
Application and Systems Software
in Ada: Development Experiences

Jim Kuschill
Computer Representatives, Inc.

Santa Clara, California

This presentation focuses on two issues:
its existing commercial software products to Ada and the the
technical challenges we faced both before and during the rewrite
process. The presentation will cover the following:

I. Environment

why CRI chose to convert

A. Began the rewrite of software written in SPL and FORTRAN
to Ada in 1983.
1. Software included: relational DBMS, 4GL tools, and

project management system.

11. Why Ada?
A. Current and future maintenance considerations.
B. Transportability had tremendous marketing advantages.

111. Planning Challenges
A. Shortage of available programmers.
B.
C.

Learning curve amongst own personnel.
Unknown degree of diffulculty in the use of Ada for the
development of application software.

IV.

V.

t

Technical Challenges
A.

B.

C.

Strong typing requirements of Ada affected the data
conversions necessary for relational accessing.
Ada packaging functions forced some new coding and
routines to be written for an already mature product.
Overloading capability smoothed the transition between
some functions.

Opinions and Results
A. The re-write process totaling approximately 250,000

lines of code is now in alpha test (will be in beta by
the time of the SIGAda Conference).
The learning curve was shorted than expected and
differed by the nature of the language each programmer
was accustomed to using previously.
Maintenance problems and costs, as demonstrated during
development will be vastly reduced as a result of Ada.
The structure of Ada forces the writing of better
routines, therefore better software.
The time between a successfully compiled program and a
completed program is drastically reduced because of Ada
strict coding requirements.

B.

C.

D.

E.

G. 1.1.1

https://ntrs.nasa.gov/search.jsp?R=19890006999 2020-03-20T03:41:47+00:00Z

N89-16370

Software Development: The PRODOC Environment
and Associated Methodology

Joseph H. Scandura, Ph. D.
University of Pennsylvania

In its most basic sense software development involves describing the
tasks to be solved -- including the given objects and the operations
to be performed on those objects. Moreover, such descriptions must
be precise in order for a computer (or human) to perform as desired.
Unfortunately, the way people describe objects and operations
typically bears little resemblance to source code in most
contemporary computer languages.

There are two potential ways around this problem. One is to allow
users to describe what they want the computer to do in everyday,
typically imprecise English (or to choose from a necessarily limited
menu of choices). This approach has some obvious advantages and a
considerable amount of research is underway in the area. The
approach, however, also has some very significant limitations: (a) it
currently is impossible to deal with unrestricted English, and this
situation is unlikely to change in the foreseeable future; and (b)
even if the foregoing limitation is eventually overcome, the approach
would still require the addition of complex, memory intensive "front
ends". These "front ends" interact with the user ' s typically
imprecise English statements and effectively "try to figure out" what
the user intends. The result invariably is a system which is both
sluggish in performance and limited in applicability.

The PRODOC methodology and software development environment is based
on a second, we believe sounder, more flexible and possibly even
easier to use approach. Rather than "hiding" program structure,
PRODOC represents such structure graphically using visual programming
techniques. In addition, the program terminology used in PRODOC may
be customized so as to match the way human experts in any given
application area naturally describe the relevant data and operations.
This customized termiriology is all based on a uniform, very simple
syntax that might easily be learned by an intelligent human (in a few
minutes time). The approach taken with PRODOC is general, as well as
efficient and easy to use.

PRODOC employs a unique graphically supported approach to software
development, and supports the entire systems software development
process, from requirements definition and system design to
prototyping, code generation and maintenance. Although radically
different at a superficial level, PRODOC draws generally on our
extensive research in structural learning (the science of cognitive,
instructional and intelligent systems engineering, Scandura, 1986).
It represents a major step in the direction of automating the process
of Structural (cognitive task) Analysis (e.g., Scandura, Durnin &
Wulfeck, 1974; Scandura, 1977, 1982, 1984a, 1984b). More
specifically, a special rule construct (not to be confused with
production rules) plays a particularly central role in PRODOC.

G.1.2.1

c-6

In the next section, we define more precisely what we mean by a rule
and show how rules can be represented as Scandura FLOWforms. Next,
we describe the PRODOC system itself. FinalXy, we provide an
overview of the IMS System Development Methodology using PRODOC.

