L
+
View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

J67 0D 7

WWNé§;163Q§

Ada EDUCATION IN A SOFTWARE LIFE-CYCLE CONTEXT

Anne J. Clough
Ada Office
The Charles Stark Draper Laboratory, Inc.
555 Technology Square
Cambridge, Massachusetts 02139
(617) 258-2748

ABSTRACT |

This paper describes some of the experience gained to date from a
comprehensive educational program undertaken at The Charles Stark Draper
Laboratory to introduce the Ada' language and to transition modern soft-
"ore engi.neering technology into the development of Ada and non-Ada
applications. 1Initially, a core group, which included managers, engi-
neers and programmers, received training in Ada. An Ada Office was
established to assume the major responsibility for training, evaluation, ‘
acquisition and benchmarking of tools, and consultation on Ada projects.
As a first step in this process, an in-house educationa) program was

. undertaken to introduce Ada to the Laboratory. Later, a software engi-
neering course was added to the educational program as the need to
address issues spanning the entire software life cycle became evident.

Educational efforts to date will be summarized, with an emphasis on the
educational approach adopted. Finally, lessons we have learned in ‘
administering this program will be addressed.

Introduction

Early in 1984, a laboratory-wide committee was set up at the Charles
Stark Draper Laboratory, Inc. in Cambridge, Massachusetts, to assess the
impact of Ada and thc advances in software technology that this new
DoD-mandated language would impose on the development of software. As a ‘
result of recommendations of this committee and support of upper-level
management, a concerted effort is being undertaken to bring this tech-
nology in-house. A multi-level education and training program has been
set up, Ada products are being evaluated and procured, consulting and
support services are being provided as Ada projects become a reality at
the Laboratory. This paper will concentrate on the education and train-
ing efforts to date.

Ada is a registered trademark of the U.S. Government (Ada Joint Pro- |
gram Office).

ORIGINAL PAQE 'S D.1.5.1
OF POOR QUALITY

https://core.ac.uk/display/42829674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M TN)

R

At the heart of Draper's educational plan was the formation of a
small, highly motivated and qualified group of individuals responsible
for supporting the introduction of Ada technology throughout the Labora-
tory. A team of instructors from Raytheon/Mid-Atlantic Systems Facility
and Raytheon/Equipment Development Laboratories assisted in this effort.
Two courses were offered - a 16 to 20-hour Fundamentals of Ada tutorial
for managers and an B0-hour Designing and Programming with Ada course
for engineers and designers., Twenty managers and thirty
engineers/designers participated in this initial phase. This group,
chosen from a wide cross-section of projects in the Laboratory, contin-
ues to provide support to Ada activities. An Ada Advisory Committee
chosen from this core group provides essential advice, feedback and sup-
port to the overall effort.

In order to coordinate, plan and implement all Ada-related activ-
ities, an Ada Program Office was established. Education, training, and
the acquisition of basic tools were first priorities. Video courses and
computer-aided instructional aids were evaluated and purchased to sup-
plement more formal education. An in-house course was developed, and
compilers and other support tools were evaluated and acquired. In addi-
tion, the Ada Office has foilowed closely and participated in the larger
Ada community and publishes an Ada newsletter to keep the Draper techni-
cal staff informed of developments in this area. Figure 1 presents the
initial plan for the acquisition of Ada technology at the Laboratory,
and in fact, quite accurately describes what has happened during the
past two years.

Al AND
VI0EO
COURSES

EXTERNAL
CONSULTANTS
AND COURSES

SOF TWARE PROJECTS
AT CSOL

EDUCATE
START e==3>| CORE GROUP
ACTIVITY OF EXPERTS

NEW ADA
PROOUCTS

PROVIOE SUPPORT,
CONSULTING, AND
NEW PROOUCT
EVALUATION ANO
ACOQUISITION
FORM
LIk — ADA
ACTIVITY OFFICE
DEVELOP ADA TEACH
COURSES FOR IN-HOUSE ADA
CSOL SOF TWARE COURSES
PERSONNEL -
ADA
CONFERENCES
L NATIONAL
SYMPOSIA ADA
GROLPS
L ! L .
] 8 mantm Vovesr 2 veary

