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This presentation focuses on two issues: 
its existing commercial software products to Ada and the the 
technical challenges we faced both before and during the rewrite 
process. The presentation will cover the following: 

I. Environment 

why CRI chose to convert 

A. Began the rewrite of software written in SPL and FORTRAN 
to Ada in 1983. 
1. Software included: relational DBMS, 4GL tools, and 

project management system. 

11. Why Ada? 
A. Current and future maintenance considerations. 
B. Transportability had tremendous marketing advantages. 

111. Planning Challenges 
A. Shortage of available programmers. 
B. 
C. 

Learning curve amongst own personnel. 
Unknown degree of diffulculty in the use of Ada for the 
development of application software. 

IV. 

V. 

t 

Technical Challenges 
A. 

B. 

C. 

Strong typing requirements of Ada affected the data 
conversions necessary for relational accessing. 
Ada packaging functions forced some new coding and 
routines to be written for an already mature product. 
Overloading capability smoothed the transition between 
some functions. 

Opinions and Results 
A. The re-write process totaling approximately 250,000 

lines of code is now in alpha test (will be in beta by 
the time of the SIGAda Conference). 
The learning curve was shorted than expected and 
differed by the nature of the language each programmer 
was accustomed to using previously. 
Maintenance problems and costs, as demonstrated during 
development will be vastly reduced as a result of Ada. 
The structure of Ada forces the writing of better 
routines, therefore better software. 
The time between a successfully compiled program and a 
completed program is drastically reduced because of Ada 
strict coding requirements. 

B. 

C. 

D. 

E. 
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Software Development: The PRODOC Environment 
and Associated Methodology 

Joseph H. Scandura, Ph. D. 
University of Pennsylvania 

In its most basic sense software development involves describing the 
tasks to be solved -- including the given objects and the operations 
to be performed on those objects. Moreover, such descriptions must 
be precise in order for a computer (or human) to perform as desired. 
Unfortunately, the way people describe objects and operations 
typically bears little resemblance to source code in most 
contemporary computer languages. 

There are two potential ways around this problem. One is to allow 
users to describe what they want the computer to do in everyday, 
typically imprecise English (or to choose from a necessarily limited 
menu of choices). This approach has some obvious advantages and a 
considerable amount of research is underway in the area. The 
approach, however, also has some very significant limitations: (a) it 
currently is impossible to deal with unrestricted English, and this 
situation is unlikely to change in the foreseeable future; and (b) 
even if the foregoing limitation is eventually overcome, the approach 
would still require the addition of complex, memory intensive "front 
ends". These "front ends" interact with the user ' s typically 
imprecise English statements and effectively "try to figure out" what 
the user intends. The result invariably is a system which is both 
sluggish in performance and limited in applicability. 

The PRODOC methodology and software development environment is based 
on a second, we believe sounder, more flexible and possibly even 
easier to use approach. Rather than "hiding" program structure, 
PRODOC represents such structure graphically using visual programming 
techniques. In addition, the program terminology used in PRODOC may 
be customized so as to match the way human experts in any given 
application area naturally describe the relevant data and operations. 
This customized termiriology is all based on a uniform, very simple 
syntax that might easily be learned by an intelligent human (in a few 
minutes time). The approach taken with PRODOC is general, as well as 
efficient and easy to use. 

PRODOC employs a unique graphically supported approach to software 
development, and supports the entire systems software development 
process, from requirements definition and system design to 
prototyping, code generation and maintenance. Although radically 
different at a superficial level, PRODOC draws generally on our 
extensive research in structural learning (the science of cognitive, 
instructional and intelligent systems engineering, Scandura, 1986). 
It represents a major step in the direction of automating the process 
of Structural (cognitive task) Analysis (e.g., Scandura, Durnin & 
Wulfeck, 1974; Scandura, 1977, 1982, 1984a, 1984b). More 
specifically, a special rule construct (not to be confused with 
production rules) plays a particularly central role in PRODOC. 
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In the next section, we define more precisely what we mean by a rule 
and show how rules can be represented as Scandura FLOWforms. Next, 
we describe the PRODOC system itself. FinalXy, we provide an 
overview of the IMS System Development Methodology using PRODOC. 

