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1 Introduction 

This report describes our research on sparse matrix techniques for the Computational Struc- 
tural Mechanics (CSM) Testbed [22] conducted for NASA grant NAG-1-803. Before provid- 
ing a synopsis of the report, we give a brief overview of the work that has been completed 
during the 10-month tenure of the grant. 

A primary objective was to compare the performance of state-of-the-art techniques for 
solving sparse systems with those that are currently available in the CSM Testbed. Thus, 
one of the first tasks was to become familiar with the structure of the Testbed, and to install 
some or all of the SPARSPAK package [2, 13, 141 in the Testbed. 

We began by installing the CSM Testbed on our SUN workstations. We were the first 
site to do this, and it was necessary to collaborate closely with the CSM group at Langley 
in order to resolve some minor problems with the installation procedure. 

A suite of subroutines to extract from the database the relevant structural and numer- 
ical information about the matrix equations has been written. A driver program (proces- 
sor) that employs these routines along with the SPARSPAK library has been written, and 
we have successfully solved all the demonstration problems distributed with the Testbed. 
These codes have been documented, and performance studies comparing the SPARSPAK 
technology to the methods currently in the Testbed have been completed. In addition, 
some preliminary studies have been done comparing some recently developed out-of-core 
techniques with the performance of the Testbed processor INV. 

An outline of the report is as follows. Section 2 contains a brief overview of the CSM 
Testbed software and its usage. This is essentially background material for the uninitiated, 
and can be ignored by those with experience in the usage of the Testbed. 

Since the ultimate goal of sparse matrix research for the Testbed is to enhance the 
performance and capabilities of the Testbed, some knowledge of the methods currently 
employed is essential in the development of better techniques for the Testbed. Section 3 
gives an overview of the sparse matrix techniques currently employed in the CSM Testbed. 
Our presentation is focused on the internal working of the SPAR matrix processors [25]. 

Section 4 describes an interface which we have designed and implemented as a research 
tool for installing and appraising new matrix processors in the CSM Testbed, along with a 
description of a new processor SPK which consists of a subset of SPARSPAK-A [2] and a set 
of subroutines which provide an interface between SPARSPAK-A and the global database 
of the CSM Testbed. A guide for installing the processor SPK in the Testbed is provided 
in Appendix A of this report. The installation dependent modules of this processor are 
listed in Appendix B with comments indicating the changes to be done at  a different site. 
A listing of all interface subroutines is provided in Appendix C. 
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Finally, Section 5 contains results of numerical experiments we performed in solving 
a set of Testbed demonstration problems using the processor SPK and other experimental 
processors. These results are compared with the performance of the SPAR matrix processors 
on the same set of test problems. 

2 The CSM Testbed Software System and Its Usage 

To facilitate our discussion throughout this report, we shall first briefly introduce the con- 
cepts and terminology employed in the Testbed. Since our discussion is conducted primarily 
for the readers who have not used the Testbed before, the readers who are familiar with its 
usage can skip this section. 

The CSM Testbed is a structural analysis system evolving from integrating the SPAR 
finite element code [25] and the NICE data management and command processing utilities 
[4, 5, 6, 7, 261. The FORTRAN programs for SPAR (Structural Performance Analysis and 
Redesign) were developed in the 1970’s by Lockheed Missiles and Space Company and by 
Engineering Information Systems, Incorporated. The SPAR system uses the finite element 
approach to perform stress, buckling, vibration, and thermal analysis on linear structural 
systems. The NICE (Network of Interactive Computational Elements) system was originally 
developed at Lockheed Palo Alto Research Laboratories to support engineering analyses. 
The major components of the NICE system include a data manager, a command language 
and a command interpreter. Continued effort has been made by the CSM development 
team at NASA Langley and at the Lockheed Palo Alto Research Laboratory to extend 
the analysis capability of the Testbed since the implementation of its initial version (called 
NICE/ SPAR). 

The user interface for the Testbed is described in detail in the CSM Testbed User’s 
Guide [24]. The language, directives, interface, global-database manager and input-output 
manager of the CSM Testbed architecture are each documented in references [5, 6, 7, 8, 261. 
For our purpose we shall simply walk through an example to quickly familiarize the readers 
with the general usage of the Testbed. The example we use is a Testbed demonstration 
problem presented in reference [25]. We shall refer to this example as problem “demol” 
throughout this rep or t . 
The operating environment Our discussion throughout this report refers to the version 

of the Testbed currently operational on a SUN 3/50 workstation running the UNIX’ 
operating system at the University of Tennessee, Knoxville. 

The problem to be solved: The tubular beam shown in Figure 1 is cantilevered at joint 
1 and statically loaded at joint 5. The static solution for a transverse shear load of 
1000.0 and for an axial load of 10000.0 is required. 

‘UNIX is a trademark of AT&T Bell Laboratories. 
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P- 
2 3 4 5 

L -  /: 
L=40 

Tube, inner radius = 2.00, outer radius = 2.25 

E = 10. x lo6 

u = 0.3 

p = 0.101 

= 0.1 x io-’ 

Figure 1: CSM Testbed Demonstration Problem - Tubular beam. 

User input Edit a file to contain the script in Figure 2. The command stream demon- 
strates how to solve the tubular beam problem in Figure 1 using the NICE command 
language and the SPAR computational modules. 

Comments The problem-oriented Testbed command language is called CLAMP - 
an acronym for Command Language for Applied Mechanics Processors. The 
commands with their leading keyword prefixed by an asterisk are called CLAMP 
directives. They are special commands used to 
- directly access a global database, 
- define command procedures, 
- implement branching and cycling for nonsequential command processing, 
- process macrosymbols in an advanced language construct, 
- request other available services. 
For example, the directive 

*open 1 demol.101 /new 

contained in our script file will create a new library file with the library identifi- 
cation number (LDI) equal to “1” and file name of “demo1.101”. 
The SPAR processors are each implemented as a subroutine callable by the 
Testbed executive module. The macroprocessor command to start the execu- 
tion of a processor is CXQT. Therefore, during the execution of the Testbed, the 
command to run the SPAR processor named TAB is 
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[XqT TAB 

The input (user commands and/or data) to a processor are entered after the [XqT 
command according to the requirements of the individual processor. The SPAR 
input syntax and processor requirements are described in detail in reference [24]. 
Since the CLAMP directives may be intermixed with the processor commands in 
the script file, it is worthnoting that once the execution of a processor is initiated 
by [XqT, it will begin and continue accepting input until either another CXQT, a 
STOP or a *STOP is encountered. If a STOP occurs, execution will proceed to com- 
pletion of the processor’s assigned task after which the next command, which can 
be either a CLAMP directive or a macroprocessor command, begins execution. 
A *STOP terminates execution immediately. Therefore, the user command STOP 
in the sequence 

[XqT SSOL 
STOP 

*TOC 1 

is necessary to ensure that processor SSOL runs to completion before the directive 
*TOC is processed. 
The modular structure of the Testbed implies that multiple processors are typ- 
ically executed to perform an analysis. These processors communicate through 
a common database consisting of global-access data libraries (GAL) which are 
operated on by the NICE data manager GAL-DBM [26]. Each GAL data library 
may contain multiple nominal datasets. Each dataset is made up of named 
records. The GAL-Processor interface facilities allow the Testbed processors to 
generate, store, locate, and access all of the needed information in the global 
database to perform a required analysis. The table of contents of an active data 
library may be displayed during execution of the Testbed via the CLAMP di- 
rective *TOC. In Figure 3, we display the table of contents for the data library 
“demol.101” (LDI=l) created by executing the script in Figure 2. 

To execute the analysis: Note that on UNIX systems the execution of the Testbed is 
initiated by the first command “time nicespar << \eof” in the script file, where 
“nicespar” is the name of the executable Me and we assume that the name of the 
directory where “nicespar” resides has been inserted in the user’s PATH environment 
variable. Note also that “\eof” is the last entry of the script. Assuming that the name 
of the file containing the script is “demol.com” and that it has been made executable 
with the “chmod” command, the script may be run by typing 

demo1 .com 
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To print the solutions on an ordinary text file: The default output file for the Testbed 
is the standard output on UNIX system. The command 

demol.com > & demo1.log & 

thus redirects the output to the log file. The desired static solutions are produced by 
processor SSOL and the actual data are contained in the dataset named STAT .DISP,  1-1. 
To print the static solutions on the log fle, the SPAR utility processor VPRT may be 
executed after CXQT SSOL. The command to be inserted into the script is 

[XqT VPRT 
TPRINT STAT DISP 1 1 

The output corresponding to this command is displayed in Figure 4. Note that each 
constrained component is flagged with an asterisk by the processor VPRT. 

More details: We shall come back to this example from time to time to provide the details 
which are not needed until our discussion at  a later point. 
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t ime n icespa r  << \eof 
+open 1 demol.101 /neu 
+ s e t  echo=off 

START 5 
JOIUT LOCATIONS 
1 0 0 0 .  
2 0 0 10. 
3 0 0 20.  
4 0 0 30. 
6 0 0 40. 
HATERIAL CONSTAUTS 
1 10.E+6 .3 . l o 1  .lE-4 
BEAH ORIEUTATIONS 
1 1 1 1 1 .  
E21 SECTION PROPERTIES 
TUBE 1 2 .  2.25 
CONSTRAIIfT DEFINITIOU 1 
ZERO 1 2 3 4 5 6 
1 

[rqt ELD 
E21 
1 2  
2 3  
3 4  
4 6  

[xqt TAB 

Cxqt E . Create  element d a t a s e t s  
[xqt EKS . Calcu la t e  element i n t r i n s i c  

Cxqt RSEQ . Resequence nodes 

[ rq t  TOP0 

Crqt K . Assemble system s t i f f n e s s  ma t r ix  

[xqt I E V  

[xqt PUS 

. s t i f f n e s s  ma t r i ces  

r e s e t  HETHOD=l LJSPRT-1 LADPRT=l 
. Formmaps which guide t h e  assembly 

r e s e t  PRTKHAP=l PRTAHAP=l . and f a c t o r i z a t i o n  of system ma t r i ces  

r e s e t  spdp=2 . Output d a t a s e t  i n  double p r e c i s i o n  

r e s e t  spdp=2 . i n  double p r e c i s i o n  
. Factor  system s t i f f n e s s  ma t r ix  

ALPHA . Direc t  PUS input  
CASE TITLES . Define l o a d  t i t l e s  f o r  2 cases  
1 JTRAUSVERSE LOAD 
2 JAXIAL LOAD 
SYSVEC 
APPLIED FORCES 

CASE 1: I=2: J=S:  1000. 
CASE 2: 14: J=S:  10000. 

Crqt SSOL 
[ rq t  GSF 
[ rq t  PSF 

s t o p  
*TOC 1 
\eof 

. S t a r t  and t ime Testbed execut ion 

. Open d a t a  l i b r a r y  

. Do not  echo inpu t  

. Hacroprocessor command t o  execute  TAB 

. 6 nodes p o i n t s  i n  beam 

. Direct  TAB inpu t  

. Constrain 6 components of j o i n t  1 
. t o  be ze ro  

. Define elements 

. Define element connec t iv i ty  

. Dir-2 load  on j o i n t  5 of 1000. 

. D i r - 3  l o a d  on j o i n t  5 of 10000. 

. Solve f o r  s t a t i c  displacements 

. Compute s t r e s s e s  

. P r i n t  s t r e s s e s  

. P r i n t  Table of contents  of l i b r a r y  1 

Figure 2: A runstream for solving problem demol. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
+ Library I File: demoi.101 + 
+ Form: GAL82 File s i ze :  22062 words l o .  of Datasets: 32 + 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Seq# 

I 
2 
3+ 
4 
6 
6 
7 
8 
9 
10 
11 
1 2  
13 
14 
1 6  
16 
17 
18 
19 
20 
21 
22 
23 
24 
26 
26 
27 
28 
29 
30 
31 
32 

Date Time 
06:14:88 17:54:17 
06:14:88 17:64:17 
06:14:88 17:54:17 
06:14:88 17:56:17 
06:14:88 17:66:17 
06:14:88 17:65:17 
06:14:88 17:55:17 
06:14:88 17:55:17 
06:14:88 17:55:17 
06:14:88 17:56:17 
06:14:88 17:56:17 
06 :14:88 17:56:17 
05:14:88 17:66:17 
06:14:88 17:56:17 
06:14:88 17:56:17 
06:14:88 17:66:17 
06:14:88 17:66:17 
06:14:88 17:66:17 
06:14:88 17:56:17 
05:14:88 17:66:17 
06:14:88 17:66:17 
06:14:88 17:56:17 
06:14:88 17:56:17 
06:14:88 17:66:17 
06:14:88 17:66:17 
06:14:88 17:56:17 
06:14:88 17:56:17 
05:14:88 17:66:17 
05:14:88 17:56:17 
06:14:88 17:56:17 
06:14:88 17:66:17 
05:14:88 17:66:17 

Lk Records Processor Dataset name 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

I TAB 
I TAB 
I TAB 
3 TAB 
1 TAB 
I TAB 
I TAB 
1 TAB 
I TAB 
1 TAB 
I TAB 
I ELD 
I ELD 
1 ELD 
I ELD 
1 ELD 
I ELD 
I ELD 
I ELD 
4 E  
I E  
I RSEQ 
I TOPO 
I TOPO 
1 K  
6 IEV 
2 IUS 
2 PUS 
2 SSOL 
2 SSOL 
4 GSF 
4 GSF 

JDFI.BTAB.I.8 
JREF.BTAB.2.6 
ALTR. BTAB .2.4 
GHTR.BTAB .6.6 
ALTR.BTAB.2.4 
JLOC.BTAB.2.6 
MATC.BTAB.2.2 
MREF.BTAB.2.7 
BA.BTAB.2.9 
COI..i 
QJJT.BTAB.2.19 
DEF.EZI.I.2 
GD . E21. I. 2 
GTIT.EZ1. I. 2 
DIR.EZI.I.2 
ELTS. EAHE 
ELTS. EEOD 
ELTS. ISCT 
IS 
EZI.EFIL.I.2 
DEM.DIAG 
JSEQ.BTAB.2.17 
MAP. .9.3 
AMAP. .9.3 
K . SPAR. 36 
IIV .K. I 
CASE.TITL.I.1 
APPL.FORC.l.1 
STAT.DISP.I.1 
STAT.REAC.1.1 
STRS.EZI . I. I 
STRS.E21.1.2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 3: Table of Contents of Library 1. 
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** BEGIE VPRT ** DATA SPACE= 600000 WORDS 

TRANSVERSE LOAD 
lSTATIC DISPLACEMEETS. 

OJOIRT I 2 3 4 
1 0.0000+00* 0.0000+00* 0.000e+00* 0.0000+00* 
2 0.0000+00 0.2600-01 0.0000+00 -0.4630-02 
3 O.OOOo+OO 0.8970-01 0.0000+00 -0.7930-02 
4 0.0000+00 0.1810+00 0.0000+00 -0.9920-02 
6 0.0000+00 0.2860+00 0.0000+00 -0.1060-01 

1STATIC DISPLACMEETS. 

OJOIET 1 2 3 4 
AXIAL LOAD 

1 o.oooe+oo* o.oooo+oo* 0.0000+00* 0.0000+00* 
2 0.0000+00 0.000e+00 0.3000-02 0.0000+00 
3 0.0000+00 0.0000+00 0.6990-02 0.0000+00 
4 0.0000+00 0.0000+00 0.8990-02 0.0000+00 
6 0.0000+00 0.000e+00 0.1200-01 0.000e+00 

EXIT VPRT CPUTIME= 0.6 I/O(DIR ,BUF) = 0 0 

I D =  l /  1/ 1 

6 6 
0.0000+00* 0.0000+00* 
0.0000+00 o.oooo+oo 
0.0000+00 o.oooo+oo 
0.0000+00 0.0000+00 
0.0000+00 0.0000+00 

I D =  l /  l /  2 

6 8 
0.0000+00* 0.0000+00* 
0.0000+00 0.0000+00 
0.0000+00 0.000e+00 
0.000e+00 0.0000+00 
0.000e+00 0.000e+00 

Figure 4: The contents of dataset STAT.DISP.1.1. 
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3 The CSM Testbed Matrix Processors 

Reference [23] contains a set of logic flowcharts developed for the key subroutines of each 
of the SPAR matrix processors TOPO, K, I N V ,  SSOL and AUS. These charts together with 
the commented FORTRAN source code are very helpful in our understanding of the sparse 
matrix techniques currently employed in the Testbed. In this section, we shall attempt to 
describe the algorithms and data structures which are implemented by the processors I N V  
and SSOL. 

3.1 The Basic Algorithms 

The factorization algorithm: Processor I N V  applies a specialized Gaussian elimination 
scheme to factor a sparse symmetric matrix K into L D L T ,  where L is a unit lower 
triangular matrix and D is a diagonal matrix. This algorithm is numerically stable if 
the matrix K is also positive definite, which is the case when K is the system stiffness 
matrix. The basic algorithm can be easily described for a dense symmetric matrix A 
as follows. We assume that A is of dimension n x n. Let us denote the elements of A 
and M = LT as a;j and mij, where 1 5 i 5 n and i 5 j 5 n, and D = { d l ,  da, . . . , &}. 
Note that each off-diagonal a;j is overwritten by m ; j  and that each a;; is overwritten 
by dT1 if the algorithm presented in Figure 5 is successfully executed. Algorithm I 
assumes that the a;j elements are stored row by row. 

Algorithm I The basic LDLT factorization scheme 

for i t 1,2, .  . . , n do 
if a;; = 0 then 

else 
quit 

uii +- l / U i i  

for L t i+ 1, ..., n do 
m t a ; k  * a;; 
for j t k, ..., n do 

for H t i+ 1, ..., n do 
a k j  t a k j  - m * aij 

a ; k  c a;k * ai,; 

Figure 5 :  Computing D-' and M = LT factors of A. 
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The following features of the algorithm above will be exploited in its sparse imple- 
mentation. 

1. To compute D-I and the off-diagonal elements of M = L T ,  the elements stored 
and accessed are those on the diagonal and in the upper triangular part of A .  For 
example, when n = 5, the algorithm performs the transformation in Figure 6. 

Figure 6 :  Overwriting A by D-I and M = LT. 

2. The a;j's which have been overwritten by the elements of D-' and M = LT 
will not be needed in the remaining elimination stages. In particular, during the 
it" elimination stage, the elements accessed and modified are confined to row i 
through row n as shown in Figure 7 for i = 3 and n = 5 ,  where @ represents 
elements which are not accessed. 

Figure 7: LDLT factorization of A - the third stage. 
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Solving the triangular systems: Since Algorithm1 stores the factors D -l and M = LT, 
we shall describe the solution scheme in terms of these two factors. Both of the forward 
and backward substitution schemes presented below access the elements of the factor 
M row by row. 

