
4

SOFTWARE ISSUES INVOLVED IN CODE TRANSLATION
OF C TO ADA PROGRAMS

Robert Hooi, Joseph Giarratano
University of Houston Clear Lake

ABSTRACT

It is often thought that translation of one programming
language to another is a simple solution that can be used to extend
the software life span or in re-hosting software to another
environment.

the disadvantages of direct machine or human code translation
versus that of re-design and re-write of the software. The
translation of the expert system language called C Language
Integrated Production System (CLIPS) which is written in C, to Ada,
will be used as a case study of the problems that are encountered.

This paper examines the possible problems, the advantages and

1 FUNDAMENTAL CONCEPTS

1.1 Introduction

CLIPS is a rule-based expert system language developed by the
Artificial Intelligence (AI) section of the Johnson Space Center.
The programming language C was used in the original implementation
of CLIPS, while Ada is used as the new target language.

In re-hosting the original version of CLIPS from C to Ada, two
approaches were attempted. The first approach was direct code
translation, while the second was a complete re-write and re-design
of the entire software.

1.2 Direct Code Translation As A Possible Amroach

The work involved in the development of large software systems
often represents huge amounts of time and expense. Monetary
investments and time involved in the development make it extremely
desirable to continue using these software systems for as long as
possible. A few reasons for re-hosting to a new hardware or
software environment are:

o software system -is still needed

o difficulty in locating technical support

o need to increase software versatility

o greater execution speed

o more economical hardware

At first sight, code translation may be seen as a simple,
inexpensive approach to a complex and difficult problem.
Translation seems to offer an attractive patch in extending the
versatility and life span of existing software systems without the
need to "re-invent the wheel".

F.3.7.1

https://ntrs.nasa.gov/search.jsp?R=19890006993 2020-03-20T03:41:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42829628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.3 Advantaqes Of Direct Code Translation

Direct code translation is often considered a very direct,
simple and desirable method of re-hosting existing software to
another environment. It offers a number of plausible advantages
that can be highly questionable in retrospect. These advantages
are :

o elimination of some of the software life cycle phases

o requires less time and effort compared to re-design and
re-write

o easily extended life span and software versatility

o elimination of human errors compared to re-design and re-
write.

These advantages will now be discussed in more detail.

1.3.1 Elimination Of Some Of The Software Life Cycle Phases

The major phases of the software life cycle 111 include:

1. requirement analysis 2. specifications/requirements

3. design 4. coding

5. verification and 6. maintenance and operation
validation

If carried out correctly, the most difficult work involved in
the software life cycle is in the early phases. Maintenance and
operation may be time consuming but lacks the complexity of the
first phases (1 - 3) of the life cycle, unless major changes are
desired after the software is released. In fact, studies have shown
that maintenance may account for up to 90% of costs for the
software life span [8 , 9] . One of the major reasons for the
development of Ada was to reduce maintenance costs. Direct code
conversion offers a simple short cut to avoid the early phases
(1 - 3) of the life cycle by:

o requiring only source code of the software

o minimizing verification and validation

o allowing re-use of test data from the original

o eliminating the need to do design conversion

o eliminating the need to understand the functionality of the
software, which is especially useful if the original
programmers have left

In cases where the documents of the early phases of the

F.3.7.2

software life cycle are missing or are poorly defined, direct code
translation means eliminating "re-inventing the wheel". There is no
need to derive a design if it is missing or to study and redefine
poorly written documents.

1.3.2 Requires Less Time and Effort Compared to Re-Desianins and
Re-Writinq

Direct code translation appears to be an attractive approach in
that it is theoretically a simple, mechanical process if the host
and target language are similar. There is little need to understand
the actual requirements, design or functionality of the program.
Much smaller machine and human resources are needed in performing
the translation. All that is required is a basic understanding of
the software tools and their interfaces, detailed knowledge of the
host and target languages, and the different hardware
specifications.

quickly and without the possibility of human error. In theory,
translation work is basically tedious but mechanical and simple in
nature. All that is required is a consistent, correct and accurate
equating of the original implementation with that of the target
language and its' environment. Also, once a translator is
available, it may be used on other software or the translator may
be sold for a profit.

