
Ada EDUCATION IN A SOFTWARE LIFE-CYCLE CONTEXT

Anne J. Clough
Ada O f f Ice

The Charles Stark Draper Laboratory, Inc.
555 Technology Square

Cambridge, Hassachurtttr 02139
(61 7) 258-2748

ABSTRACT

T h i s paper d e s c r i b e s some of t h e e x p e r i e n c e g a i n e d t o d a t e f rom a
comprehensive e d u c a t i o n a l program under taken a t The Char les S t a r k Draper
L a b o r a t o r y t o i n t r o d u c e t h e Ada’ language and t o t r a n s i t i o n modern s o f t -
‘,‘“re eng I neer i ng techno logy i n t o t h e development o f Ada and non-Ada
a k p l i c a t i o n s . I n i t i a l l y , a c o r e group, w h i c h i n c l u d e d managers, e n g i -
n e e r s and programmers, r e c e i v e d t r a i n i n g i n Ada. An Ada O f f i c e was
e s t a b l i s h e d t o assume t h e ma jo r r e s p o n s i b i l i t y f o r t r a i n i n g , e v a l u a t i o n ,
a c q u i s i t i o n and benchmarking of t o o l s , and c o n s u l t a t i o n on Ada p r o j e c t s .
As a f i r s t s t e p i n t h i s process, an in-house e d u c a t i o n a l program was
u n d e r t a k e n t o i n t r o d u c e Ada t o t h e L a b o r a t o r y . L a t e r , a s o f t w a r e e n g i -
n e e r i n g c o u r s e was added t o t h e e d u c a t i o n a l program as t h e need t o
add ress i s s u e s spanning t h e e n t i r e s o f t w a r e l i f e c y c l e became e v i d e n t .
E d u c a t i o n a l e f f o r t s t o d a t e w i l l be summarized, w i t h an emphasis o n t h e
e d u c a t i o n a l cpproach adopted. F i n a l l y , l essons we have l e a r n e d i n
a d m i n i s t e r i n g t h i s program w i l l be addressed.

I n t r o d u c t i o n

E a r l y i n 1984, a l a b o r a t o r y - w i d e commit tee was s e t u p a t t h e Charles
S t a r k Draper L a b o r a t o r y , I n c . i n Cambridge, Massachuset ts , t o assess t h e
impact of Ada and t h e advances i n s o f t w a r e techno logy t h a t t h i s new
DoD-mandated language would impose o n t h e development of s o f t w a r e . As a
r e s u l t o f recommendations of t h i s commit tee and s u p p o r t o f u p p e r - l e v e l
management, a c o n c e r t e d e f f o r t i s b e i n g u n d e r t a k e n t o b r i n g t h i s t e c h -
n o l o g y in-house. A m u l t i - l e v e l e d u c a t i o n and t r a i n i n g program has been
s e t up, Ada p r o d u c t s a r e b e i n g e v a l u a t e d and p rocu red , c o n s u l t i n g and
s u p p o r t s e r v i c e s a r e b e i n g p r o v i d e d as Ada p r o j e c t s become a r e a l i t y a t
t h e L a b o r a t o r y . T h i s paper w i l l c o n c e n t r a t e on t h e e d u c a t i o n and t r a i n -
i n g e f f o r t s t o da te .

Ada i s a r e g i s t e r e d trademark of t h e U . S . Government (Ada J o i n t P ro -
gram O f f i c e) .

0.1 .5 .1

https://ntrs.nasa.gov/search.jsp?R=19890006941 2020-03-20T03:43:39+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42829674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

:..

sma 1
for

At the heart of Draper's educational plan was the formation of a
1 , highly motivated and qual if ied group of individuals responsible
supporting the introduction of Ada technology throughout the Labora-

tory. A team of instructors from Raytheon/tiid-Atlantic Systems Faci 1 i ty
and Raytheon/Equipment Development Laboratories assisted in this effort.
Two courses were offered - a 16 to 20-hour Fundamentals of Ada tutorial
for managers and an 80-hour Designing and Programming with Ada course
for engineers and designers. Twenty managers and thirty
engineers/designers participated in this initial phase. This groupI
chosen from a wide cross-section of projects in the Laboratory, contin-
ues to provide support to Ada activities. An Ada Advisory Committee
chosen from this core group provides essential advice, feedback and sup-
port to the overall effort.