Step 1. Forward substitution scheme (Solve M T y  = b ) .  

for i t  1, ..., n do 
yi 4- bi 
for k =  i +  1, ..., n do 

bk = bk - m;k * 31; 

Step 2. Backward substitution scheme (Solve M z  = D-'y). 

for p t 1, ..., n do 
i t n - p +  1 
s4-O 
for j = i +  1, ... n do 

s t s + m ; j * z j  
Z; t dF1 * y; - s 

3.2 The I N V  Implementation 

In this section, we shall discuss in various degrees of details the following aspects of the 
sparse factorization scheme implemented by the processor I N V .  

1. The algorithm - a block LDLT factorization scheme. 

2 .  Memory requirement. 

3. Data structures. 

4. The handling of zero constraints. 

5 .  The handling of nonzero constraints. 

6. Data archived to the global database. 

A block LDLT factorization scheme: The processor I N V  has tailored Algorithm I to 
perform an out-of-core block LDLT factorization of large sparse matrices arising in 
the finite element analysis of structural mechanics problems. Before we describe the 
I N V  implementation of this scheme, let us first explain the block LDLT algorithm 
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by applying it to a dense symmetric matrix A in block form. To be specific, let us 
consider the 2 x 2 block matrix in Figure 8, where Al, l  = { a t j } ,  A1,2 = { a k j  }, 
A2,2 = {u t ; ) } ,  with u t ]  = a!?, a:) = a!:), and 1 5 k,j 5 3. 

(ii) 

Figure 8: Partitioning symmetric A into four 3 x 3 blocks. 

The block LDLT scheme works in the following manner. 

Step 1. Apply Algorithm I to matrix A1,l to perform the following transformation. 

In other words, at the end of step 1, we have in fact zeroed out the nonzeros 
in the lower triangular part of A l , l  and stored the multipliers !;j = mj; in the 
upper triangular part of A1,l. 
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Step 2. Apply the multiplers rntj to the A1,2  block as if LU (U = D L T )  decompo- 
sition were applied to reduce (Al , l ,  A1,2)  to an upper trapezoidal matrix. That 
is, the A1,2  block is overwritten by the resulting {ut:)} of the following transfor- 
mation. 

I , ( i i )  , ( i i )  , ( i i )  
1,l 1,z 1,s 

, ( i i )  ,( i i)  , ( i i )  
2 , l  2,2 2,3 

, ( i i )  , ( i i )  ,(ii) 
3,l 3,2 3 ,3  

Step 3. Zero out the block A& implicitly by applying the multipliers directory to 
block A2,2 .  The multipliers can be computed on the fly from 

m(ii) (ii) (ii) 
1 , l  m2,1 m3,1 

(ii) (ii) (ii) 
m1,2 rn2,2 m3,2 

(ii) rn(ii) rn(ii) 
m1,3 2,3 3,3 

, ( i i )  , ( i i)  , ( i i )  
1,l l,z 1.3 

(ii) (ii) u(ii) 
U1,l U2,l  

- - l/d(,") 

The A2,2 block is then updated to be A2,2 = {at; '} which is obtained by the 
following computation. 

( i i )  ,( i i)  ( i i )  
, l , l  1 ,2  ,1 ,3  

,( i i)  ( i i )  ,(ii) 
2 , l  ,2,2 2 , 3  

( i i )  ( i i )  ( i i )  
u3,1 ,3,2 u3 ,3  

$4 , ( iv)  J i V )  
1 , l  1,2 1,3 

J i V )  3 , l  p) 3,2 Ji.) 3 , 3  

( i i )  ,(ii) ( i i )  
,1,1 1 ,2  ,1,3 

,( i i)  ,( i i)  ,( i i)  
2 , l  2,2 2 ,3  

( i i )  ( i i )  ( i i )  
u3,1 ,3,2 ,3,3 

s i ( i w )  si(iu) si(iu) 
1,l 1,2 1,3 

&( iu )  - ( i v )  & ( i v )  
2 , l  a2,2 2 ,3  

- ( i u )  & ( i V )  &(am) 
'3,l 3 ,2  3 , 3  

Since the A2,2 diagonal block is symmetric, only the upper triangular part of 
A2,2 is updated in the actual computation. 

Step 4. u t i )  t u$)/d:), for VH,j. 
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Note that the transformations accomplished by the above four steps can be expressed 
with respect to the block upper triangular part of the given matrix as follows. 

\ \ 

The Anal step: For this particular example, the factorization is completed after 
trans forming 

by Algorithm I. 
The output matrix: The coefficient matrices of the resulting triangular systems, 

namely MTy = b and M z  = D-ly, are available from the output matrix given 
by 

d,l m1,2 ml,3 ml,4 m1,5 m1,6 

m2,3 m2,4 m2,5 m2,6 

d i l  m3,4 m3,5 m3,6 

dT1 m4,5 m4,6 

The following observations may be made on the block LDLT factorization scheme 
described above. 

1. The elements in the lower triangular part of the diagonal A;,i blocks are not 

2. The block of rows which have been updated to contain the dkl's and mkj's of 

3. Observe that the updating of A2,2 block in Step 3 can be reformulated as follows. 

accessed during the process of computing the D-l and LT = M factors. 

the factors are no longer needed in the future stages of elimination. 
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and 

Therefore, if the elements of A2,2 are not available in memory at  the time the first 
block row (All l ,  Al,2) is being processed, the modifications can be accumulated 
in the {SF,;)}% which are later added to the respective elements of A2,2 when 
they are read into memory. 

Although it appears straightforward to generalize the block L D L T  scheme to a sym- 
metric sparse block matrix such as the example given in Figure 9, where each Ki,j is 
a dense square matrix of some uniform dimension, an efficient implementation of the 
sparse block LDLT scheme requires sophisticated data structures. 

Figure 9: Upper triangular block structure of a symmetric sparse matrix K. 

Memory requirement: Suppose that the matrix K in Figure 9 is stored out-of-core and 
the rows of K are to be read into memory one block row (i.e., JDF rows if JDF is 

17 



the dimension of each submatrix) at a time, In order to factor the first block row 
(K1,17K1,2,K1,5) and store the modifications to be applied to the blocks K2,2, K2,5 

and K5,5 later, we need memory space to store the blocks in Figure 10 as well as 
the indexing overhead incurred by the data structures employed. In order to proceed 

Figure 10: The storage needed for processing ( K I , ~ ,  K1,2, K1,s) 

with the factorization of the second block row ( K z , ~ ,  K z , ~ ,  K z , ~ ,  K z , ~ ) ,  enough working 
space must be available to accommodate the blocks in Figure 11. To minimize the 
memory requirement, processor I N V  actually re-uses the space occupied by blocks K1,1, 

Kl,2 and K1,S to accommodate the blocks needed for the current elimination stage, 
assuming that the factors of (Kl ,~,K1,2,K1,5)  have been archived to the database. 
The block submatrices needed to remain in memory for each of the next four stages 

Figure 11: The storage needed for processing ( K z , ~ ,  K2,3, K2,5, K2,e) 

are depicted in Figure 12. Observe that although K4,5 block is null in IC, it is to be 
filled in the third elimination stage. Therefore, the space to accommodate S4,5 block 
must be allocated. Fortunately, the fill-in locations can be determined prior to the 
numerical factorization phase. With the fill-in information available, the maximum 
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Figure 12: The storage needed to process K3,*, K+, Ks,* and K6,*. 

number of submatrices ever needed to be in memory can also be determined. As 
far as the indexing overhead is concerned, a simple and effective strategy is to store 
one pointer for each submatrix assuming that the elements within each submatrix are 
stored in consecutive locations. Using this indexing strategy, the number of pointers 
required to be in memory for each particular elimination stage is equal to the number 
of submatrices to be present. 

Data structures: The data structures employed by the Testbed matrix processors can 
again be more easily explained using our block 2 x 2 example given in Figure 8. 

Data structure of the input coefficient matrix: Processor I N V  assumes that the 
block upper triangular part of the coefficient matrix 

is stored out-of-core in a block-row-oriented manner. That is, the data of the 
blocks are stored in a one dimensional array following the block sequence as 
depicted in Figure 13. 

Figure 13: The block sequence of input matrix. 

Within each Ai,j block, the elements are stored column by column. For example, 
the elements of the Al,1 block are stored following the sequence in Figure 14. 
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Figure 14: The element sequence of block A1,l. 

... a4,4 a5,4 Q6.4 ~ 4 . 5  a5.5 a6.5 a4.6 a5.6 a6 ,6  

KMA P(IX)  

1 
... ... 1 ' 1  

A MA P(JX) 

Figure 15: Indexing the buffer and working arrays. 
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The integration of A2,2 into the working array is accomplished by the following 
segment of FORTRAN statements. 

C 
C 
C 

C 
C 
C 

200 
100 

......................... 
G E T  P O I N T E R  T O  TEE BUFFER 

K = AMAP(JX)  
DO 100 J = 1, J D F  

DO 200 I = 1, J D F  
S ( I , J , K )  = S ( 1 , J . K )  + A ( L K S W )  
L K S W  = L K S W  + 1 

C O N T I N U E  
C O N T I N W  

For a general sparse matrix, because the data stored in the working array S are 
dynamically changed by accommodating new data in the space occupied by data 
which have been written out to the database, the S i j  blocks corresponding to the 
consecutive Ai,j blocks in the buffer array may not be neighbors in the working 
storage. To integrate NSUBS (NSUBS 2 1) A;,j’s into S, the starting address 
of each Si,j must be computed from AMAP each time, resulting in the revised 
code segment. 

C 
C 
C 

C 
C 
C 
C 

200 
100 
300 
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Conversion of the input data structure: Note that the data structure described 
above for the input buffer and working array is in fact the output format of 
the processor which assembles the system stiffness matrix from the finite ele- 
ment model. Since the block LDLT factorization scheme and the following for- 
ward/backward substitution algorithms are row-oriented, the properly updated 
JDF x JDF submatrices of the current block row are copied from S into another 
one-dimensional array B ,  where the data are stored row by row with respect to 
the global matrix. For example, assuming that the dimensions of S and B are 
declared as S(JDF, JDF, *) and B(JDF,CONRNG, *), the following FORTRAN 
statements retrieve the fist row of (Al , l ,A1,2) ,  i.e. { u l , l , u l , 2 , . . . , u l , ~ } ,  from S 
and store them in the consecutive locations in B.  

C 
C 
C 

C 
C 
C 

C 
C 
C 

200 
100 

____________________---------- 
K INDEXES THE CURRENT ROW I N  B 

CONRNG = 2 
DO 100 J= I. CONRNC 

ASSUME THAT THE LOCATION OF THE CURRENT 
BLOCK I N  S CAN B E  OBTAINED FROM S W M A P ( J )  

L K S W  = S W M A P ( J )  
DO 200 I = 1 .  J D F  

CONTINUE 
B ( I , J , K )  = S ( M , I , L K S W )  

CONTINUE 

Since the modifications computed from B are to be accumulated into S for up- 
dating the input matrix in the future stages of the elimination process, the di- 
mensioning of B as B(JDF,CONRNG,*) in parallel with the dimensioning of 
S is desirable. The conversion of index from S to B ,  or vice versa, for each 
element can thus be easily expressed in FORTRAN as demonstrated in the 
above code segment. However, there are other times the code would be much 
cleaner by viewing B as a two dimensional array declared as B(JDFCON,*), 
where JDFCON= JDFx  CON. The technique which the processor INV uses to 
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index the same array in either way is to declare two formal parameters, namely 
B(JDF,GONRNG, *) and BB(JDFCON, *) in the subroutine which does the fac- 
torization, whereas the actual parameters corresponding to B and BB in the 
calling sequence are identical. With this trick, B and BB in the subroutine refer 
to the same actual parameter and the programmer can work with either B or 
BB according to his need to access the data in a particular pattern. 

Handling zero constraints: Processor I N V  handles zero constraints by ignoring the cor- 
responding rows in the process of transferring data from S to B. That is, if the 
unknown 2; = 0, then row i will not be copied to B. For example, if it is known that 
2 2  = 0, then only row 1 and row 3 in (Al,l,A1,2) would be copied to array B. The 
actual transformation of ( A l , ~ ,  A1,2) is carried out in B as shown below. 

( al,l a1,2 a1,3 a1,4 a1,5 a1,6 ) - ( fi,: ml,2 m1,3 m1,4 m1,5 m1,6 
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,2 ai1 m3,4 m3,5 m3,6 

Consequently, row 3 in S becomes row 2 in B,  i.e., it is possible that K<M in our 
sample code segment. 

Handling nonzero constraints: Processor I N V  handles nonzero constraints by ignoring 
the corresponding rows in the factorization process. For example, if it is known that 
2 3  = u 3  # 0 in addition to 22 = 0, the transformation of (Al , l ,  Al,2) by processor I N V  
will not affect row 3, i.e., 

a1,l a 1 , 2  a1,3 a1,4 a1,5 a1,e ) - ( a,' m1,2 m1,3 m1,4 m1,5 m1,6 

a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,l a3,2 a3,3 a3,4 a3,5 a3,6 

Elements archived: Write out to database those elements of BB which are needed for 
the subsequent use by processor SSOL in effecting the forward/backward substitution 
process. For example, assuming 2 2  = 0, and 2 3  = u 3  # 0 ,  the output elements 
resulting from factoring the ( A l , l ,  A1,2) block are given by 

dcl  mi,a mi,3 mi,4 m1,5 ml,6 

a3,3 a3,4 a3,5 a3,6 

3.3 The SSOL Implementation 
Input Data: Processor SSOL retrieves from the database the factors archived by processor 

I N V .  For our example of the block 2 x 2 matrix, assuming that the constraints are 
2 2  = 0 and 2 3  = u 3  # 0, the data given below are stored in a row-oriented manner in 
the database. 
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In addition to the factors, the right-hand side vector f and the nonzero-constraint 
vector fi are also available in the database. 

Handling constraints: In essence, processor SSOL simply adapts the forward/backward 
substitution schemes we presented for Algorithm I to solve the following triangular 
systems, which are to be implicitly formed from the data retrieved. 

Y1 
u3 

Y5 = (;) 
Y6 

and 
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1 m1,2 m1,3 m1,4 m1,5 m1,6 

m4,5 1 m5,6 [ :: ] = ( d" d;l d51 ) ( i )  
1 x5 d;' ( z6 

In particular, the SSOL implementation takes advantage of the following observations. 

1. The equations corresponding to zero constraints can be ignored in the forward 
substitution phases. 

2. The coefficients of the equations corresponding to nonzero constraints are needed 
to adjust the right-hand side vector in the forward substitution phase. 

3. If the solution vectors contain the constraints, the equations corresponding to 
constraints (either zero or nonzero) can be skipped in the backward substitution 
phase. 

Output Solutions: The computed q j ' s  are written out to the global database. 

3.4 Other Relevant SPAR Processors 

In order to briefly introduce the functions of other relevant SPAR processors, and give the 
readers some idea how they may be used to perform an analysis, we found that the following 
information available in The CSM Testbed User's Manual [24] useful. Given below is a list of 
processors together with comments on their individual functions. In addition, the ordering 
of the processors in the list serves as a template for performing the linear static analysis, 
which is one of the simplest types of analysis which can be performed with the Testbed. 

1. Processor TAB. Define joint locations, constraints, reference frames, and possibly ma- 
terial and section properties. Material and section properties may be defined using 
either processor TAB or processors AUS and LAU (Steps 2 and 3).  
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2. Processor AUS. Build tables of material and section properties if the facilities in pro- 
cessor TAB were not used. 

3. Processor LAU. Form constitutive matrix if material and section properties were not 
input in processor TAB. 

4. Processor ELD. Define elements. Element definitions include element connectivity, 
element material reference frame number, element material and section type numbers. 

5. Processor E. Initialize element datasets; create the dataset which will contain all im- 
portant element information (e.g., intrinsic coordinates, element-to-global transfor- 
mations, intrinsic stiffness matrices). 

6. Processor EKS. Calculate element intrinsic stiffness matrices. 

7. Processor RSEQ. Resequence nodes for minimum total execution time. 

8. Processor TOPO. Form maps which guide the assembly and factorization of system 
matrices. 

9. Processor K. Assemble global (system) stiffness matrix. 

10. Processor I N V .  Factor system stiffness matrix. 

11. Processor AUS and EQNF. Create applied nodal loading. If element loading is applied, 
Processor EQNF must be executed to calculate equivalent nodal loading. 

12. Processor SSOL. Solve for static displacements. 

13. Processor GSF. Calculate element stress resultants. 

14. Post-process using any of the following processors: VPRT , PSF , PLTA, PLTB , PLOT, 
CONT. T2PT. 
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4 Developing New Matrix Factorization Processors 

4.1 General Considerations 

We have described in detail in Section 3 the internal working of processors I N V  and SSOL. 
The former performs the out-of-core LDLT factorization of a sparse matrix in block form, 
and the latter solves the resulting triangular systems by forward and backward substitution 
schemes. The following considerations have prompted us to investigate alternative sparse 
factorization schemes. 

1. The techniques employed by I N V  are particularly tailored to the large sparse linear 
systems arising in the structural models. The models considered are composed of 
finite elements connected at specified joints. Each joint can have three translational 
and three rotational components of deflection, totaling a maximum of six degrees of 
freedom per joint. The system stiffness matrix is stored and operated on as an array 
of J D F x  JDF submatrices, where 3 5 J D F 5  6 is the maximum number of degrees of 
freedom per joint in the model of a particular problem. However, in general the joints 
need not have the same number of degrees of freedom. This storage scheme thus 
necessitates storing dummy data - an identically zero row for each missing degree 
of freedom at each joint. Although the factorization scheme only operates on the 
non-null submatrices and some operations on the dummy rows are skipped by the 
processor I N V ,  it does not fully exploit the sparsity within each submatrix. While 
this strategy is understandably very efficient if uniform degrees of freedom per joint 
prevail, it may not best suit the models with drastically varied degrees of freedom, 
which is not uncommon in finite element modeling applied to disciplines other than 
mechanical structural analysis. 

2. As described in Section 3, the data structures employed incur the index overhead of 
one pointer per submatrix for all submatrices occurring in each elimination stages. 
Therefore, the index overhead is proportional to the number of submatrices instead of 
the size of them. Consequently, while the primary storage for the system stiffness ma- 
trix and the factors is reduced for models with fewer degrees of freedom, the secondary 
storage for their indices may remain the same and could become a significant part of 
the total storage. Furthermore, unlike the working storage which is determined by 
the maximum number of submatrices which ever occur during the entire factorization 
process, the addresses of the submatrices are repeatedly stored for each elimination 
stage. 