FIGURE 1. ADA TECHNOLOGY PLAN OVERVIEW

D.1.5.2

Developing an In-House Ada Curriculum

Because Ada is a very large language and at times complex, it was
felt that traditional training techniques might not prove adequate. A
three-tlered method was adopted which essentially takes a top-~down
approach to introducing the language. The first 'pass' through the lan-
guage presents an overall view. It concentrates on the need for a new
approach in developing software and presents the history, development
environment, and features of Ada. Initial exposure concludes with a
look at simple, but complete, examples. The second pass studies Ada's
features in more detail, but still does not emphasize syntax or grammar
rules, or the more obscure, difficult, or infrequently used aspects of
any language feature. A third and final pass then carefully examines
each feature in detail with sufficient time allowed for discussion,
questions, and programming practice.

In practice, this approach has proved to be very effective for
several reasons. First, because of the structure of the course, it is
possible for students to choose the level of participation desired.
Participants who attend the first portion of the course receive an over-
view of the goals and features of Ada. Administrators, for example,
of ten choose this level and find it appropriate for their purposes; they
can exit the course with a cohesive set of knowledge. Those attending
the first two segments of the course will learn to develop and recognize
high quality software design in Ada from a conceptual viewpoint, rather
than with an emphasis on detailed rules. This might be an appropriate
level of detail for software project managers. Those participating in
the entire course receive thorough hands-on training in the effective
use of Ada, an essential requirement for the software practitioner.

A second reason that this approach proved effective is the direct
result of the richness and complexity of the language. It is necessary

to understand language features at a high level. ''Why do we have this
feature?" '"How will it benefit me as a developer of software to be able
to use this feature? '"Where - in what context - will it be used?" If

the instructor is not careful to address these issues at the beginning,
it becomes very difficult to differentiate the forest from the trees, or
lose sight of the trees themselves while we focus on a small portion of
one tree. In addition, the very fact that we 'visit" a language feature
at least three times during the entire course makes the practitioner
Jyltimately comfortable with that feature. Initially, he/she may be
struggling with the concept itself ("just what js a generic?"), but
ultimately it becomes familiar and the software developer can begin to
realize and appreciate the extra capabilities that many of these unfa-
miliar Ada features provide to the developer.

Texbooks selected for this course are: '"Software Engineering with
Ada" by Grady Booch and 'Programming with Ada" by J. G. P. Barnes.
These are supplemented by pertinent articles and materials throughout
the course. The bibliography at the end of this paper lists some of the
materials that have been used both in this course and in a separate
software engineering course.

0.1.5.3

Homework is an integral part of the course. Students design and
implement Ada applications of increasing complexity as the course pro-
gresses, Though first sessions of the in-house course and the core
course that preceded it were hampered by the lack of a validated compil-
er or even a compiler that could handle the full Ada language, the
availability of a DEC VAX/VAX compiler now makes assignments more mcan-
ingful. Certainly hands-on work using a competent, tully-validated com-
piler is essential. Certificates are awarded to a! participants in the
course who satisfy homework requirements. This certificate is added to
their personnel records, thus providing more incentive to complete all
homework assignments and enabling the Laboratory to identify those staff
members with Ada expertise.

Sixty hours of instruction are required for the entire course.
Classes meet for 2 1/2 hours two mornings a week during working hours.
Three sessions of the entire course have been given - approximately 110
people have participated, 45 have completed the full course.

Developing a Software Engineering Curriculum

Ada education at Draper Laboratory is very definitely software engi-
neering with Ada. The emphasis throughout is on '"engineering' software
for large systems and all features are introduced and taught in that
context. Ada, of course, is unique in that it has been expressly
designed with features to encourage modern programming and software
engineering practices. Designed for portability and reuse, providing
effective encapsulation and data abstraction facilities, Ada has the
potential to substantially change the way software is produced. As
such, it is imperative that the importance of software design, the
development of an appropriate Ada style, and the proper use of this lan-
guage be emphasized in any Ada educational effort. Developing the '‘Ada
mind-set" is important. As emphasized by many Ada experts and practi-
tioners, a syntax-driven educational approach will not work and will
most likely produce poorly constructed programs, disappointing results,
and consequently negative feelings about the language itself. Software
engineering therefore becomes a priority in our educational efforts
throughout the entire Ada course, with each language feature discussed
within this context. In addition, special sessions deal with Ada as a
program design language, object-oriented design techniques, and investi-
gating whether or not, and how well, Ada does meet the goals of software
engineering.

