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I INTRODUCIlON 

Programmers have traditionally approached floating-point arithmetic with great 
trepidation. Brown and Feldman in their landmark paper on model numbers call floating- 
point arithmetic the "bete noire" (black beast) of computing. Programmers are haunted by 
the suspicion that floating-point calculations harbor hidden errors. This resistance stems, 
at least partly, from the variety of inconsistent floating-point representations 
implemented over the years by different computer manufacturers. 

In many respects, the programming language Ada' is not so much a breakthrough 
in technology as it is an evolutionary melding of many advancements achieved by 
computer science research during the 1970s. This is certainly the case with respect to 
Ada's treatment of floating-point arithmetic. Ada explicitly adheres to concepts of 
environmental inquiry initially proposed by Naur in 1967 and of model number 
parameterization advanced by Brown and Feldman in 1980 and formalized by Brown in 
1981. Following these precepts, Ada encourages the development of safe, transportable 
numerical programs. This paper traces major historical efforts to establish effective 
standards for floating-point arithmetic. It describes previously developed programs 
written in languages such as FORT" and BASIC which partially undertake the testing 
of conformance to such standards. It provides results obtained from a contemporary 
program, Paranoia.Ada, which tests various aspects of floating-point arithmetic in the 
context of the Ada programming language. 

SPECIFICATION OF FLOATING-POINT ARITHMETIC 

The last two decades have witnessed efforts within the computer science 
community to establish floating-point arithmetic standards. These efforts have been 
primarily motivated by a desire to perform consistent arithmetic in a common 
transportable programming language across many different computing environments and 
hardware architectures. Naur, writing in 1967, introduced the concept of an 
"environmental inquiry" as a means of ascertaining the arithmetic characteristics of a 
computing environment. His ideas where incorporated into the ALGOL 68 language and 
are reflected in the "attribute" feature of Ada. 

The International Federation for Information Processing (IFIP) Working Group 
25 (Mathematical Software) introduced the concept of floating-point parameters as a 
means of determining the characteristics of a specific programming environment's 
floating-point arithmetic implementation. The design of FORTRAN 77 provided access 

I to such floating-point parameters? 

I 'Ada is a registered trademark of the US. Government, ATP0 (Ada Joint Program Office). 
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BROWN-FELDMAN CONTRIBUTIONS 

More recently, Brown and Feldman, using model number theory, further specified 
floating-point parameterization. They defined a generalized standard representation of 
floating-point numbers independent of underlying machine architecture. Their landmark 
work resulted in precise definitions for floating-point arithmetic based on model numbers 
and model intervals. They established rigorous theorems concerning the dependability of 
computational results derived from operations that adhered to the basic model 
definitions.2 They defined a standard model number representation as: 

x = be f, where 

b is the specified radix, 

e is an integer exponent of specified range, and 

f is the significand expressed as a base-b digit. 

They identified seven model parameters as necessary to the specification of a 
floating-point arithmetic implementation. Four parameters consist of basic integer values: 

BASE 

PRECISION 

MNIMUM EXPONENT 

MAXIMUM EXPONENT 

b 

P 

emin 

emax 

Three additional parameters consist of floating-point values derivable from the 
basic parameters: 

MAXIMUM RELATIVE SPACING Epsilon = bl-p 

SMALLEST POSITIVE NUMBER Sigma = bemh-1 

LARGEST NUMBER Lambda = bemax(l-b'P) 
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CURRENT IEEE STANDARDIZATION EFFORTS 

Tko committees within the IEEE are working to further refine and extend the 
Brown-Feldman model of floating-point arithmetic. Committee P754 is developing a 
detailed specification to be applied to computers employing a binary representation. P854 
is developing a compatible super-set specification that is both rad+ and word length 
independent. The objective of both committees is to establish additional environmental 
rules which will precisely define the outcome of all floating-point operations. Such rules 
are intended to eliminate all implementation-dependent or ambiguous circumstances 
with particular emphasis on consistent treatment of error conditions? 

