——— - @ https://ntrs.nasa.gov/search.jsp?R=19890006939 2020-03-20T03:43:25+00:00Z

i&/~é/

55
ST a
N89-16310 7“7

pis 228

Automated Fortran Conversion

Gregory Aharonian
Source Translation & Optimization
P.0O. Box 404
Belmont, Ma 02178
617-489-3727

What to do with a million lines of Fortran code? Managers
at every major Fortran installation are asking this question
every day. Newer programming languages (C and ADA), and newver
computer architectures (parallel, data flow) pose a serious
dilemma., How will the algorithms and mathematical techniques 1in

tens of thousands of Fortran programs be moved to these
environments? Further, since no language will dominate the
science and engineering arena, another question arises. With

strained programmine staffs and budgets, how will algorithms be
maintained in multiple languages and architectures?

There are three solutions. The first is to hire additional
staff to translate programs across languages, to coordinate and
maintain large 1libraries of subroutines in the difieren:
languages using existing software tools. Most of the conversion
will be from Fortran to C and ADA, a project with many unresolved

. issues (in particular array handling). The solution is
unfeasible economically, when you consider the number of
combinations of environments (a language out of Fortran,C,ADA,any
other) with a new architecture (out of Cray, FPS, CSPI, Alliant,
etc.)., The staff requirements and overhead will be excessive,
even if you could find enough people willing to do the very
boring work of translating and maintaining software.

The second solution is to develop completely automatic
language translation programs, using all of the breakthroughs in
software engineering, language theory, and artificial
intelligence. The problems here are many. First noone has
developed an efficient automatic translation system., The few woun
the market either are not completely automatic, or produce verv
ugly and inefficient code. It is impossible for a computer (and
even many humans) to translate a piece of Fortran <code that
operates on different dimensioned arrays passed to the same
subroutine with some EQUIVALENCE and COMMON usage. Further vyou
don't want exact translations, Fortran programs were written
within the limitations of Fortran, when in the newer languages
the algorithms can be expressed more clearly and efficiently,

(] b.1.3.1

ORIGINAL PAGE 8
OF POOR QUALITY

N

The third, and most practical solution, which STO and a few
others have adopted, uses an intermediate language that is easy
to translate Fortran into, and allows for source code in others
languages to be generated automatically. The intermediate
language is the union of all other programming languages (and the
trick is to create a useful wunion) with some extensions that
reflect the nature of the algorithms, The benefits of this
approach are many. First the original Fortran program has to be
rewritten only once, and then only parts of the program; most
Fortran code passes through without any change (i.e. assignment
and simple IF statements). Software tools are provided to case
this initial translation. Once in the intermediate language, the
algorithm can then be obtained in any other language
automatically,

Some of the conversions (as options) include array indice
reversal (where A(B(C,D),E(F,G)) 1in Fortran becomes in ¢
A[E[{G][F]][B[D][C]}]), many precision support (constants appended
with EO,DO etc., subroutine and function names are suffixed,
ABSR, ABSD, ABSC), and insertion of timing/frequency analysis.
Manual conversion introduces errors, hindering the testing of the
translated programs,

Figure 1 shows an example of a subroutine from the Eispack
library in ten different languages., First, the subroutine s
rewritten in STO's intermediate language, and 1is shorter than
most of the final programs. Then, the subroutine is automatically
generated in the other languages (and back into Fortran). We
have successfully converted Linpack (and its test drivers), and
produced tested C, Pascal, Basic, and Fortran 77 versions (and if
anyone has compilers for other languages, we will provide the
code for verification).

What are the disadvantages of this approach? There are two
main problems, which are present even if you adopt another
solution to converting Fortran programs., The first problem s
that many of the newer languages are 1incapable of supporting
numerical algorithms as easily as Fortran does. Pascal does not
allow subroutines to accept arrays of different sizes, making
subroutine libraries all but impossible (actually some Pascal
compilers do, but there are at least two incompatible
implementations). Modula-2, a (weak) attempt to fix Pascal, also
doesn't allow subroutines to handle different sized multiple
dimensional arrays (only 1D). Neither Pascal nor Modula-2 allow
complex numbers (the suggested solution of using records and
turning arithmetic expressions 1into series of subroutine or

function calls being pathetic). These languages also provide
limited multiple precision support, and not the most useful
looping control structures., Modula has no GOTO, and while most
GOTOs can be removed from Fortran subroutines, some very

important subroutines have GOT(Os that are extremely difficult to
remove, At least in C and ADA you can use GOTOs for these tricky
subroutines (like the *INVIT algorithms in the Eispack library).
(. supports Fortran programs well; its only deficiency is the lack
of COMPLEX numbers used with +-%/ (hint ANSI committee!!!),