In order to coordinate, plan and implement all Ada-related activ-
ities, an Ada Program Office was established. Education, training, and
the acquisition of basic tools were first priorities. Video courses and
computer-aided instructional aids were evaluated and purchased to s u p
plement more formal education. An in-house course was developed, and
compilers and other support tools were evaluated and acquired. In addi-
tion, the Ada Office has followed closely and participated in the larger
Ada community and publishes an Ada newsletter to keep the Draper techni-
cal staff informed of developments in this area. Figure 1 presents the
initial plan for the acquisition o f Ada technology at $he Laboratory,
and in fact, quite accurately describes what has happened during the
past two years.

A N 0 COURSES

S O F X A R E ?nOJ€C-
A 1 CSDC

E V A L U A l I O N A N 0
ACOUISlTlON

DEVELOP A D A
C W I S E S 6 0 1

C E l S O N N f L
CSDL S o r w A R E counscs

-
I I I I
0 6 m m m I "..I 2 *..n

rIGURE 1. ADA TECHU%OGV ?LbN O V E R V I E W

D . l . 5 . 2

Daveloping an In-House Ada Currlculun

Because Ada is a very large language and at times complex, i t was
felt that tradltional trainlng techniques might not prove adequate. A
three-tiered method was adopted which essentially takes a top-down
approach to introducing the language. The first "pass" through the lan-
guage presents an overall view. It concentrates on the need for a new
approach in developing software and presents the history, development
environment, and features of Ada. Initial exposure concludes with a
look at simple, but complete, examples. The second pass studies Ada's
features in more detail, but still does not emphasize syntax or grammar
rules, or the more obscure, difficult, or infrequently used aspects of
any language feature. A third and final pass then carefully examines
each feature in detail dith sufficient time allowed for discussion,
questions, and programming practice.

In practice, this approach has proved to be very effective for
several reasons. First, because of the structure of the course, it i s
possible for students to choose the level of participation desired.
Participants who attend the first portion of the course receive an over-
view of the goals and features of Ada. Administrators, for example,
often choose this level and find it appropriate for their purposes: they
can exit the course with a cohesive set of knowledge. Those attending
the first two segments of the course will learn to develop and recognize
high quality software design in Ada from a conceptual viewpoint, rather
than with an emphasis on detailed rules. This might be an appropriate
level of detail for software project managers. Those participating in
the entire course receive thorough hands-on training in the effective
use of Ada, an essential requirement for the software practitioner.

A second reason that this approach proved effective is the direct
result of the richness and complexity of the language. It is necessary
to understand language features at a high level. "Why do we have this
feature?" "How will it benefit me as a developer of software to be able
to use this feature? "Whare - in what context - will it be used?" If
the instructor is not Careful t o address these issues a t t h e beginning.
it becomes very difficult to differentiate the forest from the trees, or
lose sight of the trees themselves while we focus on a small portion o f
one tree. In addition, the very fact that we "visit" a language feature
at least three times during the entire course makes the practitioner
ultimately comfortable with that feature. Initially, he/she may be
struggling with the concept itself ("just what a generic?"), but
ultimately it becomes familiar and the software developer can begin to
realize and appreciate the extra capabilities that many of these unfa-
miliar Ada features provide to the developer.

Texbooks selected for this course are: "Software Engineering with
Ada" by Grady Booch and "Programming with Ada" by J . G. P . Barnes.
These are supplemented by pertinent articles and materials throughout
the course. The bibliography at the end of this paper lists some of the
materials that have been used both in this course and in a separate
software engineering course.

0 .1 .5 .3

Homework is an integral part of the Course. Students design and
implement Ada applications of increasing complexity as the course Pro-
gresses. Though first sessions of the in-house course and the core
course that preceded it were hampered by the lack of a validated compil-
er or even compiler that could handle the full Ada language, the
availability Of a DEC VAX/VAX compiler now makes assignments more moan-
ingful. Certainly hands-on work using a competent, t~lly-validated com-
piler Is essential. Certificates are awarded to a ! ' participants in the
course w h o Satisfy homework requirements. This certificate is added to
their Personnel records, thus providing more incentive to complete all
homework assignments and enabling the Laboratory to identify those staff
members with Ada expertise.

Sixty hours of instruction are required for the entire course.
Classes meet for 2 1/2 hours two mornings a week during working hours.
Three sessions of the entire course have been given - approximately 110
people have participated, 45 have completed the full course.