RULE CONSTRUCT 

Rules have three major components: a domain or set of data structures 
on which the rule operates, a range or set of structures which the 
rule purports to generate and a procedure (egg., Scandura, 1970). 
Rules have been shown to provide a convenient way to represent a wide 
variety of human cognitive processes as well as arbitrary computer 
systems (e.g., Heller & Reif, 1984; Scandura, 1969, 1971, 1973, 1977; 
Scandura & Scandura, 1980). 

The term "rule" corresponds directly to the concept of a program. 
The "procedure" component of a rule (lge., step-by-step prescriptions 
for carrying out the rule) corresponds directly to the procedural 
portion of a program. "Domain" and "Range" components of rules 

Input, output and intermediate (local) structures. Collectively, 
they correspond to the data structures on which programs operate. 
These correspondences are summarized below: 

, define problem schemes ( i . e . ,  classes of problems) and refer to 
I 

Program Rule 
/ \  / \ 

/ \ / \ 
/ \ / \ 

Data Procedure I \ 
Structures DomainIRange Procedure 

(inputloutput) Structures 

In general, the execution of rule procedures involves both testing 
conditions and carrying out operations. Where the internal structure 
of a rule procedure is unimportant, the rule is "atomic" or 
elementary -- i.e., is viewed as nondivisible for present purposes. 
Those familiar with production rules will note that PRODOC rules are 
more general. The procedures of production rules consist solely of 
operations and, consequently, correspond to "atomic" rules. 

In programming parlance, atomic rules correspond to program 
"subroutines." These include PRODOC "library rules". The extended 
version of PRODOC makes it possible to create libraries of such 
rules. These libraries make it easy for nonprogrammers (as well as 
programmers) to construct executable PRODOC rules. 

As mentioned above, rules may be written in a language which is 
either understandable to humans andlor interpretable by computer. In 
either case, however, the same basic form of representation may be 
used. FLOWforrns are easily understood by most people and can be used 
to represent arbitrary procedures (whether rule procedures or program 
procedures). I 
Like all structured procedures, FLOWforms may be refined arbitrarily. 
They are used for two purposes, one to represent procedures and two, 
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to represent input/output data structures. 

Roughly speaking, a procedure or algorithm is a recipe, process, 
technique, or systematic method for doing something. (The term 
"algorithm" is often preferred in computer science.) More precisely, 
according to Knuth (19681, a procedure or algorithm must: 

(1) always terminate after a finite number of steps, 
( 2 )  include only definite steps that are precisely defined, 

with actions that can be carried out rigorously 
and unambiguously, 

( 3 )  have an associated (possibly empty) class of inputs, 
or domain, 

( 4 )  generate at least one output, and 
( 5 )  be effective in the sense that all of the operations to be 

performed must be sufficiently basic that, 
in principle, they can be done exactly and in finite time 
by a person using pencil and paper. 

Not all procedures are structured, however. Structured procedures 
are composed of substructures (components) or elements which have 
unique points of entry and exit. In order to insure this property, 
each step in a structured procedure must be decomposable into one of 
three basic types of components; 

(a) Sequence of steps or operations, 
(b) Conditional steps or branching (selection) and 
(c) Iteration or looping* 

These types are illustrated below both in terms of traditional 
flowcharts and Scandura F'LOWforms. In the former case (a) the 
rectangles represent arbitrary operations (e.g., add a and b) and the 
diamonds represent (b) arbitrary selection or "if" conditions (e.g., 
If the building is over 20' tall, then...) and (c) arbitrary looping 
("while") conditions te.g., While there is still further to go...). 

(a) 

In Scandura FLOWform these three types of components are represented 
as shown below. - 

I A I 
I - 1  

I B I 
i C i I M 

[ELSE I C I 

- 
(WHILE C I 
I I I 

ID0 I A I  
I I  I 
I 1  I 

I I 

Sequence Selection ( I F . . T " . . E L S E )  Iteration (WHILE..DO) 
G.1 .2 .3  



These three basic types of decomposition are univerally applicable 
and independent of any particular programming language tor any 
natural language for that matter). Moreover, used in combination via 
successive refinement, they have been proven adequate for any system 
design or programming t a s k .  Hence, there is no loss of generality in 
requiring that a procedure be structured. 

