
N89-16361

PARANOIA ADA :

A DIAGNOSTIC PROGRAM TO EVALUATE

ADA FLOATING-POINT ARITHMETIC

May 12,1985

Chris Hjemstad
Package-Architects, Inc.
8950 Villa La Jolla Drive

Suite 1200
La Jolla, California 92037

(619) 587-1815

F.3.4.1

https://ntrs.nasa.gov/search.jsp?R=19890006990 2020-03-20T03:41:26+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42829631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I INTRODUCIlON

Programmers have traditionally approached floating-point arithmetic with great
trepidation. Brown and Feldman in their landmark paper on model numbers call floating-
point arithmetic the "bete noire" (black beast) of computing. Programmers are haunted by
the suspicion that floating-point calculations harbor hidden errors. This resistance stems,
at least partly, from the variety of inconsistent floating-point representations
implemented over the years by different computer manufacturers.

In many respects, the programming language Ada' is not so much a breakthrough
in technology as it is an evolutionary melding of many advancements achieved by
computer science research during the 1970s. This is certainly the case with respect to
Ada's treatment of floating-point arithmetic. Ada explicitly adheres to concepts of
environmental inquiry initially proposed by Naur in 1967 and of model number
parameterization advanced by Brown and Feldman in 1980 and formalized by Brown in
1981. Following these precepts, Ada encourages the development of safe, transportable
numerical programs. This paper traces major historical efforts to establish effective
standards for floating-point arithmetic. It describes previously developed programs
written in languages such as FORT" and BASIC which partially undertake the testing
of conformance to such standards. It provides results obtained from a contemporary
program, Paranoia.Ada, which tests various aspects of floating-point arithmetic in the
context of the Ada programming language.

SPECIFICATION OF FLOATING-POINT ARITHMETIC

The last two decades have witnessed efforts within the computer science
community to establish floating-point arithmetic standards. These efforts have been
primarily motivated by a desire to perform consistent arithmetic in a common
transportable programming language across many different computing environments and
hardware architectures. Naur, writing in 1967, introduced the concept of an
"environmental inquiry" as a means of ascertaining the arithmetic characteristics of a
computing environment. His ideas where incorporated into the ALGOL 68 language and
are reflected in the "attribute" feature of Ada.

The International Federation for Information Processing (IFIP) Working Group
25 (Mathematical Software) introduced the concept of floating-point parameters as a
means of determining the characteristics of a specific programming environment's
floating-point arithmetic implementation. The design of FORTRAN 77 provided access

I to such floating-point parameters?

I 'Ada is a registered trademark of the US. Government, ATP0 (Ada Joint Program Office).

F3.4.2

BROWN-FELDMAN CONTRIBUTIONS

More recently, Brown and Feldman, using model number theory, further specified
floating-point parameterization. They defined a generalized standard representation of
floating-point numbers independent of underlying machine architecture. Their landmark
work resulted in precise definitions for floating-point arithmetic based on model numbers
and model intervals. They established rigorous theorems concerning the dependability of
computational results derived from operations that adhered to the basic model
definitions.2 They defined a standard model number representation as:

x = be f, where

b is the specified radix,

e is an integer exponent of specified range, and

f is the significand expressed as a base-b digit.

They identified seven model parameters as necessary to the specification of a
floating-point arithmetic implementation. Four parameters consist of basic integer values:

BASE

PRECISION

MNIMUM EXPONENT

MAXIMUM EXPONENT

b

P

emin

emax

Three additional parameters consist of floating-point values derivable from the
basic parameters:

MAXIMUM RELATIVE SPACING Epsilon = bl-p

SMALLEST POSITIVE NUMBER Sigma = bemh-1

LARGEST NUMBER Lambda = bemax(l-b'P)

F3.4.3

CURRENT IEEE STANDARDIZATION EFFORTS

Tko committees within the IEEE are working to further refine and extend the
Brown-Feldman model of floating-point arithmetic. Committee P754 is developing a
detailed specification to be applied to computers employing a binary representation. P854
is developing a compatible super-set specification that is both rad+ and word length
independent. The objective of both committees is to establish additional environmental
rules which will precisely define the outcome of all floating-point operations. Such rules
are intended to eliminate all implementation-dependent or ambiguous circumstances
with particular emphasis on consistent treatment of error conditions?

As an example of this focus, both IEEE draft specifications require the
implementation of at least the five following exception conditions:

0 Invalid operation

0 Division by zero

e Overflow

0 Underflow

0 Inexact result

ADA FLOATING-POINT PARAMETERIZATION

The design of floating-point arithmetic in the Ada programming language
explicitly complies with the Brown-Feldman model. It requires a limited, conservative
interpretation of the Brown-Feldman parameters. Ada assumes a binary representation
and arbitrarily assigns values to the other parameters based on the elemental precision
specification of DIGITS in a real object type definition. Although the minimal Ada model
number parameter values frequently result in an artificially limited precision range, they
do encourage portability, predictability and understandability.