D.1.3.2

ORIGINAL PAGE 'S
OF POOR QUALITY

The other main problem arises with ADA. ADA has many
powerful capabilities that forces you to start from scratch to
fully take advantage of ADA. Generics, exceptions, and other
features can only be generated if the intermediate language is as
expressive as ADA, in which case just use ADA/DIANA to begin
with., Unfortunately there are many installations with millions
of lines of Fortran code that probably don't need all of the
power of ADA, in which case automated translation becomes
reasonable. Then languages like Occam (for parallel processing)
require additional design considerations (in this case to
efficiently use the parallel architecture).

At STO, we are undertaking a project to convert SLATEC to
multiple 1languages via the intermediate language; when
successful, packages such as Spice, Nastran, and Gaussian 84 will
be converted. These projects are quite important to the design
of the intermediate 1langauge in the translation challenges
provided. It is important to realize that the recoding 1is 4

small part of the translation process. Creating software
environments for multi-languag~ software maintenance is the more
critical task. To do so will require flexible software
generation programs, in particulay, ~se based on the use of an

intermediate language.

" " - — - T — = . - - —— > - —— -

The approach taken by STO and others (Boyle at Argonne,
Waters at MIT,de Maine at Auburn, Diana for ADA, Lexeme) of using
an intermediate language and associated software tools will allow
Fortran installations to move their Fortran programs into new
environments with minimal problems. While not a perfect
solution, it is 1less costly than having 1larger programming
staffs, and more realistic than relying on completely automatic
translators,

ORIGINAL PACE IS D.1.3.3
OF POOR QUALITY

PR RN, o AN T

| TYPE ARRAY1DR IS ARRAY (INTEGER RANGE <>) OF REAL;
TYPE ARRAY2DR IS ARRAY (INTEGER RANGE' <>,
‘ INTEGER RANGE ¢>) OF REAL;

PROCEDURE ORTRNR (N: IN INTEGER; LOW: IN INTEGER;
HIGH: IN INTEGER; A: IN ARRAY2DR;
ORT: IN OUT ARRAY1DR; Z: IN OUT ARRAY2DR)
I, J, KL, MM, MP, MP1: INTEGER ;
G: REAL
BEGIN

- EISPACK SUBROUTINE ORTRAN IN ADA

FOR J IN 1,..N LOOP
FOR I IN 1..N LOOP
Z(I,J) := 0.0E+0 ;
END LOOP
Z(J,J) := 1.0E+0 ;
END LOOP ;
KL := HIGH - LOW - 1 :
FOR MM IN 1..KL LOOP
MP :2 HIGH - MM
IF A(MP,MP - 1) \= 0.0E+0 THEN
MPl := MP + 1 ;
FOR I IN MP1..HIGH LOOP
ORT(I) := A(I,MP - 1)

END LOOP ;
. FOR J IN MP..HIGH LOOP

G := 0.0E+0 ;
FOR I IN MP..HIGH LOOP
G := G + ORT(I) * 2(I,J) :
END LOOP ;
G := (G / ORT(MP)) / A(MP,MP - 1) ;
FOR I IN MP..HIGH LOOP
2(1,J) := 2(I,J) + G * ORT(I) ;
END LOOP ;
END LOOP ;
END IF ;
END LOOP ;
END

D.1.3.4

ORTRND (N, LOW, HIGH, A, ORT, 2Z)
int N, LOW, HIGH ; .
double **p ; - .- .
double **Z, *QORT ;
{
int I, J, KL, MM, MP, MP1l ;

double G ;
%%/
/*
EISPACK SUBROUTINE ORTRAN IN C
. */
for (J = 1; J <= N; J +=1) |
for (I = 1; I <= N;j I +=1) {
. - 2[I]1[J} = 0.0E+0 ;
)

Z{JY{J] = 1.0E+0 ;

KL = HIGH - LOW - 1
for (MM = 1; MM <= KL; MM += 1) {
MP = HIGH - MM ;
if (A[MP]}[MP - 1] !'= 0.0E+0) {
MPl = MP + 1 ;
for (I = MPl; I <= HIGH; I += 1) |
ORT{I] = A[I]J[MP - 1) ;
}
for = MP; J <= HIGH; J += 1) {
0.0E+0 ;
(I = MP; I <= HIGH; 1 += 1){
G =G + ORT[I] * Z[I](J]

