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Nickel- base monocrystal superalloys have been under development by turbine 
manufacturers for a number of years. Successful attempts have now been made 
under grant NAG3-512 to the University of Connecticut to model the deformation 
behavior of these materials based on both a macroscopic constitutive model and a 
micromechanical formulation based on crystallographic slip theory. These models 
have been programmed as FORTRAN subroutines under contract NAS3-23930 to 
Pratt & Whitney and included in the MARC nonlinear finite element program. 
They are currently being used to simulate thermahechanical loading conditions 
expected at the "fatigue critical" locations on a single crystal (PWA 1480) turbine 
blade. Such analyses form a natural precursor to the application of life prediction 
methods to gas turbine airfoils. 

SINGLE CRYSTAL FORMULATIONS 

The difficulty in analyzing the deformation behavior of single crystal materials 
lies in their anisotropic behavior. Two separate unified viscoplastic constitutive 
models for monocrystal PWA 1480 have been completely formulated. In one model 
the directional properties of the inelastic deformation behavior are achieved by 
resolving the summed crystallographic slip system stresses and strains onto the 
global coordinate system. In the other model the required directional properties are 
achieved by operating on the global stresses and strains directly with fourth rank 
anisotropy tensors. The crystallographic slip based model is more accurate and has 
more physical significance than the macroscopic model, but is more computationally 
intensive than its macroscopic counterpart. 

The material constants in both models can be obtained from uniaxial tests on 
<001> and <111> orientated uniaxial specimens, or from uniaxial and torsion tests 
on <001> orientated tubular specimens. Both models achieve good correlation with 
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the experimental data in the <001> and <111> corners of the stereographic 
triangle, and both models correctly predict the deformation behavior of specimens 
orientated in the <011> direction. In grant NAG3-512 the tension-torsion tests 
on tubular specimens orientated in the <001> direction were carried out at a 
temperature of 1600F at the University of Connecticut. Further tests at 
temperatures ranging from room temperature to 2100F have been carried out at 
Pratt & Whitney under contract NAS3-23939. Good correlations and predictions 
are uniformly achieved at temperatures above 1200F, but further work appears to 
be necessary to correctly model the deformation behavior of PWA 1480 monocrystal 
material klow 1200F. 

MATERIAL CONSTANT DETERMINATION 

The determination of the material constants in anisotropic monocrystal materials 
poses many difficulties and is greatly facilitated by using an iterative nonlinear least 
squares program. If 2, denotes the vector which contains the material constants, 
the computed stress will depend on the material vector z, and can be written as 
a(z,), where rn ranges from 1 to N, with N being the number of material 
constants in the vector 2,. The test result corresponding to the computed value of 
a(z,) is denoted by uT. 

The material constant vector 2, can be determined by minimizing the square 
of the difference between the test results and the computed results at the user 
selected points 1, 2, ... , M in the experimental data files. The total number of 
experimental points in the experimental data files is usually much larger than M. 

In the minimization procedure the function to be minimzed is then 

M 

If 2: denotes an estimated or guessed value for the material constant vector, this 
vector will not result, in general, in a minimum value for the objective function U. 
Let the vector which results in a minimum value be denoted by 2,. Then we can 
write 

where c, is the amount, or correction, which must be added to the guessed value 
to produce the value which minimizes U. If the guessed vector, 22, is close to the 
true vector, z,, then the correction vector, c,, will be small in comparison with 
z:. By expanding the objective function into a Taylor series the correction vector 
can be determined by solving the system of equations 
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ZA,c,=b, ,  for p = l ,  2, 3, ... , N, 
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where 

by means of a Gaussian elimination method. Since only the first. term in the Taylor 
series is kept in the preceding expaasion, the solution vector c,  is not exact. 
However, it may be added to the guessed material constant vector z$ to obtain the 
improved vector 

This process is repeated in an iterative manner until convergence is achieved. The 
parameter p is used to stabilize the method and assumes small values when the 
initial guess for the material constant vector is far from the true solution, and 
approaches unity as convergence is achieved. 

The preceding iterative technique has proved to be of great value in estimating 
the material constants required for use in unified viscoplastic formulations. This is 
especially the case in anisotropic formulations where simplified means of estimating 
the material constants are not available. 
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