RULE CONSTRUCT

Rules have three major components: a domain or set of data structures
on which the rule operates, a range or set of structures which the
rule purports to generate and a procedure (egg., Scandura, 1970).
Rules have been shown to provide a convenient way to represent a wide
variety of human cognitive processes as well as arbitrary computer
systems (e.g., Heller & Reif, 1984; Scandura, 1969, 1971, 1973, 1977;
Scandura & Scandura, 1980).

The term "rule" corresponds directly to the concept of a program.
The "procedure" component of a rule (lge., step-by-step prescriptions
for carrying out the rule) corresponds directly to the procedural
portion of a program. "Domain" and "Range" components of rules

Input, output and intermediate (local) structures. Collectively,
they correspond to the data structures on which programs operate.
These correspondences are summarized below:

, define problem schemes (i . e . , classes of problems) and refer to
I

Program Rule
/ \ / \

/ \ / \
/ \ / \

Data Procedure I \
Structures DomainIRange Procedure

(inputloutput) Structures

In general, the execution of rule procedures involves both testing
conditions and carrying out operations. Where the internal structure
of a rule procedure is unimportant, the rule is "atomic" or
elementary -- i.e., is viewed as nondivisible for present purposes.
Those familiar with production rules will note that PRODOC rules are
more general. The procedures of production rules consist solely of
operations and, consequently, correspond to "atomic" rules.

In programming parlance, atomic rules correspond to program
"subroutines." These include PRODOC "library rules". The extended
version of PRODOC makes it possible to create libraries of such
rules. These libraries make it easy for nonprogrammers (as well as
programmers) to construct executable PRODOC rules.

As mentioned above, rules may be written in a language which is
either understandable to humans andlor interpretable by computer. In
either case, however, the same basic form of representation may be
used. FLOWforrns are easily understood by most people and can be used
to represent arbitrary procedures (whether rule procedures or program
procedures). I
Like all structured procedures, FLOWforms may be refined arbitrarily.
They are used for two purposes, one to represent procedures and two,

G.1.2.2

to represent input/output data structures.

Roughly speaking, a procedure or algorithm is a recipe, process,
technique, or systematic method for doing something. (The term
"algorithm" is often preferred in computer science.) More precisely,
according to Knuth (19681, a procedure or algorithm must:

(1) always terminate after a finite number of steps,
(2) include only definite steps that are precisely defined,

with actions that can be carried out rigorously
and unambiguously,

(3) have an associated (possibly empty) class of inputs,
or domain,

(4) generate at least one output, and
(5) be effective in the sense that all of the operations to be

performed must be sufficiently basic that,
in principle, they can be done exactly and in finite time
by a person using pencil and paper.

Not all procedures are structured, however. Structured procedures
are composed of substructures (components) or elements which have
unique points of entry and exit. In order to insure this property,
each step in a structured procedure must be decomposable into one of
three basic types of components;

(a) Sequence of steps or operations,
(b) Conditional steps or branching (selection) and
(c) Iteration or looping*

These types are illustrated below both in terms of traditional
flowcharts and Scandura F'LOWforms. In the former case (a) the
rectangles represent arbitrary operations (e.g., add a and b) and the
diamonds represent (b) arbitrary selection or "if" conditions (e.g.,
If the building is over 20' tall, then...) and (c) arbitrary looping
("while") conditions te.g., While there is still further to go...).

(a)

In Scandura FLOWform these three types of components are represented
as shown below. -

I A I
I - 1

I B I
i C i I M

[ELSE I C I

-
(WHILE C I
I I I

ID0 I A I
I I I
I 1 I

I I

Sequence Selection (I F . . T " . . E L S E) Iteration (WHILE..DO)
G.1 .2 .3

These three basic types of decomposition are univerally applicable
and independent of any particular programming language tor any
natural language for that matter). Moreover, used in combination via
successive refinement, they have been proven adequate for any system
design or programming t a s k . Hence, there is no loss of generality in
requiring that a procedure be structured.

Nonethless, it is often convenient to allow certain variations on the
above. Some common variations on selections and iterations are shown
below.