3. The system stiffness matrix, the factors and their respective indexing information are 
each stored in separate datasets in the global database. The datasets are read into 
memory or written out to the database one record at a time. The choice of record 
length determines the number of disk read/write operations and the required buffer 

26 



space. While the maximum record length of a dataset is restricted by the available 
buffers, the minimum record length must be long enough to contain all of the items 
which are needed to completely process one entire row of submatrices. Therefore, 
the processor I N V  can perform in-core factorization if each record of each dataset 
contains all information needed to complete the entire factorization process. In that 
case, the in-core storage is required to accommodate at least one copy of the system 
stiffness matrix, one copy of the factors along with the indexing information needed 
for all elimination stages, and a working array of the same size as needed in the 
out-of-core case. Since some other out-of-core sparse factorization schemes currently 
available perform in-place factorization and are readily adapted to performing in-core 
factorization, it appears worthwhile to compare their performance in both in-core and 
out-of- core cases. 

4. When applying the out-of-core block LDLT scheme as implemented by the processor 
INV to a dense matrix, its advantage of reducing memory requirement disappears 
because the working array for the first elimination stage must contain the entire upper 
triangular part of the stiffness system matrix. 

5 .  The possible ill-conditioning of the system stiffness matrix is not detected by the 
current Test b e d soft ware. 

4.2 

It is apparent from our earlier discussions that the format of the datasets is directly con- 
nected to the factorization scheme currently employed in the Testbed. It is thus likely that 
the particular arrangement of data items in the datasets may not be compatible with the 
data-accessing pattern of the other factorization algorithms to be considered. In order to 
evaluate the performance of alternative sparse factorization schemes in the Testbed without 
redesigning the database at  a time when the scheme of choice is not certain yet, we have 
devised a set of subroutines which serve as an interface between the global database of the 
Testbed and SPARSPAK-A [2]. Although some components of the interface are specific for 
SPARSPAK-A, we hope that its overall design and the availability of some utility modules 
will prove to be useful in adapting the interface to work with other sparse matrix solvers. 
A few words about the capabilities of SPARSPAK-A are in order. 

The Design of an Interface 

4.2.1 

In this section we briefly review the important features of SPARSPAK-A, which is a package 
of Fortran programs designed to efficiently solve large sparse systems of linear equations by 
direct methods. The structure and use of the package are described in the SPARSPAK-A 
User’s Guide [2]. The collection of algorithms implemented by SPARSPAK-A and their 

SPARSPAK-A: Waterloo sparse linear equations package 
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i 

storage schemes are discussed in reference [12]. Although we shall consider only symmetric 
positive definite problems here, the actual package handles both symmetric and unsymmet- 
ric problems subject to the condition that the matrix structure is symmetric and that row 
and/or column interchanges are not required to maintain numerical stability. To solve a 
sparse symmetric positive definite linear system 

A x = b ,  

the user and SPARSPAK-A interact through the following steps: 

Step 1. The user supplies the nonzero structure of A to the package using a set of subrou- 
tines described in Section 2.2 of reference [2]. 

Step 2. The package finds a “good” ordering (permutation P) for A,  and allocates stor- 
age for the triangular factorization of PAPT = LLT,  as described in Section 2.3 of 
reference [2]. 

Step 3. The user supplies the numericalvalues for the matrix A to the package, as described 
in Section 2.4 of reference [2]. 

Step 4. The package factors PAPT into L L T ,  as described in Section 2.5 of reference [2]. 

Step 5. The user supplies numerical values for b, as described in Section 2.4 of reference [2]. 
(This step may come before Step 4, and may be intermixed with Step 3.) 

Step 6. The package computes the solution by solving Ly = Pb and L T t  = y ,  and then 
setting z = P T z ,  as described in Section 2.5 of reference [2]. 

Step 7. The user may call a subroutine to obtain an estimate of the relative error in x 
as well as the inverse of the condition number of A if so desired. The subroutine is 
described in Section 2.6 of reference [2]. 

The names of the subroutines available for reordering a symmetric matrix in Step 2, 
together with the algorithms they implemented, are listed in Table 1. Corresponding to 
each ordering choice in Step 2, a different set of subroutines are provided for Steps 3, 4, 6 
and 7. The subroutines used in Steps 1 and 5 are, however, independent of the ordering 
methods. 

In the context of comparing the performance of the SPARSPAK-A factorization algo- 
rithm with that of the Testbed processor INV, we should note the following. Firstly, the 
coefficient matrix A will have been ordered differently because the ordering algorithm in 
the Testbed is applied to the joints in the finite element model before the system stiffness 
matrix is assembled, whereas SPARSPAK-A reorders the coefficient matrix itself. Since 
associated with each joint in the finite element model is a dense J D F x J D F  submatrix, 
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SPARSPAK-A 
Subroutine 

the resequencing of the joints relocates the submatrices (as a whole) in the system stiffness 
matrix. On the other hand, since the ordering algorithms in SPARSPAK-A are applied to 
the structure of the assembled system stiffness matrix, the zeros within each submatrices 
(due to constrained variables or dummy rows) may be exploited and the resulting matrix 
may not be in block form. 

Secondly, the Cholesky factorization scheme and the upper/lower triangular system 
solvers implemented by SPARSPAK-A do not handle constraints or dummy rows (rows of 
zeros). I t  is therefore necessary to adjust both the system stiffness matrix and the right-hand 
side before the nonzero structure and the numerical values are input to SPARSPAK-A. In 
the current version of Testbed, while the constraint information is available in a designated 
dataset, the dummy rows can be detected only by reading the assembled system stiffness 
matrix. The implication is that the system stiffness matrix has to be examined twice - 
once for determining its “adjusted” nonzero structure (needed in Step l), and once for 
retrieving its numerical coefficients (needed in Step 3). We consider the way we handle 
the dummy rows as an interim measure until the dataset format of the generic element 
processor is available. I t  is expected that the generic element processor will neither assume 
uniform degrees of freedom nor store dummy data. Complete details on adjusting the 
nonzero structure and the numerical values for input to SPARSPAK-A are given later in 
this section. 

Thirdly, SPARSPAK-A employs a particular version of the Cholesky factorization algo- 
rithm. Since this version of the algorithm computes the Cholesky factor one column at a 
time and the part of the matrix remaining to be factored is not accessed during the scheme, 
it is commonly referred to as the “Column-Cholesky” algorithm. Depending on how the 
modifications to each designated column are accumulated, the Column-Cholesky algorithm 
can be described in two different forms. Given in Figure 16 is the commonly known scalar- 
product form. These formulas c m  be derived directly by equating the elements of A to the 
corresponding elements of the product LLT. 

Ordering algorithm 
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for j t 1,2, .  . ., n do 

Figure 16: The scalar-product Column- Cholesk y Factorization Algorithm. 

The vector-sum Column-Cholesky algorithm described in Figure 17 is an alternative 
formulation which avoids explicitly forming the individual inner products. 

for j = 1,2,. . . , n do 
for k =  1,2,  . . . , j -  1 do ( a ; ) t (  a;) - l j k  ( 

an j an j I n k  

Figure 17: The vector-sum Column-Cholesky Factorization Algorithm. 

SPARSPAK-A applies the vector-sum Column-Cholesky algorithm to factor a general 
sparse matrix. Readers are referred to [12] for a comprehensive description of various storage 
schemes which result in efficient implementations of the algorithm. 

For n = 5 and j = 3, the in-place Column-Cholesky factorization scheme thus transforms 
ai,3 to for 3 5 i 5 5 as depicted in Figure 18. Note that the elements actually involved 

Figure 18: Computing the third column of the Cholesky factor L. 
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in computing the third column of L,  denoted as L*3, in the above example are shown in 
Figure 19. They are the coefficients of the third column of A and those of the computed L 
with their row indices greater than or equal to 3. Liu [15] makes the observation that if A is 

e3,1 e 3 , 2  a 3 , 3  

e 4 , l  e 4 , 2  a 4 , 3  

t 5 , l  t 5 , 2  a 5 , 3  

e 3 , l  e 3 , 2  e3,3 
e 4 , l  e 4 , 2  1 4 , 3  

t 5 , l  15 ,2  e 5 , 3  

Figure 19: The -!;,j’s accessed and the q j ’ s  modified in computing L+3 

read into memory one column at a time and each column of L is written out to the auxiliary 
storage as soon as it is computed, the in-core working space can be economized by keeping 
only those !;,j’s which are needed for the current stage of elimination. Suppose the computed 
.!;,j’s are saved in a linear array sequentially, we use the above example to demonstrate the 
necessary data reorganization when the size of this working array is LNZSZE= 9. As 
shown in Figure 20, the l;,j elements are relocated (by overwriting elements which are not 
accessed any more) to make room for the newly computed !;,j’s. For this example, data 
reorganization is necessary only before computing the third column and the fourth column 
of L. Clearly, the larger the size of the working array the fewer number of times the data 
reorganization needs to be done. 

Figure 20: The organization of -!;,j’s in the working array. 
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In reference [15], Liu applies the idea above to large sparse matrices in his development of 
an adaptive general sparse out-of-core Cholesky factorization scheme. One of the advantages 
the algorithm features is that the frequency of data structure reorganization is adaptive to 
the available working space. Liu’s implementation of the out-of-core Cholesky scheme is 
compatible with SPARSPAK-A and is intended to be used in Step 3. We have incorporated 
this set of subroutines into an experimental processor in the Testbed and we shall report 
its performance on a set of CSM Testbed demonstration problems in Section 5. 

4.2.2 

Currently the entire interface together with the driver and a subset of SPARSPAK-A mod- 
ules are installed as a single processor SPK which can be invoked by the macroprocessor 
command [XqT SPK during the execution of the Testbed. The choice provided by this 
particular subset of SPARSPAK-A modules is the “Minimum Degree ordering [17]”. Fol- 
lowing the guideline contained in Section 6.2.1 of reference [22] for coding new processors, 
the main program of the processor SPK is implemented as a subroutine (named “SPK”) 
called by the Testbed executive module “NICESPAR”. Referring to the control diagram 
given in Figure 21, observe that the subroutine SPK calls another module “SPKA” which 
serves as the driver of SPARSPAK-A modules. In short, the subroutine SPKA allocates 
memory, sets up the problem by calling CSM-Interface modules, and solves the problem by 
calling SPARSPAK-A computational modules. The role the CSM-interface modules play 
is to retrieve the assembled linear system to be solved from the global database and input 
the problem in an appropriate form to SPARSPAK-A. The design of the processor at this 
level is thus generic and may be used with other sparse matrix packages. 

The CSM-interface consists of twenty-two modules. For easy reference, we list the 
subroutine or function name of each module and its formal parameters (if there is any) in 
Table 2 together with those of the two driver subroutines SPK and SPKA. All of these 
modules are written in the FORTRAN 77 language and a complete listing of programs 
is provided in Appendix C of this report. We shall discuss some implementation issues 
in section Section 4.2.3 and describe how these modules interface with the Testbed global 
database and SPARSPAK-A in Sections 4.2.4 and 4.2.5. The usage of the interface is 
described in Section 4.3. 

The Design of the Processor SPK 
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Figure 21: The control diagram of the new processor SPK. 
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Table 2: The SPK driver and interface modules. 

DRIVERS 

SUBROUTINE SPK 
SUBROUTINE SPKA (A, MXSTOR) 
DOUBLE PRECISION A(1) 
INTEGER MXSTOR 

CSM-INTERFACE INITIALIZATION MODULES 

SUBROUTINE SPKCSM 
REAL FUNCTION CTIME ( IDUMMY) 
INTEGER IDUMMY 

CSM-INTERFACE PROBLEM INPUT MODULES 

SUBROUTINE G E T J D F  I IBUF I 
INTEGER*4 IBUF(1) 
SUBROUTINE GETDOF ( DOF, IBUF ) 
INTEGER'I DOP(1). IBUF(1) 
SUBROUTINE GTZERO I DOF. FBUF. MASK 1 
DOUBLE PRECISION FB'UF(1)' 
INTEGER*4 MASK(I), DOF(1) 
SUBROUTINE GTCOND ( DOF, IBUF, KC,  MASK, CSIZE ) 
INTEGER.4 DOF(I) ,  IBUF( l ) ,  KC( l ) ,  MASK(I) ,  CSIZE 
SUBROUTINE GTMOTI ( FBUF, MASK, FCON, CSIZE ) 
INTEGER'4 MASK(I), CSIZE 
DOUBLE PRECISION PBUF(I) ,  FCON(1) 
SUBROUTINE GETIJ  DOF. IBUF. ICLO. MASK. S I 
INTEGER*4 DOF( l ) ,  <BUF(l\, ICLQ(l) ,  MASK(1); S(;) 
SUBROUTINE GTFORC ( FBUP,  MASK, S ) 
INTEGER*4 MASK(1) 
DOUBLE PRECISION FBUF(I) ,  S(1 )  
SUBROUTINE GTNUMI ( DOF, FBUF, MASK, FCON, S ) 
INTEGER'4 D O N I ) .  MASKI11 
DOUBLE PRECIS~ON FBUF~I'), FCON(I), s(i) 

CSM-INTERFACE UTILITY MODULES 

INTEGER FUNCTION SPACE ( IDUMMY ) 
INTEGER'4 IDUMMY 
SUBROUTINE LIBOPN 
SUBROUTINE OKINPO I DSNAMEI 
CHARACTER*& DSNAME 
SUBROUTINE GTRECI [ RECNUM, IBUF, LEN ) 
INTEGER'I RECNUM, IBUP( l ) ,  LEN 
SUBROUTINE G T R E C F  ( RECNUM, FBUF, LEN ) 
INTEGER.4 RECNUM, LEN 
DOUBLE PRECISION PBUF(1)  

CSM-INTERFACE ERROR HANDLING MODULES 

SUBROUTINE EMSG 
SUBROUTINE EMSGO 
SUBROUTINE EMSGl  
SUBROUTINE EMSGZ 
SUBROUTINE DEMSGO 

CSM-INTERFACE STATISTICS MODULES 

SUBROUTINE GETSOL ( FBUF, SOL, RATIO ) 
DOUBLE PRECISION FB'uF( i ) ,  SOL(I),  RATIO 
SUBROUTINE STATCS 
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4.2.3 Implementat ion Issues 

The two implementation issues we shall discuss in this section are “memory allocation” and 
“module/module communication”. 

Memory allocation Firstly, we note that the maximum working array storage available to 
the processor SPK is determined by the blank common dimension identically declared 
in the Testbed executive NICESPAR and the subroutine SPK,  namely 

COMMON A(KSZZZ) 

Consequently, if the number of words provided by the blank common is insufficient 
for the processor SPK to solve a particular problem in-core, the dimension of the blank 
common must be increased, and the Testbed and the subroutine SPK must both be 
recompiled. 
We supply blank common of dimension KSZZZ (words) to the subroutine SPKA 
as a floating-point array of dimension MXSTOR. To accomplish this, we have the 
subroutine SPK execute the following statement: 

CALL SPKA ( A ,  MXSTOR ) 

where the value of MXSTOR is either KSZZZ or KSZZZ/2 depending on whether A 
is declared as a single-precision or double-precision array in the subroutine SPKA. 
All integer and floating-point arrays required by the CSM-Interface modules and 
SPARSPAK-A are then allocated by the subroutine SPKA from the one dimensional 
floating-point array A(MXST0R).  Note that in order to interact with SPARSPAK- 
A, the user is required to pass a working array S to the package and the location 
of S is the only parameter appearing in all of the SPARSPAK-A interface modules. 
In our case, the array S must be allocated from the working array A(MXST0R).  
We have thus divided A(MXST0R)  into two segments. The top segment accom- 
modates arrays to be passed to the CSM-interface modules and the entire bottom 
segment is passed to SPARSPAK-A. If we let the variable MXUSED denote the size 
of the top segment, the parameter to be passed to SPARSPAK-A is A(SPK), where 
SPK = MXUSED+I. 
A labeled common block CSMMAP is designated to keep the locations (origins in 
A) of the various arrays. The variables in COMMON /CSMMAP/ and the relative 
locations they represent are depicted in Figure 22. The type and size of the working 
arrays are tabulated in Table 3. Note that the buffer space for reading integer and 
floating-point records has been overlapped. 
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Table 3: The type and size of the SPK working arrays. 
1 Actual Size 

parame t er 
A ( D 0 F )  NUMJNT+1 
A ( M A S K )  NEQNS 

A(ICLQ)  MAXDOF 
A(BUF)  BUFMAX 
A(BUF)  BUFMAX 
A ( F C 0 N )  CSIZE 
A(SPK)  MAXSTOR-SPK+1 

A ( K C )  MAXDOF+1 

Comments I 
N U M J N T r  total # of joints 
NEQNS 3 total # of equations 
MAXDOF 6 

maximum buffer length 
maximum buffer length 
total # of nonzero constraints 
the bottom segment of A 

Type 

INTEGER*4 

DOUBLE PRECISION 

Module/module communication The following labeled common blocks have been used 
to organize the communication between the SPK modules and the CSM Testbed mod- 
ules, between the SPK modules and the SPARSPAK-A modules, and among the mod- 
ules within the interface. 

1. COMMON/IANDO/ IIN, IOUTX. The two integer variables contain user input 
and output unit numbers assigned by the Testbed subroutine INTRO when the 
new processor begins execution. 
The /IANDO/ common appears in the SPK initialization subroutine SPKCSM 
and the SPARSPAK-A initialization subroutine SPRSPK. 

2. COMMON /SPA USR/ MSGLVA, IERRA, MAXSA, NVARS. The /SPAUSR/ 
common allows user and/or processor SPK to communicate with SPARSPAK-A 
or vice versa. The meaning of the four integer variables are explained in Section 
4.3.2 and Section 4.3.3. 
The /SPAUSR/ common appears in the SPK subroutine SPKA which serves as 
the driver of SPARSPAK-A. 

3. The following common blocks are for communication among the SPK modules. 
COMMON /CSMSYS/ (6 variables) 
COMMON /CSMSPK/ (6  variables) 
COMMON /CSMUSR/ (11 variables) 
COMMON /CSMMAP/ (7 variables) 
COMMON /CSMCON/ (4  variables) 
COMMON /CSMD TA/ ( 8  variables) 
COMMON /PRBLEM/ (3  variables) 

The collection of related variables into a labeled common block avoids passing 
long parameter lists in the use of the subroutines and yet makes the coupling 
between modules easy to identify. Comments on the variables contained in these 
labeled commons are made at appropriate places throughout Sections 4.2.4,4.2.5 
and 4.3. 