Having emphasized that our Ada educational approach is heavily soft-
ware engineering driven, it is nevertheless necessary to assert that one
course cannot do it all. It is not possible to provide in a single
course of any reasonable length a complete treatment of Ada and a com-
prehensive treatment of software engineering at the same time. Nothing
less than changing the model of software design, development and mainte-
nance acquired from previous language experience will suffice. Each
sequential phase of the life cycle must be evaluated in terms of what

0.1.5.4

skills are required for effective and efficient production of software
and the proper use of Ada.

The Ada course introduced software engineering concepts that may not
have been consciously considered by students before that time. However,
the need for more software engineering knowledge became apparent. Jo
that end, comprehensive software engineering training, not foreseen in

the original Ada program plan, is being developed by the Ada Program
Office.

A software engineering course which deals with the entire life cycle
has been added to Draper's educational program. Topics ranging from
system definition, software costing and software standards to require-
ments analysis, design, testing, maintenance and configuration manage-
ment are covered. Tools that can aid or automate various portions of
the life cycle are presented.

The course was initially conceived as having a complete Ada orien-
tation, both because it grew out of the Ada course and because it is
being developed by the Ada Program office. However, widespread interest
in software engineering by both Ada and non-Ada software developers led
to a course that has both language-independent and Ada-dependent por-
tions.

An integral part of this course is a workshop that allows partic-
ipants to apply both software engineering principles and Ada implementa-
tion techniques to a real application as the course progresses. A space
station command and control problem, adapted from an application
designed and implemented for MITRE Corporation by a Boston University,
College of Engineering student team,? was used for this purpose. An
exercise had to be chosen that could be completed in a three-month time
span but yet would be interesting enough and challenging enough to moti-
vate the workshop members. Teams of approximately eight members each
are given the documentation that has resulted from the system definition
and scheduling phase of a project . This documentation is not complete;
therefore one of the first things each team must do is get back to the

“customers' -- (the instructors in this case) -- and fill in the gaps
that remain in the system description. Each team then develops the
application -- conducts requirements analysis, designs the software

architecture, does low-level algorithmic design, codes and tests the
solution. At this point, the two teams swap scftware and documentation,
and each verifies the other team's software. Since the application is
developed in Ada, the design portion of the course concentrates heavily
on design methodologies and techniques suitable for developing Ada
applications. Software requirements reviews, preliminary design
reviews, detailed design reviews as well as testing and final reports
are presented during regularly scheduled class sessions so that all mem-
bers of the class can benefit from seeing the application progress
through all stages of the life cycle.

2 Ruane, Michael F. and Vidale, Richard f., Assessing Ada: Implemen-
tation of IxmcaL_Lgmmand_and_LQmmJ_&QLme_f_ummm

0.1.5.5

e e

Each presentation of a life cycle topic is completed before the
workshop group begins work in that portion of the life cycle. (Classes
meet for 2-1/2 hours two mornings a week during working hours for thir-
teen weeks. The workshop then continues for an additional month at
which time the entire class reconvenrs to review testing and final
reports by the workshop participants. The workshop schedule mirrors a
30-30-15-25% life cycle model -- one month for requirements analysis,
one month for design, 2 weeks for coding and 3 weeks for testing.

As in the Ada course, members can choose their level of partic-
ipation consistent with their own requirements and schedules. A partic-
ipant can take part in the language independent portions only or in the
entire course with or without tne workshop. Exercises are provided so
that all participants, whether or not they are members of the workshop,
will gain experience applying the concepts that are presented. Certif-
icates will again be presented to indicate participation and fulfillment
of course requirements.

Lessons Learned -- Ada Education

A very pleasant outcome of the Ada effort thus far is an ever-grow-
ing group of people within the Laboratory who are being exposed to Ada
and who are becoming enthusiastic about the language. This group
includes people at all levels and across a wide variety of application
areas. Many were frankly skeptical initially and have been impressed by
Ada and its power and promise, especially in the area of the mission-
critical embedded systems that are an important part of the Laboratory's
activities.