™o~
Lo T | T %

o
/ ORT(MP]) / A[MP}{MP - 1);

= (G
or (T = MP; I <= HIGH; I += 1)|
Z(1}{J) = Z[TI])[{J) + G * ORT(I];

Y~

)

D.1.3.5

OO0

190

210

290

340

380
390
400
410
411

SUBROUTINE ORTRND (N,LOW,HIGH,A,LDA,ORT,Z,LDZ)
INTEGER LDA, LDZ

INTEGER N, LOW, HIGH

DOUBLE PRECISION A(LDA,1)

DOUBLE PRECISION Z(LDZ,1), ORT(1)

INTEGER I, J, KL, MM, MP, MP1

DOUBLE PRECISION G

EISPACK SUBROUTINE ORTRAN IN FORTRAN

Do 2103 =1 ,
DO 190 I =
CONTINUE
Z(J,J) = 1.0D+0

CONTINUE

KL = HIGH - LOW - 1

IF (KL .LT. 1) GOTO 411

DO 410 MM = 1 , KL
MP = HIGH - MM
IF (A(MP - 1,MP) .EQ. 0.0D+0) GOTO 400

MPl = MP + 1
DO 290 I = MP1 , HIGH
ORT(I) = A(MP - 1,I)

B o—

., N
0.0D+0

CONTINUE
DO 390 J = MP , HIGH
G = 0.0D+0

DO 340 I = MP , HIGH
G =G + ORT(I) * Z(J,I)
CONTINUE
G = (G / ORT(MP)) / A(MP - 1,MP)
DO 380 I = MP , HIGH
Z(J,1) = 2(J,1) + G * ORT(I)
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN
END

D.1.3.6

PROCEDURE: ORTRNR ()
INTEGER ARG: N

INTEGER ARG: LOW
INTEGER ARG: HIGH

ANY ARG: A

ANY ARG: ORT/VAR
ANY ARG: Z/VAR

END PROCEDURE

PUBLIC:
PROCEDU

260 REM
262 REM
264 REM
266 REM
270 REM
320
340
360
380
400
420
440
459
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
821
8B40

ORTRNR
RE: ORTRNR
INTEGER : I, J, KL, MM, MF, MPI
REAL : G
EISPACK SUBROUTINE ORTRAN IN BASIC
FOR J = 1 TO N

FOR I =1 TO N
Z2(1,J) = 0.0E+0
NEXT
2(J,J) = 1.0E+0
NEXT
KL = HIGH - LOW - 1
IF KL < 1 THEN GOTO 821
FOR MM 1 TO KL
MP HIGH - MM
IF A(MP,MP - 1) = 0.0E+0 THEN 800
MPI = MP + 1
FOR 1 = MP1 TO HIGH
ORT(I) = A(I,MP - 1)
NEXT
FOR J
G
FO

MP TO HIGH

0.0E+0

{ = MP TO HIGH

= G + ORT(I) * Z(I1,J)

m
=3

(G/ORT(MP)) / A(MP,MP - 1)
I = MP TO HIGH
I,J) = 2(1,J) + G * ORT(I)

mno =
c
Nl >xOQ=n u

Z(
NEXT
NEXT
REM END OF IF BLOCK
NEXT
REM END OF 1F BLOCK
REM RETURN

END PROCEDURE

D.1.3.7

ORTRNR:

PN W < s < e e 1

PROC (N, LOW, HIGH, A, ORT, 2) ;

DCL (N, LOW, HIGH) FIXED BIN (15)

DCL A(*,*) FLOAT DEC (6) ;

DCL (Z(*,*), ORT(*)) FLOAT DEC (6);

DCL (I, J, KL, MM, MP, MP1) FIXED BIN (15);
DCL G FLOAT DEC (6);