Once a translator is built, code translation may proceed very

1.3.3 Easily Extended Life Span And Software Versatility

A re-write and re-design of a software system is expensive and
time consuming. It requires a considerable amount of professional
human expertise compared to direct code translation which could be
performed by either human or machine translators. If direct code
translation is done by human translators, it may be expensive and
time consuming, but it is still cheaper than a re-design and re-
write. The early phases (1-3) of the software life cycle can still
be skipped.

If the work is performed by a machine translator, it would
still be relatively inexpensive since the only real work would be
in the validation and verification of the accuracy of the results.
A certain amount of editing and debugging may be required, but the
work involved is relatively mechanical in nature while the
resources needed are still less than an actual re-design and re-
write.

The elimination of most of the work involved in the software
life cycle, plus the possible availability of a machine translator
and the ease involved in the work, could mean a saving in time. The
re-hosting and re-targeting work can be completed in a relatively
short period of time compared to re-design and re-writing.

1.4 Elimination of Human Error

Translation of computer software can be carried out either by a
human or machine translator. If the software is large, then the use
of a machine translator may be the least expensive approach,
whereas for small programs, a human translator may be the better
choice. The translated version is tested for accuracy and

F.3.7.3

correctness by computer programmers.

the computer languages and external interfaces involved in the
translation process. The work in general is very mechanical in
nature. The advantage of the mechanical translator compared to a
human is a reduction in software errors in the translation. The
disadvantages of machine translators is that the human may clean up
the code during translation because the human can understand the
semantics as well as just the syntax.

The requirements for a human translator is an understanding of

- 2 SOFTWARE ENGINEERING ISSUES INVOLVED IN DIRECT CODE TRANSLATION

2.1 Introduction

The process that direct code translation generally takes often
results in a failure to address certain design and implementation
issues in software engineering. These can develop into major
problems later on in the software life cycle. They are:

l o differences and incompatibilities in design methodologies

o differences and incompatibilities in language implementation

l o possible disregard of the richness of the target language
~

~

o possible inaccuracies and discrepancies between languages

o maintenance costs may well exceed savings of translation.

Unless the above issues are addressed, the problems and
I <isadvantages may outweigh all the advantages made in a direct code

translation.

2.2 Differences And Incompatibilities In Desiqn Methodologies

The types of available software tools have a profound effect on
aur thinking process and thus the design and development of the
software. The types of design methodologies used are often guided
as well as restricted by the software tools used in the
implementation of the actual program. It should be noted, however,
that methodologies are generally much easier to compromise than the
implementation language tools. The same rules apply to modern
software engineering principles and practice.

The principles of modern software engineering as incorporated
by languages such as Ada and Modula-2 are [2,3] are:

o modularity o abstraction o information hiding
o localization o uniformity o completeness
o confirmability

If the programming language used does not directly provide
support towards the above software engineering principles, then it
is difficult and often impractical to implement a design which
adheres to these concepts. The implementation language and design
methodologies used should be mutually cornpatible for best results.

F.3.7.4

So converting a BASIC program to FORTRAN IV would be reasonable
since they share similar software principles. Likewise conversion
from Modula-2 to Ada would be feasible since both languages support
the above modern engineering principles. Difficulties arise in the
translation of programs in a language like C to Ada since C does
not adhere to the above principles of Ada.

The use of an object-oriented design methodology [41, together
with an object oriented language such as Ada, forms a very highly
compatible choice towards the support and implementation of these
software engineering principles [lo]. If a programming language does
not readily support these concepts it will probably be absent in
the implementation. In languages which do not have this support it
may be too expensive and difficult to enforce these principles. In
most cases, the designers and implementors would probably choose a
design methodology that allows an easier implementation, rather
than one in which the language would have difficulty adhering to.

A major issue involved in directly translating a program to a
target language is that the type of methodology used is often
ignored. If the work is performed by computer programmers, then it
may be possible to modify and adapt some of the code to that of
Ada's object-oriented approach. It would be impossible for a simple
syntax-directed machine translator to do this completely, since it
involves a certain degree of independent thinking, analysis and
understanding of the original software. Thus, a machine translator
would have to understand the semantics as well as the syntax to do
a thorough job. Such a translator would have to include artificial
intelligence and expert system techniques and would be very
difficult to build. A simpler alternative would be to have a human
examine the code produced by the simple translator and polish it
up. However, this could still be a major task.