Developing a Software Engineering Curriculum

Ada education at Draper Laboratory is very definitely software
neerirlg with Ada. The emphasis throughout is on "engineering" software
for large systems and all features are introduced and taught in that
context. Ada, of course, is unique in that it has been expressly
designed with features to encouraze modern programming and software
engineering practices. Designed for portability and reuse, prOviding
effective encapsulation and data abstraction facilities, Ada has the
potential to substantially change the way software is produced. As
such, it is imperative that the importance of software design, the
development of an appropriate Ada style, and the proper use of this lan-
guage be emphasized in any Ada educational effort. Developing the "Ada
mind-set" is important. As emphasized by many Ada experts and practi-
tioners, a syntax-driven educational approach will not work and will
most likely produce poorly constructed programs, disappointing results,
and consequently negative feelings about the language itself. Software
engineering therefore becomes a priority in our educational efforts
throughout the entire Ada course, with each language feature discussed
within this context. In addition, special sessions deal with Ada as a
program design language, object-oriented design techniques, and investi-
gating whether or not, and how well, Ada does meet the goals of software
engineering.

Having emphasized that our Ada educational approach is heavily soft-
ware engineering driven, it is nevertheless necessary to assert that one
course cannot d o it all. It is not possible to provide in a single
course of any reasonable length a complete treatment of Ada and a com-
prehensive treatment of software engineering at the same time. Nothing
less than changing the model of software design, development and mainte-
nance acquired from previous language experience will suffice. Each
sequential phase of the life cycle must be evaluated in terms of what

D . 1 .5.4

skills are required for effective and efficient production of software
and the proper use of Ada.

The Ada course introduced software engineering concepts that may not
have been conscloutly considered by students before that time. However,
the need for w software engineering knowledge became apparent. To
that end, comprehensive software engineering training, not foreseen in
the original Ada program plan, is being developed by the Ada Program
Off ice.

A software engineering course which deals with the entire life cycle
has been added to Draper's educational program. Topics ranging from
system definition, software costing and software standards to require-
ments analysis, design, testing, maintenance and configuration manage-
ment are covered. Tools that can aid or automate various portions of
the life cycle are presented.

The course was initially conceived as having a complete Ada orien-
tation, both because it grew out of the Ada course and because it is
being developed by the Ada Program office. However, widespread interest
in software engineering by both Ada and non-Ada software developers led
to a course that has both language-independent and Ada-dependent por-
tions.

An integral part of this course is a workshop that allows partic-
ipants to apply both software engineering principles and Ada implementa-
tion techniques to a real application as the course progresses. A space
station command and control problem, adapted from an aDplication
designed and implemented for MITRE Corporation by a Boston University,
College of Engineering student team,2 was used for this purpose. An
exercise had to be chosen that could be completed in a three-month time
span but yet would be interesting enough and challenging enough to moti-
vate the workshop members. Teams of approximately eight members each
are given the documentation that has resulted from the system definition
and scheduling phase of a project . This documentation is not complete;
therefore one of the first things each team must do is get back to the
"customers" -- (the instructors in this case) -- and f i 1 1 in the gaps
that remain in the system description. Each team then develops the
application -- conducts requirements analysis. designs the software
architecture, does low-level algorithmic design, codes and tests the
solution. A t this point, the two teams swap Software and documentation,
and each verifies the other team's software. Since the application is
developed in Ada, the design portion of the course concentrates heavily
on design methodologies and techniques sui table for developing Ada
applications. Software requirements reviews, preliminary design
reviews, detailed design reviews as well as testing and final reports
are presented during regularly scheduled class sessions so that all mem-
bers of the class can benefit from seeing the application progress
through all stages of the life cycle.

2 Ruane, Michael F . and Vidale. Richard F . . m s s i n a M a : 1-
on o f TYDiCal C o m m a n d r t o n t r o l Soft-.

0 . 1 . 5 . 5

Each presentat ion of a l i f e cyc le top ic i s comp le ted b e f o r e t h e
workshop g r o u p begins work i n t h a t port ion of t h e l i f e c y c l e . C lasses
meet for 2-1/2 hours two morn ings a week d u r i n g w o r k i n g h o u r s f o r t h i r -
teen weeks. The workshop t h e n continues fo r an add i t i o n a l month a t
which t i m e t h e e n t i r e c l a s s r e c o n v e n r . ~ t o r e v i e w t e s t i n g and f i n a l
r e p o r t s b y the workshop p a r t i c i p a n t s . The workshop schedu le m i r r o r s a
30-30-13-25% 1 i f e c y c l e model -- one month f o r r e q u i r e m e n t s a n a l y s i s ,
one month for des ign , 2 weeks f o r c o d i n g and 3 weeks f o r t e s t i n g .

