
Recent Trends Related t o t h e U s e of
Formal Methods i n Software Engineering

Sorren Prehn
Dansk D a t a m t i k Center
Lundtofteve j 1 C
DK-2800 Lyngby (Copenhagen)
Denmark

Abstract :

An account is given of sane recent develapnents and trends related t o t h e deve l -
opnent and use of f o m l methods i n software engineering. The paper focuses G I :

ongoing a c t i v i t i e s i n Europe, since there seems t o be a notable difference i n
at t i tude towards industr ia l usage of formal methods i n Europe and i n t h e U.S.

A more detailed account is given of t he currently mst widespread formal metnr :
i n Europe: the Vienna Develo-t ethod. A currently ongoing project, R4IUii:.,
aiming a t developing a second generation formal method and related t o o l s l:i

described.

Finally,
methods, and t h e potentihl for constructing Ada-specific tools based cn :..
methods is considered.

Lhe use of Ada" is discussed in re lat ion t o t h e application of fcm,< t :

Ada is a registered trademark of the U . S . Government
(Ada Joint Program Office)

C . 4 . 1

https://ntrs.nasa.gov/search.jsp?R=19890006936 2020-03-20T03:43:30+00:00Z

-#v. ,.. , , , . , ,
. . : :'. . & ? , . L ~ * p

1. Introduction and Background

It is well-known that the increasing use of software systems of an incrcasingly
complex nature h,.roses greater requirements to the quality of software, its
documentation and maintainability. It is also well-known that since the term
"software crisis" emerged, little progress has actually been made in industrial
software developnent environments towards meeting these requirements.

In this paper, we advocate the viewpoint that industrial software engineering
today really is not engineering, and that real progress is to be sought in the
maturation of present software production technology into a true engineering
discipline.

It is believed that the characteristics of a true engineering discipline are
twofold:

- the discipline must have a mathematical foundation
- the day-to-day practises of the discipline are not necessarily truly formal

This is to be understood in the following way. The requirement for a matnema-
tical foundation is triggered by the desire to be able to reason about the
objects created during software developnent (such as specifications, programs,
and design decisions) in a way that allows one to detexmir.e whether any such
reasoning is valid or not; in particular one would like to be able to reason
about the functional correctness of a program with respect to a specification.
On the other hand we believe, in particular when one considers industrial
software developnent, that such formal reasoning will mainly take place in order
to establish ("once and for all") general rules and techniques whose correctness
and soundness are verifiable. On a day-to-day basis there is presently no hop
that developnent of any but trivial (small) programs can be thoroughly
reasoned about in a formal way: the combinatorial conplexity is sirrrply too hiqL.
Thus we advocate the daily use of rules and techniques whose formal
correctness and soundness have previously been established.

TP.is is well in accordance with the way established engineering disciplines
work. For example, electronics engineering has a rather firm basis in
mithematics (e.g.: the use of Complex Calculus to describe qwsi-stationary
circuitry) and makes heavy use of various formal notations (such as diagrams,
being a language with a precise, mathematical meaning (and a graphical syntax)).
In daily life, the electrorLcs engineer goes about his job mainly on the basis
Qf previously established design principles, without considering the formal
prfjofs of their soundness. However, from time to time, it is necessary to bring
i n formality, to make mathematical analysis and conduct proofs. This typically
?.a;Jpens when a cmpletely new sort of circuitry is being considered, or when
requirements to circuitry functionality and reliability are particularly strict.

C.4.2

.
.__....-

Here it is worth noting that only the fact that electronics engineering has it
mathematical basis makes this pogsible; it would not have worked to base d a i l y
practises on informal notions, and then bring in formality from time ta time.

1 .
The analogy offers another interesting observation: there seems to be t.wo
different styles of work involved: one style is based on using sound dcvcloyxrcrtt
rules, anather on formally analysing (e.9.: proving the correctness of) art
otherwise constructed object (such as the design of an electronic circuitry). Wr-
shall return to this dichotcmy.