Formal 
parameter 
DOF 
MASK 
K C  
ICLQ 
IB  UF 
FBUF 
FCON 
SPK 
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DOF - 
BUF - 

MASK - 

K C  - 
ICLQ - 
FCON - 
SPK - 

Figure 22: Storage allocation of the SPK working arrays. 
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labeled commons are made at  appropriate places throughout Sections 4.2.4,4.2.5 
and 4.3. 

c 1 

Global 

4.2.4 

There are eight modules in the interface which retrieve data from the global database and 
process them. The names of these subroutines are “GETJDF”, “GETIJ”, “GTZERO”, 
“GTCOND”,“GTFORC”,“GTMOTI”,“GTNUM5” and “GETSOL”.We shalluse “GXXXXX” 
to represent an arbitrary one of them. All of these modules retrieve datasets from the 
Testbed via two utility modules which are either “QKINFO and GTRECI” (for retrieving 
integer records) or “QKINFO and GTRECF” (for retrieving records containing floating- 
point numbers). Figure 23 depicts the coupling of the interface modules with the GAL- 
processors. Readers are referred to reference [26] for a complete description of the calling 
sequence and the operation of each GAL-processor employed. 

Interfacing with the Global Database 

database u Dataset name 

Figure 23: The coupling of CSM-interface modules and GAL-processors. 

For each designated dataset, the labeled common /CSMSPK/ is used to 
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, 

1. provide the input arguments LDI and TRACE to the GAL-processors. (The meaning 
of LDI and TRACE is given in Table 4.) 

2. store the dataset attributes the interface module QKINFO acquires from the GAL- 
processors LMFIND, GMEGKA and GMGECY. 

3. communicate the dataset attributes to the interface modules Gxxxx, and the GAL- 
processors GMCORN and GMGETN via the interfacemodule GTRECI or GTRECF. 

The /CSMSPK/ common thus appears in QKINFO, GTRECI, GTRECI and each Gxxxx 
module. The variables contained in /CSMSPK/ and their meaning are given in Table 4. 

Table 4: The variables in COMMON /CSMSPK/. 

COMMON /CSMSPK/ 
variable 
IDSN 
LDI 
NLEN 
NREC 
RTYPE 
TRACE 

meaning 
D at ase t sequence number. 
Logical Device Index of library device. 
The record length. 
The number of records in the dataset. 
The data type. 
A positive integer used as identifying label 
in error traceback prints. 

Since the actual data contained in each dataset is unique, each subroutine Gxxxxx must 
be specifically coded to interpret the data retrieved. The datasets to be accessed by the 
eight interface modules are listed in Table 5. For each dataset, given in Table 5 are also 
the name of its source processor and the name of the dedicated interface module. The 
last column of Table 5 indicates the appropriate utility module which should be called to 
retrieve the type of data provided by the specified dataset. 

The data retrieved from each dataset and how they are handled by the interface routines 
are described below. Readers are referred to reference [22] for a description of the format 
of each dataset. 

JDFI.BTAB.1.8 provides the total number of joints and the maximum number of active 
(unconstrained) degrees of freedom a joint may have in the model. 
The subroutine GETJDF retrieves the data and stores them in the variables NUMJNT 
and MAXDOF in the labeled common 

/PRBLEM/ MAXDOF, NEQNS, NUMJNT 

In an attempt to be flexible in handling the more general case in the future, the sub- 
routine GETDOF stores the active degrees of freedom for each individual joint in an 
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Table 5: Datasets accessed by Gxxxxx and GTRECx. 

Source Processor 
TAB 
K 

TAB 
TOP0 
AUS 
AUS 
K 

SSOL 

Dataset 
JDFl.BTAB.l.8 
K.SPAR.jdf2 
CON..ncon 
KMA P.. nsubs.ksize 
APPL. FORC.iset. 1 
A PPL. MO TI. iset. 1 
K.SPAR.jdf2 
STA T. D ISP. iset. ncon 

G- 
GETJDF 
G TZER 0 
GTCOND 
GETIJ 
GTFORC 
G TMO T I  
GTNUM5 
GETSOL 

GTRECx 
GTRECI 
GTRECF 
GTRECF 
GTRECI 
GTRECF 
GTRECF 
GTRECF 
GTRECF 

accumulated form in an integer array DOF so that the number of degrees for joint 
number I can be computed from DOF(I+l)- DOF(I), where DOF(l)=l,  and that 
DOF(NUMJNT+l)- DOF(1) gives the total number of equations of the assembled 
system. The latter value is also stored in the variable NEQNS in the /PRBLEM/ com- 
mon. Since the current version of the CSM Testbed assumes uniform degrees of free- 
dom per joint in storing the system stiffness matrix, DOF(If1)- DOF(I)=MAXDOF 
for 15  I SNUMJNT.  

K.SPAR.jdf2 provides the assembled global stiffness matrix stored as an array of J D F  x J D F  
submatrices, where JDF is the maximum degrees of freedom in the model and its value 
is available from the the variable MAXDOF in the /PRBLEM/ common block. Note 
that the integer j d f 2  in the name of this dataset is the square of the value of JDF.  
The subroutine GTZERO retrieves the system stiffness matrix and detects dummy 
rows by examining its diagonal elements. For each zero diagonal coefficient detected, 
a zero is entered into the integer array MASK at the location MASK(I), where I 
is the equation number of the dummy row. The convention we have adopted is 
that MASK(J)= -1 if the J t h  equation is neither constrained nor a dummy row, 
MASK(J)= 0 if it corresponds to a dummy row or a zero constraint, MASK(J)= 1 if 
it corresponds to a nonzero constraint. 

CON..ncon provides constraint information for each joint degree of freedom. The informa- 
tion available indicates for each joint which component is free, which component is 
constrained to be zero and which component has a non-zero constraint. Such informa- 
tion is encoded so that one integer is stored for each joint in the model. The current 
encoding mechanism assumes that the maximum number of degrees of freedom a joint 
may have is “six”. The constraints corresponding to the six degrees of freedom are 
encoded into the right most six bits of a seven-bit integer. The subroutine DECODE 
accepts an integer as input and returns the status of each of the MAXDOF degrees 
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of freedom in the leading MAXDOF locations of a working array of length seven. 
The subroutine GTCOND retrieves the encoded data from CON..ncon, calls DECODE 
to obtain the constraint status for each joint in the model, and sets the corresponding 
entries in the integer array MASK to be “0” or “1” as explained above. An inte- 
ger output parameter CSIZE records the total number of nonzero constraints whose 
numerical values are expected to be available in the dataset APPL.MOTI.iset.1. 
Therefore, after both subroutines GTZERO and GTCOND are executed, all con- 
straint information is available for other SPK modules in the integer array MASK. 
Note that we have treated the dummy rows as if they correspond to zero constraints. 

KMAP..nsubs.ksize provides the block nonzero structure of the system stiffness matrix. 
Note that the value of nsubs in the name of the dataset represents the total number 
of submatrices in the system stiffness matrix for the model, and that the integer ksize 
is the maximum number of joints active at any time during the assembly of the system 
matrix . 
The subroutine GETIJ accesses KMAP..nsubs.ksize and the integer array MASK to 
obtain the matrix structure for input to SPARSPAK-A. We explain how the con- 
straints are handled in Section 4.2.5. 

APPL.FORC.iset.1 provides applied forces and moments on each joint in each active direc- 
tion. The integer iset in the dataset name identifies a unique load case. 
The subroutine GTFORC retrieves the data but inputs a retrieved numerical value 
as a component of the right-hand side vector to SPARSPAK-A only if it does not 
correspond to a variable constrained to be zero (i.e., MASK(I)# 0 if I is the equation 
number). 
Since the right-hand side is initialized to be identically zero in SPARSPAK-A, and the 
modifications to the right-hand side caused by nonzero constraints are to be “added” 
to the appropriate components by subroutine GTNUM5, the input of right-hand side 
to SPARSPAK-A is not completed before the subroutine GTNUM5 is executed. 

APPL.MOTI.iset.1 provides applied motions on each joint in each active direction. As 
mentioned earlier, the integer ncon in the name of this dataset identifies a particular 
constraint case, and numerical values for the nonzero constraints detected by the 
subroutine GTCOND are expected from this data set. 
The subroutine GTMOTI retrieves the available applied motions and stores them 
in a floating-point array FCON(I), where 1 5 I <CSIZE, and CSIZE is the total 
number of nonzero constraints determined in the subroutine GTCOND. Therefore, 
when CSIZE= 0, the subroutine GTMOTI will return without attempting to access 
the dataset. However, when CSIZE> 0, it is a fatal error if the dataset is missing or 
less than CSIZE values are available. 
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STAT. DISP.iset.ncon provides the computed static displacements for each joint in each 
active direction. Unique solution is obtained by specifying the load set and constraint 
case in the name of the dataset. 
The subroutine GETSOL retrieves the Testbed solution from this dataset and verifies 
the correctness of the SPARSPAK-A solution by computing its relative error with 
respect to the Testbed solution. More details in this aspect are provided in Section 5 
on numerical experiments. 

- 
Initialization of SPARSPAK-A 
Structure input 

Ordering 

4.2.5 Interfacing with SPARSPAK-A 

The processor SPK may interact with SPARSPAK-A via the interface modules given in 
Table 6, which correspond to our choice of the minimum degree ordering (subroutine OR- 
DRB5) for the new processor. 

Table 6: SPARSPAK-A interface modules - a subset. 

U n Factorization and/or Solution 
Relative error estimation 
Print statistics 
Save and Restart the computation 

SPRSPK 
IJBEGIN 
INIJ ( I ,  J ,  S) 
INROW ( I ,  NIR, IR, S) 
INIJIJ ( NIJ, 11, J J ,  S) 
INCLQ (NCLQ,  CLQ, S) 
IJEND( S ) 
ORDRB5 ( S )  
INAIJ5 ( I ,  J ,  VAL UE, S) 
INROW5 ( I, NIR, IR, VALUES, S )  
INMAT5 ( NIJ, 11, J J ,  VALUES, S) 
INBI(I, VALUE, S) 
INBIBI ( NI, 11, VALUES, S) 
INRHS (RHS, S )  
SOLVE5 ( S ) 
EREST5 ( RELERR, S ) 
STATSA 
SAVEA (K, S) 
RSTRTA ( K,  S )  

42 



The coupling of the SPK modules and SPARSPAK-A is depicted in Figure 24. The mod- 
ules which interact with SPARSPAK-A are “SPKA”, “GETIJ”, “GTFORC” and “GT- 
NUM5”. The module SPKA serves as the driver program of SPARSPAK-A. The module 
GETIJ inputs the nonzero structure of the system stiffness matrix to SPARSPAK-A. The 
modules GTFORC and GTNUM5 are involved in inputting nonzero coefficients and the 
right-hand side to SPARSPAK-A. The particular SPARSPAK-A subroutines to be called 
by each of these interface modules are explicitly given inside the dashed boxes. 
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SPRSPK ORDRB5 SOLVE5 EREST5 STATSA 
L - - J  L - - J  L - - J  L - - J  L - - J  

IJBEGN INIJ IJEND 

INBI INAIJ5 
L - - J L - - J  

Figure 24: The coupling of the processor SPK and SPARSPAK-A. 
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Since SPARSPAK-A modules do not handle constraints, the retrieved system stiffness 
matrix and the right-hand side must be adjusted before they can be input to SPARSPAK-A. 
The necessary modifications to the structure and the numerical values are detailed below. 

Input the structure of the system stiffness matrix to SPARSPAK-A - In this sec- 
tion we describe how the subroutine GETIJ inputs the the structure of the system 
stiffness matrix to SPARSPAK-A. The dataset KMAP..nsubs.ksize contains the sys- 
tem topology map. From this map we can retrieve the following information for each 
joint. 

JNT - The number of the current joint. 
CONRNG - The number of submatrices including the diagonal in the upper triangle 

CONECT( CONRNG-1) - A list of joints connected to the current joint. 

Let us consider the following finite-element model which is given as an example in 
reference [23]. 

for the current joint. 

5 6 

1 2 3 4 

Figure 25: A model. 

Table 7: A model. 
Element 

1 BEAM 
2 
3 
4 
5 
6 PLATE 
7 
8 

# type 

n 

n 

n 

n 

n 

n 

Connected 
Nodes 
192 
213 
314 
295 
396 
1,295 
2,38615 
3,4,6 

For this model, the information expected to be available in KMAP..nsubs.ksize is 
listed in Table 8. 
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Table 8: From dataset KMAP..nsvbs.ksize. 
n JNT I CONRNG I CONECT(C0NRNG-1) fl 

Given in Figure 26 is the upper triangular block structure of the system matrix (in- 
cluding the diagonal blocks) described by Table 8. 

Figure 26: Upper triangular block structure of the system matrix for the model problem. 
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If each joint has three degrees of freedom in the model, each block is a 3 x 3 submatrix 
and the system stiffness matrix K has the nonzero entries as given in Figure 27. 

f 8 8 8 8 8 8  8 8 8  
8 8 8 8 8 8  8 8 8  
8 8 8 8 8 8  8 8 8  

8 8 8 8 8 8  8 8 8 8 8 8  
8 8 8 8 8 8  8 8 8 8 8 8  
8 8 8 8 8 8  8 8 8 8 8 8  

8 8 8 8 8 8 8 8 8 8 8 8  
8 8 8 8 8 8 8 8 8 8 8 8  
8 8 8 8 8 8 8 8 8 8 8 8  

8 8 8  8 8 8  
8 8 8  8 8 8  
8 8 8  8 8 8  

8 8 8 8 8 8  
8 8 8 8 8 8  
8 8 8 8 8 8  

8 8 8  
8 8 8  

\ 8 8 8  

Figure 27: Nonzero entries in the upper triangle of K (including diagonal submatrices.) 

If every degree of freedom is active (unconstrained) on each joint, then the structure 
input to SPARSPAK-A is as specified in Figure 27. It  should be pointed out that 
because SPARSPAK-A anticipates only “symmetric” nonzero structure, the struc- 
ture input routine always records a logical nonzero in both (i, j )  and ( j ,  i) positions 
regardless of which index pair is actually being entered. Furthermore, the package 
automatically removes duplications so that it does not matter if both (i, j )  and ( j ,  i) 
pairs are entered. 
In order to demonstrate how we handle the constrained degrees of freedom, let us 
assume that the second degree of freedom on joint number 5 is constrained. In this 
case, the corresponding columns and rows of data in IC except for the diagonal elements 
will be treated as zero entries. The nonzero positions SPARSPAK-A is informed of 
consist of the remaining nonzeros as given in Figure 28. 
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( 8 8 8 8 8 8  8 8 
8 8 8 8 8 8  8 8 
8 8 8 8 8 8  8 8 

8 8 8 8 8 8  8 8 8 8 8  
8 8 8 8 8 8  8 8 8 8 8  
8 8 8 8 8 8  8 8 8 8 8  

8 8 8 8 8 8 8  8 8 8 8  
8 8 8 8 8 8 8  8 8 8 8  
8 8 8 8 8 8 8  8 8 8 8  

8 8 8  8 8 8  
8 8 8  8 8 8  
8 8 8  8 8 8  

8 8 8 8 8  
8 

8 8 8 8 8  
8 8 8  
8 8 8  
8 8 8  

Figure 28: Remaining nonzero entries in the upper triangle of IC. 

As seen from Figure 28, the equations corresponding to the constrained degree of freedom 
is the fourteenth equation. We have thus ignored the nonzero entries in locations ( i , 14 )  
and (14, i) for all i’s except for the diagonal entries. Accordingly, the numerical coefficients 
corresponding to these ignored locations must not be input to SPARSPAK-A and the right- 
hand side must be appropriately adjusted to reflect the change of the system matrix. We 
next explain the internal working of our numerical input module. 

Input the numerical values to SPARSPAK-A - The subroutine which inputs the nu- 
merical values to SPARSPAK-A and modifies the right-hand side according to each 
constrained degree of freedom is GTNUMi, where i = 1,3, and 5 distinguishes the 
SPARSPAK input modules INAIJi called for each ordering. 
To see how the right-hand side should be modified, we refer to Figure 29 for the same 
example, where we label each ignored coefficient a ; j  explicitly, and indicate that the 
coefficient for the diagonal entry a14,14 is set to 1.  
Let the nonzero constraint corresponding to the second degree of freedom on joint 
number 5 be ~ 1 4 .  Our change to the system matrix and right-hand side should reflect 
the following. 

1. The fourteenth equation is replaced by 
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‘ 8 8 8 8 8 8  8 a1,14 8 
8 8 8 8 8  8 az,14 8 

8 8 8 8  8 a3,14 8 
8 8 8 8 8 8  8 %,I4 8 8 8 8 

8 8 8 8 8  8 ‘%,I4 8 8 8 8 
8 8 8 8  8 *,l4 8 8 8 8 

8 8 8 8 8 8 8 a7,14 8 8 8 8 
8 8 8 8 8 8 8 , l C  8 8 8 8 

8 8 8 8 8 *,l4 8 8 8 8 
8 8 8  8 8 8 

8 8  8 8 8 
8 8 8 8 

8 a13,14 8 8 8 8 

8 8 8 8 
8 8 8 

8 8 

1 al4,15 al4,16 a14,17 al4,lB 

\ 8 

( b l  \ 
b2 

b3 
b4 

b5 

b6 

b7 

b8 

t- 
b9 

bl0 

b l l  
b12 

b14 

b13 

b l 5  

b16 

b17 

\ bl8 / 

Figure 29: Nonzero entries in the upper triangle of IC. 

/ b l  ) ( a1,14 ) 
b2 a 2 J 4  

b3 a3,14 

b4 a 4 J 4  

b5 a5,14 

b6 a 6 J 4  

b7 a7,14 

b8 a8 ,14  

a9 ,14  
c14 - - b9 

b io  
b l l  0 
b12 0 

b14 ’ 0  
b13 a13,14 

b15 a14,15 

b16 a14,16 

b l 7  a14,17 

\ b18 1 \ a14,18 1 
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and the right-hand side element b j ,  j = 15,16,17,18 must be modified to be 

To summarize, for each ai,; coefficient retrieved from the dataset K.SPAR..*, sub- 
routine GTNUMi checks whether the corresponding degree of freedom is constrained. 
If that is the case, the value of 1.0 will be input to SPARSPAK-A as ai,; and the 
constraint value is input to SPARSPAK-A as b;. 
For each off-diagonal element ui,j, GTNUMi checks the following four possible cases. 

1. If both z; and z j  are constrained, no action needs to be taken. 

2. If z; is active and z j  is constrained to be cj then 

b; +- bi - a;j  x cj  . 

3. If z; is constrained to be c; and z j  is active then modify 

b j  +- b j  - a i j  x ci . 

4. If neither z; nor zj is constrained, input the retrieved a; j  value to SPARSPAK-A 
and specify the location to be (j, i). (SPARSPAK-A requires the numerical value 
to be input for the lower triangular part only.) 
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4.3 

4.3.1 The Execution Path 

The usage of the interface in solving a Testbed problem is reflected by the execution path of 
the subroutine SPKA as sketched in Table 9. The execution sequence is enforced by checking 
and updating the value of the variable STAGE in the common block /CSMCON/. The 
values of STAGE for the successful completion of each corresponding step are listed in the 
last column of Table 9. 