As i n t h e Ada course, members can choose t h e i r l e v e l o f p a r t i c -
i p a t i o n cons is tent w i t h the i r own r e q u i r e m e n t s and schedu les . A p a r t i c -
i p a n t c a n t a k e p a r t i n t h e language independent p o r t i o n s o n l y or i n t h e
e n t i r e c o u r s e w i t h or w i t h o u t t i l e workshop. E x e r c i s e s a r e p r o v i d e d so
t h a t a l l p a r t i c i p a n t s , whether or n o t t h e y a r e members o f t h e workshop,
w i l l g a i n e x p e r i e n c e a p p l y i n g t h e concep ts t h a t a r e p resen ted . C e r t i f -
i c a t e s w i l l a g a i n be p r e s e n t e d t o i n d i c a t e p a r t i c i p a t i o n and f u l f i l l m e n t
o f c o u r s e r e q u i r e m e n t s .

Lessons Learned -- Ada E d u c a t i o n

A v e r y p l e a s a n t outcome o f t h e Ada e f f o r t t hus f a r i s an ever-grow-
i n g g r o u p of p e o p l e w i t h i n t h e L a b o r a t o r y who a r e b e i n g exposed t o Ada
and who a r e becoming e n t h u s i a s t i c about t h e language. T h i s g roup
i n c l u d e s p e o p l e a t a l l l e v e l s and ac ross a w ide v a r i e t y o f a p p l i c a t i o n
a reas . Many were f r a n k l y s k e p t i c a l i n i t i a l l y and have been impressed by
Ada and i t s power and promise, e s p e c i a l l y i n t h e a rea o f t h e m i s s i o n -
c r i t i c a l embedded systems t h a t a r e an i m p o r t a n t p a r t o f t h e L a b o r a t o r y ' s
a c t i v i t i e s .

A t t h i s po in t , we have had enough e x p e r i e n c e i n Ada e d u c a t i o n t h a t
we c a n b e g i n t o assess i t s e f f e c t i v e n e s s . We can l o o k c r i t i c a l l y a t our
c o u r s e m a t e r i a l s and see where they have been s u c c ? s s f u l and where
improvement i s needed. We l i s t e n c a r e f u l l y t o t h e commerb+s o f ou r s t u -
d e n t s and a t t e m p t t o t a i l o r t h i s course so t h a t i t meets OUI c u r r e n t and
f u t u r e needs. Some of what we have l e a r n e d i n t h i s p rocess t o l l o w s .

I n t h e Ada cou rse , two areas o f d i f f i c u l t y f o r t h e b e g i n n i n g s t u d e n t
have caused u s t o make ad jus tmen ts i n t h e p r e s e n t a t i o n o f cou rse m a t e r i -
a l . The f i r s t , t h e s t r o n g t y p i n g o f Ada, wh ich i s i n i t i a l l y f r u s t r a t -
i n g , a c t u a l l y becomes one o f t h e f i r s t p l e a s a n t s u r p r i s e s f o r t h e
s t u d e n t . Ada a l l o w s us, a c t u a l l y u r g e s us, t o d e f i n e ou r own d a t a
t y p e s . An o b j e c t i s g i v e n a t y p e when i t i s d e c l a r e d . T h e r e a f t e r , an
o b j e c t ' s t y p e i s i n v a r i a n t t h roughou t program e x e c u t i o n . Values o f one
t y p e canno t be ass igned t o v a r i a b l e s o f ano the r t ype . S tandard opera -
t o r s canno t be used w i t h v a r i a b l e s o f d i f f e r e n t t ypes . For t h e s t u d e n t
accustomed t o w o r k i n g w i t h languages t h a t do n o t have s t r o n g t y p i n g f e a -
t u r e s , t h i s seems v e r y r e s t r i c t i v e and he i s a t l e a s t i n i t i a l l y annoyed
eve ry t i m e t h e c o m p i l e r f l a g s a t y p i n g e r r o r and makes h im e x p l i c i t l y
c o n v e r t v a l u e s from one t y p e t o ano the r b e f o r e an o p e r a t i o n can be p e r -
formed o r an ass ignment s ta temen t can be executed. However, t h e f i r s t
t i m e t h a t t h e c o m p i l e r ca tches a t y p i n g e r r o r t h a t would have f o r m e r l y

D.1 . 5 .6

L

s l i p p e d through and become an e l u s i v e bug i n a l e s s s t r o n g l y - t y p e d l a n -
guage. a new c o n v e r t t o s t r o n g t y p i n g i s won.