Nonethless, it is often convenient to allow certain variations on the 
above. Some common variations on selections and iterations are shown 
below. 

8 

I 1 I I 1 I 1 
I CASE OF I I I I I FOR I 
1 -  I I I I - 

I - I D 0  I I 
I UNTIL I I I I 

11- 
1 -  

Iteration Iteration 

Selection (CASE) (REPEAT.. .UNTIL) (FOR...DO) 

Although it does not fall into one of the three basic classes, Pascal 
also supports a WITH (Record..Do) structure. This is represented in 
nOWforms as: 

I I 
I WITH record I 
1- 
ID01 I--i <-- field variables 
I 11- 

0 I . 
I I 1  . I . I I I  
I I 1  . I . 
I 11- 

with (Pascal only) 
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In Scandura FLOWforms, sequence structures are often displayed using 
PRODOC with indentation to show level of refinement. This makes it 
easier to move about and otherwise manipulate FLOWforms on the 
screen. 
variety of structure (decomposition) types follows: 

A sample FLOWform showing such indentation along with a 

CSAMPLE-RJ:sample-FLOWform_structures Copyright 1986 Scandura 

1 1 
I IF I 

I 
I 
I T "  I 
I 
I I I 

I I 
I 

I 

1 1 1  I I  - .  
i i i  I I  I I 
I I I I l==Tl I 

Comands:Move keys,l..9,f,a,b,r,Del,t,m,d,c,e,s,A,z,g,l,w,?,Fl,Esc 

Parenthetically it is worth noting that F'LOWform procedures may be 
recursive as long as the language in question supports recursion. 
This l a  certainly the case, for example, with Pascal, C, Ada and 
Lisp. This is not the case, however, with high level library rules 
(see next section) used in conjunction with PRODOC. To help insure 
future generalizability of the PRODOC system, library rules fully 
reflect all of the constraints imposed on the rule construct as 
defined in the structural learning theory (e.g., Scandura, 1977, 
1981). In that theory, the role of recursion is handled exclusively 
in terms of higher order rules (which may operate on other rules) and 
an universal control mechanism. Recursion is not allowed In 
individual rules. This restriction has been shown to have important 

. 

implications for diagnostic testing and learning (e.g. , Scandura, 
1980.) 

Scandura F'LOWforms also are used to represent rule domain (input) and 
range (output) structures. In general, domain and range structures 
may be characterized mathematically as partial orderings. The 
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various components/elements may be viewed as ordered sets whose 
elements in turn may be ordered sets. 

In the structure below, set A has elements B and C; B has elements E, 
F and H; C has G and H. Although element H appears twice in this 
FLOWform, it is simply a different display of the same element 
(something you will see when you edit one of them). 

Although this representation looks similar to the CASE structure, the 
similarity is a bit deceptive. In procedures, CASE structures have 
both condition variables and operations. The condition occupies a 
distinguishing position to the right of the word "CASE" and may be 
thought of as the first CASE element. 

CSAMPLE3:Sample-DOMAIN-FLOWform Copyright 1986 Scandura 

t 1 

I I 
I CDOMAINJ : I 
I t  
I (CAJ: I 
1 1 1  

I I (CBJ: I 
l l l t  
I I I ItEJ: I 
1 1 1 '  I 
1 1 1 1  I 
I I I ICFJ: I 
1 1 1 '  I 
l l l r  I 
I I I ICHJ: I 
1 1 1 '  i 
I I '  

I I  I 
I I i iCH3: I 
1 1 1 '  
Commands:Move keys,l..9,f,a,b,r,Del,t,m,d,c,e,s,̂ ,z,g,l,w,'?,Fl,Esc 

Notice that this representation is not quite a tree since element H 
belongs to both sets B and C. Of course, partial orderings do 
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include trees as a common subset. A simple example of a tree is 
given below. 