If the original implementation is not an object-oriented design
methodology, then it will not normally be present in the translated
version- For example, if the original does not support the concept
of information hiding, then the translated version will not. If the
original design methodology adheres to the concept of data flow
decomposition or the Jackson Design methodology [SI, then the
translated version certainly would not have any of Ada's object-
oriented approach.

A time factor should also be taken into account since the type
of methodology used is dependent on when it was first conceived.
Ada's object-oriented design methodology would certainly be absent
if the software was developed prior to the 1980's. This technical
gap may not be easily bridged in direct code translation unless the
languages are similar, such as Modula-2 and Ada.

The ability of the language to support these methodologies must
also be considered. For example, Ada's packages supports the
concept of information hiding, which may be simulated by CIS
statement "INCLUDE". However, this does not mean that C provides
the same capabilities or support of the concept of information
hiding found in Ada. There is no close equivalent in C to Ada's
private and limited private types or visibility controls,

of re-usable software components. For example, there are no
facilities in C to directly simulate Ada's generics.

is missing. The problem is compounded when the methodology used is

Translation becomes even more difficult concerning the concept

A major difficulty in translation occurs when the documentation

F.3.7.5

unknown and is not similar to Ada's object oriented approach. These
problems were found in the translation of CLIPS.

A certain amount of re-design and re-write was required in
certain program segmnents in order to conform to the language
implementation requirements of the target language (ADA). An
example is the difference between a C library program versus Ada's
packages. Each C library program has the function - "main", which
may make calls to other external library functions or functions
within the same file. The visibility rules in C allow calls by the
sub-program unit "main" to other functions located anywhere within
the file dependent upon the programmer's convenience. Ada's
visibility rules allow procedures and functions to be called by
other program units only if declared above it. An example found in
the CLIPS demonstrating C's visibility problems is shown below:

command-loop 0;
if (optIu-found == TRUE)

{displayfunctionso;}
1 J

command-loop ()

displayfunctions ()

Ada's visibility rules would require:

procedure Command-Loop is -- assumes converted to a procedure --
end Command-Loop;

procedure Display-Functions is

end Display-Functions;

procedure Main is

begin

Command-Loop;
if (Opt U Found = True) then - -

Displayfunctions;
c

end Main;

In view of the differences in design methodologies, it follows
that if the translation does not include the methodologies, then
the work is only partially complete. A translation without the
design methodology is not a true representation of the target
language's environment. It is therefore not possible to re-target
software correctly by direct translation if the design
methodologies are not considered in the work.

2.3 Differences And Incompatibilities In Lansuage Implementations

F.3.7.6

Discrepancies and incompatibilities between different computer
languages mean that what is considered as an acceptable programming
practice in one may not be permitted in another. C has weak typing,
which means that unless it well enforced, most data types can take
on any values assigned to them. If the program is to be properly
translated to Ada, then a number of conversions and data checks
must be included to restrict the values assigned to variables. This
is needed to accomodate the differences between C's weak typing
versus Ada's strict typing requirements.

The strength in Ada's requirement for strict typing enforces
program reliability and consistency, while C allows for greater
flexibility on the part of the programmer. The result in
accomodating the typing requirements of Ada is that the translated
version is seldom, if ever, smaller than the original. In the
translation of CLIPS to Ada, it was found that for every line of C
code, the average is generally two lines of Ada code. This does not
mean that Ada is a less efficient language compared to C, merely,
that Ada's strict typing enforces consistency and provides a more
reliable program. This is particularly important to the Space
Station since much of the software will support human lives and
also directly affect the longevity of the space station.

be corrected in the translated version is shown below:
An example from CLIPS demonstrating CIS weak typing which must

float tally = 0;

char lm;

int ten = 10;

tally = tally*lO + (lm - ' 0 ' 1 ;

The Ada version must have the following changes made:

o convert integer 10 to float

o convert data types: lm and l o ' to asc i i values

o convert the resulting arithmetic operations (lm - ' 0 ' 1
to float

o value initialized to tally changed to 0.0

tally := tally*l0.0 +
float(Character'Pos(1m) - Character'Pos('o'));

The complexity of the problem increases if the typing problem
occurs in the arguments of a subprogram call. Data conversion will
have to be made prior to actual passing of the values to the
subprogram call.