It is not surprising that developnent has not yet evolved into a tnw
engineering discipline. The trade is relatively young, and the requirements i

the (complexity of the) software systems to be produced are ever increasirq.
Mathematics and formality has, though, been successfu!ly applied to varir,ii,,
aspects of software developnent. The availability of EX? g r m r s and par.,'
generators is the classical, convincing example.

software

The scene is, however, beginning to change. In Europe, infomt ion technolc(j;t
industry in general dmnstrates a growing interest for formal specification r j r r ' i

design languages, for formal developnt rules, and for formal verificat 1 ,r
techniques. This, we believe, is in contrast to the trends in V.S. i n fon r~3 t1c r
technology industries, where the erphasis appears to be on tools, workstatirxlc,
and erzironments, rather than on the methods they should support.

The purpose of this paper is to outline current trends in Europe. Giver! I I , .

space av ilahle, it is impossible to give a complete and covering picture, I t . !

alone tcj go into much technical detail. It is hoped, however, that the material
presented will stimulate discussions on introducing formal methods into indu-
strial software engineering environments.

In section 2, an overall scenario is presented, and a nwnber of re1eva:it
research and developnent projects are mentioned. In section 3, an account- ::.
givr i of the so-called Vienna Developnent Method (VDM) , which was the f 1 I:;*

purportedly formal method to reach any industrial significance, despite
shortcomings. I n section 4 , an account is given of the RAISE project, who:>l.
explicit objective is to provide formal languages and techniques for s o f t w a r t .
enqiner-ring (in the above sense) as well as support tools. Finally, in sect : . :.
5, perspectives specifically concerned with Ada are discussed.

c.4.3

2. The European Scene

Although there has been sane industrial interest in formal software developnent
m&m% in the European information technology industry over the past decade,
and even a few successful attenp?ts to seriously apply such methods on "real"
projects, formal software deve1-t methods have had no pervasive impact.
There has been a distinct, and partially well-founded, belief that formal
methods were not sufficiently industrialized. Also there has been an asswion
that formal methods probably were not worthwhile to apply or even harmful.

However, f ~ m a l methods are now beginning to come about in industrialized fGm,
and it is becaning increasingly clear to industry that software developnent
practises must be seriously -roved if the potential and challenges offered by
the continuous hardware technology evolution are to be met.

Also, European academe has a strong tradition for research in the formal methods
area, and there is today a strong desire to trar.sfer the acquired knowledge ano
expertise to industry.

Probably, the most visible evidence of this trend is the joint industrial and
academe support of and participation in projects, concerned with formal methods,
sponsored by the Camnission of the European Communities (CEC) . It is interesting
to note that these projects typically involve cooperation between some four to
six partners, industries as well as universities.

In order to give an idea of the range of activities and institutions involved we
list a n m r of projects, totalling several hundred psrson years of effort,
sponsored under the ESPRIT program [ESPFUT 861 (European Strategic P r o g r m for
Research and developnent in Information Technology). For each project, name,
title, and participants are indicated:

FORMAST
Formal Methods for Asynchronous Systems Technology
Advanced System Architectures (United Kingdom)
Erno (West Germany)
Imperial College (United Kingdom)
Univerrity of Kaiserlautern (West Germany)

GRASPIN
Personal Workstation for Incremental Graphical Specification
arid Formal Implementation of Non-Sequential Systems

@ID (West Germany)
01 ivetti (Italy)
Siemens (West Germany)

PROSPECTRA
Program Developnent by Spcification and Transformation
University of Bremen (West Germany)
University of Saarland (West Germany)

c.4.4

ORIGINAL PAGE tS
OF ?OOR QUALITY

System KG (West Germany)
University of Dortmund (West Germany)
Syseca Logiciel (France;
University of Passau (West Germany)
University of Stratchclyde (United Kingdom)

RAISE
Rigorous Approach to Industrial Software Engineering
Dansk Datamatik Center (Denmark)
Standard Telephone and Cables (United Kingdom)
Nordic Brown =veri (Denmark)
International Camputers Limited (United Kingdom)

