
!

Simulation of the Space Station Information System in Ada*

James R. Spiegel

College Park, Maryland
Ford Aerospace & Communications Corporation

INTRODUCTION

The Flexible Ada Simulation Tool (FAST) is a discrete event
simulation language which is written in Ada. FAST has been used
to simulate a number of options for ground data distribution of
Space Station payload data. The results of these analyses
include on-board buffer requirements due to the TDRSS zone of
exclusion, as well as bandwidth versus buffer and bandwidth
versus delay tradeoffs within the ground system.

The fact that the Ada language is used for implementation
has allowed a number of useful interactive features to be built
into FAST and has facilitated quick enhancement of its
capabilities to support new modeling requirements. The use of
tasks and packages has enabled the development of an interactive
environment which allows the user to monitor and control the
simulation. As a simulation is executing, a concurrent display
task is updating pre-defined pages which contain simulation
output statistics. A user command interface allows the user to
pick from a number of display pages. This command interface also
allows the user to interactively modify network parameters (e.g.
number of servers or link bandwidth).

This paper discusses general simulation concepts, and then
how these concepts were implemented in FAST. The FAST design is
discussed, and it is pointed out how the use of the ADA language
enabled the development of some significant advantages over
classical FORTRAN based simulation languages. The advantages
discussed are in the areas of efficiency, ease of debugging, and
ease of integrating user code. The specific Ada language
features which enable these advanced are discussed.

SIMULATION CONCEPTS

FAST is a general purpose discrete event simulation tool.
Currently, there are a number of simulation languages that are
recognized in the field of discrete event simulation. The list
includes SLAM, GPSS, SIMSCRIPT, and others. The key feature that
defines a ttdiscrete event" simulation is that the state of the
modelled system changes at discrete points in time. The
simulation **language*t automatically performs the task of keeping
records of what events are planned to occur, and when they will

*Ada is a registered trademark of the U.S. Government (Ada Joint
Programming Office)

F.1 .2 .1

https://ntrs.nasa.gov/search.jsp?R=19890006984 2020-03-20T03:42:14+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42829637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

occur. The language also performs the task of maintaining
statistics that describe the performance of the network elements.
The job of the user of a simulation language is to model a given
system within the constraints of the particular language being
used.

The first step in the process is for the user make a
abstraction of the system. Essentially, this means applying the
terms of the simulation language such as lfresourcerl, I1queuel', and
Vraffic" to the user's particular problem. Figure 1 provides a
table of different types of systems that may be modelled, and the
associated meanings of each of the model elements.

One type of %etwork@' which FAST has been used to model is
the SSIS. In this case, the lttraffictl entities are data packets,
and the 'tserverstt or ltresourcesl1 are the communications links.
Simulations were performed to answer such questions as:

How much bandwidth is needed ?

How long will data be delayed ?

What percentage of the time is the link busy?

For this example, the answer to the second and third
questions The average wait time per
packet is dependent on the link bandwith. The bandwidth is thus
a 'Inetwork parameter1', while the delay times (queue statistics)
and the link ("resource1') utilization describe the system
performance. The objective of a simulation activity is to
predict the system performance as a function of the network
parameters. This is usually done by performing a number of
simulation "runs*', while varying the network parameters. The
result of each run is usually viewed as a point on a curve, and
this curve describes the system performance as a function of
input parameters.

are dependent on the first.

The methodology used to implement an event-driven simulation
is based on the concept of a future events queue. An event may

the system. Examples are when a data packet is generated, or
when a transmission has been completed. The future events queue
keeps a record of all of the events that may be planned. For
example, when the transmission of a packet is initiated the time
at which the transmission will be complete is calculated. This
event is placed on the future events queue.

I be defined as any action or condition that changes the state of

Each time an event occurs, a procedure is called that
implements the logic associated with that event. This logic

F.1.2.2

SYSTEM

SPACE STATION
INFORMATION SYSTEM

TRA FFlC

DATA, COMMANDS I

TELEPHONE

MAN UFACTURINC

COMPUTER K
L

CALLS

WIDGETS

RESOURCE

SPACE-GROUND LINKS
GROUND-GROUND LINKS
PROCESSORS

PROCESSORS
TASKS
BUSSES
DISKS

CIRCUITS
SWITCHES

WELDERS
PA1 NTE RS

BANK I CUSTOMER TELLER I
I LOCAL AREA NETWORK I MESSAGES BUSSES I

Figure 1 - General Purpose Simulation Concepts

F . 1 . 2 . 3

consists of decision making (is a link available?), updating the
state of the system (the link is now busy), and performing
calculations required to maintain statistics. When the
processing for a given event is complete, then the future events
queue is used to determine the next event.

One of the major problems in the area of simulation is
efficiency. The process of discrete event simulation is
inherently a Monte-Carlo process. This means that the input
traffic is described by a statistical model. The simulation is
thus performed using random inputs, and the statistics which
describe the network performance are expected to converge in
time. The number of events which need to be processed in order
to achieve statistical convergence is both very large, and
difficult to predict. The procedure usually adopted is to pick a
safe duration, and to use this for all runs. This often results
in two troublesome phenomena. The first is that more computer
time is used that is actually necessary for a given run. The
second is that the scope of the simulation activity is usually
limited by the computing resource.