8

I 1 I I 1 I 1
I CASE OF I I I I I FOR I
1 - I I I I -

I - I D 0 I I
I UNTIL I I I I

11-
1 -

Iteration Iteration

Selection (CASE) (REPEAT.. .UNTIL) (FOR...DO)

Although it does not fall into one of the three basic classes, Pascal
also supports a WITH (Record..Do) structure. This is represented in
nOWforms as:

I I
I WITH record I
1-
ID01 I--i <-- field variables
I 11-

0 I .
I I 1 . I . I I I
I I 1 . I .
I 11-

with (Pascal only)

G.1.2.4

In Scandura FLOWforms, sequence structures are often displayed using
PRODOC with indentation to show level of refinement. This makes it
easier to move about and otherwise manipulate FLOWforms on the
screen.
variety of structure (decomposition) types follows:

A sample FLOWform showing such indentation along with a

CSAMPLE-RJ:sample-FLOWform_structures Copyright 1986 Scandura

1 1
I IF I

I
I
I T " I
I
I I I

I I
I

I

1 1 1 I I - .
i i i I I I I
I I I I l==Tl I

Comands:Move keys,l..9,f,a,b,r,Del,t,m,d,c,e,s,A,z,g,l,w,?,Fl,Esc

Parenthetically it is worth noting that F'LOWform procedures may be
recursive as long as the language in question supports recursion.
This l a certainly the case, for example, with Pascal, C, Ada and
Lisp. This is not the case, however, with high level library rules
(see next section) used in conjunction with PRODOC. To help insure
future generalizability of the PRODOC system, library rules fully
reflect all of the constraints imposed on the rule construct as
defined in the structural learning theory (e.g., Scandura, 1977,
1981). In that theory, the role of recursion is handled exclusively
in terms of higher order rules (which may operate on other rules) and
an universal control mechanism. Recursion is not allowed In
individual rules. This restriction has been shown to have important

.

implications for diagnostic testing and learning (e.g. , Scandura,
1980.)

Scandura F'LOWforms also are used to represent rule domain (input) and
range (output) structures. In general, domain and range structures
may be characterized mathematically as partial orderings. The

G.1.2.5

various components/elements may be viewed as ordered sets whose
elements in turn may be ordered sets.

In the structure below, set A has elements B and C; B has elements E,
F and H; C has G and H. Although element H appears twice in this
FLOWform, it is simply a different display of the same element
(something you will see when you edit one of them).

Although this representation looks similar to the CASE structure, the
similarity is a bit deceptive. In procedures, CASE structures have
both condition variables and operations. The condition occupies a
distinguishing position to the right of the word "CASE" and may be
thought of as the first CASE element.

CSAMPLE3:Sample-DOMAIN-FLOWform Copyright 1986 Scandura

t 1

I I
I CDOMAINJ : I
I t
I (CAJ: I
1 1 1

I I (CBJ: I
l l l t
I I I ItEJ: I
1 1 1 ' I
1 1 1 1 I
I I I ICFJ: I
1 1 1 ' I
l l l r I
I I I ICHJ: I
1 1 1 ' i
I I '

I I I
I I i iCH3: I
1 1 1 '
Commands:Move keys,l..9,f,a,b,r,Del,t,m,d,c,e,s,̂ ,z,g,l,w,'?,Fl,Esc

Notice that this representation is not quite a tree since element H
belongs to both sets B and C. Of course, partial orderings do

G.1.2.6

include trees as a common subset. A simple example of a tree is
given below.

Animals

/ \
/ \

Mammals . Reptiles
I \

/ \
/ \

Subhumans . . Humans

Since rule data structures are restricted to partial orderings it is
true that FLOWforlns cannot directly represent cyclical relationships.
In the case of software development, however, this restriction is

more apparent than real. Cyclic relationships can serve two quite
different purposes:

(1) They can be used to summarize connections among nodes (e . g . ,
computer terminals) in a complex system.

(2) They can be used to represent nonhierarchical data structures,
where the relatiomhips are not necessarily monotonic.

In the former case, for example, the connections typically represent
a sharing of data represented by the nodes. Just as data at any
given node can be operated on by resident programs, programs also are
needed to transfer data from one node to another. Thus, the cyclic
networks themselves correspond to sets of programs, each of which may
be represented in terms of a rule FLOWform. Such networks, in
effect, provide a convenient way to represent the overall high level
structure of a system of programs but they say relatively little
about software development per se.