Animals 

/ \  
/ \ 

Mammals . Reptiles 
I \  

/ \ 
/ \ 

Subhumans . . Humans 

Since rule data structures are restricted to partial orderings it is 
true that FLOWforlns cannot directly represent cyclical relationships. 
In the case of software development, however, this restriction is 

more apparent than real. Cyclic relationships can serve two quite 
different purposes: 

(1) They can be used to summarize connections among nodes ( e . g . ,  
computer terminals) in a complex system. 

( 2 )  They can be used to represent nonhierarchical data structures, 
where the relatiomhips are not necessarily monotonic. 

In the former case, for example, the connections typically represent 
a sharing of data represented by the nodes. Just as data at any 
given node can be operated on by resident programs, programs also are 
needed to transfer data from one node to another. Thus, the cyclic 
networks themselves correspond to sets of programs, each of which may 
be represented in terms of a rule FLOWform. Such networks, in 
effect, provide a convenient way to represent the overall high level 
structure of a system of programs but they say relatively little 
about software development per se. 

The figure below illustrates the latter case -- data which a program 
procedure might operate on. 

Arch 

/ I \  
/ I \  

/ I \  
/ I \  

consists of 
\ 
\ 

/ I 
/ I 

/ I 
/ I 

/ I 

\ 
\ 
\ 

pillar 1 .-not- pillar 2 top 
-touch 2 

In this case, notice that the nodes "pillar 1" and "pillar 2" are 
superordinate to each other. This is not allowed in a partial 
ordering relationship. As with successive top-down structured 
refinement of procedures, most software engineers favor a 
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hierarchical (partially ordered) approach to data structure design. 
Thus, for example, the above Arch structure might be represented 
hierarchically as 

Arch 

/ \  
/ \  

. 
Supports . Top 

/ \  
/ \  

Pillar 1 . . Pillar 2 

where the definition of "supports" may include "not touching". In 
fact, the latter figure seems more natural. Accordingly, arches 
consist of two types of entity: supports and tops. In turn, (at 
least) two supports are needed. 

Nonetheless, it is fair to ask whether cyclic relationships are 
necessary for some purposes. 
answer to this question, it would appear that the answer is "no". 
Just as any procedure can be represented as a structured procedure, 
cyclic data structures can be represented in terms of partial 
orderings. To m e  this, notice that cycles correspond to lnflnite 
hierarchies te.g, pillar 1 --> pillar 2 - - >  pillar 1 --) pillar 2 
- -> 1.  

While we do not know of any definitive 

However, any given cycle can be realized only a finite number of 
times in the real world. Hence, cyclical relationships can be 
represented by finite successive refinement of the cycles in 
question. Consider, for example, the cyclic graph on the left 
(below) and the equivalent partial ordering on the right. 
cyclic graph looks simpler, it camouflages the fact that the cycle I s  
repeated only twice. 

While the 

B 

A A . 
/*:\ / \  

/ \ ;  * / \  
. c  B .  . c  

\ 
\ 

. A  
/ \  

/ \  
B .  . c  

\ 
\ 

/ \  
/ \  

B .  . e  

. A  

In effect, the apparent loss of representational simplicity is at 
least partially overcome by the more precise characterization 
provided by the partial ordering. The suppression of such details is 
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not appropriate in actual software development. 

It would appear, just as one can always construct a structured 
procedure equivalent to given "spagetti" code, one can always 
construct a partially ordered data structure that is equivalent to 
any given cyclical data structure. 

PRODOC 

Using PRODOC, rule data structures and procedures are constructed in 
a top-down structured fashion and represented in terms of Scandura 
FLOWforms. As we have seen, FLOWforms look similar to 
Nassi-Shneiderman flow charts, but they make better use of the 
rectangular screen and allow simultaneous display of as many (or as 
few) levels of representation as may be desired. 

A procedure F'LOWform with several levels of refinement might be 
displayed by PRODOC as illustrated below. 
example, data structures and procedures each consist of a single high 
level description (component). Various components, in turn, are 
decomposed into one or more lower level elements. 