At this point, we have had enough experience in Ada education that
we can begin to assess its effectiveness. We can ook critically at our
course materials and see where they have been succassful and where
improvement is needed. We listen carefully to the comments of our stu-
dents and attempt to tailor this course so that it meets our current and
future needs. Some of what we have learned in this process tollows.

In the Ada course, two areas of difficulty for the beginning student
have caused us to make adjustments in the presentation of course materi-
al. The first, the strong typing of Ada, which is initially frustrat-
ing, actually becomes one of the first pleasant surprises for the
student. Ada allows us, actually urges us, to define our own data
types. An object is given a type when it is declared. Thereafter, an
object's type is invariant throughout program execution. Values of one
type cannot be assigned to variables of another type. Standard opera-
tors cannot be used with variables of different types. For the student
accustomed to working with languages that do not have strong typing fea-
tures, this seems very restrictive and he is at least initially annoyed
every time the compiler flags a typing error and makes him explicitly
convert values from one type to another before an operation can be per-
formed or an assignmant statement can be executed. However, the first
time that the compiler catches a typing error that would have formerly

D.1.5.6

slipped through and become an elusive bug in a less strongly-typed lan-
guage, a new convert to strong typing is won.

The second difficulty for the new student involves the input/output
feature of Ada. This has necessitated more emphasis on input/output
early in the course in recognition that even simple programs need some
rudimentary I/0. Since input/output in Ada uses packages and generics
as well, 1/0 can be confusing and can seem needlessly awkward to a stu-
dent accustomed to working with a language with built-in input/output
facilities. Time spent familiarizing the student with exactly how this
works in Ada not only eases his frustrations but also provides him with
an example and model of an use of packages and generics. This can be
very helpful in understanding and using these concepts later on.

The problem of presenting topics in an optimum sequence is not a
trivial one, both in terms of maintaining class interest and applying
the concepts presented. As an example, in order to cover Ada types com-
pletely, much material must be presented. However, if some effort is
not made to disperse this material throughout the detailed portion of a
course, rather than present it in a single block, it will surely be dif-
ficult to maintain interest. The '"divide and eventually conquer'
approach to Ada's typing topics also benefits the student when derived
types are presented at enough distance from the concept of subtypes so
that the two do not become hopelessly muddled. An additional consider-
ation is that of allowing sufficient time to apply those features cov-
ered at the end of any course. This can be a serious prcolem if tasking
is the last topic presented as is the case in many Ada curriculums.
Since most programmers tend to think in a sequential manner and tend to
have the most difficulty dealing with concurrency and the issues concur-
rency raises, putting this topic to the end of a course will not give
the student sufficient time to apply these new concepts. Not only will
students be unable to appreciate Ada's tasking facility, but they will
also have real hesitancy to use this feature at all when beginning to
design systems in Ada.

We have found that students at all levels want more complete and
concrete examples of good Ada systems. '"Real' work-related examples are
especially helpful. The experienced programmer wants to concentrate on
the unique features of Ada -- he prefers to learn on his own the simple
statements, constructs and expressions that are similar to those found
in most high order languages. Students would like each Ada construct to
be accompanied by many examples of its use -- the Language Reference
Manual syntax format supplemented by many more examples would be usefu!.
The Ada-unique packaging and generic features have proven to be accessi-
ble to most students who very quickly perceive their power and begin to
use these features effectively. Exception handling, and the way Ada
implements it, always initiates lively discussion. While quite valid
concerns about the misuse of this feature are often expressed, students
soon produce code that uses the exception handling feature effectively.

Tasking is perhaps the most difficult feature for new students of
Ada. Many traditional languages do not have features that allow paral-
lel processing. Because of this, most programmers have a great dea! of
experience -- or all of their experience -- in sequential programming.

