L=

View metadata, citation and similar papers at core.ac.uk brought to you by:: CORE

provided by NASA Technical Reports Server

N89-16314 /70679
/P

The Impact of Common APSE Interface Set Specifications on
Space Station Information Systems.
by
Jorge L. Diaz-Herrera and Edgar H. Sibley
George Mason University, Fairfax, VA

ABSTRACT

Certain types of software facilities are needed in a Space Station
Information Systems Environment; the Common APSE Interface Set (CAIZ) has
been proposed as a means of satisfying them. This paper discusses how
reasonable this may be by examining the current CAIS, considering the
changes due to the latest Requirements and Criteria (RAC) document, and
postulating the effects on the new CAIS 2.0. Finally a few additional
comments are made on the problems inherent in the Ada (*) language itself,
especially on its deficiencies when used for implementing large
distributed processing and database applications.

INTRODUCTION

o .
Certain types of software facilities are needed in a Space Station Information
System Environment (SSISE). Not the least of these are:

a. the distribution of the target and host facilities for both the run-times and
development environment,
9. the absolute need for good configuration management methodology to control

the development and use of the many versions of the software and tools,

. the need to develop and modify systems within distributed environments using

sophisticated terminal interfaces,

. a consequent need for good interfaces and standards, abstract data typing in

a distributed system (including development and run-time bindings),

a real-time distributed software development methodology, and corrzsponding
lanquage support and operating environment and tool constructs,

nood human to human and machine to machine communication techniques.

- - = = -

Ada is a Registered Trademark of the U.S. Government,
Aaa Joint Program Office

ORIGINAL PAGE 18
OF POOR QUALITY

https://core.ac.uk/display/42829672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Because SSISE development will use Ada as its implementation language, it would

be extremely unfortunate if its needs were not addressed in the Ada

environments now under specification and development: the Common APSE Interfice

Set (CAIS). This paper is structured around the following three major aspects:

1. How well are these needs addressed within the current CAIS specification?
Indeed, would a poor fit have a bad effect on the Space Station software?

2. What improvement can be expected due to changes mandated by the latest
Requirements and Criteria (RAC) document?

3. Will this truly affect the next CAIS (version 2.0)?

2. SPACE STATION INFORMATION SYSTEMS ENVIRONMENT NEEDS AND THE CAIS

The Space Station Software Working Group and NASA software specialists have
recently defined their needs for support of space station software development
[Dixon 85], and produced a definition of the space station software support
environment requirements [Chevers 86] in early 1986. The major issues include
aspects about generic elements of the environment, tool characteristics and
consideration of the following major questions:

- Should a uniform NASA Software Development Environment for space station be
defined and developed? Issues relative to this include:
* Software development for the space station will be highly distrihuted,
with no localized single development group.
* Major software portions will be managed by various centers and not by a
single NASA center.
Important functional differences exist between major software systems;
these need completely separate software environments.
- How much of the space station software development environment should ne
furnished by NASA?

* Tnis had a major impact because NASA has never developed its own SDE.

2.1 THE SSISE AND ITS REQUIREMENTS

Despite the fact that the specification of a single standard environment may
involve solving many problems, the working group felt that the potential
advantages far outweigh the difficulties. There was therefore a recommendation
for the definition of a well-defined development environments with capability
for two classes of user:

D.2.1.2
ORIGINAL PAGE 18

OF POOR QUALITY

SOE interfaces to support software developers and their managers. These
were to consist of:

* Mail and Telecommunication support (e.g., editors, file systems,

communications aids, ete.)

* Technical management/control aids (e.g., cost models, project management
and planning systems)

* Data base support (e.g., file management, retrieval, control, etc.)

*

Modellng/simulation aids (e.g., Architecture models, testing aids, e
Prototyping aids (e.g, requirements, specs, man/machine interface, e
* Document preparation aids

Requirements specification validation and analysis aids

Design specification aids (e.g, POL analyzers, data dictionary, etr.)

Code construction and control aids (compilers, linkers, configuratinn
managers, etc.)

tn.)
tc.)

Program 5nalysis/testing and integration aids (path coverage/test

generators, symbolic executors, ete.)

Metrics (quality, complexity, cost and reliability measures)

Man-machine interface support (interface and use of the environment,

help, tutorial, etc.)

- An SDE interface to support NASA software managers responsible for softwar:
requirements/acquisition/acceptance; this required essentially the same
capapilities as those above, with changes in emphasis or tailnring the
relative importance, complexity of function and response needs. Thus the
management controls should be more heavily directed toward schedules,

planning, project management, and PERT, while the modeling, prototyping, an
simulation aids would be minimal or unnecessary.

These two interfaces can thus result from a single CONFIGURABLE environmment
which is tailored to the specific neerds of each work station and locale.