At the highest level, for 

............................ 
Insert FLOWform showing several levels ............................ 
PRODOC consists of four distinct but complementary and fully 
compatible software productivity and quality assurance environments. 
Each of these environments (described below) makes use of Scandura 
FLOWforms. 

Relationships among the first three PRODOC environments as well as 
the way they may be used in developing applications software is 
represented schematically on the following page. 

(1) Applications Prototyping Environment (with interpreter and 
expert assistant generator) (PRODOCea) - is suitable for use by 
nonprogrammers as well as programmers for designing, documenting, 
implementing, and maintaining software systems in an integrated, 
graphically supported, top-down structured environment. In addition 
to English text, the availability of greatly simplified, high level 
library rules makes PRODOCea ideal for rapid prototyping. 
availability of graphical support for input and output data 
structures also makes it possible to directly reflect arbitrary 
semantic properties. 

The current version of PRODOCea employs a fairly general but 
relatively low level set of library rules designed largely for  
testing purposes. The current library includes a variety of: 

The 

input/output operations Ce.g., display (ELEMENT, 
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CSGRT3:sort 

Sort up to 500 numbers;print result 

05-12-86 

Copyright 1986 Scandura 

I 1  I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 
I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
I 
I 
i 
I 
I 

I 
I 

I 

jwrite ( ' H o w  many numbers (1 to 500) to be sorted? ' )  I 
I 
(readln (n) I 
I 
I .......................................................................... I 
I . Prompt user, then get numbers. * I  
I 1  

I t  i 
I I ........................................................................ I 
I I . Get the numbers from the user. * I  

I (writeln ('Enter below numbers to be sorted. Press <Return> after each.') I 

I I  I 

I IFOR i:=1 to n I 
I I  I 
I ID0 (readln tatiJ) I 
I '  I 
I .......................................................................... I 
I . Sort them. - 1  
I 
IFOR i:= 1 to n-1 I 
I I 
ID0 I ...................................................................... I 
I I . Scan thru items and swap if necessary. * I  
I I 
I IFOR j:= 1 to n -i I 

I 

I 1  
I ID0 
I I  
I I  
I I  
I I  
t I  
I I  
I I  
I t  
I I  
I 1  
I I  
I I  
I I  

I .................................................................. I 
( . Compare and swap if necessary. - 1  

jIF at 
I 
I T "  
I 
I 
I 
I 
I 
I 
I 

jJ> aCj+lJ 
1 

I 
I ............................................................ I 
I . Swap - 1  
I ,  
I Itemp:= atj3 I 
I I  
iaCj3:= aCj+lJ I 

I laCj+lJ:= temp I 

I 1 ~- 

( .......................................................................... I 
I . Identify and then print the resulting ordered set. * I  
I I ~~~ 

- ~ 

I 
I lwriteln I 
I t  i 
I (writeln ('The resulting order is:') I 

........................................................................ I 
I I . Print the result. * I  
I I---- I 

I (FOR i:= 1 to n I 
I I  I 
I ID0 (writeln taCi3:2) I 
1 1  1 
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~ 

IMS's PRODOC I Software Development Environment: 

- - 3  - - -  
- - 1 7 -  

c Examplesol Appllcation 
7 -  - - ( S p r f i c  App1 icat ion 

\ FUTURE OPT/ON/ 
Domain Expert Using PRODOCea Domaffi €xpeft uses com~utefL?eed 

Stfuc?ura/ AnS/YsIs 
1 

/ 

FLOWform Specification 
of Application 

I 
1 

Expert Assistant 
Using PRODOCea 

Domain Expert or Systems Designer 
Using PRODOCea 

I n t erpre t ab1 e FLOWf orm 
Using .L i brary Rules 

Systems Designer or 
Programmer 

d Using PRODOClp 

)Clp 

Programmer 
Us i ng PRODOCpp 

I 
f Library-based 1 

FLOWf o m  Enhanced 
wi th  Pascal 
Pseudocode PRO[ 

(automatic) 
(Pascal only) 

PRODOCpp 
(automatic 1 

PRODOClp 
(automatic) 

(Pascal only) 