The Usage of the Interface 

Table 9: The execution path of the subroutine SPKA 
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4.3.2 

In our current implementation of the processor SPK, the user-processor communication is 
accomplished using an external text file. The input requirement and format are reflected 
by the following code segment of the subroutine SPKA 

User Input to the Processor SPK 

C 

C 

C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

1 2  
C 
C 
C 

22 

32 

C 

S U B R O U T I B E  S P K A  ( A, HXSTOR 

READ ( I B D A T A .  12  ) HSGLVA 

SET HAXIHUM B U F F E R  LENGTH 

READ ( I B D A T A ,  1 2  BUFHAX 
FORMAT( I4  ) 

......................... 

________________-________  

I B P U T  BAHE O F  L I B R A R Y  ABD D A T A S E T S  F O R  G I V E B  P R O B L M  

READ ( I I IDATA,  22 ) L I B I I A H  
FOBHAT( A 4 0  ) 
READ ( I B D A T A ,  32 J D F S E T  
READ ( I B D A T A ,  32 ) M A P  
READ ( I I D A T A ,  32 ) K S P A R  
READ ( I B D A T A ,  32 ) COI 
READ ( I B D A T A ,  32 A P P L F  
R E A D  ( I B D A T A .  32 ) A P P L H  
READ ( I B D A T A ,  32 ) S T A T D  
FORMAT( A S 1  ) 

.................................................... 

R E T U R B  

E B D  

The following comments are in order. 

1. As shown in the above code segment, we have designated the logical unit number 
41 to be used for the input data file. This choice is made under the restriction that 
logical unit numbers 1 through 40 should not be used for files other than libraries to 
avoid possible conflicts with CLIP and GAL [22]. 
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2. The variable MSGLVA stands for “message level of SPARSPAK-A”. The user may 
govern the amount of output from SPARSPAK-A by setting MSGLVA to the values 
Table 10. 

.. 
MSGLVA amount of output 

0 no information is provided. 
1 
2 
3 
4 

only warnings and errors are printed. 
warnings, errors and summary are printed. 
warnings, errors, summary and some statistics are printed. 
detailed information for debugging purposes. 

~ 

.. 
MSGLVL amount of output 

0,l no information is provided. 
2 
3 

warnings, errors and summary are printed. 
detailed information for debugging purposes. 

L 

3. The variable MSGLVL allows user to control the amount of output from the interface 
modules. Given in Table 11 are the input values acceptable for MSGLVL. 

4. The value of BUFMAX should be set to the maximum record length of any dataset 
the processor SPK ever needs to retrieve. 

5. The variables initialized by user input are collected into the two labeled common 
/SPA USR/ and /CSMUSR/. 

A, edit a f le  named “fort.41” to contain the following data: 
6. An example - To solve the linear system of the test problem demo1 using SPARSPAK- 

2 

2240 
/usr.MC68020/nlal/echu/ns/DEMO/demol.101 
JDFI.BTAB.1.8 
KMAP. .9.3 
K.SPAR.36 
CON. .I 
APPL.FORC.l.1 
APPL.MOT1. I. I 
STAT.DISP.1.1 
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Note that the path name of the library file “demol.101” is installation dependent. The 
dataset names listed above can be identified from the table of contents of the library 
demol .lo1 givenin Figure 3. Note that the datasets APPL.FORC.iset.1 and APPL.MOTI.iset.1 
may not both exist, and it is indeed the case for the problem demol - one cannot find the 
name APPL.MOTI.l.1 listed in the table of contents of its data library. However, as noted 
above, we have required the user to input both names in order to maintain a uniform format 
for user input. In this case, the variable APPLM is simply a dummy variable, because the 
subroutine GTMOTI will not attempt to access this dataset as explained in Section 4.2.4. 

~ MSGLVL 

0,1,2,3 

4.3.3 Output from the Processor SPK 

1. Output from SPARSPAK-A: Readers are referred to Section 7 of the SPARSPAK-A 
User’s Guide [2] for a complete description of the statistics and error messages output. 

2. Output from the interface modules: 

(a) Statistics gathering (STATCS)  - The information contained in Table 12 may be 
printed by the following statement. 

Information Variable 
Total CSM-time required CSMTIM 
Maximum CSM-storage reauired CSMSTR 

CALL STATCS 

2,3 
2,3 

Table 12: Information printed by the subroutine STATCS. 

“ I  

Size of storage array MAXCSM 
Number of joints NUMJNT 

3 

Max degree of freedom per joint 
Number of equations 
Addresses of arrays 

MAXDOF 
NEQNS 
DOF 
B UF 
MASK 
KC 
ICL Q 
FCON 
SPK 

Common block 
/CSMD TA/ 

/CSM USR/ 
/ P R  B L  EM/ 

/CSMMA P/ 

(b) Error messages ( I E R R )  - When fatal error is detected, so that the computation 
cannot proceed, a positive code is assigned to the variable IERR in the common 
block /CSMUSR/. The names of the modules in which the error occurs, the 
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Table 13: Error messages of the processor SPK. 

M 0 DULE IER R 
SPA CE 1001 

LIB OPN 10 11 
1012 

GETJDF 1013 
1014 

GE TDOF 10 19 
GTZERO 1021 
GTCOND 1022 
GE TIJ 1023 
GTFORC 1024 
G TMO TI  1025 

1026 
1027 

GTNUMS 1028 
QKINFO 2001 

2002 
2003 
2004 
2009 

GTRECI 2005 
2006 

GTRECF 2007 
2008 

Error message 
Insufficient storage. The last stage completed 
and the required storage are printed 
Cannot open dataset library 
The maximum logical device index = 30. The LDI 
returned exceeds this value. 
Incorrect execution sequence. 
Dataset does not have all expected items. 
Incorrect execution sequence. 
Incorrect execution sequence. 
Incorrect execution sequence. 
Incorrect execution sequence. 
Incorrect execution sequence. 
Incorrect execution sequence. 
Unexpected nonzero constraint value. 
Zero entry for a nonzero constraint occurs. 
Incorrect execution sequence. 
LMFIND: cannot find dataset. 
GMGEKA: record does not exist. 
GMGECY: record group key undefined. 
GMGECY: segmented record group noted. 
Insufficient buffer space. The required value 
for the input variable B UFMAX is printed 
record type mismatch - 
GMGETN: error detected by LMERCD . . 
record type mismatch . 
GMGETN: error detected by LMERCD . 

numerical error codes, and the corresponding error messages a s  given in Table 13 
m a y  be printed by  sett ing the variable MSGLVL to be “2” or a higher number. 

55 



ORIGlfl3L PAGE OS 
OF POOR QUALITY 

4.3.4 

Input data: 

An Example - Solving the Testbed problem demo1 

2 
2 
2240 
/usr .HC68020/nlal/echu/ns/DMO/dmol. 101 
JDFl.BTAB.1.8 
KHAP. .9.3 
K. SPAR.36 
COB. .l 
APPL.FORC.l.1 
APPL.HOTI.l.1 
STAT.DISP.l.1 

The following output is produced by the macroprocessor command [xqt SPK: 

** BEGIU SPK ** DATA SPACE= 600000 WORDS 
1 

********** UUIVERSITY OF WATERLOO 
********** SPARSE HATRIX PACKAGE 
********** RELEASE 3 
********** ( S P A R S P A K ) 

**+++***** (C) JANUARY 1984 
********** ABS1 FORTRAB 
********** DOUBLE PRECISIOU 
*******+** LAST UPDATE JAUUARY 1984 

OUTPUT UUIT FOR ERROR HESSAGES 6 
OUTPUT UUIT FOR STATISTICS 6 

LIBOPE- OPEE /usr.HC68020/nlal/achu/ns/DEMO/demol.lOl 
<DM> OPEN, Ldi: 2, File: /usr.HC68020/nlal/echu/ns/DEMO/demol.10l , 

Attr: rold, Block 1/0 

DATASETS TO BE ACCESSED: 

JDFl.BTAB.l.8 
MAP. .9.3 
K.SPAR.36 
con. .l 
APPL.FORC.l.1 
APPL.HOTI.l.1 
STAT.DISP.l.1 

GETJDF - GET UUPIBER F IUTS AUD . . . 
GETDOF - GET DEGREES OF FREEDOH ... 
GTZERO - DETECT DUHHY ROWS ... 
GTCOlD - GET COBSTMINTED VARIABLES. .. 
GTHOTI - GET BOBZERO COBSTRAIBTS... 
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GETIJ - IUPUT UOUZERO STRUCTURES. .. 
IJBEGU - BEGIU STRUCTURE I8PUT ... 
IUIJ - IUPUT OF ADJACENCY PAIRS ... 
IJEUD - EUD OF STRUCTURE IUPUT ... 
ORDRBS - H I I I H "  DEGREE ORDERIUG ... 
GTFORC - IBPUT RIGHT HAUD SIDE.. .  

I U B I  - IUPUT OF RIGHT HAUD SIDE ... 
CTIUHS - GET nonzEm nunERIc . .  . 
I I IAIJS  - INPUT OF HATRIX COHPOEEUTS ... 
SOLVES - GEUERAL SPARSE SOLVE ... 
ERESTS - ERROR ESTIHATOR . . . 
GETSOL - COHPARE WITH TESTBED SOLI . . 

HAX. REL ERR COHPARED TO STAT.DISP.1.1 

I S  0.48247820-07 :[I COHPOIEIT 26 
CSH SOL I 0.28S208672286080+00 WE HAVE 0.28620868604S780+00 

STATCS - SYSTEH-CSH STATISTICS ... 
S I Z E  OF STORAGE ARRAY (HAXCSH) 

8WBER OF JOIBTS 
HAX DEGREES OF FREEDOH PER JOIUT 
EWBER OF EQUATIONS 
TOTAL CSH-TIHE REQUIRED 
HAXIHUH CSH-STORAGE REQUIRED 

STATSA - SYSTEH-A STATISTICS ... 
SIZE OF STORAGE ARRAY (HAXSA) 
IUHBER OF EQUATIOYS 
IWBER OF OFF-DIAGOIAL IOUZEROS 
TIHE FOR ORDERIlG 
STORAGE FOR ORDERIUG 
TIHE FOR ALLOCATIOU 
STORAGE FOR ALLOCATIOI 
STORAGE FOR SOLUTIOI 
TIHE FOR FACTORIZATIOI 
TIHE FOR SOLUTIO8 
OPERATIOUS 11 FACTOR.IZATIOI 
OPERATIOllS I8 SOLUTIO8 
TIHE FOR ESTIHATIUG RELATIVE ERROR 
OPERATIOUS II ESTIHATIIG REL ERROR 
STORAGE FOR ESTIHATIUG REL ERROR 
ESTIHATE OF RELlTIVE: ERROR 

300000 

S 
6 
30 
3.740 

2271. 

297729 
30 

336 
0.020 

442. 
0.000 

308. 
367. 
0.040 
0.020 

966. 
396. 

1330. 
397. 

0.040 

2.0880-08 
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0.120 TOTAL TIHE REQUIRED 
H A X I I "  STORAGE REQUIRED 442. 

EXIT SPK CPUTIHE= 4 . 2  I/O(DIR.WF)= 0 0 
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5 Numerical Experiments 

p648 

In this section, we report experimental results of several matrix factorization processors we 
have installed in the CSM Testbed. 

CSM focus problem 1 - Buckling of a blade-stiffened 
panel with a discontinuous stiffener 

5.1 

For all processors, the tests are performed on the NICE/SPAR demonstration problems 
listed in Table 14. The finite element model of CSM focus problem 1 has been refined to 
generate larger problems focusl, focus2, focus3 and focus4. The five different meshes we 
have used are given in Table 15. 

The Specifications of the Test Problems 

Table 14: NICE/SPAR demonstration problems. 

with finer mesh I 
with finer mesh I1 
with finer mesh I11 
with finer mesh IV 

Each problem is completely specified by the datasets in Table 16 except that the load 
set APPL.FORC.iset.1 and the applied displacement dataset APPL.MOTI.iset.1 may not 
both exist. For example, there is no applied force vector for the panel focus problem and 
there is no applied displacements for the static analysis of the mast problem. The value of 
ncon selects one of possibly more than one constraint cases and the value of iset specifies a 
particular load case of applied force and moments, which is also the load case of the applied 
motions if there exist nonzero constraints. Corresponding to each pair of (ncon, iset) there 
is a unique solution which may be retrieved from the dataset STAT.DISP.iset.ncon to verify 
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Table 15: User-specified meshes for CSM focus problem 1. 

User-specified meshes for CSM focus problem 1 U 

the correctness of an experimental processor. The full names of the datasets can be found in 
the table of contents of the data library which can be looked up during or after the execution 
of a particular analysis in the Testbed. As shown in the example given in Table 16, a “0” 
component in the dataset name can be represented by a null entry. A sample content list of 
the data library demol . l o 1  is given in Section 2 of this report, which was produced by the 
CLAMP directive *TOC during the execution of problem demol. For each test problem, the 
path name of its data library and the names of the datasets in Table 16 consist of the user 
input to an experimental processor. Note that the use of * as a component of the dataset 
name implies a generic wild-card match, hence it should not be used unless the dataset with 
its name matching the remaining components is unique in the data library. 

Table 16: Data sets accessed by CSM-SPARSPAK interface modules. 

The accessed CSM Testbed datasets n 

The system Az = b presented to each experimental processor is the upper triangular 
part of the system stiffness matrix retrieved from the dataset K.SPAR.jdj2 subject to the 
changes necessitated by the way we handle constraints and dummy rows. The modified 
system has the following characteristics. 

1. The coefficient matrix and the right-hand side are modified so that each equation 
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corresponding to a constrained variable 2; can be replaced by 

2. 

3. 

2; = c; , 
where c; 2 0 is the specified constraint. 

The identically zero rows are detected before problem input and the corresponding 
variables are treated as being constrained to zero. 

The dimension of the modified coefficient matrix is equal to the product of the number 
of joints and the degree of freedom per joint in the model. The number of equations of 
each demonstration problem is given in Table 17 under the column heading “neqns”. 

In Table 17, we summarize the characteristics of the linear systems retrieved for each 
demonstration problem. Tlhe entries in the column labeled “# nonzeros in K.SPAR” are 
computed from nsubs x jdf2, where we recall that nsubs is the total number of submatrices 
in the block upper triangular part (including the diagonal blocks) of the system stiffness 
matrix and that jdf2 = JD.F x JDF represents the number of elements in each submatrix. 
Therefore, the nonzero count here includes the coefficients in the lower triangular part of the 
diagonal blocks and the coefficients in the dummy rows as well as the rows corresponding 
to the constrained variables. The actual off-diagonal nonzero elements input to an experi- 
mental processor are listed in the last column under the heading of “# off-diag nonzeros in 
A”. 
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5.2 

5.2.1 

In Table 18, we list the estimated condition number of the system stiffness matrix for each 
test problem. The condition numbers are provided by SPARSPAK-A and their computation 
is described in reference [l]. The order of magnitude of the condition numbers indicates 
that the single-precision solution of these problems my not have significant digits in some 
components. By comparing the single-precision static displacement solutions obtained from 
the Testbed processors I N V  and SSOL for the same problem using different joint orderings, 
our numerical experiments confirm that the loss of all significant digits can indeed occur in 
small components of the solution. 

The Numerical Properties of the Test Problems 

The Conditioning of the System Stiffness Matrix 

r 
Condition number of 

the system stiffness matrix 

5.2.2 

The condition number estimates we presented in Table 18 indicate that in order to have sig- 
nificant digits in all components of the solution to be stored in the dataset STAT.DISP.iset.ncon, 
the system stiffness matrix should be stored in double-precision and processors INV and SSOL 

The Accuracy of the Computed Solutions 
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should perform the numerical computation in double-precision. The following information 
from reference [24] tells us how to ensure that the computations by each processor are 
performed with the desired precision. 

1. Processor K stores the system stiffness matrix in double precision if the user input 
parameter SPDP is reset to 2 as shown in a sample script given later in this paragraph. 

2. Processor INV calculates the triangular matrix using double precision if the input 
system stiffness matrix dataset is stored in double precision. However, the factors 
output by processor INV will be stored in the precision determined by resetting the 
user-controlled argument SPDP: 1 (default) = single precision, 2 = double precision. 

3. Processor SSOL computes the displacement solution vector in double-precision if the 
factored matrix is stored in double-precision. 

Therefore, each reset SPDP in the following script excerpt ensures that the output dataset 
is in double precision, which in turn ensures that the computation by the next processor is 
performed in double precision. 

[xqt K 

[xqt INV 
r e s e t  SPDP=2 

r e s e t  SPDP=2 
[xqt SSOL 

For each demonstration problem, the solution provided by an experimental processor is 
not expected to be identical to the Testbed solutions due to potentially different amounts 
of round-off error caused by the following factors. 

1. The coefficient matrix of the linear system to be solved by an experimental processor 
is ordered differently. That is, processors INV and SSOL solve (in double precision) 

( P A P T )  PZ = Pf , 
whereas our experimental processor solves (in double precision) 

( P A P T )  Pi = Pf . 
Since the permutation matrix P is induced by resequencing the joints in the model, 
it is not the same as the permutation matrix f' chosen by SPARSPAK-A for the 
coefficient matrix in general. 
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2. Even for the same ordering of A, the factorization algorithms implemented by different 

3. The system stiffness matrix is ill-conditioned. 

However, with the condition number estimates available for each system stiffness matrix, 
we can estimate the relative error in our solution 2 by the algorithm described in reference 111 
and implemented in SPARSPAK-A. On the other hand, by assuming that the Testbed 
solution Z is the correct solution we can compute the relative error in 2 by 

processors employ a different computation sequence. 

We can now verify the correctness of our experimental processors if the relative error com- 
puted above is very close to the relative error estimated by SPARSPAK-A with respect to 
the true (but unknown) solution. We have listed these two quantities in Table 19 for all test 
problems and we see that they are essentially of the same magnitude or sufficiently close 
for all problems. 