As an example of this focus, both IEEE draft specifications require the 
implementation of at least the five following exception conditions: 

0 Invalid operation 

0 Division by zero 

e Overflow 

0 Underflow 

0 Inexact result 

ADA FLOATING-POINT PARAMETERIZATION 

The design of floating-point arithmetic in the Ada programming language 
explicitly complies with the Brown-Feldman model. It requires a limited, conservative 
interpretation of the Brown-Feldman parameters. Ada assumes a binary representation 
and arbitrarily assigns values to the other parameters based on the elemental precision 
specification of DIGITS in a real object type definition. Although the minimal Ada model 
number parameter values frequently result in an artificially limited precision range, they 
do encourage portability, predictability and understandability. 

Ada also allows for the specification of implementation-dependent "safe number" values. 
Such safe numbers permit additional latitude in the programming of numerically 
sophisticated procedures requiring greater exploitation of the complete underlying 
hardware architecture. A comparison between the Brown-Feldman parameters against 
Ada attributes relating to both the required model number values and implementation- 
dependent values shows a close mapping: 
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Brown-Feldman 
Parameter 

b 

P 

emax 

emin 

Epsilon 

Sigma 

Lambda 

Model Number 
At tribute 

2 
(BY DEFINITION) 

TMANTISSA 
(FUNCIION OF TDIGITS) 

TEMAX 
(4*TMANTISSA) 

- TEMAX 
(SYMMETRICAL RANGE) 

TEPSILON 
(2.0**(1- TMANTISSA)) 

TSMALL 
(2.0*+(-TEh4AX - 1)) 

TLARGE 
(2"TEMAX (1.0 - 

2.0L*(-TMANTISSA))) 

HISTORICAL FLOATING-POINT ARITHMETIC TESTS 

Implementation-Dependent 
Attribute 

TMACHINE-RADIX 

TMACHINE-MANTISSA 

TSAFE-EMAX 
TMACI-LTNE-EMAX 

TMACHINE-EMIN 

(Determined 
by Paranoia.Ada) 

TSAFE-SMALL 

TSAFE-LARGE 

A number of computer programs have been written in the last several years which 
evaluate the quality of floating-point arithmetic implementations. One such program is 
MACHAR written by Cody in 1979 and published in the classic reference, Sofhyare 
Manual for the Elementary F~nctions.~ MACHAR, coded in FORTRAN 77, determines 
thirteen characteristics of a floating-point arithmetic implementation such as radix, 
precision, rounding phenomenon, underflow threshold and ovefflow threshold. 

Another notable effort is the Arithmetic Unit Test Program developed by Schryer 
in 1979. Results from the execution of this program were reported in the seminal Brown 
and Feldman paper "Environmental Parameters and Basic Functions for Floating-Point 
Computation"? Schryer's test program was also coded in FORTRAN 77 and calculates 
the seven Brown-Feldman model parameters. The program was used to test Cray-1, IBM 
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370, DEC VAX, Honeywell 6000 and Interdata 8/32 computers in support of Brown and 
Feldman's research. 

RECENT FLOATING-POINT ARITHMETIC TESTS 

More recently, two members of the IEEE floating-point standardization 
committees have written programs that perform even more sophisticated evaluations of 
floating-point arithmetic implementations. Karpinsky's 1985 article, "Paranoia: A 
Floating-Point Benchmark" describes the program Paranoia written by University of 
California, Berkeley Professor W. M. Kahan.6 The article includes both Pascal and 
BASIC source code listings of Guard, a subset version of the full Paranoia. Kahan's 
original Paranoia is written in BASIC for the IBM (Intel 8088/8087) Personal Computer. 
It has also been translated into FORTRAN, Pascal and "C" for execution on DEC VAX 
and Sun Microcomputer (Motorola 68000) architectures? 

ADA IMPLEMENTATION OF PARANOIA 

In conjunction with its Ada evaluation activities, Package-Architects, Inc. has 
converted the original Paranoia program to Ada. This converted program is called 
Paranoia.Ada. Paranoia.Ada determines the floating-point characteristics of the 
hardware supporting an Ada implementation. It also evaluates the accuracy, precision 
and reliability of the basic, predefined Ada arithmetic operations. The program identifies 
errors in floating-point computations and provides a report summarizing the overall 
quality and acceptability of the floating-point computational capability. 

Paranoia.Ada performs specific diagnostic tests related to the following aspects of 
floating-point arithmetic: 

0 Determination of correct mathematical operations on small integral values. 

0 Calculation of radix, precision and Epsilon parameters. 

0 Determination of normalization with respect to subtraction operations. 

0 Determination of guard digits on subtraction, multiplication and division 
operat ions. 

0 Determination of rounding phenomenon (e.g. chopped, rounded or 
rounded to even) on addition, subtraction, multiplication and division. 