I Source Code I 

Pascal, C or Ada 
Pseudocode 

,' 
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DISPLAY-PAlWETERS), load (DOS-NAME, DRIVE, FILE-TYPEIJ, 

other operations C(e.g., insert-component-after (VALUE, SEX', 
PREVIOUS-COMPONENT), delete-component (SET, COMPONENTIJ, 

functions Ce.g., add (ADDEND 1, ADDEND 21, modulo (X, BASE), 
find (VALUE, SFT)J, 

conditions Ce.g., match (STRING 1, STRING 21 ,  less-than (X,Y)J, 

logical connectives Ce.g., and (EXPRESSION 1, EXPRESSION 213, 

and assignment (i.e., ELEMENT := VALUE). 

The user also has the option of creating hierarchies of input/output 
data structures which directly reflect the reality they represent. 
Alternatively, inessential aspects of this structure may be 
suppressed. In this case, PRODOC automatically generates a formal 
equivalent of the needed data structures (i.e., declarations). Once 
"initialized" in this way, PRODOC library rules may be executed 
immediately in interpretive mode for purposes ranging from simple 
execution to debugging. 

In conjunction with PRODOC's Library Generation facilities (see ( 4 )  
below), custom versions of PRODOCea (and PRODOClp) can quickly be 
created to accommodate library rules to facilitate rapid prototyping 
in arbitrary semantic properties. 

A unique feature of PRODOCea is its ability to immediately execute 
not only interpretable library rules but statements written in 
ordinary English. This makes it possible to actually run through a 
proposed system design before it has even been prototyped in terms of 
high level library routines, let alone reduced to standard program 
code. An additional advantage is that it makes the difficult and 
expensive process of developing many expert systems almost trivial. 
Once an (nonprogrammer) expert knows what a human/computer assistant 
is to do, it is a simple task to develop a computerized expert 
assistant or performance aid to assist less qualified personnel in 
performing the required tasks. 

( 2 )  Applications Prototyping Environment (for use with a Pascal 
compiler) (PRODOClp) - is identical to PRODOCea in so far as 
prototype design and the use of library rules in rapid prototyping is 
concerned. Instead of an interpreter, however, PRODOClp includes a 
much generalized code generator which makes,it possible to 
arbitrarily mix Pascal code with library rules, thereby gaining the 
prototyping advantages of any number of customized, arbitrarily high 
level languages, along with the flexibility of Pascal. This feature 
makes it possible, for  example, for a programmer to speed up or 
otherwise add finishing touches to a working prototype created by a 
nonprogrammer. 

( 3 )  Programming Productivity Environment (PRODOCpp) - has all of the 
design, etc. features of PRODOCea. PRODOCpp comes in standard form 
which supports source code in any programming language. 
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(Incidentally, PRODOC can be used as a full-function idea processor. 
This text, for example, was prepared using PRODOC exclusively.) 

In addition, pseudo code support is available as an option for 
Pascal, C, Ada and other programming languages. For example, Pascal, 
C and Ada syntax and other routine aspects of code generation te.g., 
BEGINS..ENDS, etc.) are all generated automatically. The result 
effectively combines the clarity and ease of use of high-level fourth 
generation languages with the flexibility of third.generation 
languages. These options also include syntax checking, consistency 
checking and automatic declarations generation. Current plays call 
for adding pseudo code support for other third and fourth generation 
languages as needed. 

A sample FLOWform for sorting numbers and the corresponding Pascal 
source code are shown on the next page. 
............................. 
Insert Sort FLOWform and Code ............................. 
( 4 )  Library Generator (PRODOClg) - makes it possible to integrate 
available rule libraries and new library rules into either PRODOC 
prototyping environment, thereby creating customized versions of 
PRODOC for particular families of applications. Since this requires 
access to PRODOC source code, customized versions of PRODOC will 
normally involve a collaborative effort involving our development 
team and software specialists in particular application areas. 