D.1.5.7

RS ,-m‘*":‘-ﬁ@éfdfﬂﬁwv#ﬁmv:ﬁmme.w;:,» et gt

This lack of experience in programming concurrent processes, coupled
with the unique problems that can arise such as deadlock, starvation and
timing considerations, make this feature a difficult one to both teach
and learn. It has been necessary to expand this portion of the curric-
ulum. A tool developed at Draper, which graphically shows tasks operat-
ing concurrently and explicitly shows such things as actuation,
suspension of tasks, rendezvous, and termination, has helped the educa-
tional effort in this area. However, an advanced Ada course which would
concentrate in large part on tasking should perhaps be considered.

Lessons Learned -- Software Engineering Education

Although we have not had as much experience with the software engi-
neering course as with Ada education, the first session of this course
has been very successful. Participation, as has also been the case in
our Ada educational efforts, has included a wide cross-section of the
Laboratory both in terms of application areas and job level. Managers
are participating both in the course and in the workshop, as are entry-
level engineers and programmers. A great deal of enthusiasm centers
around the workshop approach as this provides a convenient mechansim to
apply techniques and tools discussed in class in an essentially ''no-
risk'" situation. There is a great deal of learning that takes place in
the workshop groups, as people with diverse backgrounds and experience
are taking part. In the classroom as well, much information exchange is
taking place and a wide range of expertise is being tapped. This combi-
nation has resulted in a very effective learning forum. The Ada Program
Office is coordinating the course and supplying most of the instruction;
however, a number of presentations given by experts both within the Dra-
per community and outside as well, have greatly enhanced the course
offerings. Through the very active participation of its members, all
participants in the course are being challenged to think about the way
they are currently developing software. In addition, any new methods
being presented, whether they be requirements analysis, design or test-
ing methods, are subjected to the most rigorous scrutiny. "Will this
method work as advertised by its proponents?'" "Will it work in the type
of application that I develop?"

As mentioned earlier, participants can choose their own level of
participation. Though course developers had assumed that members who
had no familiarity with Ada would choose to participate in the lan-
guage-independent portions only, in actuality most members have opted
for the entire course. Because of this, several sessions were added to
familiarize non-Ada participants with Ada's unique features. An unex-
pected side effect appears to be a group of people interested in regis-
tering for our next Ada course.

Have we presented these two courses in the correct order? Shouldn't
a software engineering course precede a course in Ada? Although this
will be the case for the group of people just mentioned, in general, the
opposite approach has worked quite well. First of all, the Ada course
has a good amount of software engineering content. In addition, having

D.1.5.8

the majority of course participants conversant with Ada has enabled us
in this second course to consider a number of design methodologies
uniquely suited to Ada, has enabled us to conduct a non-trivial workshop
in Ada and has allowed us to deal with some of the more advanced and
difficult aspects of the language, especially in the tasking area.

Future Plans

As Ada applications continue to be introduced into the Laboratory,
the Ada Program Office will continue its efforts in education and its
efforts to provide a more supportive programming environment. In Ada
itself, an advanced course concentrating heavily on the tasking aspects
of the language and providing more guidance on developing embedded
applications may need to be added to the curriculum alreadv developed.
Utilizing the low-level features of the Ada language may need closer
examination as well. For the course already ''on the shelf,'" tuning and
tailoring for Oraper's particular requirements will be a continuing pro-
cess, The top-down, three-level approach has proved quite effective.
Perhaps a separate course for administrators or a separate course for
managers will need to be given at some point in the future -- our essen-
tially modular approach would make that very easy to prepare. Continu-
ing seminars sponsored by the Ada office provide an opportunity for
those who will not be using Ada immediately to keep their Ada skills up
to date and enable those presently involved in Ada applications to keep
informed about new Ada methodologies, techniques and tools.

Software engineering will continue to be emphasized. Growing inter-
est within the Laboratory ensures 3 repetition of the software engineer-

ing course discussed in this paper. In future sessions, different
applications may be given to each team so that, in the testing phase,
teams can test applicaticns that they have not developed. Since the

major thrust of the software engineering course is on the requirements
analysis, design, implementation and testing portions of the life cycle,
further courses or intensive seminars could be added on the system defi-
nitian and scheduling phase. The software planning phase and software
cost analysis could be covered ir more detail. Review techniques, main-
tenance, security and configuration management are other possible topics
for future in-depth coverage. Possibilities for further growth in
training and education surely exist.