Table 19: Comparing NICE/SPAR solutions Z with SPARSPAK-A solutions 2. 

demo9 2.7 x 1.7 x 10-9 
demo10 5.6 x 1.6 x 10-5 
demo12 5.7 x 4.4 x 
demo13 5.8 x 6.9 x 
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5.3 The Experimental Factorization Processors 

In this section, we briefly describe the three sparse matrix factorization processors we have 
installed in the CSM Testbed. The three processors employ different methods in solving a 
sparse symmetric positive definite system 

acronym 
ND 

MDG 
RCM 
GPS 
SEQ 

A z = b .  

ordering algorithm 
Nested dissection (fill minimizer) [12] 
Minimum degree (fill minimizer) [12,17] 
Reverse Cuthill-McKee (profile minimizer) [12] 
Gibbs-Poole-Stockmeyer (bandwidth minimizer) [3] 
Sequential joint elimination sequence (Le., no reordering of joints) 

1. Processor SPK: The method employed by the processor SPK is the direct solver pro- 
vided by SPARSPAKl-A corresponding to the minimum degree ordering algorithm in 
reference [19]. 

2. Processor EXPl: The factorization method employed by the experimental processor 
EXPl is the multifrontal method implemented by Liu as described in reference [16]. 

3. Processor EXP2: The factorization method employed by the experimental processor 
EXPZ is the adaptive sparse out-of-core Cholesky scheme recently developed by Liu 
~ 5 1 .  

Since the factorization methods employed by the processors EXPl and EXPZ use the same 
storage scheme as that used by the minimum degree ordering in SPARSPAK-A and they 
were intended to be used in conjunction with SPARSPAK-A [15, 161, the same interface 
modules for inputing the problem to SPARSPAK-A can be used. 

5.4 Numerical Results 

We first compare the factorization time of the three experimental processors with that of 
the processor I N V .  Since the joint ordering can affect the execution time of processor I N V  
significantly, we have attempted to report the timing results for all available joint elimination 
sequences. The ordering algorithms currently available in the CSM Testbed are listed in 
Table 20. 

Table 20: The joint ordering methods employed in the CSM Testbed. 

Since the ordering algorithms used by processors EXPl and EXP2 are the topological 
orderings of the elimination tree induced by the minimum degree ordering [15,18], we have 
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thus used “MDG”’ to represent any one of them. One consequence of the choice of ordering 
algorithms by the experimental processors is that the amount of fill-in in the Cholesky factor 
is the same for the three of them. From the factorization times reported in Table 21 we 
see that the in-core factorization time of processors SPK and EXPl are significantly smaller 
than the INV times in most cases as one would expect in view of the 1/0 conducted by 
the latter. Except for problem demo7, the saving in execution time ranges from 30% to 
58% compared to the fastest INV time. As we have pointed out earlier, the reordering of 

demo6 
demo7 
demo 1 0 
demo13 

61 53 53 82 82 33 32 45 
96 124 101 113 112 93 92 113 
60 304 62 203 166 41 40 72 

406 283 337 

the joint sequence in the model produces a different permutation matrix from that induced 
by applying the same ordering algorithm to the coefficient matrix itself. In Table 22, we 
compare the quality of the minimum degree algorithm when applying to each case, where 
we give the nonzero counts in the system stiffness matrix A and the computed factors. Due 
to the different storage schemes employed by the processor INV and SPARSPAK-A, the 
fill-in is not measured in exactly the same manner as Table 22 indicates. 

Table 22: Comparing the fill-in of different processors. 
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The performance of processors SPK and EXPl are essentially the same in terms of ex- 
ecution time. In terms of storage, the in-core multifrontal Cholesky factorization scheme 
of processor EXPl requires additional working storage compared with the in-place Cholesky 
method provided by processor SPK. However, it should be pointed out that the multiflontal 
method lends itself readily to out-of-core implementation [20], in which case the amount 
of in-core storage required to perform the entire factorization turns out to be precisely the 
same as the required working storage for the in-core version. Readers are referred to ref- 
erence [20] for various strategies in minimizing the working storage. In reference [18] the 
behaviour of the multifrontal method in a paging environment is studied. 

In order to compare the out-of-core performance of processor EXPZ with that of processor 
I N V ,  we should note the following. 

1. The number of in-core data reorganizations of the adaptive sparse out-of-core Cholesky 
scheme 1151 is dynamically adjusted to the available memory. In particular, if the de- 
clared working space is sufficiently large for the given problem, the entire factorization 
process will be carried out in-core without reorganizing the data structures. In order 
to provide a meaningful comparison of the performance of processor EXP2 in execution 
time as well as storage requirement with that of processor I N V ,  we have run the proces- 
sor EXP2 with the minimum amount of in-core storage that will allow EXPZ to execute. 
This number can be determined in advance of the actual numerical factorization. 

2. The processor EXPZ does 1/0 using ordinary text files. In particular, the sparse 
coefficient matrix is saved in a text file and read into memory one column at a time, 
and the computed Cholesky factor is written to a text file one column at a time. In the 
current implementation, auxiliary storage is not used to reduce the in-core overhead 
storage, although it is possible to do so as suggested in reference [15]. 

3. We have explained in detail how the processor I N V  carries out the out-of-core block 
LDLT factorization process in Section 3.2 of this report. The 1/0 traffic involved 
amounts to retrieving the system stiffness matrix from the dataset K.SPAR.* as well 
as the indexing information from the dataset AMAP..i&isize, and outputting the 
computed factors to the dataset INV.K.ncon. Because the data are read from or 
written to the database one record at a time, the number of disk 1/0 operations is 
determined by the record length of each dataset. The default record length of these 
three datasets are listed below in Table 23. 
Recall that one record has to accommodate at  least the amount of data needed to pro- 
cess one block row of the coefficient matrix. Hence the default record length may not 
be big enough for larger or denser problems and they can again be changed by reset- 
ting the designated argument when executing the source processor of each respective 
dataset. In particular, if necessary, processor TOP0 will automatically increase the 
AMAP record length twice up to a maximum size of 2.25xLRAMAP words. The 
number of records contained in each dataset are given under the column heading 
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1 
Database interface of processor I N V  

Source processor Reset argument Dataset name Default record length 
K LREC K. SPA R.* 2240 words 

TOP0 LRAMAP AMAP..ic2.isize 1792 words 
I N V  LRA INV. K.ncon 3584 words 

“Records” in the table of contents of the data library created for each particular 
analysis. 
In summary, the volume of 1/0 involving each individual dataset is roughly the prod- 
uct of the number of records and the record length (strictly speaking, the last record 
may contain fewer items than are permitted by the specified record length), whereas 
the number of disk read/write operations is determined by the number of records. 

4. The in-core storage required by the processor INV must accommodate one record 
of each dataset in Table 23 in addition to accommodating the maximum number 
of submatrices involved during the factorization process. Therefore, as suggested in 
reference [24], the memory requirement for processor I N V  may be estimated by the 
following formula. 

number of words = J + L3 + rn (L1 + L2 + n21,) , 

where 

J = the number of joints in the structure. 

L1 = record length of input dataset K.SPAR.jdf2. 
Lz = record length of INV.K.ncon dataset. 

L3 = record length of AMAP..ict.isize dataset. 

m = 1 for single precision; 2 for double precision. 

n = maximum number of degrees of freedom per joint (default 3, 4, 5, or 6). 
I ,  = the maximum number of submatrices in use during any one stage of the fac- 

torization process. Its value can be obtained from the processor TOP0 output 
parameter SIZE I N D E X  or from the value of isize from AMAP..icZ.isize. 

It was suggested in reference [24] that this formula may be used to estimate the 
amount of space in blank common required by processor I N V .  If the number of words 
required is larger than the dimension of blank common, the blank common dimension 
must be increased and the Testbed must be recompiled. 
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In Table 24, we compiue the factorization time and the memory requirement of processor 
I N V  with that of the experimental processor EXP2. For each problem, we give the number 
of nonzero elements in the Cholesky factor computed by SPARSPAK-A (recall that the 
amount of fill-in is the same for all three experimental processors) under the column heading 
“NOFNZ”. The ratio of :memory requirement to the size of the computed Cholesky factor 
is computed for each problem and displayed for both processors. Note that the quantity of 
n21s we use in measuring the memory requirement of processor I N V  is an underestimate as 
explained above. We use “LNZSZE” to indicate the maximum number of nonzeros which 
have to be present in-core for the adaptive sparse Cholesky factorization process to be 
successfully executed. The results in Table 24 indicate that the processor EXP2 can be quite 
competitive in both time and space. 

I I I 1 demo13 I 180315 I 6% I 406 I 25% I 337 H 
Comparing the factorization algorithm of processor EXP2 (adaptive out-of-core Cholesky) 

with that of processor SPK, we see that the difference in their execution time can be ac- 
counted for in the following three aspects. 

1. The time spent in data structure reorganization. 

2. The time for reading in the coefficient matrix A column by column. 

3. The time for writing out the computed Cholesky factor L column by column. 
The timing results reported in Table 24 are those with the minimum amount of mem- 

ory and maximum number of data structure reorganizations. Since the frequency of data 
structure reorganizations can be reduced by providing more memory, there is a potential 
tradeoff between time and space. However, the timing results in Table 25 indicate that the 
time spent in this regard is too small to justify the more significant increase in storage. We 
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Table 25: Data structure reorganization and factorization time. 

can thus conclude that the 1/0 time can be considered to be the sole factor in determining 
the speed of processor EXPZ. 

Since the multifrontal Cholesky method is also a good candidate for out-of-core imple- 
mentation, and we pointed out earlier that the “working storage” required in its in-core ver- 
sion is precisely what is needed as working storage in its out-of-core version, it makes sense 
to evaluate its out-of-core potential by comparing its minimum working storage requirement 
with the memory requirement of processor EXPZ. The results we present in Table 26 indicate 
that the two are quite comparable as far as the test problems are concerned. 

Table 26: Comparing processor EXPI with EXP2 

For completeness, we provide in Table 27 the timing results of three other processors 
which are also essential in solving the linear system arising from a Testbed problem, namely 
TOPO, K and SSOL. 

Finally, we provide in Table 28 the total time in executing the processor SPK in the 
Testbed and indicate separately the time attributed to the numerical factorization phase 
and the triangular solution phase. The SPK time thus includes the time for retrieving data 
from the global database and setting up the problem for the SPARSPAK-A solver. 

In summary, our preliminary findings indicate that there are alternative sparse matrix 
techniques which are suitable for more general applications and appear to be also competi- 
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Table 27: Timing results of TOPO, K ,  I N V ,  SSOL. 

- 

problem fact soh  SPK 
focus1 44 sec 2 sec 65 sec 
focus2 76 sec 4 sec 107 sec 

I I H demo10 I 5 I 18 I 62 I 16 I 101 sec 1 

focus3 
focus4 

I I I I 

E m 0 1 3  i 11 I 47 I 406 I 48 1 512 sec 

313 sec 9 sec 376 sec 
148 sec 6 sec 194 sec 
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tive in execution time and storage usage compared to the techniques currently employed in 
the CSM Testbed. 
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Appendix A Installing the Processor SPK 

The processor SPK consists of a subset of SPARSPAK-A [2] modules and a set of subroutines 
which provide an interface between SPARSPAK-A and the global database of the CSM 
testbed. All of the subroutines are provided as a single directory SPARSE on a UNIX tar 
tape. The Fortran source for the package is distributed among a number of subdirectories. 
There are “make” files provided, so that the person installing the package needs only to 
execute a few commands to compile the package and create the run-time library. 

It is advisable to read “94 Developing New Matrix Factorization Processors” of this 
report before beginning installation of the package. Since the SPARSE package is used in 
conjunction with the CSh4 testbed, we assume in the sequel that the NICE/SPAR processors 
have been properly installed in the directory /usr/ns/nice and /usr/ns/spar, and that 
the SPARSE package is to be installed in the directory /usr/ns/sparse. The hierarchy 
of the directory /usr/ns and the files relevant to the installation and use of the SPARSE 
package are depicted in Figure 30. 

The steps to install the SPARSE package are as follows. 

1. Create a directory for SPARSE: 

cd /usr/ns 
mkdir sparse 
cd sparse 

2. Copy the files from tape to disk: Put the tape in the tape drive and “tar” the files to 
the new disk directory: 

tar xvf /dev/device 

where device should be the appropriate name of the tape drive on your machine. Do 
an “1s” to make sure that three directories (install, csm-intrface and spk-subset) 
have been copied from the tape. 

3. Edit the installation-dependent subroutines: The package has installation-dependent 
subroutines SPK, CTIME, SPKCSM, DTIME and SPRSPK which provide timing 
information to the package and set some installation-dependent parameters. In ap- 
pendix §B, we provide a set of examples for these subroutines. The sample programs 
are written for a SUN/3 workstation running the UNIX operating system at the Uni- 
versity of Tennessee Knoxville. Comments in these listings indicate changes which may 
be necessary. The subroutine SPK is contained in the directory csm-intrf addriver, 
the subroutines CTIME and SPKCSM are contained in the directory csm-intrf ace/system, 
and DTIME and SPRSPK are contained in the directory spk-subset/system. Sam- 
ples of subroutines required by CTIME, DTIME and SPRSPK can be found in the 
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/usr/ns 

install sparse1ib.a spk-subset cam-intrface 

Makefile nicespar.ms makefile.nrr.spar driver 

spk.f spka .f spkob j s .a 

Figure 30: The file system of the directory /usr/ns. 
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directory spk-subset/local; these subroutines are appropriate for machines running 
Berkeley 4.2 or 4.3 UNIX and their derivatives such as SUN 05. 

4. Edit the make file /usr/ns/sparse/install/Makef ile : Compilation of the package 
is performed using a collection of UNIX make files. The most important make file is 
called Makef ile found in the directory install; it will invoke the other make files. 
The distributed make files assume that the package is running on a SUN workstation. 
There are comments in Makefile to help you make the appropriate changes to it 
for your installation. There is no need to change the make files in any other sparse 
directories. 

5 .  Create and install the compiled library: After making the required changes to Makef ile, 
you are ready to create and install the compiled library. Execute the following com- 
mands. 

cd /usr/ns/sparse/insta1l 
make install 

A compiled library sparselib. a will be created in the directory sparse. 

6 .  Install a new processor in the testbed: Since the SPARSE package is installed as 
a processor SPK in the testbed and a CSM processor is a subroutine called by the 
NICE/SPAR main. program, it is necessary to compile the SPK driver routines in the 
directory /usr/ns/sparse/csm-intrf ace/driver and edit the main program master 
file nicespar. ams in the directory /usr/ns/spar. The object code of the SPK driver 
routines spk .f and spka.f is contained in a separate library called spkobjs .a in 
the driver directory so that it may be updated independent of sparse1ib.a. In 
addition, the makefile in the directory /usr/ns/spar must be edited so that the two 
libraries can be linked to the executable when it is created. A copy of the properly 
edited nicespar. ams and a copy of the edited makefile can be found in the directory 
install. The former has the file name nicespar. ams and the latter has the file name 
makef ile .ns. spar. With these two files available, the following commands may be 
executed to install the new processor SPK in the testbed. Note that you must have 
write permission in the directory spar to do this. 

cd /usr /ns /sparse/inst all 
make spk 
cd ../../spax 
mv makefile makefile.old 
mv nicespar.ams nicespar.ams.old 
cp . . /sparse/install/makefile.ns.spar makefile 
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cp ../sparse/install/nicespar.ams nicespar.ams 
make 

7. When the f i e  korcoma. inc is changed: Since the include file korcoma. inc in the 
directory spar declares the size of the in-core storage available for every SPAR pro- 
cessor, the driver source code spk . f of processor SPK must contain the line 

include ’/usr /ns /sp ar / korcomahc’ 

and it must be recompiled each time the declared size is changed. Since the depen- 
dence of spk. o on korcoma. inc is specified in the appropriate make file, the following 
commands will not only detect whether the declaration file korcoma.inc has been 
modified since spk.0 was last created but also recompile spk.f and update the li- 
brary spkobjs .a if that is the case. Finally the executable in the directory spar is 
recreated to link to the modified spkobj s .a after the “make” command in the last 
line is executed. 

cd /usr/ns/sparse/insta1l 
make spk 
cd ../../spar 
make 

8. Recover space used by intermediate p e s :  If the system on which you are running 
is short of disk space, a substantial amount of space used during the installation of 
SPARSE can be recovered by deleting the “.o” files and other intermediate files gen- 
erated during the creation of the library. To do this, execute the following commands. 

cd /usr/ns/sparse/instaU 
make clean 

If for some reason you must later re-create some or all of the library sparselib. a, 
these intermediate files will have to be regenerated, at considerable cost in computer 
time. Thus, it is advisable to execute “make clean” only if you really need the space. 
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Appendix B Installation-dependent Subroutines 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C + + * * * * * * * * * * * * * * * * * * * * * * * ' + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ * * * * * * m * * * * * * * " * * * * m ~  

C SPK ..... A NEW CSM PROCESSOR 
C***********************~**********************************************~******* 
C*************.**************************************************************** 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - THIS IS THE DRIVER F O R  INSTALLING INTO NICE/SPAR 
OUR INTERFACE MODULIDS AS A SINGLE PROCESSOR WHICH 
SOLVES CSM TESTBED PFLOBLEMS USING SPARSPAK-A MODULES, 

THE NEW PROCESSOR IS C'ODED AND INSTALLED INTO NICE/SPAR DIRECTLY 
FOLLOWING THE GUIDELINES GIVEN IN NASA TECHNICAL MEMORANDOM 
89096, NAMELY 

(a) THE NAME O F  THE PROCESSOR SHOULD BE NO LONGER THAN FOUR 

(b) THE PROCESSOR SHOULD BE WRITTEN AS A FORTRAN 77 SUBROUTINE 

(c )  THE SUBROUTINE SHOULD HAVE NO ARGUMENTS. 
( d )  THE PROCESSOR SHOULD BEGIN EXECUTION WITH A CALL TO THE 

CHARACTERS. 

WHOSE NAME IS THE PROCESSOR NAME. 

LIBRARY SUBROUTINE "INTRO" WITH THE PROCESSOR NAME 
AS THE ONLY ARGUMENT. THE GIVEN NAME IS USED BY THE 
"GAL" DATA MANAGER AS THE CREATING PROCESSOR FOR 
NEW DATASETS INSERTIBD IN "GAL" LIBRARIES; I T  ALSO 
APPEARS IN THE INTERACTIVE PROMPT STRING I F  THE 
"SPAR READER" ROUTINE IS USED FOR INPUT COMMAND 
PROCESSING. 

(e) THE LABELED COMMON BLOCK /IANDO/ WITH 2 INTEGER VARIABLES 
CONTAINING USER INPUT AND OUTPUT UNIT NUMBERS SHOULD B E  
INCLUDED IN APPROPRIATE MODULES. THE UNIT NUMBERS ARE 
ASSIGNED IN THE SUBROUTINE "INTRO". 