Another limitation of general purpose modelling languages is
that they are usually not sufficient to model the complex
interactions of a real world systems. Many simulation languages
overcome by allowing the user to write his own procedures.
Mechanisms are provided for the user to write his own code
(usually in FORTRAN), and integrate user written procedures in
the model. The support available for this type of activity
varies among languages, but in almost no cases can the support be
considered ltfriendly1'. In most cases, the user is constrained to
the use of a number of cryptic conventions in order to integrate
his code. This process is both time-consuming and fraught with
hazards. The bottom line is that one has to be a simulation
llexpertlt in order to undertake such a task.

this

One final source of many headaches for users of simulation
languages is the area of debugging. This includes both debugging
of user written simulation routines (discussed in previous
paragraph), and the debugging of models which do not work.
Again, various languages provide various levels of support for
this activity. As a minimum, most languages have the capability
to list the names of what events occured and at what time. This
results
order to begin to understand where a problem is Once
this information is found, it is sometimes useful, but oftentimes
it does not shed enough light to solve the problem. When this
happens the user is left little option other than staring long
and hard at his input model, scratching his head, and trying to
determine why he got the unexpected output. He may change one
variable, rerun the model, and see what effect it had. When this
fails to shed light, he will change others as deemed appropriate.
This can be a very time consuming activity. Frustrated modellers
have even been known to blame hardware.

in a large listing which the user must search through in,
occuring.

F. 1.2.4

FAST CONCEPTS

?

Three areas have just been described in which improvement is
clearly welcome. These are :

o EFFICIENCY

o DEBUGGING

o EASE OF INTEGRATING USER CODE

FAST has been designed with the objective of alleviating
many of the obstacles which are encountered in these areas. In
order to understand how these areas are addressed, it is
necessary to first gain an appreciation for the overall FAST
environment. This section provides a general description of the
FAST environment, and then discusses the advances which have been
recognized in these three areas.

FAST provides an unusually friendly environment in which to
perform simulations. Figure 2 illustrates this I1environmentt1.
FAST is designed to run interactively from a terminal. When FAST
is running, most of the screen is dedicated to the display
window. The user may specify which page is to be displayed by
entering a llSET-PAGE1l command in the input window. Figures 3 and
4 show the menus of user commands and pre-defined display pages
which the user has to choose from. Figure 5 provides an example
of one of these display pages. The other two windows are the
error window, and the simulation state window. The error window
is used when there is a syntax error in the user input, or when
there is an error within the simulation run. The simulation
state window displays whether a simulation is running, stepping,
or suspended.

In a typical use of FAST, the user runs a simulation and
monitors a statistic of interest. When the statistic has
converged, the user changes the network parameters, and a new
simulation I1runtt is started. This environment presents a number
of advantages, the most important of which is that the user is
able to observe the statistic as it is updated in accord with the
progress of the system. obtained
confidence in the results is significantly reduced.

The period of time required to

F.1.2.5

I DISPLAY WINDOW

Figure 2 - The FAST Environment

+---+

IState menu commands: I
I
I

I
I Help
IHelp <Set-Page> -- Display page selection help I
I List -- List all state files I
I New [<filename>] -- Start a new state file I
lopen [<filename>] -- Open a state file I

ISet-Queue-Size <queue number> <size> -- Set size of one queue I

I Flush -- Flushes Statistics I
I SAVE -- Saves the current state file I
1 Close -- Close a state file I
I Print -- Print Simulation Results I
I Quit -- Return to limit menu I

-- Display this help screen

ISet-Speed <number of seconds from 1 to 60> -- Set refresh rate of display 1
ISet-Duration <simulation time> -- Set duration of simulation I

!Set-Resource-Size <resource number> <size> -- Set size of one resource I

Execution Suspended.
Input :

Figure 3 - Input Command Menu

F.1.2.6

1

+--
IPage Selection State menu commands:
I
]Set-Page Queue-Resource-Summary
ISet-Page Mark-Summary
ISet-Page Limit-Summary
ISet-Page Queue-Resource <queue number>
(Set-Page Queue <queue number>
ISet-Page Future-Events-Queue [amnber>]
ISet-Page Mark <mark number>
ISet-Page Passport-Summary [<number>]
ISet-Page Active Passports [<number>]
I

.------------------------------------- +
I
I

-- Display mark statistics I -- Display limit statistics I

-- Display a queue I -- Display Future Events Queue I

-- Display queue / resource stats I

-- Display statistics on one queue I

-- Display statistics on one mark I -- Display status of all passports I -- Display status of active passports1
I

Input :

Figure 4 - Display Page Menu

1

IQueue and resource summary
I
IQueue Arrivals Avg Length I----- -------- ----------