/*
EISPACK SUBROUTINE ORTRAN IN PLI
*/
DU J =1 TO N ;
DOI =1 TO N ;
Z(1,J) = 0.0E+0 ;
END
2(J,J) = 1,0E40 ;
END
KL = HIGH - LOW - 1 ;
IF KL >= 1 THEN DO;
DO MM = 1 TO KL ;
MP = HIGH - MM ;
IF A(MP,MP - 1) t'= O0.0E+0 THEN DO;
MP1 = MP + 1
DO 1 = MPL TO HIGH
ORT(I) = A(I,MP - 1) ;
END
DO J = MP TO HIGH ;
G = 0.0E+0 ;
DO 1 = MP TO HIGH ;
C =G + ORT(1) * 2(1,J) :
END H
G = (G / ORT(MP)) / A(MP,MP - 1);
DO 1 = MP TO HIGH ;
2(1,1) = Z(1,J) + G * ORT(I);
END
END :
END
END
END
END ORTRNR ;

D.1.3.8

PROC ORTRNR (N, LOW, HIGH, A: ORT, Z); BEGIN

"

"

"nn

ITEM
ITEM
ITEM
TABL
TABL
TABL
ITEM
iTEM
ITEM
ITEM
ITEM
ITEM
ITEM

FOR

N S ;

LOW S ;
HIGH S ;
E A[*,*] F
E Z[*,*] F
E ORT[*] F

I35
J S ;
KL § ;
MM S
MP S ;
MP1 S
G ¥ ;

we we we

EISPACK SUBROUTINE ORTRAN IN JOVIAL"

J : 1 BY 1 WHILE J <= N ;BEGIN
FOR I : 1 BY 1 WHILE I <= N ;BE7IN
Z[{1,J] = 0.NE+0;

END;
2[J,J) = 1.0E+0;
END;
KL = HIGH - LOW - 13
IF KL >= 1; BEGIN
FOR MM : 1 BY 1 WHILE MM <= KL ;BEGIN
MP = HIGH - MM;
IF A[MP,MP - 1] <> 0.0E+0; BEGIN
MP1 = MP + 1;
FOR I : MP1 BY 1 WHILE I <= HIGH :BEGIN
ORT[I) = A[I,MP -~ 1]:
END;
FOR J ¢+ MP BY 1 WHILE J <= HIGH ;BEGIN
G = 0.0E+0;
FOR I : MP BY 1 WHILE I <= HIGH ;BEGIN
G =G + ORT[I]}) * 2[1,J);
END;
G = (G / ORT[MP]) / A[MP,MP - 1];
FOR I : MP BY 1 WHILE I <= HIGH ;BEGIN
Z2[1,J] = Z2[1,J] + G * ORT[1];
END;
END;
END
ND
[T {N;
END

D.1.3.9

LA RRRAR >gs
T & TNV, B VPRIt SR DATRANS 5 A NIATE S £ 480tar o

g TYPE ARRAYIDR = SUPER ARRAY [1..*] OF REALS;
‘ TYPE ARRAY2DR = SUPER ARRAY [1..*,1..*] OF REALS;

PROCEDURE ORTRNR (N:INTEGER; LOW:INTEGER;
HIGH:INTEGER:; VAR A:ARRAY2DR;
VAR ORT:ARRAYIDR; VAR Z:ARRAY2DR):
VAR I, J, KL, MM, MP, MPl: INTEGER ;

G: REAL8S ;
BEGIN
(*
EISPACK SUBROUTINE ORTRAN IN PASCAL
*)
FOR J := 1 TO N DO BEGIN
FOR I := 1 TO N DO BEGIN
2{1,J) := 0.0E+0 ;
END
2[(J,J] := 1.0E+0 ;
END ;
KL := HIGH - LOW - 1 ;
IF (KL >= 1) THEN BEGIN
FOR MM := 1 TO KL DO BEGIN
MP := HIGH - MM ;
IF (A{MP,MP ~ 1] <> 0.0E+0) THEN BEGIN
MPl := MP + 1 :
FOR I := MP1 1 HIGH DO BEGIN
ORT[TI]} := A[I,MP - 1]
‘.’ END ;
FOR J := MP TO HIGH DO BEGIN
G := 0.0E+0 ;
FOR 1 := MP TO HIGH DO BEGIN
G := G + ORT[I] * 2[1,J) ;
END ;
G := (G/ORT[MP]) / A[MP,MP - 1];
FOR I := MP TO HIGH DO BEGIN
Z2{1,J) := 2[1,J) + G * ORT([1];
END
END ;
END
END

END ;
END; {ORTRNR)

‘ D.1.3.10

CONST NEIG =
TYPE ARRAY1DR = ARRAY [1,.NEIG] OF REAL;
TYPE ARRAY2DR = ARRAY [1..NEIG,1..NEIG] OF REAL;