( f )  CALL LIBRARY SUBROUTINE "FIN" TO CLOSE "GAL" LIBRARIES. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W A R N I N G  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THE PATH NAME O F  THE INCLUDE FILE "korcomb.imc" 
IS INSTALLATION DEPENDENT. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 
c 
C INCLUDE DECLARATION CONTAINING BLANK COMMON VARIABLES AND 
C DIMENSIONS: 
C PARAMETER (KSZZZ= '200000) 
C c 
C 

C 

SUBROUTINE SPK 

COMMON KORE, KEVEN, KORT, A(KSZZZ) 

include ' I u ~ ~ . M C ( 1 0 0 ~ 0 1 u l r l l ~ ~ h ~ ~ u ~ ~ ~ ~ b ~ ~ k ~ ~ ~ o ~ r . i ~ ~ '  

INTEGER MXSTORE 

IDENTIFY PROCESSOR 7 ! 0  CSM ARCHITECTURE 

CALL INTRO ( 'SPK' ) 

WORKING STORAGE A IS DECLARED AS KSZZZ WORDS WHICH IS 
EQUIVALENT TO HALF !CHAT MANY DOUBLE-PRECISION FLOATING 
POINT NUMBERS. 

MXSTOR = KSZZZl2 
CALL SPKA ( A, MXSTOR ) 
CALL FIN ( 0 , O  ) 
CALL EXIT 
END 
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AUGINAL PAGE IS 
OF POOR QUALITY 

C*+*****+***********'*t******ltlX*******************************a~******************a* 
............................................................................... 

C CTIME ..... ELAPSED PROCESSOR TIME 
c**+*******************'*"*x'-'*****************"*************a**************~****** 
................................................................................ 

C 
C PURPOSE - CTIME RETURNS THE ELAPSED PROCESSOR TIME SINCE 
C I T  WAS LAST CALLED. IT USES THE COMMON VARIABLE TIME 
C TO REMEMBER THE TIME WHEN CTIME WAS LAST CALLED. 
C 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C W A R N I N G  
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C THIS IS AN INSTALLATION DEPENDENT ROUTINE. I T  
C SHOULD BE SET UP BY THE INSTALLER OF THE PACKAGE. 
C IN THIS EXAMPLE, ROUTINE GTIMER IS THE TIMER ROUTINE 
C THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN13 
C WORKSTATION RUNNING THE UNIX OPERATING SYSTEM AT THE 
C UNIVERSITY OF TENNESSEE KNOXVILLE. 
c *..*....****. ............................................................ 

C 
C INPUT PARAMETER - 
C IDUMMY - A DUMMY INTEGER VARIABLE. 
C 
C PROGRAM SUBROUTINE - 
C GTIMER. 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

REAL FUNCTION CTIME ( IDUMMY ) 

INTEGER IDUMMY, IPRNTE, IPRNTS, MAXINT 
REAL RATIOL, RATIOS, TIME , X 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

COMMON ICSMSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, 
1 TIME 

C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
CALL QTIMER ( X ) 
CTIME = X - TIME 
TIME = X 
RETURN 

C 
END 



ORIGINAL PAGE IS 
OF POOR QUALITY 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C******************************** . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SPKCSM ..... INITIALIZE PARAMETERS 
C********************************.********************************************* 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - T O  S E T  SYSTEM PARAMETERS AND ASSIGN DEFAULT 
VALUES T O  SOME USER PA.RAMETERS. I T  IS A MACHINE 
DEPENDENT ROUTINE. THIS ROUTINE HAS T O  B E  CALLED 
BEFORE ANY OTHER PACKAGE MODULE. 

PARAMETERS INITIALIZED - 
IPRNTE 
IPRNTS 

. THE - THE 
OUTPUT 
O U T P U T  

UNIT 
UNIT 

NUMBER F O R  ERROR MESSAGES. 
NUMBER F O R  STATISTICS. 

RATIOL . T H E  RATIO O F  THE NUMBER O F  BITS IN A FLOATING 
P O I N T  VARIABLE TO THAT IN A LONG INTEGER 
VARIABLE. F O R  EXAMPLE, I F  FLOATING POINT 
NUMBERS OCCUPY TWICE AS MANY BITS AS LONG 
INTEGERS, RATIOL SHOULD B E  SET T O  2. 

POINT VARIABLE TO THAT IN A SHORT INTEGER 
VARIABLE. 

STORED IN A SHORT INTEGER VARIABLE. 

RATIOS - THE RATIO O F  THE NUMBER O F  BITS IN A FLOATING 

MAXINT - THE LARGEST POSITIVE INTEGER THAT CAN BE 

TIME 

STAGE . STARTING STAGE O F  SYSTEM-CSM. 

- VARIABLE USED BY THE TIMER ROUTINE CTIME. 
SEE REMARK 

REMARK - THIS INTERFACE PACKAGE ASSUMES THE EXISTENCE O F  
A REAL TIME FUNCTION CTIME WHICH RETURNS THE ELAPSED 
PROCESSOR TIME SINCE I T  WAS LAST CALLED. WITH THE 
COMMON VARIABLE TIME, THE INSTALLER O F  THE PACKAGE 
SHOULD B E  ABLE T O  WRITE SUCH A FUNCTION, USING THE 
INSTALLATION TIMER. 

C 

C 
C********************************.********************************************* 

SUBROUTINE SPKCSM 

C 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 

CHARACTER.40 LIBNAM 
CHARACTER'S1 CDUMMY 
INTEGER'I IIN, IOUTX 
INTEGER.4 IPRNTE,  IPRNTS, MAXINT 
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE 
INTEGER*4 MSOLVL, IERR , MAXCSM 
REAL RATIOS, RATIOL, !PIME 

COMMON ICSMSYSl IPRNTE,  IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON ICSMCONl BUFMAX, MXUSED, MXREQD, STAGE 
COMMON ICSMUSRI LIBNAM, MSGLVL, IERR 
COMMON IIANDOI IIN, IOUTX 

, MAXCSM, CDUMMY(7) 

......................................................................... 

W A R N I N G  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T H E  FOLLOWING 4 LINES O F  CODE ARE INSTALLATION 
DEPENDENT. THEY MAY HAVE TO BE MODIFIED BY THE 
PERSON INSTALLINQ THIS PACKAGE. 

OUR CURRENT ENVIRONMENT - - RATIOL AND RATIOS ARE B O T H  3 .  - MAXINT = 2**16 - 1 = 32767 

----------- 
INSTALLATION DEPENDENT PARAMETERS ----------- 

TIME = 0.0 

RATIOL = 2.0 
RATIOS = 2.0 

MAXINT = 32707 
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c ________________. 
C IPRNTE AND IPRNTS ARE BOTH SET TO THE WRITER UNIT 
C NUMBER ASSIGNED TO IOUTX WHEN THE NEW PROCESSOR 
C IS IDENTIFIED TO THE CSM-ARCHITECTURE. 
c 

IPRNTE = IOUTX 
IPRNTS = IOUTX 

C 
c ___--_____-_______ 
C INITIALIZING THE EXECUTION STAGE FOR THE INTERFACE ... 
c _----___---___--__ 
C 

C 

STAGE = O  

RETURN 

END 
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ORIGINAL PAGE !.ti 
OF POOR Q%ki*TY 

C- SPARSPAK-A (ANSI FORTRAN) RELEASE I11 - NAME = DTIME 
C (C)  UNIVERSITY O F  WATERLOO JANUARY 1984 
C*******************************************************~*****8************~*** 
C************.***************************************************************** 
C DTIME ..... DELTA TIME 
C********.*********.***************~*************************~***************** 
C*****************..****************************************~****************** 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - DTIME RETURNS THE ELAPSED PROCESSOR TIME SINCE 
IT WAS LAST CALLED. IT USES THE COMMON VARIABLE TIME 
TO REMEMBER THE TIME WHEN DTIME WAS LAST CALLED. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W A R N I N G  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

THIS IS AN INSTALLATION DEPENDENT ROUTINE. IT 
SHOULD BE SET UP BY THE INSTALLER OF THE PACKAGE. 
IN THIS EXAMPLE, ROUTINE GTIMER IS THE TIMER ROUTINE 
THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN13 
WORKSTATION RUNNING THE UNIX OPERATING SYSTEM AT THE 
UNIVERSITY OF TENNESSEE KNOXVILLE. 

.................................................................. 

INPUT PARAMETER - 
IDUMMY - A DUMMY INTEGER 

PROGRAM SUBROUTINE. 
GTIMER. 

VARIABLE. 

CL+L+L..*.**L*..********t-tl*I.*+...L**************************8************ 

C 

C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 

REAL FUNCTION DTIME ( IDUMMY ) 

INTEGER IDUMMY, IPRNTE, IPRNTS, MAXINT 
REAL MCHEPS, RATIOL, RATIOS, TIME , X 

C 
C*******L*********.********~*****************************************~********* 
C 

COMMON lSPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, 
1 MCHEPS, TIME 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

CALL QTIMER ( X ) 
DTIME = X - TIME 
TIME = X 
RETURN 

C 
END 
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C- SPARSPAK-A (ANSI FORTRAN) RELEASE I11 - NAME = SPRSPK 
C (C)  UNIVERSITY OF WATERLOO JANUARY 1984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C***********************************~***************************************~**  
C SPRSPK ..... START SPARSPAK-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - TO SET SYSTEM PARAMETERS AND ASSIGN DEFAULT 
VALUES TO SOME USER PARAMETERS. I T  IS A MACHINE 
DEPENDENT ROUTINE. THIS ROUTINE HAS TO BE CALLED 
BEFORE ANY OTHER PACKAGE MODULE. 

PARAMETERS INITIALIZED - 
IPRNTE - THE OUTPUT UNIT NUMBER FOR ERROR MESSAGES. 
IPRNTS - THE OUTPUT UNIT NUMBER FOR STATISTICS. 
RATIOL - THE RATIO O F  THE NUMBER O F  BITS IN A FLOATING 

POINT VARIABLE TO THAT IN A LONG INTEGER 
VARIABLE. FOR EXAMPLE, IF FLOATING POINT 
NUMBERS OCCUPY TWICE AS MANY BITS AS LONG 
INTEGERS, RATIOL SHOULD BE SET TO 2. 

RATIOS - THE RATIO O F  THE NUMBER OF BITS IN A FLOATING 
POINT VARIABLE TO THAT IN A SHORT INTEGER 
VARIABLE. 

STORED IN A SHORT INTEGER VARIABLE. 
MAXINT - THE LARGEST POSITIVE INTEGER THAT CAN BE 

MCHEPS - THE MACHINE EPSILON (UNIT ROUNDOFF ERROR). 
TIME - VARIABLE USED BY THE TIMER ROUTINE DTIME. 

STAGEA - STAGE VARIABLE FOR SYSTEM-A. 
SEE REMARK. 

REMARK - THIS PACKAQE ASSUMES THE EXISTENCE O F  A REAL TIME 
FUNCTION DTIME WHICH RETURNS THE ELAPSED PROCESSOR TIME 
SINCE I T  WAS LAST CALLED. WITH THE COMMON VARIABLE 
TIME, THE INSTALLER OF THE PACKAGE SHOULD B E  ABLE TO 
WRITE SUCH A FUNCTION, USING THE INSTALLATION TIMER. 

PROGRAM SUBROUTINES - 
ALLOW,  STIMER. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 
C****************************************************************************** 
C 

ICPADA, ICPADB, IERRA , IERRB , IPRNTE, 

SUBROUTINE SPRSPK 

INTEGER 
1 
1 
1 

IPRNTS, MAXINT, MAXSA , MAXSB , MCOLS , 
MDCONS, MDEQNS, MSCONS, MSEQNS, MSGLVA, 
MSGLVB, NVARS , STAGEA, STAGEB 

INTEGER IIN, IOUTX 
REAL MCHEPS, RATIOL, RATIOS, TIME 
DOUBLE PRECISION EPS , E P S l  

C 
C********+.*********'*.LL".**LL'*'+'*-'****************n***~****************** 
c 

COMMON lSPKSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, 
1 MCHEPS. TIME 

COMMON ~ S P A U S R ~  MSGLVA, IERRA , MAXSA , NVARS 
COMMON /SPACON/ STAGEA, ICPADA(40) 
COMMON lSPBUSRl  MSGLVB, IERRB , MAXSB , MCOLS , MSEQNS. 

COMMON lSPBCONl  STAGEB, ICPADB(49) 
1 MDEQNS, MSCONS, MDCONS 

c - 
COMMON IIANDOl IIN, IOUTX 

C 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C W A R N I N G  c ............................................................. 
C 
C DEPENDENT. THEY MAY HAVE T O  BE MODIFIED BY THE 

T H E  FOLLOWING 0 LINES O F  CODE AXE INSTALLATION 

C 

C 
C 
C 
C 

100 

C 

PERSON INSTALLING THIS PACKAGE. 

ON A SUN/3 WORKSTATION A T  THE UNIVERSITY O F  TENNESEE KNOXVILLE: - STIMER IS THE ROUTINE T O  START THE TIMER, - ALLOW IS THE ROUTINE T O  ALLOW F O R  A NUMBER O F  
ARITHMETIC UNDERFLOWS BEFORE SYSTEM ABORTS. - RATIOL AND RATIOS ARE 2 AND 4 RESPECTIVELY. - MAXINT = 2**15 - 1 = 31767 

TIME = 0.0 
CALL STIMER 
CALL ALLOW ( 1154161 ) 

RATIOL = 2.0 
RATIOS = 2.0 

MAXINT = 32101 

IPRNTE AND IPRNTS ARE BOTH SET T O  THE WRITER UNIT 
NUMBER ASSIGNED T O  IOUTX WHEN THE NEW PROCESSOR 
IS IDENTIFIED TO THE CSM-ARCHITECTURE. 

IPRNTE = IOUTX 
IPRNTS = IOUTX 

COMPUTE THE MACHINE EPSILON. _________. 
E P S  = 1.ODO 

GO NTINUE 
E P S  = EFSl1.0DO 
E P S l  = 1.ODO + EPS 
I F  ( E P S l  .GT. 1.ODO ) GO T O  100 

MCHEPS = EPS*Z.ODO 

WRITE ( I P R N T S , l l )  
11 F O R M A T (  1H1 

1 
1 
1 

ISX, 4OH********** UNIVERSITY O F  WATERLOO 
ISX, 40H********** SPARSE MATRIX PACKAGE 
/SX, 40H********** ( !i P A R S P A K ) 

1 ISX, 40Hv********* RELEASE 3 
1 ISX,  4OH********** ( C )  JANUARY 1984 ) 

C 
WRITE (IPRNTS,22) 

22 FORMAT ( KX, 40H********** ANSI FORTRAN ) r! - 
WRITE (IPRNTS.33) 

53 FORMAT ( SX, 4OH********** DOUBLE PRECISION ) 
C 

WRITE ( IP  RNTS ,4 4 )  
44 FORMAT ( 0X, 4OH********** LAST UPDATE JANUARY 1984 ) 

C 
WRITE (IPRNTS,5K) IPRNTE,  IPRNTS 

5K FORMAT ( / / l o x ,  SKHOUTPUT UNIT F O R  ERROR MESSAGES , I7 
1 /lox, 35HOUTPUT UNIT F O R  STATISTICS , I7 ) 

C 
c -_I_______--_-- 

C INITIALIZINQ USER VARIABLES F O R  SYSTEM-A ... c 
C 

STAGEA = 0 

RETURN 
C 

END 
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Appendix C Listing of Programs 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C***********************************************************************~****** 
C SPK ..... A NEW CSM PROCESSOR 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - THIS IS THE DRIVER FOR INSTALLING INTO NICEISPAR 
OUR INTERFACE MODULES AS A SINGLE PROCESSOR WHICH 
SOLVES CSM TESTBED PROBLEMS USING SPARSPAK-A MODULES. 

THE NEW PROCESSOR IS CODED AND INSTALLED INTO NICE/SPAR DIRECTLY 
FOLLOWING THE GUIDELINES GIVEN IN NASA TECHNICAL MEMORANDOM 
89096, NAMELY 

(a) THE NAME O F  THE PROCESSOR SHOULD BE NO LONGER THAN FOUR 

(b) THE PROCESSOR SHOULD BE WRITTEN AS A FORTRAN 77 SUBROUTINE 

(c )  THE SUBROUTINE SHOULD HAVE NO ARGUMENTS. 
(d) THE PROCESSOR SHOULD BEGIN EXECUTION WITH A CALL T O  THE 

CHARACTERS. 

WHOSE NAME IS THE PROCESSOR NAME. 

LIBRARY SUBROUTINE “INTRO” WITH THE PROCESSOR NAME 
AS THE ONLY ARGUMENT. THE GIVEN NAME IS USED BY THE 
“GAL” DATA MANAGER AS THE CREATING PROCESSOR FOR 
NEW DATASETS INSERTED IN “GAL” LIBRARIES; I T  ALSO 
APPEARS IN THE INTERACTIVE PROMPT STRINQ I F  THE 
“SPAR READER” ROUTINE IS USED FOR INPUT COMMAND 
PROCESSING. 

(e) THE LABELED COMMON BLOCK IIANDOl WITH 2 INTEQER VARIABLES 
CONTAINING USER INPUT AND OUTPUT UNIT NUMBERS SHOULD BE 
INCLUDED IN APPROPRIATE MODULES. THE UNIT NUMBERS ARE 
ASSIGNED IN THE SUBROUTINE “INTRO”. 

(I)  CALL LIBRARY SUBROUTINE “FIN” T O  CLOSE “QAL” LIBRARIES. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W A R N I N Q  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

THE PATH NAME O F  THE INCLUDE FILE “korcoma.inc” 
IS INSTALLATION DEPENDENT. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C c 
C INCLUDE DECLARATION CONTAINING BLANK COMMON VARIABLES AND 
C DIMENSIONS: 
C PARAMETER (KSZZZ= 200000) 
C 
c _______________________. 
C 

C 

C 
c _______________________. 
C IDENTIFY PROCESSOR TO CSM ARCHITECTURE 
c 
c 
C WORKING STORAQE A IS DECLARED AS KSZZZ WORDS WHICH IS 
C 
C POINT NUMBERS. c 

SUBROUTINE SPK 

COMMON KORE, KEVEN, KORT, A(KSZZZ) 

include ‘ ~ n 1 r . M C 6 8 0 2 0 ~ n l b l ~ c c h u ~ ~ 1 ~ 1 ~ b r ~ k o r c o m ~ . i n c ’  

INTEGER MXSTORE 

CALL INTRO ( ’SPK’ ) 

EQUIVALENT TO HALF THAT MANY DOUBLE-PRECISION FLOATING 

MXSTOR = KSZZZl2 
CALL SPKA ( A, MXSTOR ) 
CALL FIN ( 0,  0 ) 
CALL EXIT 
END 
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C********************************************************~~*********.********** 
C*************************"".****a***.********************************a~********** 
C SPKA ..... A DRIVER F O R  INTERFACE MODULES AND SPARSPAK-A 
C*********************************~**"************.****~**********"~*********** 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - THIS IS THE DRIVER CALLING INTERFACE MODULES TO 
SOLVE CSM TESTBED PROBLEMS USING SPARSPAK-A MODULES. 