1 8153 1.0111
2 8251 0.0529

I
I

3 8153 4.3402
4 102 1.3550

I
I
I 5 600 27.1731
I
I
I
I
I
I
I

Current simulation time is 10000.0000

Avg Wait Avg Resource Usage

1.2401 0.4144
0.0642 0.4282
5.3238 2.1731

133.8373 1.0000
465.1406 1.0000

-------- ------------------

Execution Suspended
Input :

Figure 5 - Sample Queue-Resource-Summary Page

F.1.2.7

The user may control the execution of the simulation through
the use of %TEP1I, llSTOP1l, and I1RESTAFtT8l commands. In
addition, he may alter network parameters using the
llSET-QUEUE-SIZE1l or IISET-RESOURCEtl command. The result of these
ccapabilities is that an environment is provided in which the
user may monitor and control the simulation process.

b

EFFICIENCY

The ability to provide the capability to build and monitor
display pages was facilitated by the use of Ada tasking. The
FAST system consists of a number of tasks. One of these is the
simulation task, which performs the actual network simulation.
In addition, there are tasks for displaying pages, as well as
tasks to interact with the user.

There is no way of getting around the fact that Monte-Carlo
simulation takes a long time in order to achieve statistical
convergence. What FAST does provide, however, is a mechanism to
monitor the statistics in question. The user m a y monitor a
statistic during a simulation run, and when the statistic has
stabilized to the userls satisfaction, the run may be stopped.
This provides two advantages. The first is that a confidence
range may be established. The second is that the user does not
have to guess how long to run the simulation, thus saving a lot
of personal and CPU time.

DEBUGGING TOOLS

Clearly, for an event driven simulation, the future events

~ ability to view the future events queue on an event by event
basis is extremely valuable for debugging purposes. One of the
major advantages of FAST is that it does allow visibility into
the llinternalll structures of the simulation. These include both
a llFuture-EventS-Queuetl page, as well as an "Active-Passports1I
page. (A passport is a record that is used to keep track of the
traffic entities as they flow through the system). The
Future-Events-Queue lists which passports are scheduled to be
activated, and when. The Active-Passports page describes where
within the network each passport resides, as well as additional
information about the passport. The combination of these two
pages provides significant detail regarding the state of the
system. FAST also includes a feature called step mode, which
allows the user to instruct the model to process only one event
at a time. Using the pages in conjunction with the step mode the
user is able to observe the very fine details of the system, and
can do so at whatever level is deemed appropriate for determining

I queue is vital to the inner workings of the simulation. The

I F.1.2.8

exactly how the simulation is progressing.

In addition to the features that have been described, the
process of debugging is reinforced by an error management
philosophy that takes advantage of Ada's exception handling. If,
in the process of a simulation, a logical simulation error is
encountered (such as a queue overflow), this error is managed as
an exception. The simulation is suspended, and an error message
is displayed in the error window that describes the error. At
this point, the user is able to investigate why this error has
occured. All of the simulation structures are still in tact, so
the user may use the display capability to observe any of the
pre-defined pages.

One proven debugging technique is to use the "SET-DURATION"
command to a time just prior to the simulation error. A
llRESTART1l command will then cause the simulation to run to a
point just before the error occurs. The user may now proceed
using the STEP command to determine exactly when, where, and why
the error occured. Clearly, such a capability is invaluable in
the debugging process.

EASE OF - INTEGRATING USER CODE

FAST has been designed in such a way that makes adding user
modules safe, efficient, and easy. This is due to the fact that
an object oriented design has been implemented which not only
protects the system from the user, but also provides maximum
support for the user.

As an example, there is a 'IQUEUE1' package which contains the
data structures which are used to model the queues, and all of
the procedures and functions which operate on queues(e.g.
REQUEST, RELEASE). Within the queue package, all of the logic
which is needed to model the queue (First-In-First-Out) is coded.
All additional effort which is required in order to implement
these functions is provided by support packages. All of the
queue length statistics (average, standard deviation, maximum,
minimum) are maintained by a statistics package. Within the
queue package, whenever the queue length is altered, a message is
sent to the llSTAT1l package. Similarly, communications between
instances of queue and passport structures is through a message
oriented protocol similar to Smalltalk in nature. Real-time
displays are implemented through messages to a window manager
(also implemented in Ada).

All of these support packages which are currently used by
the existing FAST packages are available for user written

F . 1 . 2 . 9

packages. This means that the inclusion of user packages is both
safe and efficient. In addition, the debugging capabilities
significantly reduce the time necessary to test and integrate
large models. Finally, the user packages are written in Ada, and
are thus blessed with the inherent advantages therein.

The use of object oriented design has already provided
significant efficiencies in the development of the FAST system.
In addition to all of the classical arguments espoused by the
proponents of object oriented design, the methodology lends
itself particularly well to the implementation of a simulation
language. Specifically, objects that are built to model elements
are limited in scope and complexity to the problem of modelling
the logic of that element.

CONCLUSION

FAST uses the capbilities of the Ada language (packages,
tasking, and exception handling) in order to enhance a classical
simulation tool by providing an interactive, friendly simulation
environment. result is a tool which is easy for a beginner
to use, and significantly increase the productivity of an
experienced network simulation specialist.

The

F. 1.2.10