2.2 THE CURRENT CAIS

Several needs in the above list have not been addressed in the CALS 1.4
specificatiaon. These issues have heen discusse- at length in KIT (KAPSE
Interface Team) and KITIA (KIT Industry and Academia Support) group meetings
but are, as yet, only partially resolved. In fact, many of these were
delinerately excluded from discussion in the current CAIS document. They are:

N.2.1.3

OMGINAL PAGE 18
OF POOR QUALIT

* A particular Configuration Management Methodology

* Sophisticated Device Control and Resource Management Capabilities

* Distributed Environments

* Inter-tool Interfaces

* Interoperability

* Typing Methodology

* Archiving

These and other issues are each discussed in the detailed sectinns below.

2.3 THE EFFECT OF THE RAC

Although the requirements of the first version of the CAIS were never
explicitly defined, they were a mixture of the specification and partial
implementation of the ALS provided by Softech and the AIE under design by
Intermetrics. Thus, hecause these two efforts waere already funded, they
introduced several problems hecause the CAIS specificatinn team were attempting
to provide as much compatinility as possihle with tnese twno, somewiat
different, architectures of an environment (with differences alsn in their
scope). In general this attempt may have introduced problems of upwar-
campatibility. Thus the future CAIS will either Have to ignore the normal
needs of a "standard" in dealing with a required "upward compatibility" or else
admit to serious deficiencies and possible poor interfares in future systams
due to lack of adequate controls and functions.

The new requiraments were written to allow more flexihility and betrar
interfaces, with an attempt to have hetter functionality. Thus the Entity
Hanagement Support (sechtinn 4. of the RAC) requires a support that parodies tne
deszription of a normal datahase management system without specifically saying
taat it is nzeded. Some of the needs are quite specific and (tnough 0pen =
interpretation) quite encompassing; e.9., "impose a lattice structure on tn-
types which includes inheritance of attributes, attriouts value ranges
(possibly restristed), relationships and allowed operations."

Ancther type of problem arises due tn wish to allow the CAIS to be operable on
almost any current commercial and exparimental operating system: viz, "The ZAIS
snecification shall he machine independent and implementation independent. The

CAIS snall he implementable on bDare macnines and on machines with any 7€ a

D.2.1.4
OMIGINAL PAGE fe
OF POCR QUALITY

A e e A v

variety of operating systems." This could restrict the design in many
unfortunate ways.

2.4 THE NEXT CAIS

It is difficult to peer into the future, and thus the following predictions for
the next CAIS may prove incorrect, however, the degree of effort and choice of
contractor (Softech) allows us to make some early assumptions.

First, it seems unlikely that the contractor would make a new specification
that would not allow the current ALS to be considered an "almost complier witn"
or "minimal fix away from" the new CAIS.

Second, the level of funding and staffing is not one that would be expected tn
allow anything but the narrowest extension of the current CAIS.

Third, it is somewhat doubtful whether the politics of the situation woul
allow a large diversion from the Army's ALS.

Fourth, the contractor has already suggested that divergence from some of ne
0ld CAIS specifications to go to the RAC statements would be difficult. T
discussion of such issues at recent KIT/KITIA meetings has not been encaurijin:
to a feeling of extension of the role of the CAIS.

3. SPECIFIC DEFICIENCIES

3.1 CONFIGURATION MANAGEMENT

The lack of a particular Configuration Management Methodology means tha*
several vendors could provide incompatible but "standard" systems. These issu=<
seem, primarily, to devolve on a need for a long time naming continuity and, in
genaral, software confiquration management. The first issue is that of
providing "Unique Names" across geographic and time boundaries. The farm
"unique name" (UN) has been used to define an immutahle name far an entity;
e.q., 3 compiler should be uniquely identified by a UN, which neitner changes
nor is "recycled”. Thus a UN is given out once to an entity and remains its
name; 1f the entity is deleted/removed, then the UN will still identify the

D.2.1.5

ORIGINAL PAGE IS
OF POOR QUALITY

entity, but an attempt to retrieve it will result in a statement that it is no
longer available.

There are two possible problems:

1. Is any sort of change allowed to an entity without its UN changing?
Normally, the contents of the entity may be altered, but this could mean
that it is no longer even similar to it previous "parent" entlty. Certainly,
it seems reasonable that a program may be debugged without changing its name
for each error detected. This would suggest that the unique name was really
a run-time UN, which could be said to remain constant during programming and
debugging. However, if the UN were for a data entity, the effect of a change
in any one of its values would be a new "version® of the entity, and this
could be important enough to be considered a new "entity" though the normal
way of dealing with this is to consider the data entity to be "time and data
stamped" with an audit trail to allow the previous entity to he
teconstructed (e.g., for roll back).