The figure below illustrates the latter case -- data which a program
procedure might operate on.

Arch

/ I \
/ I \

/ I \
/ I \

consists of
\
\

/ I
/ I

/ I
/ I

/ I

\
\
\

pillar 1 .-not- pillar 2 top
-touch 2

In this case, notice that the nodes "pillar 1" and "pillar 2" are
superordinate to each other. This is not allowed in a partial
ordering relationship. As with successive top-down structured
refinement of procedures, most software engineers favor a

G.1.2.7

hierarchical (partially ordered) approach to data structure design.
Thus, for example, the above Arch structure might be represented
hierarchically as

Arch

/ \
/ \

.
Supports . Top

/ \
/ \

Pillar 1 . . Pillar 2

where the definition of "supports" may include "not touching". In
fact, the latter figure seems more natural. Accordingly, arches
consist of two types of entity: supports and tops. In turn, (at
least) two supports are needed.

Nonetheless, it is fair to ask whether cyclic relationships are
necessary for some purposes.
answer to this question, it would appear that the answer is "no".
Just as any procedure can be represented as a structured procedure,
cyclic data structures can be represented in terms of partial
orderings. To m e this, notice that cycles correspond to lnflnite
hierarchies te.g, pillar 1 --> pillar 2 - - > pillar 1 --) pillar 2
- -> 1.

While we do not know of any definitive

However, any given cycle can be realized only a finite number of
times in the real world. Hence, cyclical relationships can be
represented by finite successive refinement of the cycles in
question. Consider, for example, the cyclic graph on the left
(below) and the equivalent partial ordering on the right.
cyclic graph looks simpler, it camouflages the fact that the cycle I s
repeated only twice.

While the

B

A A .
/*:\ / \

/ \ ; * / \
. c B . . c

\
\

. A
/ \

/ \
B . . c

\
\

/ \
/ \

B . . e

. A

In effect, the apparent loss of representational simplicity is at
least partially overcome by the more precise characterization
provided by the partial ordering. The suppression of such details is

G.1.2.8

not appropriate in actual software development.

It would appear, just as one can always construct a structured
procedure equivalent to given "spagetti" code, one can always
construct a partially ordered data structure that is equivalent to
any given cyclical data structure.

PRODOC

Using PRODOC, rule data structures and procedures are constructed in
a top-down structured fashion and represented in terms of Scandura
FLOWforms. As we have seen, FLOWforms look similar to
Nassi-Shneiderman flow charts, but they make better use of the
rectangular screen and allow simultaneous display of as many (or as
few) levels of representation as may be desired.

A procedure F'LOWform with several levels of refinement might be
displayed by PRODOC as illustrated below.
example, data structures and procedures each consist of a single high
level description (component). Various components, in turn, are
decomposed into one or more lower level elements.

At the highest level, for

............................
Insert FLOWform showing several levels
PRODOC consists of four distinct but complementary and fully
compatible software productivity and quality assurance environments.
Each of these environments (described below) makes use of Scandura
FLOWforms.

Relationships among the first three PRODOC environments as well as
the way they may be used in developing applications software is
represented schematically on the following page.

(1) Applications Prototyping Environment (with interpreter and
expert assistant generator) (PRODOCea) - is suitable for use by
nonprogrammers as well as programmers for designing, documenting,
implementing, and maintaining software systems in an integrated,
graphically supported, top-down structured environment. In addition
to English text, the availability of greatly simplified, high level
library rules makes PRODOCea ideal for rapid prototyping.
availability of graphical support for input and output data
structures also makes it possible to directly reflect arbitrary
semantic properties.

The current version of PRODOCea employs a fairly general but
relatively low level set of library rules designed largely for
testing purposes. The current library includes a variety of:

The

input/output operations Ce.g., display (ELEMENT,

G.1.2.9

CSGRT3:sort

Sort up to 500 numbers;print result

05-12-86

Copyright 1986 Scandura

I 1 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!
I
I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
I
I
i
I
I

I
I

I

jwrite (' H o w many numbers (1 to 500) to be sorted? ') I
I
(readln (n) I
I
I .. I
I . Prompt user, then get numbers. * I
I 1