METEOR
An Integrated Fornal Approach to Industrial Software Developnent
Philips (Nether lands
CGE (France)
AT-T .5 Philips (Belgium)
Stichting Matematish Centrum (Netherlands)
COPS Europe (Ireland)
Tech. Software Telematica (Italy)
Univer:-;ty of Passau (West Germany)

GENESIS
A General Environment for Formal Systems Developnent
Imperial Software Technology (United King-)
Imperial College (United Kingdan)
Phi 1 ips (Netherlands)

It is not within the scope of this paper to ellborate on the actual contents G I

the individual projects. However, section 4 describes one of the projects
(RAISE) in more detail. Another major project that should be mentioned is thc
Munich CIP project carried out at the Technical University of Ifunick
[Bauer 76, CIP 851.

In Europe, the interest in fo-1 methods appears to concentrate more on fonn2!
specification and f o m l developnent than on verification. That is, there is
belief in the transformational programning paradigm: i f an mlementatian ::j

produced solely by applying a series of transformations, each of which art.
correctness-preserving, to an initial specification, the inplcmentation will
necessarily be correct with respect to the initial specification, thus eliminat-
ing the need for verification. The interest in this style of developnient is
connected with two Concerns: firstly, it tends to eliminate an earl.!,
introduction of (design) errors, and secondly, recording the series Llf

transfomtions applied produces invaluable documentation of the system desiL;l>
process.

c.4.5

3. The Vienna Developnent Method (VDM)

VDM originated in the IBM Vienna Laboratories in the early seventies and was
developed in connection with a project aimed at developing a production quality
p L / I compiler. The project group initially worked on giving a formal semantics
for PL/I; this effort probably constitutes the first example of successfully
applying formal techniques to a fairly large-scale problem in an industrial
environment [Bekic 741.

During the late seventies, VIM w a s further developed, and an increasing nwber
Of developnent projects using VDM emerged. Areas in which M)M was applied
camprised not only programning languages and caopilers, but also databases,
operating systems, hardware specification, business aFplications, etc.

[Bjramer 831 contains an overview of M?M basics and an extensive bibliography.

[Bjamer 821 contains numerous major examples of VDM specifications.

Today, there is a rather pervasive interest in VIM in Europe, as witnessed by
the formation of 'W Europe", an interest group sponsored by the CEC and
drawing participants frm a fairly substantial nunbr of European industries and
universities, and by the formation of an industrial panel in the United Kingdom
working towards making the VDM specification language into a British
Standard.

Technically, VDM is -sed on the techniques developed fo r giving denotatioca-
semantics of programming lalguages. A denotational semantics is given as a
homomorphism f r a an algebra of syntactic abjects to an algebra of semantlc
objects, or, somewhat sinplified, maps pieces of syntax onto semantic objects
such as state transformations (functions fra states to states). The principle
readily adapts to numerous applications: many systems may conveniently be
characterised by a state, which is manipulated by operations. Names of opera-
tions and their arguments are then considered to L>e syntactic objects.

VDM is model-oriented. By this is meant that the objects (syntactic and
senantic) are explicitly constructed in terms of given constructors such as
sets, lists, rnaps, and functions. This is in contrast to property-oriented
specification approaches, such as algrebraic specification approaches, where
objects defined -licitly by the equational rules for the operations that
ran ipu 1 at es them.

are

It is strongly believed that this aspect of VDM has been crucial for l a rge r
applications, and for the acceptability of VDM in industrial environments:
model-oriented specifications tend to appeal much more to software engineering
intuition than does property-oriented specifications. On the other hand it also
clear that a model-oriented specification methodology may easily be abused to
prqduce very operational "specifications" and presents a prevalent danger of
over-speci f ication.

C . 4 . 6

OCHGINAL PAGE CS
OF f O O R QUALITY

4 . The RAISE Project

The RAISE project (Rigorous Approach to Industrial Software Engineering) is a
115 person-year effort undertaken by a consortium consisting of Dansk Datamtik
Center and Nordic Brown &veri (Denmark), and Standard Telephone and Cable:.
p.1.c. and International Camputers Limited (United Kingdom). The prolect I S

partially funded by the Comnission of the European Ccmrmnities under the ESPRIT
progrme, and is carried out in the period 1985 to 1989. An overview of ttjI:
RAISE project is given in [Meiling 851.