0 Determination of commutative multiplication properties. 

0 Determination of underflow threshold values. 
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0 Determination of rounding phenomenon on floating-point to integer 
conversion operations. 

0 Determination of overflow threshold values. 

0 Evaluation of integer power arithmetic. 

0 Evaluation of division by zero arithmetic. 

Paranoia.Ada takes significant advantage of several advanced features of Ada. The 
program relies on the Ada exception feature to detect and respond to error conditions 
with less disruption to processing than occurs with conventional BASIC or Pascal 
mechanisms. The program has been architecturally redesigned into forty-six separately 
compiled units and consists of approximately twenty-five hundred semi-colon terminated 
Ada statements. The program is implemented as a generic and is instantiated through the 
specification of a DIGITS parameter or by reference to a predefined FLOAT-TYPE. 

Because a number of validated Ada compilers do not provide the mathematical 
functions required by the Paranoia algorithms, Paranoia.Ada contains a partial 
mathematics library based on the Cody-Waite algorithms. The program can either use the 
mathematics library provided by the compiler being tested or use its own independent 
library for test calculations. 

The program also includes a utility package called STOP-WATCH which provides 
timing data related to test execution. The program measures the amount of CPU time 
required to perform the floating-point diagnostic tests and the amount of time required to 
generate the resulting output report. 

PARANOIAADA DIAGNOSTIC EVALUATIONS 

Paranoia.Ada replicates the test algorithms implemented in the original BASIC 
language version and adheres to the evaluation criteria established by Professor Kahan. 
Paranoia.Ada classifies errors detected in the course of its diagnosis into four categories. 
Ranked according to increasing levels of severity, the error categories consist of flaws, 
defects, serious defects and failures. Examples of errors associated with each category are 
as follows: 

J 

Flaws: Comparison anomalies such as: 
x /= -(-(X) or, 
X/= Y but X - Y = 0. 
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Defects: 

Serious Defects: 

Failures: 

Range imbalance between overflow threshold and 
underflow threshold. 

Comparison anomalies such as: 
z**x /= Z,*Z,*Z, ....* ZI. 

Erroneously raised numeric errors. 

An imbalance between the underflow threshold and 
Epsilon. 

Multiplication and subtraction operations yield 
inconsistent underflow thresholds. 

Absence of division by zero protection. 

Absence of guard digits. 

Underflow or overflow conditions not accompanied by 
corresponding numeric errors. 

Outright arithmetic errors such as: 
2 + 2 = 5 .  

Non-normalized subtraction. 

Erroneous guard digits. 

Underflow to negative number. 

Accuracy deterioration approaching underflow. 

I ParanoiaAda maintains a record of the errors encountered in the course of its 
execution. In its summary report, the program generates an overall evaluation of the 
tested floating-point implementation. Using IEEE Standards P754 and P854 as criteria, 
the program rates the diagnosed arithmetic in terms of one of the following comments: i 
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0 The arithmetic diagnosed appears excellent. 

0 The arithmetic diagnosed seems satisfactory. 

0 The arithmetic diagnosed seems satisfactory though flawed. 

0 

0 

The arithmetic diagnosed may be acceptable despite inconvenient defects. 

The arithmetic diagnosed has unacceptable serious defects. 

0 A fatal failure may have spoiled this program's subsequent diagnoses. 

EXECUTION OF PARANOIkADA AGAINST DEC ACS 

Paranoia.Ada has been run extensively against the Digital Equipment Corporation 
(DEC) Ada Compilation System (ACS) hosted on a VAX 785 computer. The VAX 
architecture provides a rich and powerful floating-point arithmetic capability. The VAX 
supports four floating-point representations. These four representations are avail able 
through the Ada package SYSTEM pre-defined floating-point types F-FLOAT, D-FLOAT, 
G-FLOAT and H-FLOAT. F-FLOAT is a 32 bit representation, D-FLOAT and G-FLOAT 
are alternative 64 bit representations (selectable by a PRAGMA directive), and H-FLOAT 
is a 128 bit representation. 