I t i
I I .. I
I I . Get the numbers from the user. * I

I (writeln ('Enter below numbers to be sorted. Press <Return> after each.') I

I I I

I IFOR i:=1 to n I
I I I
I ID0 (readln tatiJ) I
I ' I
I .. I
I . Sort them. - 1
I
IFOR i:= 1 to n-1 I
I I
ID0 I .. I
I I . Scan thru items and swap if necessary. * I
I I
I IFOR j:= 1 to n -i I

I

I 1
I ID0
I I
I I
I I
I I
t I
I I
I I
I t
I I
I 1
I I
I I
I I

I .. I
(. Compare and swap if necessary. - 1

jIF at
I
I T "
I
I
I
I
I
I
I

jJ> aCj+lJ
1

I
I .. I
I . Swap - 1
I ,
I Itemp:= atj3 I
I I
iaCj3:= aCj+lJ I

I laCj+lJ:= temp I

I 1 ~-

(.. I
I . Identify and then print the resulting ordered set. * I
I I ~~~

- ~

I
I lwriteln I
I t i
I (writeln ('The resulting order is:') I

.. I
I I . Print the result. * I
I I---- I

I (FOR i:= 1 to n I
I I I
I ID0 (writeln taCi3:2) I
1 1 1

G. 1.2.10

~

IMS's PRODOC I Software Development Environment:

- - 3 - - -
- - 1 7 -

c Examplesol Appllcation
7 - - - (S p r f i c App1 icat ion

\ FUTURE OPT/ON/
Domain Expert Using PRODOCea Domaffi €xpeft uses com~utefL?eed

Stfuc?ura/ AnS/YsIs
1

/

FLOWform Specification
of Application

I
1

Expert Assistant
Using PRODOCea

Domain Expert or Systems Designer
Using PRODOCea

I n t erpre t ab1 e FLOWf orm
Using .L i brary Rules

Systems Designer or
Programmer

d Using PRODOClp

)Clp

Programmer
Us i ng PRODOCpp

I
f Library-based 1

FLOWf o m Enhanced
wi th Pascal
Pseudocode PRO[

(automatic)
(Pascal only)

PRODOCpp
(automatic 1

PRODOClp
(automatic)

(Pascal only)

I Source Code I

Pascal, C or Ada
Pseudocode

,'

G.1.2.11

DISPLAY-PAlWETERS), load (DOS-NAME, DRIVE, FILE-TYPEIJ,

other operations C(e.g., insert-component-after (VALUE, SEX',
PREVIOUS-COMPONENT), delete-component (SET, COMPONENTIJ,

functions Ce.g., add (ADDEND 1, ADDEND 21, modulo (X, BASE),
find (VALUE, SFT)J,

conditions Ce.g., match (STRING 1, STRING 21 , less-than (X,Y)J,

logical connectives Ce.g., and (EXPRESSION 1, EXPRESSION 213,

and assignment (i.e., ELEMENT := VALUE).

The user also has the option of creating hierarchies of input/output
data structures which directly reflect the reality they represent.
Alternatively, inessential aspects of this structure may be
suppressed. In this case, PRODOC automatically generates a formal
equivalent of the needed data structures (i.e., declarations). Once
"initialized" in this way, PRODOC library rules may be executed
immediately in interpretive mode for purposes ranging from simple
execution to debugging.

In conjunction with PRODOC's Library Generation facilities (see (4)
below), custom versions of PRODOCea (and PRODOClp) can quickly be
created to accommodate library rules to facilitate rapid prototyping
in arbitrary semantic properties.

A unique feature of PRODOCea is its ability to immediately execute
not only interpretable library rules but statements written in
ordinary English. This makes it possible to actually run through a
proposed system design before it has even been prototyped in terms of
high level library routines, let alone reduced to standard program
code. An additional advantage is that it makes the difficult and
expensive process of developing many expert systems almost trivial.
Once an (nonprogrammer) expert knows what a human/computer assistant
is to do, it is a simple task to develop a computerized expert
assistant or performance aid to assist less qualified personnel in
performing the required tasks.