The second d i f f i c u l t y for t h e new s t u d e n t i n v o l v e s t h e i n p u t / o u t p u t
f e a t u r e of Ada. T h i s has n e c e s s i t a t e d more emphasis o n i n p u t / o u t p u t
e a r l y i n t h e c o u r s e i n r e c o g n i t i o n t h a t even s i m p l e programs need some
r u d i m e n t a r y I/O. S i n c e input/output i n Ada uses packages and g e n e r i c s
as w e l l , I/O can be c o n f u s i n g and can seem n e e d l e s s l y awkward t o a s t u -
d e n t accustomed t o w o r k i n g w i t h a language w i t h b u i l t - i n i n p u t / o u t p u t
f a c i l i t i e s . Time spen t f a m i l i a r i z i n g t h e s t u d e n t w i t h e x a c t l y how t h i s
works i n Ada not o n l y eases h i s f r u s t r a t i o n s b u t a l s o p r o v i d e s h im w i t h
a n example and model o f a n use o f packages and g e n e r i c s . T h i s can be
v e r y h e l p f u l i n u n d e r s t a n d i n g and u s i n g these concep ts l a t e r on.

The p rob lem of p r e s e n t i n g t o p i c s i n an optimum sequence i s n o t a
t r i v i a l one, both i n terms o f m a i n t a i n i n g c l a s s i n t e r e s t and a p p l y i n g
t h e c o n c e p t s p resen ted . As a n example, i n o r d e r t o cove r Ada t y p e s com-
p l e t e l y , much m a t e r i a l must be p resen ted . However, i f some e f f o r t i s
not made t o d i s p e r s e t h i s m a t e r i a l t h roughou t t h e d e t a i l e d p o r t i o n o f a
course, r a t h e r t h a n p r e s e n t i t i n a s i n g l e b l o c k , i t w i l l s u r e l y be d i f -
f i c u l t t o m a i n t a i n i n t e r e s t . The " d i v i d e and e v e n t u a l l y conquer"
approach t o Ada's t y p i n g t o p i c s a l s o b e n e f i t s t h e s t u d e n t when d e r i v e d
t y p e s a r e p r e s e n t e d a t enough d i s t a n c e f rom t h e concep t o f subtypes s o
t h a t t h e two do n o t become h o p e l e s s l y muddled. An a d d i t i o n a l c o n s i d e r -
a t i o n i s t h a t o f a l l o w i n g s u f f i c i e n t t i m e t o a p p l y those f e a t u r e s cov-
e r e d a t t h e end o f any cou rse . T h i s can be a s e r i o u s p r c b l e m i f t a s k i n g
i s t h e l a s t t o p i c p r e s e n t e d as i s t h e case i n many Ada c u r r i r u l u m s .
S i n c e most programmers t e n d t o t h i n k i n a s e q u e n t i a l manner and tend t o
have t h e most d i f f i c u l t y d e a l i n g w i t h concur rency and t h e i ssues concur -
rency r a i s e s , p u t t i n g t h i s t o p i c t o t h e end o f a cou rse w i l l n o t g i v e
t h e s t u d e n t s u f f i c i e n t t i m e t o a p p l y these new concepts. Not o n l y w i l l
s t u d e n t s be u n a b l e t o a p p r e c i a t e Ada's t a s k i n g f a c i l i t y , b u t they w i l l
a l s o have r e a l h e s i tancy t o use t h i s f e a t u r e a t a1 I when b e g i n n i n g t o
d e s i g n systems i n Ada.