The RAISE project will provide an environment consisting of

- a wide spectrum language in which one can express abstract, formal specifi-

- means for expressing and affecting transfomtions of such entities
- proof systems and techniques serving to verify the correctness of such
- a comprehensive tool set

cations, designs, and algorithms

transformations

Also, the project has been designed to include production of educaticr.c:. ,
training and technology transfer material alongside with the developnent of :.,-

above.

In RAISE, Rigorous hints at the underlying dogma that, although the RAISE L:+:..-
guage is formally defined and in principle enables the user to proceed s t r i Y :,:
formally in developiny a software system, practical conditions and req.:i rc:.C::
force one to choose, pragmatically, to carry out various parts of a cieir : I -

ment with varying degrees of formality. The philosophy behind the design of ?..
RAISE tool set is to facilitate such a working style rather than to force a E>-.:

into unmanageable formality.

RAISE encourages developnent by application of correctness preserving era:.!:: :
mations, and allows for the developnent and verification of such t ra : isr , ::' :
tions. The choice of csing a specifically dosigned wide spectmr, is:..;'. . .
implies that most of a developnent can be carried out independentlr c : ::
perspective implementation language: only a final step in a developmmt w : . .
carry a detailed, operational design into code. Typically, the CP& : :

software system will therefore not exploit all the bells and whistles ;': :: , ,
implementation language; indeed, it is hoped that only rather w e 1 1 - i - > t , k : . , i ' L ' :

systems will then result.

In RAISE, Industrial hints not only at the above-mentioned pragnutic chc:I-t,-,
that should be catered for, but also at truly quality tools and nlan-mac-h:i:r
interfaces, usability of methodologies for "real" software systems, inclu,dLm;
the ability to obtain efficient end-products. In order to ensure confcrm.~n,-c~
with these requirements, the project has been designed to include a I;W.LX~L ' :
indus tr ia l t r i a l s , i .e. applications of (intermediate versions of) l L m , ~ ~ ~ < 3 . ; L :;,

methods and tools during the course of the project; such industrial trials c i ~ L .

to t ake place in actual industrial project:; not otherwise connected with m~si:.

c.4.7

5. Some Future Perspectives

At present, it is fair to say that the industrial use of formal methods in
Europe is beginning to happen. There is, though, still a long way to go. The
major obstacles we are facing are:

- insufficient matureness of formal methods
- lack of management awareness
- lack of educational material and capacity
- lack of tools

A nunber of projects have been mentioned which atterrlpt to seriously work towards
more mature formal methods, keeping the more pragmatic requirements to the p-
tential for industrial usage in focus. These projects were designed to bring o u t
the best of earlier formal methods, combined with the most recent advances i n
research. It is believed that the next 2 to 5 years will bring about radical
progress.

By the term "management awareness" we primarily think about first and second
level managers' willingness to allow or force formal methods to be introduced
into projects and divisions. The present, rather widespread conservatism is well
understandable: although a number of successful projects having employed fornnl
methods can be identified, it is, in all fairness, characteristic for s u c h
projects that they have been carried out in particularly friendly envir-
onments. Will formal methods actually port to "real" industrial environments?
The most important part of the answer, we belie\.e. ' s reflected in our rlt'xt
cc7nsern.

Availability of educational material and sufficient well-qualified personnel t 1,

aid in the introduction of new technology are invariably a major concern in m l '
situation of evolution, and indeed also for the introduction of formal metho(is.
However, we beleive that availability of text books, workshops, and courses i : i

not sufficient. It appears to be a general experience that the introduction O I

f o m l methods should happer, (1) in connection with a real project, (2) t , , ,

preceeded t-y intense education (not just training), and (3) -- crucially -- DI'
supported by on-project consultancy provided by experienced pract it ionel-s .