(2) Applications Prototyping Environment (for use with a Pascal
compiler) (PRODOClp) - is identical to PRODOCea in so far as
prototype design and the use of library rules in rapid prototyping is
concerned. Instead of an interpreter, however, PRODOClp includes a
much generalized code generator which makes,it possible to
arbitrarily mix Pascal code with library rules, thereby gaining the
prototyping advantages of any number of customized, arbitrarily high
level languages, along with the flexibility of Pascal. This feature
makes it possible, for example, for a programmer to speed up or
otherwise add finishing touches to a working prototype created by a
nonprogrammer.

(3) Programming Productivity Environment (PRODOCpp) - has all of the
design, etc. features of PRODOCea. PRODOCpp comes in standard form
which supports source code in any programming language.

G.1.2.12

(Incidentally, PRODOC can be used as a full-function idea processor.
This text, for example, was prepared using PRODOC exclusively.)

In addition, pseudo code support is available as an option for
Pascal, C, Ada and other programming languages. For example, Pascal,
C and Ada syntax and other routine aspects of code generation te.g.,
BEGINS..ENDS, etc.) are all generated automatically. The result
effectively combines the clarity and ease of use of high-level fourth
generation languages with the flexibility of third.generation
languages. These options also include syntax checking, consistency
checking and automatic declarations generation. Current plays call
for adding pseudo code support for other third and fourth generation
languages as needed.

A sample FLOWform for sorting numbers and the corresponding Pascal
source code are shown on the next page.
.............................
Insert Sort FLOWform and Code
(4) Library Generator (PRODOClg) - makes it possible to integrate
available rule libraries and new library rules into either PRODOC
prototyping environment, thereby creating customized versions of
PRODOC for particular families of applications. Since this requires
access to PRODOC source code, customized versions of PRODOC will
normally involve a collaborative effort involving our development
team and software specialists in particular application areas.

The use of PRODOClg in developing customized versions of PRODOCea and
PRODOClp is represented schematically on the next page.

G. 1.2.13

ORIGINAL PAGE IS
OF POOR QUALITY

CSDRflrsort

Sort up to 500 numbersfprint result

01 -23-86

Copyright 1906 Scandurr

crite ('Wow many numbrrr (1 to 500) to be sorted? ' 1

wadln (n)

writeln ('Entmr below numbrrr to be sorted. Press <Ruturn> after each.')

FOR i r - l to n

rradln (r t i l) -
:OR irr 1 t o n-1

x)

Do

-

IF atjl> afJ*13 I
THEN

-
wr 8 teln

writeln ('The resulting order is:')

FOR i t = 1 t o n

uritrln (a[i'J:2)

G . 1.2.14

PROGRAn sort;

VAR n : INTEGER1
L : INTEGER;
a : ARRAYt1..5003 OF INTEGER;
j : INTEGER;
temp : INTEGER;

BEGIN
(Sort up to 500 numberstprint result 3
BEG IN
write ('How many numbers (1 to 500) to be EiDrted?
readln (n);
(Prompt user) then get numbers. 3
BEG IN

' 1 ;

nriteln ('Enter below numbers to be sorted. Press <Return> after each.');
(Get the numbers from the user. 3
FOR i:=l to n DO

reodln (atill
END 1

FOR i i - 1 to n-1 DO
Sort them. 3

(Scan thru items and snap if necessary. 3
FOR ji- 1 to n -i DO

(Compare and snap if necessary. 3
BEG IN
IF atj3> atj+13 THEN

(Swap 1
BEGIN
temp:= atjli

otj+13:= temp
atj3:= aCj+131

END
END 1

< Identify and the? print the resulting ordered set. 3
BEG IN

nr i teln;
nriteln ('Thr resulting order is:');
(Print the rcrrult. 3
FOR i1- 1 to n DO

nriteln (afiJr2)
END

END
END 0

G. 1.2.15

IMS's Structural Analysis Methodology and
PRODOClg Library Generator:

Customer

I MS,
I nc.

- - -
- c Application Domain

Domaln Expert uses
Structural Analysls 7 compu?ertzed

t o ldentlfy Structura/

7 -

I

structural Anal ysls 7 Icompu?ertzed
*&-- - - & - ---I

Basic Job Components
I

Programmer uses
PRODOCpp

t o code

~

[Atomic Library Rules

I
PRODOC 1 g

automat lcal ly
produces

Pascal Source Code k
IMS uses proprietary tools

t o create

Customized Versions of
PRODOCea and PRODOClp I

G.1.2.16

OVERVIEW OF THE SYSTEM DEVELOPMENT METHODOLOGY

Collectively, the various PRODOC environments provide a complete
software development system, including requirements definition,
systems design and documentation, prototype development, code
generation and program maintenance. For this purpose, rules
(represented in terms of data structure and procedure FLOWforms)
provide an unique visual and uniform type of representation that can
be used throughout.