We have found t h a t s t u d e n t s a t a l l l e v e l s want more complete and
c o n c r e t e examples o f good Ada systems. "Real" w o r k - r e l a t e d examples a r e
e s p e c i a l l y h e l p f u l . The exper ienced programmer wants t o c o n c e n t r a t e on
t h e u n i q u e f e a t u r e s of Ada - - he p r e f e r s t o l e a r n on h i s own t h e s i m p l e
s ta temen ts , c o n s t r u c t s and exp ress ions t h a t a r e s i m i l a r t o those found
i n most h i g h o r d e r languages. S tuden ts would l i k e each Ada c o n s t r u c t t o
be accompanied by many examples o f i t s use - - t h e Language Reference
Manual s y n t a x fo rma t supplemented by many more examples wou ld b e u s e f u l .
The Ada-unique packag ing and g e n e r i c f e a t u r e s have p roven t o be a c c e s s i -
b l e t o most s t u d e n t s who v e r y q u i c k l y p e r c e i v e t h e i r power and b e g i n t o
use these f e a t u r e s e f f e c t i v e l y . E x c e p t i o n h a n d l i n g , and t h e way Ada
implements i t , a lways i n i t i a t e s l i v e l y d i s c u s s i o n . W h i l e q u i t e v a \ i d
cancerns about t h e misuse o f t h i s f e a t u r e a r e o f t e n expressed, s t u d e n t s
soon produce code t h a t uses t h e e x c e p t i o n h a n d l i n g f e a t u r e e f f e c t i v e l y .

T a s k i n g i s perhaps t h e most d i f f i c u l t f e a t u r e f o r new s t u d e n t s o f
Ada. Many t r a d i t i o n a l languages do n o t have f e a t u r e s t h a t a l l o w p a r a l -
l e l p r o c e s s i n g . Because o f t h i s . most programmers have a g r e a t d e a l o f
e x p e r i e n c e - - o r a l l o f t h e i r e x p e r i e n c e - - i n s e q u e n t i a l programming.

D . l . 5 . 7

This lack of experience in programming concurrent p r o c e ~ s e s ~ coupled
with the unique problems that can arise such as deadlock, starvation and
timing considerations, make this feature a difficult one to both teach
and learn. I t has been necessary to expand this portion of the curric-
UlUm. A tool developed at Draper, which graphically shows tasks Operat-
ing concurrently and explicitly shows such things a s actuation,
suspenrlon of tasks, rendezvous, and termination, has helped the educa-
tional effort in this area. However, an advanced Ada course which would
concentrate in large part on tasking should perhaps be considered.

Lessons Laarncd -- Software Engineering Education

Although we have not had as much experience with the software engi-
neerlng course as with Ada education, the first session of this course
has been very successful. Participation, as has also been the case in
our Ada educational efforts, has included a wide cross-section of the
Laboratory both in terms of application areas and job level. Managers
are participating both in the course and in the workshop, as are entry-
level engineers and programmers. A great deal of enthusiasm centers
around the workshop approach as this provides a convenient mechansim to
apply techniques and tools discussed in class in an essentially "no-
risk" situation. There is a great deal of learning that takes place in
the workshop groups, as people with diverse backgrounds and experience
are taking part. In the classroom as well. much information exchange is
taking place and a wide range of expertise is being tapped. This combi-
nation has resulted in a very effective learning forum. The Ada Program
Office is coordinating the course and supplying most of the instruction:
however, a number of presentations given by experts both within the Dra-
per community and outside as well, have greatly enhanced the course
offerings. Through the very active participation of its members, all
participants in the course are being challenged to think about the way
they are currently developing software. In addition, any new methods
being presented, whether they be requirements analysis, design or test-
ing methods, are subjected to the most rigorous scrutiny. "Will this
method work as advertised by its proponents?" "Will it work in the type
of application that I develop?"

As mentioned earlier, participants can choose their own level o f
participation. Though course developers had assumed that members who
had no familiarity with Ada would choose to participate in the lan-
guage-independent portions only, in actuality most members have opted
for the entire course. Because of this, several sessions were added to
familiarize non-Ada participants with Ada's unique features. An unex-
pected side effect appears to be a group of people interested in regis-
tering for our next Ada course.

Have we presented these two courses in the correct order? Shouldn't
a software engineering course precede a course in Ada? Although this
will be the case for the group of people just mentioned, in general, the
opposite approach has worked quite well. First of all. the Ada course
has a good amount of software engineering content. In addition, having

D.1 . 5 . 8

t h e m a j o r i t y o f course p a r t i c i p a n t s conversant w i t h Ada has enab led US

I n this second course t o conrlder a number of d e s i g n me thodo log ies
U n i q u e l y s u i t e d t o Ada, has enabled us t o conduc t a n o n - t r i v i a l workshop
i n Ada and has al lowed us t o d e a l w i t h some of t h e more advanced and
d i f f i c u l t a s p e c t s of t h e language, e s p e c i a l l y i n t h e t a s k i n g area.