2. How are UN related for the same (but changed) entity?

There must be a method for data entity reconstruction -- roll back from an
audit trail, however, the data in a traditinnal database must not be call=d
by physical lncation, but by "name pointers" or inrdexes or "lngical" keys --
these might be considered the UN for data. On the other hand, the only
"audit trail" for programs is normally provided hy the configura*ion
management system (CMS). In fact, the idea of version in a CMS is another
way of looking at the unique name; i.e., the UN is logically equivalent to a
user name concatenated with the version number (or equivalent).

wWhat has heen suggested above about a UN for hoth program and data could 3lso

hold for contrnl structures.

3.2 SOPHISTICATED DEVICE CONTROL

Some of the biggest problem are undoubtedly going to be the intraductinn of
more sophisticated input/output and other special device dependent intesrfaces
(2.q., for a mouse). This will be a problem when there are unusual 9ut
sophisticated interfaces to devices and sensors. Unfortunately, this issue will

require tno much discussion tn fit here and requires a paper of its awn.

ORIGINAL PAGE 15 D.2.1.6

OF POOR QUALITY

3.3 DISTRIBUTED ENVIRONMENTS

The development of Space Station Information Systems is bound to be highly
distributed with no single group solely responsible for the required software
systems. This could result in difficulties when looking at large and complex
development and run-time environments. ODiscussions on space station sofftware
development must address Distributed Environments (Host and Target) and
particular ways to distribute data as well as control. The Ada Programming
Support Environment (APSE), however, does recognize such a need, and states
that additional software tools are necessary in nrder to allow "independent"
programs to communicate with each other dynamically, in a "nmatural® and
controlled way. The RAC states, however, that: "CAIS proqgram executinn
facilities shall be designed to require no additional functionality in the Ada
Run-Time System (RTS) from that provided by Ada semantics. Consequently, toe
implementation of the Ada RTS shall be independent of the CAIS"...

There are some problems here with Ada itself. A distributed system can be
designed and implemented in Ada from two different points of view, namely as .
single program or as a rol'ection of cooperating programs. The first of thes:
alternatives, single program, is particularly useful when considering tigntly
coupled multiprocecssor systems. Inter-processor communicatiaon an’!
synchronizatinn can then be naturally achieved by using rendezvous. The 3o
alternative is to design the system as several irdependent programs (one :r
processnr). The Ada language, however, does not support the idea of indepoiien:
programs dynamically cooperating with one another (i.e., no construtts 40
provided for inter-program communication).

Both approaches require further support from the environment. For example,
Specific target-oriented tnols (e.q., loaders) are needed, to assist in to-
artual implementation on the distributed architecture. An Ada solution tno those
problems may be in the form of a set of inter-program communication primirive:
provided at the APSE level in the program library. In general, the design an
implementatinn of a multi-processing system as a collection of independent
programs present a number of inconveniences resulting in the following tssues:

- Creatinn of "linguistir" facilities to enable internrogram communication

- Provision nf a methodology for designing Distrihuted Systems using theae

nigher-level primitives.

ONGINAL PAGE IS
OF POOR QUALITY

B TR RN

3.4 INTER-TOOL INTERFACES, INTEROPERABILITY, AND TYPING METHOOOLOGY

These three issues represent the generic problem of the tool builder. When
several tools must interchange data, they must either do it via the standard
interfaces or else be designed as a suite of tools with total knowledge of the
data requirements and functionality of the other tools in the suite. In
general, there are problems in defining inter-tool interfaces, because a change
to one tool may cause a ripple effect. However, reliance or interoperability
interfaces entails passage of abstract data types across tool interfaces. This
could have serious security and integrity repercussions.

Interoperability also has severe impact on distributed systems, where the
passage of abstract types may be essential for accurate and reliable data
interchange between the various nodes. Without a good typing methodology, it is
obviously impossible to provide such features or to deal effectively with data
base management and similar issues. The alternative to such methodology is of
course straight ASCII interchange, with negligable checking. Again, these
topics deserve a paper of their own.

3.5 ARCHIVING

This is an important issue in any configuration, but more so in a distribute
environment of the kind mentioned here. However, for the purposes of this
paper, it will be left as another undiscussed issue.

3.6 CENTRALIZATION AND DECENTRALIZATION ISSUES

The really tough problems of unique names of any of the types of entities
nccurs when they are (in some way or another) decentralized. As an example,
when a compiler is moved to a new node, does its UN change? And whether it does
or not, which node controls or restricts the change? Obviously, the answer to
such questions involves poliry and method of control. It is important tnat the
controlled use of a distributed environment be effected through distributed
kernels operating locally. It is conceivable that one or more nodes would be
designated as decision making kernel(s), while other nodes will be merely
servers. 1This seems to provide a reasonable compromise bDetween centralized
(high communication costs and high vulnerability) and decentralized (with its

unnecrssary control burden on every node).