In addition to the weak typing problem, certain language
features in C which are not found in Ada have to be worked around.
This again accounts for some extra code being produced. An example
from CLIPS showing the auto increment is:

F.3.7.7

while ((atemp != null) && (++count != nnn))

versus Ada's version

while ((atemp /= null) and (count /= nnn)) loop

end loop;

count := count + 1;

Note that in this case, the lack of an auto increment or
decrement in Ada does not necessarily mean it is a slower language
at run time. Depending upon the compiler implementation, the
functionality is the same and should execute at similar speeds. The
major difference is that Ada aids readability, thus making it
easier to understand and maintain.

The extra code size may present several important problems:

o program efficiency could be sacrificed

o storage and execution speed becomes worse

o maintenance problem increase due to increased code size

Depending on where the increased code is generated source code,
code size could result in slower program execution. In a situation
where response time is crucial, such as real time execution,
anything that may reduce execution speed should be examined very
carefully to see if it could be acceptable.

For software systems that are relatively small, an increase in
size may not pose an important issue. However, as the magnitude and
complexity of the software increases, there will be a proportional
hardware demand. For example, consider a large embedded software
program occupying 100,000 blocks of disk space. Increasing the code
size by two times might exceed the remaining disk capacity. If this
rule is applied to software systems that are even larger, then
size requirements made by direct code translation may not be an
acceptable solution.

software maintenance would also grow. Issues in software
maintenance will be further examined later in this paper.

An increase in code size would also mean that the complexity of

Some of the results found in the translation of CLIPS to Ada:

Comparison of storage size for one of the files on the VAX:

original version: CL1PS.C occupies 175 blocks
translated version: CLIPS.ADA occupies 369 blocks

Comparison of code size for functions:

Excluding global data declarations, for function Rarray
the original occupies approximately 15 statements
Excluding global data declarations.
translated version occupies 26 statements.

Some factors contributing to an increase in code and storage

F. 3.7.8

size are:

o statement
others

terminators found in Ada - end if, end case and

o instantiations of generic 1/0 packages

o path names used in calls made to other packages

o absence of auto increment and decrement statements

o absence of statements with embedded functions and
statements in boolean tests, such as auto increments

Additional explanation of the reasons for the increase in code
and storage size will be discussed in the next section.

2.3.1 Possible Disresard Of The Richness Of The Tarset Lansuage

In order to translate as accurately as possible, the simple
syntax method is to equate statements found in the original with
that of the target language. This presents a disadvantage in that
much of the richness found in the target language is often ignored.
If the translation is done manually, then certain segments of the
original could be re-built to allow better usage of the target
language. The same cannot be easily applied if the work is
performed by machine translators unless semantic understanding is
also included.

Ada has a standard of 63 reserved words regardless of the
implementation versus C I S approximate 33 (including functions for
the C preprocessor). These 33 words of C depend upon the compiler,
version and host environment. Ada has, in addition, a number of
features which are not present in the standard C implementation.
They are:

o predefined language attributes

o predefined language pragmas

o predefined language environment:

o language predefined identifiers (package standard)

o utility packages such as system and calendar

o input and output packages

o ability for overloading, generics, multi-tasking, nested
generics and packages

The use of generics would drastically reduce the amount of code
found in the original, since functions with like actions but
different data types and properties can be grouped together and
placed in the same subprogram. As a generic unit, a template is
built to accommodate the function of a sub-program without specific
properties. The instantiation allows the properties to be set to

F.3.7.9

the generic package.
While C allows for greater flexibility in usage, the richness

of Ada permits better control, reliability and flexibility in the
programming environment. For example, in order to recover from run-
time errors, the C program will have to simulate what Ada naturally
does in its ability to raise and handle exceptions. A direct syntax
translation would result in having a simulation of run-time error
recovery in Ada, which ignores what the language is equiped to
perform naturally.

An example taken from CLIPS is:

if (notstate == 0)
{
if (btemp == NULL)

1 L
htemp -> locals = valuescopy(1ine->locals);

If the power of Ada is exploited correctly, then the structure
above could be combined, yet simplified as follows:

if (Notstate = 0) and then (Btemp = null) then
Htemp.Locals := Valuescopy (Line.Locals) ;

It should also be noted that since Ada data types are not case
sensitive, then capitalization of the variables could be used to
improve readability, and so provide better maintainability.

completely in direct translation. The increase in code and storage
size of the translated version is in no way an indication that the
original host language is a better software tool. The same rule
applies if the execution speed of the target language is reduced.
It does not mean that Ada is a less efficient language, merely that
it is not exploited fully.