Ada also allows for the specification of implementation-dependent "safe number" values.
Such safe numbers permit additional latitude in the programming of numerically
sophisticated procedures requiring greater exploitation of the complete underlying
hardware architecture. A comparison between the Brown-Feldman parameters against
Ada attributes relating to both the required model number values and implementation-
dependent values shows a close mapping:

F3.4.4

Brown-Feldman
Parameter

b

P

emax

emin

Epsilon

Sigma

Lambda

Model Number
At tribute

2
(BY DEFINITION)

TMANTISSA
(FUNCIION OF TDIGITS)

TEMAX
(4*TMANTISSA)

- TEMAX
(SYMMETRICAL RANGE)

TEPSILON
(2.0**(1- TMANTISSA))

TSMALL
(2.0*+(-TEh4AX - 1))

TLARGE
(2"TEMAX (1.0 -

2.0L*(-TMANTISSA)))

HISTORICAL FLOATING-POINT ARITHMETIC TESTS

Implementation-Dependent
Attribute

TMACHINE-RADIX

TMACHINE-MANTISSA

TSAFE-EMAX
TMACI-LTNE-EMAX

TMACHINE-EMIN

(Determined
by Paranoia.Ada)

TSAFE-SMALL

TSAFE-LARGE

A number of computer programs have been written in the last several years which
evaluate the quality of floating-point arithmetic implementations. One such program is
MACHAR written by Cody in 1979 and published in the classic reference, Sofhyare
Manual for the Elementary F~nctions.~ MACHAR, coded in FORTRAN 77, determines
thirteen characteristics of a floating-point arithmetic implementation such as radix,
precision, rounding phenomenon, underflow threshold and ovefflow threshold.

Another notable effort is the Arithmetic Unit Test Program developed by Schryer
in 1979. Results from the execution of this program were reported in the seminal Brown
and Feldman paper "Environmental Parameters and Basic Functions for Floating-Point
Computation"? Schryer's test program was also coded in FORTRAN 77 and calculates
the seven Brown-Feldman model parameters. The program was used to test Cray-1, IBM

F3.4.5

370, DEC VAX, Honeywell 6000 and Interdata 8/32 computers in support of Brown and
Feldman's research.

RECENT FLOATING-POINT ARITHMETIC TESTS

More recently, two members of the IEEE floating-point standardization
committees have written programs that perform even more sophisticated evaluations of
floating-point arithmetic implementations. Karpinsky's 1985 article, "Paranoia: A
Floating-Point Benchmark" describes the program Paranoia written by University of
California, Berkeley Professor W. M. Kahan.6 The article includes both Pascal and
BASIC source code listings of Guard, a subset version of the full Paranoia. Kahan's
original Paranoia is written in BASIC for the IBM (Intel 8088/8087) Personal Computer.
It has also been translated into FORTRAN, Pascal and "C" for execution on DEC VAX
and Sun Microcomputer (Motorola 68000) architectures?

ADA IMPLEMENTATION OF PARANOIA

In conjunction with its Ada evaluation activities, Package-Architects, Inc. has
converted the original Paranoia program to Ada. This converted program is called
Paranoia.Ada. Paranoia.Ada determines the floating-point characteristics of the
hardware supporting an Ada implementation. It also evaluates the accuracy, precision
and reliability of the basic, predefined Ada arithmetic operations. The program identifies
errors in floating-point computations and provides a report summarizing the overall
quality and acceptability of the floating-point computational capability.

Paranoia.Ada performs specific diagnostic tests related to the following aspects of
floating-point arithmetic:

0 Determination of correct mathematical operations on small integral values.

0 Calculation of radix, precision and Epsilon parameters.

0 Determination of normalization with respect to subtraction operations.

0 Determination of guard digits on subtraction, multiplication and division
operat ions.

0 Determination of rounding phenomenon (e.g. chopped, rounded or
rounded to even) on addition, subtraction, multiplication and division.

0 Determination of commutative multiplication properties.

0 Determination of underflow threshold values.

F3.4.6

0 Determination of rounding phenomenon on floating-point to integer
conversion operations.

0 Determination of overflow threshold values.

0 Evaluation of integer power arithmetic.

0 Evaluation of division by zero arithmetic.

Paranoia.Ada takes significant advantage of several advanced features of Ada. The
program relies on the Ada exception feature to detect and respond to error conditions
with less disruption to processing than occurs with conventional BASIC or Pascal
mechanisms. The program has been architecturally redesigned into forty-six separately
compiled units and consists of approximately twenty-five hundred semi-colon terminated
Ada statements. The program is implemented as a generic and is instantiated through the
specification of a DIGITS parameter or by reference to a predefined FLOAT-TYPE.

