aerospace V Proc.,
Oct. 21-24, 1985.

[SMITHS81)
Smith, D.G., "Integrated
Computer-Aided Manufacturing
(ICAM) Architecture Part Il --
Automated IDEF-0 Devcelop-
ment,” NTIS B062454-B052459,
August, 1981.

[VAN DAMT70]
van Dam, A, and D.E. Rice,
"Computers and Publishing:
Writing, Editing, and Printing."
Advances in Computers,
Academic Press, New York,
1970.

Biography
Robert Munck received an AB in computer
science from Brown University. In twenty
years in the [icld, he has taught at Brown
and worked at SofTech, Prime Computcer,
the Naval Rescarch Lab, and MITRE,
where he is presently writing a CAIS
operating system in Ada for the Intel
80386.

- B447 -

ONIQINAL PAGE 18
OF POOR QUALITY