The full power of the target language is seldom exploited

2.3.2 Pcssible Inaccuracies And Discrepancies Between Lanquaqes

Translation of language syntax is generally a very mechanical
process. To equate accurately, it necessary to consider the
semantics of a program, which is a much more difficult task.

The difficulty of the problem of correct semantic translation
increases with the magnitude and complexity of the software. In
addition, if the source in the original is poorly written and has a
very confusing implementation, the chances of a misinterpretation
increases. The main software issue is the program's reliability,
accuracy and correctness. If the semantics are misconstrued in a
subtle area that is difficult to detect, then locating and
debugging the logic problem would be equally difficult.

The differences and restrictions in language implementation are
a major cause of discrepancies in translation. For example, C
permits recursion for the arguments in a function call since the
values passed into the function can be changed. In contrast, the
parameters in Ada must be of a formal type, and changes to those
values are not allowed. To work around this problem, the translator
must decide whether to declare the values that are changed in the
function as global data types or convert it into a procedure. If
the values are changed into global data types, then the issues of

F. 3.7.10

localization and modularity are raised. In addition, care must also
be taken to ensure that those global values are correctly
initialized, changed or kept at each call. If the values are not
traced correctly, then the program execution may not function as
originally designed or there will be a set of global values created
at every subprogram unit that makes a call to that function. If a
function is converted into a procedure, then the calling process
made by the subprograms will have to be changed.

arguments in a function as follows:
An example from the CLIPS demonstrating the changes made to the

Any(code, values)
int code;

if (values->whoset == code)

else
values = values->next;

ret = -1;

return(ret);

Note that in C the arguments of a function are value
parameters. It can, however, perform as a variable, formal or value
parameter. Ada strongly enforces the type of parameter used, which
is defined in the subprogram arguments. For example:

push (first, second, third)

versus Ada's parameters

procedure Push
(First : in Integer;
Second : in out Float;
Third : out Boolean) ;

This ensures program reliability and consistency, as values
passed in are restricted to performing within the scope of their
declared type. The simple solution in translating from C to Ada is
to have all arguments declared as value parameters. In translating
the C code to Ada, unless checks are made to determine if the
arguments passed perform as a variable, formal or value parameter,
this particular strength in Ada will be ignored.

C is a case-sensitive language. A data type with the same name but
written in upper-case is a different variable to that which is in
lower-case. Caution must be taken to ensure that data types with
the same names but different cases be given different names. In
addition, variables in C may be reserved words in Ada. The
translator must be able to identify these and assign meaningful
substitutes.

Another possible semantic problem in direct translation is that

Examples taken from CLIPS to the problem above is shown below:

struct element *out;

while (out != NULL)

extern struct internode *AGENDA;

struct internode *agenda,*step,*past;

F.3.7.11

out = out->next; AGENDA = agenda;

In example (1) a compilation error would result if the
translation process does not substitute a different name to the
data type - "out". The data name ''out" is an Ada reserved word and
cannot be used as a variable name.

Example (2) can have unpredictable results, depending on the
translated version. Since Ada is not a case sensitive language, the
translated statement could really be doing nothing, unless a change
is made to either one of the two object names - "AGENDA'' or
"agendat1.

The ability of C to include function calls in test statements
further complicates the translation process since a patch must be
used to adapt to Ada's language requirements. Temporary variables
must be used in order to obtain the values required for the boolean
tests prior to the execution of the statements. Again, the issue is
not that Ada is a less efficient language, but that it enforces
program readability for better maintainability. An example from
CLIPS shows the problem:

if ((any(go,list) == -1) && ((second == -1) 1 ;
I (any(second,list) == -1)))

while an Ada patch solution would be:

First - Value, Second-Value : Integer := 0;

First-Value := Any (Go, List) ;
Second-Value := Any (Second, List 1;

if ((First Value = -1) and
(Second-= -1) or

((Second-Value = -1))) then

Bit manipulation [6,71 is another area that Ada does not
directly support, but is present in C. The translator must be able
to use an Ada implementation of the compiler that can perform a
representation of the size of the bit used. There are also bit

in order to translate correctly and accurately. Note that this
problem did not arise in the translation of CLIPS as there was no
bit manipulation used.

direct translation. For example, problems arise when the original
implementation performs systems calls using operating system
dependent control languages such as IBM JCL,DEC BLISS and DCL.
Problems occur also when the target language does not contain the
necessary interface features. Direct code translation is thus
dependent upon the implementation capabilities of the target
language and its host environment.