The use of PRODOClg in developing customized versions of PRODOCea and 
PRODOClp is represented schematically on the next page. 
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ORIGINAL PAGE IS 
OF POOR QUALITY 

CSDRflrsort 

Sort up to 500 numbersfprint result 

01 -23-86 

Copyright 1906 Scandurr 

crite ( 'Wow many numbrrr (1  to 500) to be sorted? ' 1  

wadln (n) 

writeln ('Entmr below numbrrr to be sorted. Press <Ruturn> after each.') 

FOR i r - l  to n 

rradln ( r t i l )  - 
:OR irr 1 t o  n-1 

x) 

Do 

- 

IF  atjl> afJ*13 I 
THEN 

- 
wr 8 teln 

writeln ('The resulting order is:') 

FOR i t =  1 t o  n 

uritrln (a[i'J:2) 
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PROGRAn sort; 

VAR n : INTEGER1 
L : INTEGER; 
a : ARRAYt1..5003 OF INTEGER; 
j : INTEGER; 
temp : INTEGER; 

BEGIN 
( Sort up to 500 numberstprint result 3 
BEG IN 
write ('How many numbers ( 1  to 500) to be EiDrted? 
readln (n); 
( Prompt user) then get numbers. 3 
BEG IN 

' 1 ;  

nriteln ('Enter below numbers to be sorted. Press <Return> after each.'); 
( Get the numbers from the user. 3 
FOR i:=l to n DO 

reodln (atill 
END 1 

FOR i i -  1 to n-1 DO 
Sort them. 3 

( Scan thru items and snap if necessary. 3 
FOR ji- 1 to n -i DO 

( Compare and snap if necessary. 3 
BEG IN 
IF atj3> atj+13 THEN 

( Swap 1 
BEGIN 
temp:= atjli 

otj+13:= temp 
atj3:= aCj+131 

END 
END 1 

< Identify and the? print the resulting ordered set. 3 
BEG IN 

nr i teln; 
nriteln ('Thr resulting order is:'); 
( Print the rcrrult. 3 
FOR i1-  1 to n DO 

nriteln (afiJr2) 
END 

END 
END 0 
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IMS's Structural Analysis Methodology and 
PRODOClg Library Generator: 

Customer 

I MS, 
I nc. 

- - -  
- c Application Domain 

Domaln Expert uses 
Structural Analysls 7 compu?ertzed 

t o  ldentlfy Structura/ 
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OVERVIEW OF THE SYSTEM DEVELOPMENT METHODOLOGY 

Collectively, the various PRODOC environments provide a complete 
software development system, including requirements definition, 
systems design and documentation, prototype development, code 
generation and program maintenance. For this purpose, rules 
(represented in terms of data structure and procedure FLOWforms) 
provide an unique visual and uniform type of representation that can 
be used throughout. 

The PRODOCea applications prototyping environment is designed 
primarily for use by system designers (in conjunction with intended 
users). (Given some initial training, in fact, it also can and has 
been used independently by end users.) 

In this context, PRODOCea can be used in system analysis and 
requirements definition. System analyses will normally involve very 
high level descriptions of the various system states (data 
structures) and processes In ordinary English. Data FLOWforms will 
normally be used to describe the states, and transitions between 
states will be described at a high level in terms of procedure 
FLOWforms. Should the designer wish, these descriptions may include 
hardware, personnel and other development requirements. 

During the requirements definition phase, users will develop more 
detailed descriptions of the key states and transitions. This is 
accomplished by successive refinement of the very high level system 
descriptions, all in an integrated environment. 

PRODOCea makes it possible to "execute" these systems analyses and/or 
requirement definitions dynamically. That is, one can simulate 
transitions between various states of the to-be-developed system, 
thereby giving the user a better feeling for how the system might 
operate in practice. 

As is well known, the distinction between requirements definition and 
program design is largely arbitrary and depends on one's perspective. 
In the former case, definition of the key states of the system, and 

of the transition procedures connecting them are described in largely 
functional, real world terms. Conversely, program designs typically 
are represented in terms of constructs associated with programming 
languages. 

I 

The various PRODOC prototyping environments are associated with given 
atomic rule libraries. Since rule libraries are designed to 
accommodate particular families of applications, both the data 
structures these rules operate on, as well as the rules themselves, 
directly reflect application realities. 