' 

The DEC ACS also provides for three pre-defined floating-point types in package 
STANDARD. The compiler maps each of these types -- FLOAT, LONG-FLOAT, and 
LONG-LONG-FLOAT - into the respective machine representation types F-FLOAT, 
D-F'LOAT or G-FLOAT, and H-FLOAT. Paranoia.Ada has been run against all seven of 
these pre-defined types as well as a user-defined type of SYSEM.MAX-DIGITS. 
S m . M A X - D I G I T S  forces the compiler to use the H-FLOAT representation. Sample 
output reports from D-FLOAT, G-FLOAT, H-F'XDAT, and SYSTEM.MAX_DIGITS test runs 
are supplied as attachments. 

DIAGNOSTIC ANALYSIS 
i 

ParanoiaAda provides a consistent diagnosis of the eight tested floating-point 
representations. The values calculated by the Paranoia.Ada algorithms match the values 
reported by queries to corresponding Ada attributes. The program detects a similar set of 
errors on all eight representations as well. One flaw and one serious defect pertaining to 
underflow phenomena were discovered for each of the representations. The flaw involves 
an inconsistency between comparison results and arithmetic results with numerical values 
at or very close to the underflow threshold. The serious defect concerns the absence of a 
numeric error when subtraction operations on such small numbers result in underflow. 
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This specific circumstance is addressed by the IEEE standards. The DEC VAX 
implementation appears to result in an underflow to zero but without a numeric error 
being raised. The IEEE standards require that the underflow result be a non-normalized 
"tiny" number accompanied by an exception. 

Paranoia.Ada uncovers a second serious defect in the D-FLOAT floating-point 
representation. In the VAX architecture, D-FLOAT representation is an extension of the 
single-precision F-FLOAT representation. (G-FLOAT is the true double-precision 
representation.) D-FLOAT has the same exponent range as F-FLOAT but uses an 
additional 32 bits of storage to allow greater precision in the significand. This allocation 
violates a requirement of the IEEE specification for balance between Epsilon and Sigma. 
In Paranoia.Ada terms, Epsilon equates to a calculated unit in the last place value and 
Sigma is the calculated underflow threshold value. 

TIMING RESULTS 

Execution and compilation timing data for each of the eight various DEC ACS 
floating-point representations are presented in Table 1. Execution times are also 
graphically depicted in Figure 1. (Since these data represent only a single sample for each 
type, caution is advised against drawing unjustified general conclusions.) Report 
generation times appear relatively consistent and provide a basis of comparison for the 
execution time differences. The execution times appear to increase as a function of the 
amount of precision provided by each type. Within the same precision, STANDARD pre- 
defined types seem to take longer to execute than SYSTEM pre-defined types. 

Compilation times for the seven pre-defined types are also relatively constant. For 
these types, the DEC ACS compiles Paranoia.Ada at a rate of approximately six hundred 
statements per minute. The compiler generates the SYSTEM.MAX-DIGITS version of the 
program at a slightly slower rate. 

SIGNIFICANCE OF RESULTS 

Owing to the sophistication of its diagnostic algorithms, Paranoia.Ada places 
heavy demands on the floating-point capabilities of an Ada compiler. The successful 
compilation and execution of a program as numerically complex and devious as 
Paranoia.Ada is a significant demonstration of a compiler's maturity, robustness and 
completeness. ParanoiaAda is a practical exploration of Ada's floating-point capabilities. 
It tests the fidelity of an Ada implementation to the concept of model numbers, assesses 
the dependability of the arithmetic, and reveals Ada's suitability as an engine for further 
serious numerical computations. ParanoiaAda, itself being a computationally intensive 
program, establishes the appropriateness of Ada as a medium for numerically demanding 
applications. 
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CONCLUSION 

Many essential software functions in the mission critical computer resource 
application domain depend on floating-point arithmetic. Numerically intensive functions 
associated with the Space Station project, such as ephemeris generation or the 
implementation of Kalman filters, are likely to employ the floating-point facilities of Ada. 
Paranoia.Ada appears to be a valuable program to insure that Ada environments and 
their underlying hardware exhibit the precision and correctness required to satisfy mission 
computational requirements. 

As a diagnostic tool, Paranoia.Ada reveals many essential characteristics of an 
Ada floating-point implementation. Equipped with such knowledge, programmers need 
not tremble before the "black beast" of floating-point computation. 
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