I manipulation operators in Ada similar in C. A patch must be found

In certain cases it may not even be possible to implement a

2 . 4 Maintenance Costs May Well Exceed Savinqs Made in Translation

I F.3.7.12

f

The quality of the simple syntax translation is at best
equivalent to the original. In most cases it is inferior to that
of the original. The reason is that direct translation copies over
the raw design and implementation of the original. If the source
code in the original is unstructured, cryptic and consists of
meaningless data names, then the translated version would bear the
same resemblance. As the old saying goes, "Garbage in, Garbage
out". Just because a program is translated to Ada does not
automatically make it a good program. In addition, the increase in
code to patch some of CIS weak typing serves only to complicate
the task of maintaining the software.

will be hard to translate or re-design correctly, Ideally, the
person who wrote the original code should also have been trained
in the target language. For example, the best person to write C
code would be an Ada programmer who knows C. A programmer who has
experiences with a more evolved language such as Ada, will write
better C than one who knows just c.

An example an equivalent translation from CLIPS is:

if (((element->state == ' 0 ' 1 I ! (element->state == 'nt)) & &
(element->type != FCALL) && (element->type != COAMP))

In any language, if the original has poorly designed code, it

{

if (element->name == list->name)
{
go = 0;
pkg = 0;
if (element->type == NUMBER)

if (element->ivalue != list->ivalue)
stop = -1;

The translated version in Ada is shown following:

(element.type /= FCALL) and (element.type /= COAMP 1) then
if (((elementostate = l o ') or (element.state='nI)) and

while ((list /= null) and (stop = 1) and (go = 1)) loop
if (elementoname = 1ist.name) then

go := 0;
pkg := 0;
if (element.type = NUMBER) then

if (element.ivalue /= 1ist.ivalue) then
stop = -1;

Note that the code and structure characteristics present in
the original can also be found in the translated version. These
are :

o meaningless, cryptic object names

o lack of capitalization standards for readerability

F.3.7.13

o poor structures and language usage

Code from CLIPS that has data types with meaningless names like

In the simple syntax translation of CLIPS to Ada, the general

jill, jack, junk, grab and has no documentation, will produce a
translated version with the same characteristics.

results obtained were that the translated version was worse than
the original. It is at best an Ada program written in C
methodology, with Ada structures looking like C structures. A
simple syntax translation of bad C code will produce bad Ada code.
However, this does not mean that good C code will produce good Ada
code, since much of the wealth of Ada is ignored. This defeats the
purpose of the translation to Ada, which is supposed to improve
maintainability and reliability. If the software lacks quality, it
cannot be easily built on, understood, modified and most important - maintained.
2.5 Summary

In view of today's rising software costs, where the bulk
(80% - 90%) of the expense lies in maintenance and operation,
direct translation may not be the best alternative in extending
the versatility and life span of a software system. It is at best
a patch and at worst an expensive solution when maintenance is
considered.

3 DIRECT TRANSLATION VERSUS
RE-WRITE AND RE-DESIGN OF COMPUTER SOFTWARE

3.1 An Evaluation Of Direct Translation

Simple syntax code translation may not be the ideal solution
to a difficult and complex problem. Yet it is not a totally
useless approach since there are certain values that are tied to
the process. For example, if the program is relatively small,
simple, and has a limited life span and usage, then translation
may well be the best approach. In certain cases, where a design
document is not present, a translation may be a possible method
used to build a prototype for study purposes prior to the actual
re-write of the entire software.

generally limited to small and simple programs. The cost of human
re-writing and re-design is best served in real-time code where
performance is critical. In the translation of CLIPS, it was found
that the time spent in the translation process was almost
equivalent to that used in the original implementation and was
thus self-defeating.