Because a number of validated Ada compilers do not provide the mathematical
functions required by the Paranoia algorithms, Paranoia.Ada contains a partial
mathematics library based on the Cody-Waite algorithms. The program can either use the
mathematics library provided by the compiler being tested or use its own independent
library for test calculations.

The program also includes a utility package called STOP-WATCH which provides
timing data related to test execution. The program measures the amount of CPU time
required to perform the floating-point diagnostic tests and the amount of time required to
generate the resulting output report.

PARANOIAADA DIAGNOSTIC EVALUATIONS

Paranoia.Ada replicates the test algorithms implemented in the original BASIC
language version and adheres to the evaluation criteria established by Professor Kahan.
Paranoia.Ada classifies errors detected in the course of its diagnosis into four categories.
Ranked according to increasing levels of severity, the error categories consist of flaws,
defects, serious defects and failures. Examples of errors associated with each category are
as follows:

J

Flaws: Comparison anomalies such as:
x /= -(-(X) or,
X/= Y but X - Y = 0.

F3.4.7

Defects:

Serious Defects:

Failures:

Range imbalance between overflow threshold and
underflow threshold.

Comparison anomalies such as:
z**x /= Z,*Z,*Z,* ZI.

Erroneously raised numeric errors.

An imbalance between the underflow threshold and
Epsilon.

Multiplication and subtraction operations yield
inconsistent underflow thresholds.

Absence of division by zero protection.

Absence of guard digits.

Underflow or overflow conditions not accompanied by
corresponding numeric errors.

Outright arithmetic errors such as:
2 + 2 = 5 .

Non-normalized subtraction.

Erroneous guard digits.

Underflow to negative number.

Accuracy deterioration approaching underflow.

I ParanoiaAda maintains a record of the errors encountered in the course of its
execution. In its summary report, the program generates an overall evaluation of the
tested floating-point implementation. Using IEEE Standards P754 and P854 as criteria,
the program rates the diagnosed arithmetic in terms of one of the following comments: i

€3.4.8

0 The arithmetic diagnosed appears excellent.

0 The arithmetic diagnosed seems satisfactory.

0 The arithmetic diagnosed seems satisfactory though flawed.

0

0

The arithmetic diagnosed may be acceptable despite inconvenient defects.

The arithmetic diagnosed has unacceptable serious defects.

0 A fatal failure may have spoiled this program's subsequent diagnoses.

EXECUTION OF PARANOIkADA AGAINST DEC ACS

Paranoia.Ada has been run extensively against the Digital Equipment Corporation
(DEC) Ada Compilation System (ACS) hosted on a VAX 785 computer. The VAX
architecture provides a rich and powerful floating-point arithmetic capability. The VAX
supports four floating-point representations. These four representations are avail able
through the Ada package SYSTEM pre-defined floating-point types F-FLOAT, D-FLOAT,
G-FLOAT and H-FLOAT. F-FLOAT is a 32 bit representation, D-FLOAT and G-FLOAT
are alternative 64 bit representations (selectable by a PRAGMA directive), and H-FLOAT
is a 128 bit representation.

'

The DEC ACS also provides for three pre-defined floating-point types in package
STANDARD. The compiler maps each of these types -- FLOAT, LONG-FLOAT, and
LONG-LONG-FLOAT - into the respective machine representation types F-FLOAT,
D-F'LOAT or G-FLOAT, and H-FLOAT. Paranoia.Ada has been run against all seven of
these pre-defined types as well as a user-defined type of SYSEM.MAX-DIGITS.
S m . M A X - D I G I T S forces the compiler to use the H-FLOAT representation. Sample
output reports from D-FLOAT, G-FLOAT, H-F'XDAT, and SYSTEM.MAX_DIGITS test runs
are supplied as attachments.

DIAGNOSTIC ANALYSIS
i

ParanoiaAda provides a consistent diagnosis of the eight tested floating-point
representations. The values calculated by the Paranoia.Ada algorithms match the values
reported by queries to corresponding Ada attributes. The program detects a similar set of
errors on all eight representations as well. One flaw and one serious defect pertaining to
underflow phenomena were discovered for each of the representations. The flaw involves
an inconsistency between comparison results and arithmetic results with numerical values
at or very close to the underflow threshold. The serious defect concerns the absence of a
numeric error when subtraction operations on such small numbers result in underflow.