Future P l a n s

.
AS Ada a p p l i c a t i o n s c o n t i n u e t o be i n t r o d u c e d in to t h e L a b o r a t o r y ,

t h e Ada Program O f f i c e w i l l c o n t i n u e i t s e f f o r t s i n e d u c a t i o n and i t s
e f f o r t s t o p r o v i d e a more s u p p o r t i v e programming env i ronmen t . I n Ada
i t s e l f , an advanced cou rse c o n c e n t r a t i n g h e a v i l y on t h e t a s k i n g aspec ts
o f t h e language and p r o v i d i n g more guidance o n d e v e l o p i n g embedded
a p p l i c a t i o n s may need t o be added t o t h e c u r r i c u l u m a l r e a d v developed.
U t i l i z i n g t h e l o w - l e v e l f e a t u r e s o f t h e Ada language may need c l o s e r
e x a m i n a t i o n as w e l l . For t h e cou rse a l r e a d y "on t h e s h e l f , " t u n i n g and
t a i l o r i n g f o r D r a p e r ' s p a r t i c u l a r requ i remen ts w i l l be a c o n t i n u i n g p r o -
cess. The top-down, t h r e e - l e v e l approach has p roved q u i t e e f f e c t i v e .
Perhaps a s e p a r a t e course f o r a d m i n i s t r a t o r s o r a s e p a r a t e course f o r
managers w i l l need t o be g i v e n a t some point i n t h e f u t u r e -- ou r essen-
t i a l l y modular approach wou ld make t h a t v e r y easy t o p repare . Con t inu -
i n g seminars sponsored by t h e Ada o f f i c e p r o v i d e an o p p o r t u n i t y f o r
t hose who w i l l n o t be u s i n g Ada immed ia te l y t o keep t h e i r Ada s k i l l s up
t o d a t e and enab le those p r e s e n t l y i n v o l v e d i n Ada a p p l i c a t i o n s t o keep
in fo rmed about new Ada methodologies, t echn iques and t o o l s .

S o f t w a r e e n g i n e e r i n g w i l l c o n t i n u e t o be emphasized. Growing i n t e r -
e s t w i t h i n t h e L a b o r a t o r y ensures 3 r e p e t i t i o n o f t h e s o f t w a r e e n g i n e e r -
i n g cou rse d i s c u s s e d i n t h i s paper. I n f u t u r e sess ions , d i f f e r e , \ t
a p p l i c a t i o n s may be g i v e n t o each team so t h a t , i n t h e t e s t i n g phase,
teams can t e s t a p p l i c a t i c n s t h a t t hey have not developed. S ince t h e
ma jo r t h r u s t o f t h e s o f t w a r e e n g i n e e r i n g cou rse i s on t h e requ i remen ts
a n a l y s i s , d e s i g n , imp lemen ta t i on and t e s t i n g p o r t i o n s o f t h e l i f e c y c l e ,
f Q J r t h e r cou rses o r i n t e n s i v e seminars c o u l d be added on t h e system d e f i -
p i t i a n and s c h e d u l i n g phase. The s o f t w a r e p l a n n i n g phase and s o f t w a r e
c o s t a n a l y s i s c o u l d be covered ir: more d e t a i l . Review techn iques , main-
tenance, s e c u r i t y and c o n f i g u r a t i o n management a r e o t h e r p o s s i b l e t o p i c s
f o r f u t u r e i n - d e p t h coverage. P o s s i b i l i t i e s f o r f u r t h e r g rowth i n
t r a i n i n g and e d u c a t i o n s u r e l y e x i s t .