Conclusions

Experiences in education and training at Draper Laboratory iltus-
trates the effectiveness and long-term benefit of establishing an in-
house capability in this area. Many training offerings are available
that provide intensive, short-term training in Ada; fewer offerings are
available in software engineering. The long-term effect of some of
these offerings is often questionable. Certainly a five-day or two-week

D.1.5.9

B e

intensive "hands-on" approach to teaching Ada will not really allow stu-
dents to either become comfortable with the new concepts presented or to
grapple with the more difficult issues. A course spread over a longer
period of time -- our courses traditionally have a 3-4 months span -~
allow the student time to assimilate new ideas, raise questions and most
importantly get real hands-on experience with non-trivial applicatio?s.
In addition, having in-house support for Ada and software engineering
ensures that, long after a course has been completed, the instructor or
instructors are available for consultation and assistance. This latter
advantage cannot be overemphasized when new technology is being intro-
duced if the desire is to truly assimilate and integrate that technology
into the software development process.

D.1.5.10

-

BIBLIOGRAPHY

10.

1.

12.

13.

14.

15.

16.

Albrecht and Gaffney, "“Software Function, Source Lines of Code and
Development Effort Prediction: A Software Science Validation', IEEE
, Vol. SE-9, No. 6, November

1 983. PP. 639-648.

Ausnit, Cohen, Goodenough & Eanes, '"Ada in Practice', Springer-Ver-
log, 1985.

“"An Object Oriented Design Handbook for Ada Software', EVB Software
Engineering, Inc., 1985,

Barnes, J.G.P., "Programming in Ada'", Addison-Wesley Publishing Co.,
1984.

Boehm, B., "Software Engineering Economics', Prentice-Hall, 1981.

Boehm-Bavis & Ross, ''"Approaches to Structuring the Software Develop-
ment Process', General Electric Companry, October, 1984.

Booch, Grady, '"Software Engineering with Ada", B8enjamin/Cummings
Publishing Company, Inc., 1983.

Brooks, Frederick, "The Mythical Man-Month", Addison-Wesley Publish-
ing Company, 1975.

Buhr, R.J.A., "System Design with Ada", Prentice-Hall, Inc., 1984.

Fairley, Richard, '"Software Engineering Concepts', McGraw Hill Book
Company, 1985.

Freeman & Wasserman, "Tutorial on Software Design Techniques', IEEE
Computer Society Press, 4th Edition.

Helmbold & Luckham, "TSL: Task Sequencing Language', Proceedings of
the Ada Interpational Conference, 1985, Cambridge University Press,
Cambridge, pp. 255-274.

Mardrioli, Zicari, Ghezzi and Tisato, '"Modeling the Ada Task System

by Petri Nets', Computer lLanguage, Vol. 10, No. 1, pp. 43-61, 1985,

Myers, Glenford, "The Art of Software Testing', John Wiley & Sons,
1979,

Pressman, Roger S., 'Software Engineering: A Practitioner's
Approach', McGraw-Hil) Book Company, 1982.

Ruane, Michael F. & Vidale, Richard F., "Assessing Ada: Implementa-

tion of Typical Command and Control Software', Boston University,
College of Engineering, Boston, MA, 18984.

D.1.5.11

17.

18.

19,

20.

go:o .zmmﬁmﬂmfm@w&“-:-),-?'.':54; P

Snaufer, Joseph B., "Practical Guidelines for Testing Ada Programs",
Master's Thesis, Arizona State University, 1985.
Szulewski & Sodano, "Design Matrics and Ada",

Proceedings of the 1st
., Sponsored by ACM, 1884, pp.
105-114.

Wegner, Peter, "Self-Assessment Procedure VIII", Communications of
the ACM, Vol. 24, No. 10, October, 1981.

Weiner & Sinovec, '"Software Engineering with Modula-Z and Ada",
Wilay & Sons, 1984,

YIDEQ TAPES

1.

2.

Ichbiah, Barnes and Firth on Ada, Alsys, Inc., 1984.

Software Engineering Training Curriculum, R.S. Pressman &
Associates, Inc., 1985.

Lessons on Ada, Volume I and II, Alsys, 1983 and 1984.

D.1.5.12

B T L NS S RIT [EIEC TR . e