PROCEDURE ORTRNR (N:INT-; LOW:INT ; HIGH:INT;
A:ARRAY2DR; VAR ORT:ARRAYIDR;:
VAR Z:ARRAY2DR);

VAR I, J, KL, MM, MP, MP1l: INT ;

G: REAL
(*
EISPACK SUBROUTINE ORTRAN IN MODULA-2
*)
BEGIN

FOR J := 1 TO N DO
FOR I := 1 TO N DO
2[1,J] := 0.0E+0 ;
END ;
Z1J3,J] := 1.0E+0 ;
END ;
KL := HIGH - LOW - 1 ;
IF (KL >= 1) THEN
FOR MM := 1 TO KL DO
MP := HIGH - MM ;
IF (A[MP,MP - 1] <> O0.0E+0) THEN
MP1 := MP + 1 ;
FOR I := MP1 TO HIGH DO
ORT[I] := A[I,MP - 1] ;
END ;
FOR J := MP TO HIGH DO
G := 0.0E+0 ;
FOR I := MP TQ HIGH DO
G := G + ORT[1] * Z2[1,J]
END ;
G := (G /7 ORT[MP]) / A[MP,MP - 1)
FOR 1 := MP TO HIGH DO
Z[1,J]) := Z[I,J] + G * ORT[I)]
END ;
END
END ;
END ;
END ;

END

D.1.3.11

TS TEERRAYIDR <SEARRAY 1 S =OFSREAL

“TYPE ARRAY2DR : _ARRAY 1..%,1..% —OF —REAL
TSI MRSy (W 1Y . IR T . BErdm I,

X:KRRAY2ZDR, VAR ORT:ARRAYIDR,
VAR Z:ARRAY2DR)

VAR I, J, KL, MM, MP, MPl: _INT

G: “REAL
y 4
b4
§ EISPACK SUBROUTINE ORTRAN IN TURING
Z -
FOR_J : 1..N
FOR I : 1..N
- Z(I,J) := 0.0e+0
END FOR
- Z(J,J) := 1,0e+0
END FOR
KL := HIGH - _LOW - 1
“IF KL >= 1 “THEN
FOR MM : 1,.KL
MP := HIGH - MM _ -
IF A(MP,MP - 1) "NOT = 0.0e+0 “THEN
MP1 := MP + 1
FOR I : MP1..HIGH
. _ ORT(I) := A(I,MP - 1)
“END FOR
FOR J : MP..HIGH
G := 0.0e+0
FOR I : MP..HIGH
_ G := G + ORT(I) * 2(I1,J)
END FOR
G := (G/ORT(MP)) / A(MP,MP - 1)
FOR I : MP,.HIGH
_ 2(I,J) := 2(I,J) + G * ORT(I)
_ END FOR
END FOR
“END IF
“END FOR
“END IF
“END ORTRNR

ORIGINAL PACE 'S
OF POOR QUALITY

D.1.3.12

TN —
. | “PROC ORTRNR = (TINT N, “INT LOW, _INT HIGH,
[,) REAL A, "REF []_REAL ORT,
(_, - REF [,] REAL Z) "VOID:
_BEgIN
co
EISPACK SUBROUTINE ORTRAN IN ALGOL-68

o

_INT I, J, KL, MM, MP, MP1 ;
x _REAL G_; . _
. FOR_J "FROM 1 "TO N "DO _
"FOR I "FROM 1 "TO N DO
2{1,J] := 0.0e+0 ;
. oD ;
Z[J,J] := 1.0e+0 ;

KL := HIGH - LOW - 1 ;
IF KL "GE 1 “THEN
“"FOR MM "FROM 1 "TO KL DO
MP := HIGH - MM ;_
IF A[MP,MP - 1] "NE 0.0e+0 “THEN

MP1 := MP + 1 ; -
FOR I FROM MP1 TO HIGH DO
_ ORT[I]} := A[I,MP - 1] ;
_0D ; - -
FOR J "FROM MP "TO HIGH ~DO
.‘_ G := 0.0e+0

"FOR I “FROM MP "TO HIGH ~DO
G := G + ORT[I] * Z[I,J)

-

oD ;

G := (G/ORT[MP])_/ A[MP,MP - 1];
FOR T ~FROM MP “TO HIGH DO

Z[1,J) := Z[1,J] + G * ORT[I);

_ oD ;
- oD
_ FI
_0D
FI1
RETURN: ;

END

D.1.3.13