C o n c l u s i o n s

Exper iences i n e d u c a t i o n and t r a i n i n g a t Draper L a b o r a t o r y i l l u s -
t r a t e s t h e e f f e c t i v e n e s s and l o n g - t e r m b e n e f i t o f e s t a b l i s h i n g an i n -
house c a p a b i l i t y i n t h i s area. Many t r a i n i n g o f f e r i n g s a r e a v a i l a b l e
t h a t p r o v i d e i n t e n s i v e , s h o r t - t e r m t r a i n i n g i n Ada: fewer o f f e r i n g s a r e
a v a i l a b l e i n s o f t w a r e e n g i n e e r i n g . The long - te rm e f f e c t o f some o f
t h e s e o f f e r i n g s i s o f t e n q u e s t i o n a b l e . C e r t a i n l y a f i v e - d a y o r two-week

D . 1 .5 .9

intenrive approach to teaching Ada will not really allow Stu-
dents to either become comfortable with the new concepts presented Or to
grapple with the more dlfficult issues. A course spread over a longer
period of time -- our courses traditlonrlly have a 3-4 months Span --
allow the student ,time to assimilate new Ideas, raise questions and most
importantly get real hands-on experience wi th non-trivial SPPl ications.
In addl ti on, havi ng i n-house support for Ada and sof tware eng i n e w i ng
ensures that, long after a course has been completed, the instructor or
instructors are available for consultation and assistance. This latter
advantage cannot be overemphasized when new technology i s being i ntro-
duced I f the desire is to truly assimilate and integrate that technology
into the software development process.

a

D . l .5.10

1. Albrccht rnd Caffney, "Software Function, Source Lines of Code and
A Software Science Validation", LLLT

o n S o f t w a r c i n - r i n g , Vol. SE-9, No. 6 , November
Oevelopment Effort Prediction:

1983, pp. 639-648.

2. Ausnit, Cohen, Goodenough & Eanes, "Ada in Practice", Springer-Ver-
log, 1985.

3 . "An Object Oriented Design Handbook for Ada Software", EVB Software
Engineering, Inc., 1985.

4. Barnes, J.G.P., "Programming in Ada", Addison-Wesley Publishing Co.,
1984.

5. Boehm, B., "Software Engineering Economics", Prentice-Hall, 1981.

6 . Boehm-Davis & Ross, "Approaches to Structuring the Software Develop-
ment Process", General Electric Company, October, 1984.

7. Booch, Grady, "Software Engineering with Ada", Benjamin/Cummings
Publishing Company, Inc., 1983.

8 . Brooks, Frederick, "The Mythical Man-Month", Addison-Wesley Publish-
ing Company, 1975.

9 . Buhr, R.J.A., "System Design with Ada", Prentize-Hall, Inc., 1984.

I O . Fairley, Richard, "Software Engineering Concepts", McGraw Hi 1 1 Book
Company, 1985.

1 1 . Freeman & Wasserman, "Tutorial on Software Design Techniques", I E E E
Computer Society Press, 4th Edition.

12. Helmbold & Luckham. "TSL: Task Sequencing Language", ProcPPdi-
n a t i m l f e r c n c e . 1985, Cambridge University Press,

Cambridge, pp. 255-274.

13. Mardrioli, Zicari, Chezti and Tisato, "Modeling the Ada Task System
by Petri Nets", (lomouter -, Vol. 1 0 , No. 1 , pp. 43-61, 1985.

14. Hyers, Glenford, "The A r t of Software Testing", John Wiley & Sons,
1979.

15 . Pressman, Roger S., "Software Engineering: A Practitioner's
Approach", McCraw-Hi 1 I Book Company, 1982.

16. Ruane, Michael f . & Vidale, Richard F . , "Assessing Ada: Implementa-
tion o f Typical Command and Control Software", Boston University,
College of Engineering, Boston, M A , 1984.

D . 1 .5.11

17. Snaufer, Joseph E., lbPractical Cuidel ines for Testing Ada Programs"r
Hastet's Thesis, Arizona State Universi ty, 1085.

18. Szulewtki 6 Sodano, "Design Hatrics and Ada", P L Q C S ~ ~ ~
a1 Wa- A-, Sponsored by A M , 1984, PP.

105-1 14.

19 Wegner , Peter, "Sal f -Assessment Procedure VIII",
l h c , Vol. 24, No. 10, October, 1981.

20. Weiner t Sinovec, "Software Engineering with tlodula-2 and Ada",
Wiley & Sons, 1984.

1 . Ichbiah, Barnes and Firth on Ada, Alsyt, Inc., 1984.

2 . Software Engineering Training Curriculum, R . S . Pressman &
Associates, Inc., 1985.

1 . Lessons on Ada, Volume I and 11, Alsys, 1983 and 1984.

0 .1 .5 .12