The PRODOCea applications prototyping environment is designed
primarily for use by system designers (in conjunction with intended
users). (Given some initial training, in fact, it also can and has
been used independently by end users.)

In this context, PRODOCea can be used in system analysis and
requirements definition. System analyses will normally involve very
high level descriptions of the various system states (data
structures) and processes In ordinary English. Data FLOWforms will
normally be used to describe the states, and transitions between
states will be described at a high level in terms of procedure
FLOWforms. Should the designer wish, these descriptions may include
hardware, personnel and other development requirements.

During the requirements definition phase, users will develop more
detailed descriptions of the key states and transitions. This is
accomplished by successive refinement of the very high level system
descriptions, all in an integrated environment.

PRODOCea makes it possible to "execute" these systems analyses and/or
requirement definitions dynamically. That is, one can simulate
transitions between various states of the to-be-developed system,
thereby giving the user a better feeling for how the system might
operate in practice.

As is well known, the distinction between requirements definition and
program design is largely arbitrary and depends on one's perspective.
In the former case, definition of the key states of the system, and

of the transition procedures connecting them are described in largely
functional, real world terms. Conversely, program designs typically
are represented in terms of constructs associated with programming
languages.

I

The various PRODOC prototyping environments are associated with given
atomic rule libraries. Since rule libraries are designed to
accommodate particular families of applications, both the data
structures these rules operate on, as well as the rules themselves,
directly reflect application realities.

Consequently, library rules (including both data structures and

G.1.2.17

~

atomic rules) might be used directly in the case of requirements
definition. Indeed, the resulting definitions might be interpreted
directly (by PRODOCea) where the terminal (most refined) elements of
the key transition procedures correspond to atomic rules in the
associated library.

It may, in fact, still be possible to directly create an operational
system even where the terminal elements of a systems definition or
design are not already available as library rules. This might be
accomplished in either of two ways:

(1) New library rules might be selected from available libraries
and/or created (e.g., using PRODOCpp). These new rules can be
integrated automatically to form a new Library using PRODOClg.
PRODOClg generates complete Pascal code which can, in turn, be linked
with either PRODOC prototyping environment to create a custom version
(of either). This new custom version, then, can be used to directly
interpret the original systems definition or design (formulated in
terms of atomic rules in the new library).

(2) The requirements definition stage might be further developed as
normally is done into a detailed system design. In this case the
data structures and procedures (represented in terms of applications
reality) are reformulated in terms of data structures and operations
more closely associated with some target source language. These more
detailed designs, then, are converted to code using PRODOCpp. For
this purpose, one can enter complete source code using PRODOCpp's
default "text" files. Alternatively, in conjunction with available
lanquaqe-specific files, one can simply enter pseudo code. In the
latter case, syntax and consistency checking and declarations and
source code generation, may be performed automatically.

PRODOClp serves a supplemental role in the above context. For
example, Pascal pseudo code can be used to supplement whatever
library rules happen to be used in a given design. This can be done

I without restriction. Given the resulting 1ibrarylPascal pseudo code
combination, PRODOClp can be used to generate complete Pascal source
code ready for compilation.

PRODOClp also serves a useful role even where all elements of a
design consist of library rules. Although the design can be
interpreted, tested and debugged using PRODOCea, execution efficiency
car. usually be greatly improved via compilation. In this case,
PRODOClp can be used to convert the given design (represented solely

I in terms of library rules and meaningful data structures) into
I complete Pascal source code ready for compilation.

Perhaps the single most important advantage in following the
foregoing methodology is that of program maintenance. Given the
integrated, fully interchangeable nature of the various PRODOC
environments, there is no justifiable reason why system requirements
or design, program documentation, or code should ever get out of
synchronization. Consequently, finding one's way around in even very
complex systems is several orders of magnitude easier than is
normally the case. Furthermore, the prirtted documentation provides

G.1.2.18

additional features that are especially useful with large system
segments.