For the moment, few tools supporting formal methods are available. So, basicall).
experiences today have been painstakingly acquired using paper and k i d
scepticists may reasonably ask whether one can have more confidence in f o r n i l
specifications and designs not checked by tools than in programs not checked b y
a compiler. Nevertheless, projects based on 3 levels of paper-arid-pm-I 1
description (specificat ion, high-level and low-level designs) pteccwdin~j I 11:-
irrplemcntat ion have proved to come up with rather startling net: product i v i t !+

ficpres and low error r a t e s . With really good t-ools, we should tw able. t c) <i t)
even bet.ter. It is important to us, however, that method desiqn, under-:,t aiikiin,i
and exper i c n w preceed the const mct ion of tools.

F ' t n c i l .

C . 4 . 8

The Perspective for Ada and Formal Methods

Ada is prabably one of the most complicated programning languages ever designed.
The canplexity is clearly witnessed by the imnense amount of resources that has
been requird to bring about a reasonably debugged reference manual, compilers,
and so on.

The canplexity mainly stems fromthe rather large number of language concepts
and features and, in particular, their general interaction. ~n often-noted
prablem is, as an example, that concurrency (tasking) interfere with the
semantics of otherwise well-understood constructs such as function calls in d

rather non-transparent way: the effect of tasking is not clearly bound to t h e
syntax of Ada. It is to be fearedthat the complexity of Ada may impart 3

serious threat on the ability to construct and maintain correct and reliable
software systems. With the widespread acceptance of Ada as the preferred
programning language for military and space applications it is mre urgent thar.
ever to be serious about true engineering techniques and tools that will enable
industrial construction of correct and reliable software.

We believe that there are two (canplementary) lines of developnent to be
pursued: adoption of the transformational progrdng pradigm, and provicLr-4
usable techniques and tools for analysis (including verification) of pro3rzi-s.
These two lines will probably be effective at different points in time: altta-j,
powerful transformational programing systems are currently being developed, 1~

will invariably take some time before such systems cane into widespread use --
hence there is an extremely urgent need for providing tools that can assist i r
analysing Ada programs having been produced by mre traditional techniques.

If such tools are to be of an interesting quality they must be based on a fcrza:
understanding of Ada. It is hoped that the ccmpletion of the Draft Foms?
Definition of Ada [Hansen 86) will provide the necessary foundation.

c.4 .9

6. References

[Bauer 761 F.L. Bauer: "Pzvgramning as an Evolutianazy Process"; in:
Lecture Notes in C-er Science, Vol. 46, Springer Verlag ,
1976

[Bekic 741 H. Bekic et.al.: " A Formal Definition o f a P L / I Subse t":
IBM Vienna Laboratories TR25.139, December 1974

tBJ0rner 821 D. Blamer & C.B. Jones: "Fonnal s p e c i f i c a t i a n and S o f t w a r e
&velciycment"; Prentice-Hall International Series in Computer
Science, 1982

[BJ0rner 831 D. Bjrarner & S. Prehn: " S o f t w a r e E n g i n e e r i n g Aspects of UM':
in: D. Ferrari et.al. (eds.) : "Theory and Practice of Software
Technology", North-Holland Publishing Canpany 1983

[CIP 851 F.L. Bauer et.al.: "The M L r n i c h P r o j e c t CIP - Volume I: The
Wide spectrum Lenguage CIP-Ln; Lecture Notes in Canputer
Science, Vol. 183, Springer Verlag ,1985

[ESPRIT 861 "ESPRIT P r o j e c t Synopses , S o f t w a r e Technolcy"l: Cdssion of 0 the European Ccnmunities, January 1986

[Hansen 861 K.W. Hansen: " S t r u c t u r i n g the Formal Definitian o f Ada":
these proceedings

[Jones 801 C.B. Jones: " S o f t w a r e Developnent - A R i g o r o u s w r o a c h " :
Prentice-Hall International Series in Ccmputer Science, 1980

[Meiling 851 E. kiling et.al.: "R4ISE P r o j e c t : Rrndamental I s s u e s and
Requirements"; RAISE/DDC/EMl/v6, 1985-12-10; Darsk Datamat i k
Center, 1965

C.4.10