Consequently, library rules (including both data structures and 
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atomic rules) might be used directly in the case of requirements 
definition. Indeed, the resulting definitions might be interpreted 
directly (by PRODOCea) where the terminal (most refined) elements of 
the key transition procedures correspond to atomic rules in the 
associated library. 

It may, in fact, still be possible to directly create an operational 
system even where the terminal elements of a systems definition or 
design are not already available as library rules. This might be 
accomplished in either of two ways: 

(1) New library rules might be selected from available libraries 
and/or created (e.g., using PRODOCpp). These new rules can be 
integrated automatically to form a new Library using PRODOClg. 
PRODOClg generates complete Pascal code which can, in turn, be linked 
with either PRODOC prototyping environment to create a custom version 
(of either). This new custom version, then, can be used to directly 
interpret the original systems definition or design (formulated in 
terms of atomic rules in the new library). 

( 2 )  The requirements definition stage might be further developed as 
normally is done into a detailed system design. In this case the 
data structures and procedures (represented in terms of applications 
reality) are reformulated in terms of data structures and operations 
more closely associated with some target source language. These more 
detailed designs, then, are converted to code using PRODOCpp. For 
this purpose, one can enter complete source code using PRODOCpp's 
default "text" files. Alternatively, in conjunction with available 
lanquaqe-specific files, one can simply enter pseudo code. In the 
latter case, syntax and consistency checking and declarations and 
source code generation, may be performed automatically. 

PRODOClp serves a supplemental role in the above context. For 
example, Pascal pseudo code can be used to supplement whatever 
library rules happen to be used in a given design. This can be done 

I without restriction. Given the resulting 1ibrarylPascal pseudo code 
combination, PRODOClp can be used to generate complete Pascal source 
code ready for compilation. 

PRODOClp also serves a useful role even where all elements of a 
design consist of library rules. Although the design can be 
interpreted, tested and debugged using PRODOCea, execution efficiency 
car. usually be greatly improved via compilation. In this case, 
PRODOClp can be used to convert the given design (represented solely 

I in terms of library rules and meaningful data structures) into 
I complete Pascal source code ready for compilation. 

Perhaps the single most important advantage in following the 
foregoing methodology is that of program maintenance. Given the 
integrated, fully interchangeable nature of the various PRODOC 
environments, there is no justifiable reason why system requirements 
or design, program documentation, or code should ever get out of 
synchronization. Consequently, finding one's way around in even very 
complex systems is several orders of magnitude easier than is 
normally the case. Furthermore, the prirtted documentation provides 
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additional features that are especially useful with large system 
segments. 

In developing smaller programs, of course, it may be possible to 
bypass some of the above steps. Thus, one ha5 the choice of creating 
and simply using an applications prototype as is, or of designing and 
coding the program using PRODOCpp directly (e.g., in conjunction with 
particular sets of PRODOCpp pseudo code language support files). 

At this point, it may be unclear how we propose to deal with the 
various other representational systems that are commonly used by 
designers. In this regard, we take essentially the same position 
that Martin and McClure (1985) take with respect to their "action 
diagrams": Although the methodologies may appear to differ, all of 
the commonly used forms of representation are either equivalent (to 
ours) or incomplete. In fact, while action diagrams are formally 
equivalent to procedure FLOWforms, we do not believe that they 
display overall structure nearly as clearly. 

By way of summary, using PRODOC has the advantage of placing 
requirements definition, systems design, prototyping and program 
coding (not to mention system maintenance) on the same plane. System 
designs, prototypes, and program code are viewed within an integrated 
environment, which is far easier to understand, revise, debug, and 
modify than is normally the case. Put somewhat differently, 
developing and maintaining executable (interpretable or compilable) 
prototypes and/or source code is a natural extension of system design 
and documentation, and vice versa. In short, PRODOC supports the 
entire systems software management and development process, from 
requirements definition to code generation. 

Those of us who have been involved In the creation of PRODOC are fond 
of pointing out that PRODOC has literally been indispensable in its 
own creation. Indeed, we would not even consider taking on a new 
programming task without using PRODOC. 
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