In developing smaller programs, of course, it may be possible to
bypass some of the above steps. Thus, one ha5 the choice of creating
and simply using an applications prototype as is, or of designing and
coding the program using PRODOCpp directly (e.g., in conjunction with
particular sets of PRODOCpp pseudo code language support files).

At this point, it may be unclear how we propose to deal with the
various other representational systems that are commonly used by
designers. In this regard, we take essentially the same position
that Martin and McClure (1985) take with respect to their "action
diagrams": Although the methodologies may appear to differ, all of
the commonly used forms of representation are either equivalent (to
ours) or incomplete. In fact, while action diagrams are formally
equivalent to procedure FLOWforms, we do not believe that they
display overall structure nearly as clearly.

By way of summary, using PRODOC has the advantage of placing
requirements definition, systems design, prototyping and program
coding (not to mention system maintenance) on the same plane. System
designs, prototypes, and program code are viewed within an integrated
environment, which is far easier to understand, revise, debug, and
modify than is normally the case. Put somewhat differently,
developing and maintaining executable (interpretable or compilable)
prototypes and/or source code is a natural extension of system design
and documentation, and vice versa. In short, PRODOC supports the
entire systems software management and development process, from
requirements definition to code generation.

Those of us who have been involved In the creation of PRODOC are fond
of pointing out that PRODOC has literally been indispensable in its
own creation. Indeed, we would not even consider taking on a new
programming task without using PRODOC.

G.1.2.19

REFERENCES

Heller, J. I. and Reif, F. Prescribing effective human
problem-solving processes: Problem description in physics. Cognition
and Instruction, 1, 177-216, 1984.

Knuth, D. E. The Art of Computer Programming Vol. 1: Fundamental
Algorithmes. Reading, MA: Addison-Wesley, 1968.

Martin, J. and Mc Clure, C. Action Diagrams: Clearly Structured
Program Design. Englewood Cliffs, NJ: Prentice-Hall, 1985.

Scandura, J. M. New directions for theory and research on rule
learning: 11. empirical research, Acta Psychologica, 1969, 29,
101-133.

Scandura, J. M. The role of rules in behavior: toward an operational
definition of what (rule) 1s learned. Psychological Review, 1970, 77,
516-533 .

I
Scandura, J. M. Deterministic theorizing in structural learning:
three levels of empiricism. Journal of Structural Learning, 1971, 3,
21-53.

Scandura, J. M. Structural Learning I: Theory and Research.
London/New York: Gordon and Breach Science Pub., Inc., 1973.

Scandura, J. M. Problem Solving: A StructuralIProcess Approach with
Instructional Implications. New York: Academic Press, 1977.

Scandura, J. M. Theoretical foundations of Instruction: a systems
alternative to cognitive psychology. Journal of Structural Learning,
1980, 6, 347-394.

Scandura, J. M. Problem solving in schools and beyond: transitions
from the naive to the neophyte to the master. Educational
Psychologist, 1981, 16, 139-150.

Scandura, J. M. Structural (cognitive task) analysis: a method for
analyzing content. Part I: background and empirical research. Journal
of Structural Learning, 1982, 7, 101-114.

I

Scandura, J. M. Structural analysis. Part 11: toward precision,
objectivity and systematization. Journal of Structural Learning,
1984, 8, 1-28. (a)

Scandura, J. M. Structural analysis. Part 111: validity and
reliability. Journal of Structural Learning, 1984, 8, 173-193. (b)

Scandura, J. M. Structural learning: the science of cognitive,
instructional and intelligent systems engineering. Journal of
Structural Learning, 1985, 8, 1-ii.

Scandura, J. M. PRODOC: The PROfessional self-Documenting programming
productivity environment. Journal of Structural Learning, 1986, 9,

G. 1.2.20

101-105.

Scandura, J. M., Durnin, J. H. and Wulfeck, W. H. Higher-order rule
characterization of heuristics for compass and straight-edge
constructions in geometry. Artificial Intelligence, 1974, 5,
149-183.

Scandura, J. M. and Scandura, A. B. Structural Learning and Concrete
Operationst An Approach to Piagetian Conservation. New Yorkr Praeger
Sci. Publ., Inc. 1980.

G.1.2.21