Simple syntax translation should be avoided if the target
environment has a very different design methodology. It can be
strongly considered if the target is a different host machine or a
new version of the same language and design methodology.

Because of the expense involved, human translation is

3.2 An Evaluation Of Re-Design and Re-Write

The re-design and re-write approach should be strongly

F. 3.3.14

considered if a well documented design along with the specification
exists. The original types of methodology used may be incompatible
with the target , but it may be converted and adapted to the
requirements of the new design methodology. The reason is that if
the design is clear and well documented, it can be easily
understood, worked upon and modified to fit any methodology. Coding
is a relatively simple and mechanical process if a good design
exists. The most difficult work involved in the development of any
software is still the early phases of the life cycle. If a design
exists, it can be studied, the weaknesses can be avoided in the
implementation, and the strengths enhanced further.

The only part of software that can be transparent to all
languages and host machines is the design and its' specifications.
Once the design is converted to suit the requirements of the new
methodology, it can be ported to the new target language and host
machine. "Re-inventing the wheel" can be avoided only if a design
is present.

3.3 Summary

Simple syntax translation or re-design and re-write are
alternatives that can be used, but these have to be carefully
considered before either one is adopted. Re-design and re-write
should be strongly considered if a design is present. Translation
may be considered if the goal is to port the software to a
different host machine or up-date the software.

Considering the fact that neither of the two approaches is
exactly easy to adopt, a few possible alternatives can be taken
into account. These are:

o interface the original with Ada

o implementing the new software in Ada and port the data
produced by the old software to be processed in the new
environment

Interfacing Ada with other languages can be done using the Ada
language's predefined pragma INTERFACE. Consideration should be
given to the possible restrictions due to the different
implementations of the compile. The reason being that this pragma
is an implementation feature dependent upon the Ada environment.
Certain implementations may allow for full usage, while others may
be used partially and some none at all [6 1 .

In cases where the host hardware is out-dated and an Ada
compiler may not be available or an interface with the target
language cannot be made, then it may be advisable to use the old
software to generate the data. Any additional processing that is
not dependent on the old software may have the new implementation
developed in Ada. The data generated can be ported and executed in
a new host environment.

Conclusion

Direct code translation or re-write
the only available solutions. There are
easy solutions to the problem. In terms

and re-design may not be
basically no cheap and
of today's need to reduce

F.3.7.15

the cost of software maintenance, plus the greater importance of
software reliability, it may be much better to rebuild the entire
system correctly. The advantage is that the faults and weaknesses
are known and can be avoided. A better, more reliable software
system can be built in place of the original.

Acknowledqements

Support for this work was provided by NASA Contract NAS9-17010,
Task No. B13.C

References

I 2.

3 .

I
4 .

6.

7.

8.

9.

Giarratano, Joseph, Foundations of Computer Technolouy, pub. by
Howard W. Sams, 1982.

Douglas T. Ross, Hohn B. Goodenough, C.A. Irvine, IISoftware
Engineering: Process, Principle, and Goals" Computer, May 1975.

B. W. Boehm, J. R. Brown, M. Lipow "Quantitative Evaluation of
Software Quality", Proceedings of the Second International
Conference on Software Engineering, pp. 592-605, 1976.

Grady Booch, "Object Oriented Development" IEEE Transactions
on Software Engineering, Vol. SE-12, No. 2 February 1986.

J. R. Cameron, Vwo Pairs of Examples in the Jackson Approach
To System Development" Proceedings of the 15th Hawaii
International Conference on System Sciences, January 1982.

Donald G. Martin, IINon-Ada to Ada Conversionff, Journal of
Pascal, Ada, & Modula-2, Vo1.4, No.6, pp. 36-40 (1985).

Douglas L. Brown, From Pascal To C - An Introduction to the C
proqramminq Lanquaqe, Wadsworth Publishing Company, 1985.

Girish Parikh, The Guide to Software Maintenance Winthrop
Publishers, Inc, 1982.

Ian Sommerville, Software Enqineerins Addison-Wesley
Publishing Company, 1985.

10. Mark W. Borger, "Ada Software Design Issues'' Journal of
Pascal, Ada, & Modula-2, Vol. 4, No.2, pp. 7-14, 1985

F. 3.7.16