D.2.1.8

ONGINAL PAGE IS
OF POCR QUALITY

4., ADA LANGUAGE ISSUES

As discussed earlier, there are some severe problems in using Ada in
multiprocessing and distributed systems. From Ada's point of view, a
multiprocessor system which uses a common memory can be viewed as a
“uniprocessor system which implements multitasking in a more efficient manner."
In this case, the entire system is designed and built as a single Ada progran
with certain procedural abstractions implemented as tasks. Each of these tasks

represents the work of one logical processor, and may eventually run on a
dedicated physical processor. Inter-processor communication and synchronization
can then be naturally achieved by using rendezvous. However, before the program
is run on the target multi-processor environment, the different tasks need to
be "assigned" to their corresponding processors. And this is naot explincitly
supported by the language. The use of PRAGMAS has heen suggested here. 0On the
other hand, a distributed system may be supported by Ada as a collectinn of Ada
programs communicating through intermediaries. One way wauld be to provide
library packages to maintain "mailboxes" and whose "procedures" (which could He
implemented as tasks) can be called from several programs. In any nas> =
standard protocol is needed.

An Ada solution to these problems may be in the form of a set of inter-pryiran
communication primitives provided at the APSE level in the program liarary.
Sasically, what we are talking about here is a general facility by wnion
programs can communicate and synchronize their arctivities. These fanilitioss
must be designed in such a way tiat they could be applied in a numbor of
situations using different programs. Thus, the specification must be qenaral
2nough as to hide the identification of the orograms involved, and yet proviie
ways to identify a particular situation. Ada's generic units provide
answer. They are general at the definition level, and particular at
instantiation level.

Unfortunately, the use of generics here presents a number of inconvenieng.--
since the identity of the actual programs using the tools is not known at ti.
time of writing the tool, these tools cannot be tasks themselves. The Ada
tasking morel da=fines an asymmetric inter-task communication mechanism in which
the identity of the callee must be known to the caller. In other words, to hav~
true linbrary tasks (where the identity of the callers/callees is not revealed),

0.2.1.9

ORIGINAL PAGE 18
OF POOR QUALITY

we need to introduce extra programs. For example, if we want to connect two
library programs and run them in parallel, we have to do so through a third
intermediary program. This is feasible because the identity of this third
program is known to the other two. The fact that these units run in parallel is
an implementation decision, which is best hidden inside the unit hbody (an added
benefit).

The first alternative seems more effective, since we could use the full power
of the language at compile time (e.q., type checking) and at run-time (at least
the system can be tested on a uniprocessor environment), and it does not
require any "special” features from the programming language (in fact, most
available implementations will not even support multi-prucessar targets
directly). The second alternative, however, may be more convenient and elegant,
reflecting the real world situation (i.e., independent parallel programs each
running on its own CPU), but requires a well-defined STANDARD distributed
systems methodology.

5. CONCLUSIONS

Accommodating heterogeneity in a softwars development envirsnment requirss that

the system be written for a number of different machines and be able to support

numerous software packages associated with various operating and run-time

systems. It is postulated that control of such system must be effected through

distributed kernels operating on a local basis. The run-time system is hest

organized following the layered model provided that we are able to highlight:

- the relationship between the distributed and local operating systems

- the relationship between the diffarent types of decisions made by tho
juxtaposition of the two contrnl domains (i.e., local and global)

- the visibility necessary to eflect the various implementation issuss

Obviously, the APSE approach is the way to go, but perhaps it will need to be
modified to resolve distributed computing {ssues such as:

- network transparency at the user level

- interprogram (internode) communication mechanism

- exceptinn handling mechanisms encompassing distributed characteristics

- awareness of apnlication ohjertives

0.2.1.10

ORIGINAL PAGE 'S
OF POCR QUALITY

.

@
s

- fault tolerance strategy over the placement and updates of back-up
copies of information

What we need here therefore is an extra layer, the DAPSE, in between the MAPSE

and KAPSE, This will provide a standard interface for such a system support
environment.

6. REFERENCES .
Chevers,E. "NASA Space Station Software Requirements" (JSP, Jan. 1986)

Dixon "Open Forum on Space Station Software Issues" (NASA, Jonhson Space Center
Houston, Texas, Feb. 1985)

KIT/KITIA "DoD Requirements and Design Criteria for the Common APSE Interface
Set (CAIS) September 1985

KIT/KITIA "Military Standard Common APSE Interface Set (CAIS) version 1.4
October 1984.

7. ACKNOWLEDGEMENT
The authors would like to thank Dr. Ann E. Reedy of Planning Researcih
Corporation for discussion of many of the Standards and Unique Naming issues.

D.2.1.11
OF POCR QuaLITY