F3.4.9

This specific circumstance is addressed by the IEEE standards. The DEC VAX
implementation appears to result in an underflow to zero but without a numeric error
being raised. The IEEE standards require that the underflow result be a non-normalized
"tiny" number accompanied by an exception.

Paranoia.Ada uncovers a second serious defect in the D-FLOAT floating-point
representation. In the VAX architecture, D-FLOAT representation is an extension of the
single-precision F-FLOAT representation. (G-FLOAT is the true double-precision
representation.) D-FLOAT has the same exponent range as F-FLOAT but uses an
additional 32 bits of storage to allow greater precision in the significand. This allocation
violates a requirement of the IEEE specification for balance between Epsilon and Sigma.
In Paranoia.Ada terms, Epsilon equates to a calculated unit in the last place value and
Sigma is the calculated underflow threshold value.

TIMING RESULTS

Execution and compilation timing data for each of the eight various DEC ACS
floating-point representations are presented in Table 1. Execution times are also
graphically depicted in Figure 1. (Since these data represent only a single sample for each
type, caution is advised against drawing unjustified general conclusions.) Report
generation times appear relatively consistent and provide a basis of comparison for the
execution time differences. The execution times appear to increase as a function of the
amount of precision provided by each type. Within the same precision, STANDARD pre-
defined types seem to take longer to execute than SYSTEM pre-defined types.

Compilation times for the seven pre-defined types are also relatively constant. For
these types, the DEC ACS compiles Paranoia.Ada at a rate of approximately six hundred
statements per minute. The compiler generates the SYSTEM.MAX-DIGITS version of the
program at a slightly slower rate.

SIGNIFICANCE OF RESULTS

Owing to the sophistication of its diagnostic algorithms, Paranoia.Ada places
heavy demands on the floating-point capabilities of an Ada compiler. The successful
compilation and execution of a program as numerically complex and devious as
Paranoia.Ada is a significant demonstration of a compiler's maturity, robustness and
completeness. ParanoiaAda is a practical exploration of Ada's floating-point capabilities.
It tests the fidelity of an Ada implementation to the concept of model numbers, assesses
the dependability of the arithmetic, and reveals Ada's suitability as an engine for further
serious numerical computations. ParanoiaAda, itself being a computationally intensive
program, establishes the appropriateness of Ada as a medium for numerically demanding
applications.

F3.4.10

c

U
5

m

2 a 8
F:
r-'

d
ij

c m

3 2 s 8

& 8
$3 8
s 8

E
F

4
V

F
8
8

C r-
8
8

8
8
8

c.(r-
8
8

F3.4.11

0 0 0 0 0 0 0
9 9
r(0

s
a

s
R

s s * p1
?
d

F3.4.12

CONCLUSION

Many essential software functions in the mission critical computer resource
application domain depend on floating-point arithmetic. Numerically intensive functions
associated with the Space Station project, such as ephemeris generation or the
implementation of Kalman filters, are likely to employ the floating-point facilities of Ada.
Paranoia.Ada appears to be a valuable program to insure that Ada environments and
their underlying hardware exhibit the precision and correctness required to satisfy mission
computational requirements.

As a diagnostic tool, Paranoia.Ada reveals many essential characteristics of an
Ada floating-point implementation. Equipped with such knowledge, programmers need
not tremble before the "black beast" of floating-point computation.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

W. J. Cody, "Floating-point Parameters, Models and Standards," in The
Relationship Between Numerical Computation and Programming Languages, J.K.
Reid, ed., North-Holland Publishing Co., Amsterdam, 1982, pp. 5 1-65.

W. S. Brown, "A Simple But Realistic Model of Floating-point Computation,"
ACM Transactions on Mathematical Software, Vol. 7 , No. 4, December 1981, pp.
445-480.

W. J. Cody, W. Kahan, et. al. "A Proposed Radix- and Word-length-independent
Standard for Floating-point Arithmetic," I€€E Micro, August 1984, pp. 86-100.

W. J. Cody and W. Waite, Software Manual for the Elementary Functions, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1980.

W. S. Brown and S. I. Feldman, "Environmental Parameters and Basic Functions
for Floating-point Computation", ACM Transactions on Mathematical Software,
Vol. 6, No. 4, December 1980, pp. 510-523.

R. Karphsky, "Paranoia: A Floating-Point Benchmark", BYTE, Vol. 10, No. 2,
February 1985, pp. 223-235.

BASIC, FOR?", Pascal and "C" Paranoia source code is available from Mr.
Richard Karpinsky, IEEE P854 Mailings, U-76, University of California, San
Francisco, San Francisco, CA 94143.

F3.4.13