INPUT PARAMETERS - 
A - AN ARRAY OF MXSTOR DOUBLE-PRECISION FLOATING POINT 

MXSTOR - SIZE OF ARRAY A IN DOUBLE-PRECISION FLOATING-POINT 
NUMBERS. 

NUMBERS. 

USER INPUT - 
MSGLVL - MESSAGE LEVEL FOR INTERFACE MODULES. 
MSGLVA - MESSAGE LEVEL FOR SPARSPAK-A MODULES. 
BUFMAX - MAXIMUM BUFFER LENGTH ANTICIPATED. 
LIBNAM - NAME OF THE DATA LIBRARY. 
JDFSET - NAME OF DATASET JDFI.BTAB.1.8 
KMAP - NAME O F  DATASET KMAP.O.ninbs.ksisc 
KSPAR - NAME OF DATASET K.SPAR.jdf2.0 
CON.  NAME OF DATASET CON.O.ncon.0 
APPLF - NAME OF DATASET APPL.FORC.isel.1 
APPLM - NAME OF DATASET APPL.MOTl.iset.1 
STATD - NAME O F  DATASET STAT.DISP.isei.ncon 

INTERFACE MODULES - 
SPKCSM, LIBOPN, CTIME. SPACE , GETJDF,  GETDOF, GTZERO, GTCOND, 
GTMOTI,  GETIJ , GTFORC, GTNUM6, STATCS, GETSOL. 

SPARSPAK-A INTERFACE MODULES - 
SPRSPK, ORDRBS, SOLVES, EREST5, STATSA. 

LOGICAL READER UNIT NUMBER FOR USER INPUT - 4 1  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 
SUBROUTINE SPKA ( A, MXSTOR ) 

DOUBLE PRECISION A(1) 
INTEGER MXSTOR 

C 

C 
CHARACTER.40 LIBNAM 
CHARACTER'bl 
INTEGER*4 IPRNTE, IPRNTS, MAXINT 
INTEGER*4 MSGLVL , IERR , MAXCSM 
INTEGER*I 
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE 
INTEGER"4 MAXDOF, NEQNS, NUMJNT 
INTEGER*4 
REAL 

REAL RATIOS, RATIOL, TIME 

INTEGER'I SPACE 
REAL CTIME 

COMMON ICSMSYSI IPRNTE. IPRNTS. MAXINT. RATIOS, RATIOL. TIME 

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD 

DOF, BUF, MASK, KC, ICLQ, FCON, SPK 

MSGLVA.IEIRRA , MAXSA , NVARS 
QZTIME. QCTIME, GIJTIM, GFTIME. GMTIME,GNTIME. 

1 CSMTIM, CSMSTR 

C 

C 

COMMON )CSMUSR./ LIBNAM, MSGLVL, IERR , MAXCSM, 
1 JDFSET. KMAP. KSPAR. CON. APPLF. APPLM. STATD 

COMMON /CSMMAP/ DOF; IIUF, MASK, KC,  ICLQ, FCON; SPK 
COMMON /CSMCON/ BUPMAX. MXUSED, MXREQD. STAQE 
COMMON ICSMDTAI GZTIME, GCTIME, GIJTIM, GFTIME, GMTIME,GNTIME, 

COMMON IPRBLEMI MAXDOF, NEQNS , NUMJNT 
1 CSMTIM, CSMSTR 

r! 
COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

INTEQER'I JLONG, NLONG, CSIZE 
INTEGER-4 IDUMMY, INDATA 
REAL RN, RNJNT, ROFFS, ROFFL, DUMMY 
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C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

12 
C 
C 
C 

C 
C 
C 

C 
C 
C 

22 

32 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

DOUBLE PRECISION RELERR, RELRES 

INITIALIZE SPARSPAK-A AND SYSTEM TIMER 

CALL SPRSPK _____---------- 
INITIALIZE THE CSM.SPARSPAK INTERFACE PACKAGE 

CALL SPKCSM _------ 
S E T  MSGLVL AS DESIRED _______ 

INDATA = 41 
READ ( INDATA, 11 ) MSGLVL 
FORMAT ( I4 ) 

S E T  MSGLVA AS DESIRED 
---__-- 

READ ( INDATA, 12 ) MSGLVA 

SET MAXIMUM BUFFER LENGTH 

READ ( INDATA, 12 ) BUFMAX _________________. 
INPUT NAME O F  LIBRARY AND DATASETS F O R  GIVEN PROBLEM 

READ ( INDATA, '22 ) LIBNAM 

READ ( INDATA, 31 ) JDFSET 

READ ( INDATA, 32 ) KSPAR 
READ ( INDATA, 32 ) CON 
READ ( INDATA, 32 ) A P P L F  
READ ( INDATA, 32 ) APPLM 
READ ( INDATA, 32 ) STATD 

FORMAT( A40 ) 

READ ( INDATA, 3a ) KMAP 

FORMAT( A61 ) 

O P E N  T H E  LIBRARY __---. 
CALL LIB O P N  

INITIALIZE T H E  TIMER 

DUMMY = CTIME(0) 
MXREQD = BUFMAX --_____ 
SIZE O F  STORAGE ARRAY __----- 

MAXCSM = MXSTOR 

CHECK MAXCSM AGAINST MXREQD 

IF ( SPACE ( IDUMMY ) .NE. 0 ) GO T O  9999 

RETRIEVE TOTAL NUMBER O F  JOINTS AND STORE IN NJMJNT _---------------- 
CALL G E T J D F  ( A ) 

COMPUTE FURTHER STORAGE REQUIREMENT 

ROFFS = RATIOS - 0.01 
R O F F L  = RATIOL - 0.01 
R N J N T  = NUMJNT + 1 
JLONG = IFIX((RNJNT+ROFFL)/RATIOL) 
MXREQD = JLONG + BUFMAX 
IF ( SPACE ( IDUMMY ) .NE. 0 ) G O  T O  9999 

COMPUTE ADDRESSES 

D O F  = 1 
B U F  = D O F  + JLONG 

RETRIEVE DEGREES O F  FREEDOM P E R  JOINT, 
AND INITIALIZE MAXDOF AND NEQNS 

CALL GETDOF ( A(DOF), A(BUF) ) 
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C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

ADJUST BUFFER SPACE 

MXREQD = MXREQD - BUFMAX 
BUFMAX = MAX0 ( BUFMAX, NEQNS ) 
MXREQD = MXREQD t BUFMAX 
I F  ( SPACE ( IDUMMY ) .NE. 0 ) GO TO 9999 
MXUSED = MXREQD 

COMPUTE FURTHER STORAGE REQUIREMENT 

RN = NEQNS 
NLONG = IFIX ((RN+ROFFL)/RATIOL) 
MXREQD = MXUSED + NLONG 
IF ( SPACE ( IDUMMY ) .NE. 0 ) GO T O  9999 

COMPUTE ADDRESSES 

MASK = BUF + BUFMAX 

D E T E C T  DUMMY ROWS 

CALL GTZERO (A(DOF),  A(BUP), *(MASK) ) 
MXUSED = MXREQD 

COMPUTE FURTHER STORAGE REQUIREMENT 

MXREQD = MXUSED + 7 
I F  ( SPACE ( IDUMMY ) .NE. 0 ) GO TO 9999 

COMPUTE ADDRESSES 

K C  = MASK + NLONG _________. 
DETECT CONSTRAINED VARIABLES 

CALL GTCOND (A(DOF), A(BTJF), A(KC), A(MASK), CSIZE) 
MXUSED = MXREQD 

COMPUTE FURTHER STORAGE REQUIREMENT 

MXREQD = MXUSED + MAXDOF + CSIZE 
I F  ( SPACE ( IDUMMY ) .NE. 0 ) GO TO 9999 _-_-____ 
TOTAL STORAGE TO BE USED -------- 

MXUSED = MXREQD 

COMPUTE ADDRESSES 

ICLQ = KC t 7 
FCON = ICLQ t MAXDOF 

GATHER NONZERO CONSTR.AINTS 

CALL GTMOTI ( A(BUF), A(MASK), A(FCON), CSIZE ) 

INTERFACE WITH SPARSPAK-A ________. 
SPK = MXUSED + 1 
MAXSA = MAXCSM - MXUSED 

INPUT NONZERO STRUCTURE TO SPARSPAK-A 

CALL GETIJ(A(DOF),  A(BUF), A(ICLQ), A(MASK), A(SPK)) 

DETERMINE SYMMETRIC ORDERING 

CALL ORDRBS ( A(SPK) ) 

INPUT RIGHT HAND SIDE -----__ 
CALL GTFORC( A(BUF),A(MASK), A(SPK) ) 

INPUT MATRIX COEFFICIENTS AND RIGHT HAND SIDE MODIFICATIONS 

CALL GTNUMI(A(DOF), A(BUF),  A(MASK), A(FCON), A(SPK)) 
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C 
C 
C 

C 
C 
C 

C 
9999 

C 

PERFORM NUMERICAL FACTORIZATION AND SOLUTION 

CALL SOLVES ( A(SPK) ) 
CSMTIM = CTIME(0) 
CALL ERESTS ( RELERR, A(SPK)) 

COMPARE WITH KNOWN NICESPAR SOLUTION 

CALL QETSOL (A(BUF), A(SPK), RELRES ) 
CALL STATCS 
CALL STATSA 

CONTINUE 
RETURN 

END 
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C**L*********************-*****~*********************************************** 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SPKCSM ..... INITIALIZE PARAMETERS 
C******************"*************~********************************************* 
C********************************.********************************************* 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - TO SET SYSTEM PARAMETERS AND ASSIGN DEFAULT 
VALUES TO SOME USER PARAMETERS. I T  IS A MACHINE 
DEPENDENT ROUTINE. THIS ROUTINE HAS TO BE CALLED 
BEFORE ANY OTHER PACKAGE MODULE. 

PARAMETERS INITIALIZED - 
IPRNTE - THE OUTPUT UNI[T NUMBER FOR ERROR MESSAGES. 
IPRNTS - THE OUTPUT UNIT NUMBER FOR STATISTICS. 
RATIOL - THE RATIO OF THE NUMBER O F  BITS IN A FLOATING 

POINT VARIABLE TO THAT IN A LONG INTEGER 
VARIABLE. FOR EXAMPLE, IF FLOATING POINT 
NUMBERS OCCUPY TWICE AS MANY BITS AS LONG 
INTEGERS, RATIOL SHOULD BE SET TO 2. 

RATIOS - THE RATIO OF THE NUMBER OF BITS IN A FLOATING 
POINT VARIABLE TO THAT IN A SHORT INTEGER 
VARIABLE. 

STORED IN A SHORT INTEGER VARIABLE. 
MAXINT - THE LARGEST POSITIVE INTEGER THAT CAN BE 

TIME - VARIABLE USED BY THE TIMER ROUTINE CTIME. 

STAGE - STARTING STAGE OF SYSTEM-CSM. 
SEE REMARK 

REMARK - THIS INTERFACE PACKAGE ASSUMES THE EXISTENCE O F  
A REAL TIME FUNCTION CTIME WHICH RETURNS THE ELAPSED 
PROCESSOR TIME SINCE I T  WAS LAST CALLED. WITH THE 
COMMON VARIABLE TIME, THE INSTALLER O F  THE PACKAGE 
SHOULD BE ABLE T O  WRITE SUCH A FUNCTION, USING THE 
INSTALLATION TIMER. 

C 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 

CHARACTER'IO LIBNAM 
CHARACTER*61 CDUMMY 
INTEGER-4 IIN, IOUTX 
INTEGER.4 IPRNTE. IPRNTS, MAXINT 
INTEGER'I BUFMAX, MXUSED, MXREQD, STAGE 
INTEGER*4 MSGLVL. IERR . MAXCSM 
REAL RATIOS, RATIOL, 'rIME 

COMMON /CSMSYS/ IPRNTE,  IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON ICSMCONI BUFMAX, MXUSED, MXREQD, STAGE 
COMMON ICSMUSRI LIBNAIM, MSGLVL, IERR 
COMMON l IANDOl  IIN, IOUTX 

, MAXCSM, CDUMMY(7) 

***.*..****.*....*.........****~..*..****.. ".******..~~*...*......**~~... 
W A R N I N G  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

THE FOLLOWING 4 LINES OF CODE ARE INSTALLATION 
DEPENDENT. THEY MAY HAVE TO BE MODIFIED BY THE 
PERSON INSTALLING THIS PACKAGE. 

OUR CURRENT ENVIRONMENT - - RATIOL AND RATIOS ARE BOTH 2. - MAXINT = 2**16 - 1 = 3:!767 

INSTALLATION DEPENDENT PARAMETERS 

TIME = 0.0 

RATIOL = 2.0 
RATIOS = 2.0 

MAXINT = 32707 
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C 
C 
C 
C 
C 

C 
C 
C 
C 

C 

IPRNTE AND IPRNTS ARE BOTH SET TO THE WRITER UNIT 
NUMBER ASSIGNED TO IOUTX WHEN THE NEW PROCESSOR 
IS IDENTIFIED TO THE CSM-ARCHITECTURE. 

IPRNTE = IOUTX 
IPRNTS = IOUTX 

INITIALIZING THE EXECUTION STAGE FOR THE INTERFACE ... ______-__________- 
STAGE = O  

RETURN 

END 
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C**** * * * * * * * * * * * * * * * * * * * * * * * * * * * *~~~*** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C CTIME ..... ELAPSED PROCESSOR TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C********************************************************************a********** 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - CTIME RETURNS THE ELAPSED PROCESSOR TIME SINCE 
I T  WAS LAST CALLED. I T  TJSES THE COMMON VARIABLE TIME 
T O  REMEMBER THE TIME WHEN CTIME WAS LAST CALLED. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W A R N I N G  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

THIS IS AN INSTALLATION DEPENDENT ROUTINE. IT 
SHOULD BE SET U P  BY THE INSTALLER O F  THE PACKAGE. 
IN THIS EXAMPLE, ROUTINE GTIMER IS THE TIMER ROUTINE 
THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN13 

C 
C UNIVERSITY O F  TENNESSEE KNOXVILLE. c ..*...............*...l.L*II...~ ="...~~~*~....*-..**~.~~~~"*~-~.".~~~-.*.. 
C 
C I N P U T  PARAMETER - 
C IDUMMY - A DUMMY INTEGER VARIABLE. 
C 
C PROGRAM SUBROUTINE - 
C GTIMER. 
C ~II..*.**I......I...*~*****.*............*.*.**~**.~~**~......*~...~.**........ 
C 

C 
C" ........ *I.. ........ *. I... I.. I... .... 11.1 1.1. ..I I ......... *.......... ...*... 
C 

WORKSTATION RUNNING THE UNIX OPERATING SYSTEM A T  THE 

REAL FUNCTION CTIME ( IDUMMY ) 

INTEGER IDUMMY, IPRNTE,  IPRNTS, MAXINT 
REAL RATIOL, RATIOS, TIME , X 

C ~.~~...~.~.~....**~.******...*....."..............~..~~.~..*.*~...~~.......~ 
C 

COMMON ICSMSYSl IPRNTE,  IPRNTS, MAXINT, RATIOS, RATIOL, 
1 TIME 

C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
CALL GTIMER ( X ) 
CTIME = X - TIME 
TIME = X 
RETURN 

C 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

................................................................................. 
C 
C***************l l*************************************************************** 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

GETJDF ..... G E T  NUMBER OF JOINTS ... 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - THIS ROUTINE RETRIEVES THE TOTAL NUMBER O F  JOINTS 
FOR THE PROBLEM TO BE SOLVED. 

PARAMETERS INITIALIZED - 
NUMJNT - THE TOTAL NUMBER OF JOINTS. 

E R R O R C O D E S .  
0 - ERROR CODES 
1013 - INCORRECT EXECUTION SEQUENCE 
1014 . THE NUMBER OF ITEMS AVAILABLE FROM THE RETRIEVED 

DATASET IS LESS THAN TWO. SEE REMARK. 

REMARK - 
THE CURRENT VERSION OF TESTBED DATABASE ASSUMES THAT 
ALL JOINTS HAVE THE MAXIMUM DEGREES O F  FREEDOM, THE 
NUMBER O F  JOINTS AND THE MAXIMUM DEGREES P E R  JOINT IS 
FROM THE FIRST TWO ITEMS RETRIEVED. IN CASE OF 
VARIABLE DEGREES O F  FREEDOM P E R  JOINT, DUMMY DATA IS 
STORED. 

PROGRAM SUBROUTINES . 
QKINFO, GETRECI,  EMSG 

CSM TESTBED DATASETS ACCESSED - 
J D F  1 .E TAB .* 

C 

C 

C 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

SUBROUTINE GETJDF ( IBUF ) 

INTEGER*4 IBUF(1) 

CHARACTER'IO LIBNAM 
CHARACTER.51 
INTEGER'4 IPRNTE, IPRNTS, MAXINT 
INTEGER*4 MSGLVL. IERR, MAXCSM 
INTEGER.4 BUFMAX, MXUSED, MXREQD, STAGE 
INTEGER.4 MAXDOF, NEQNS , NUMJNT 
REAL RATIOS, RATIOL, TIME 

COMMON lCSMSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON ICSMUSRl LIBNAM, MSGLVL, IERR, MAXCSM, 

COMMON ICSMCONI BUFMAX, MXUSED, MXREQD, STAGE 
COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT 

JDFSET, KMAP, KSPAR, CON, APPLF,  APPLM, STATD 

C 

1 JDFSET,  KMAP, KSPAR, CON, APPLF,  APPLM, STATD 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 

11 
C 

C 
C 
C 
C 
C 
C 

C 

C 
C 

INTEGER'I LEN 

I F  ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 ) 
FORMAT ( /5X, 'GETJDF.  GET NUMBER O F  JOINTS AND ... ' ) 

I F  (( STAGE .LT. 10 ) .OR. ( IERR .NE. 0 )) GO T O  100 

EACH DATASET IS IDENTIFIED BY A STRING OF 
'MAINKEY.EXTENSION.CYCLEl.CYCLE3' 
MAXIMUM NUMBER OF CHARACTERS CONTAINED IS 51 

CALL QKINFO ( JDFSET ) 
I F  ( IERR .NE. 0 ) RETURN 

STAGE = 15 ______________. 
Q E T  THE FIRST TWO ITEMS O F  THE FIRST RECORD 
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C 

C 

C 
C 
C 

C 
C 
C 
C 
100 

C 
200 

LEN = 2 
CALL GTRECI ( 1, IBUF, LEN ) 
IF ( IERR .NE. 0 ) RETURN 
IF ( LEN .LT. 2 ) bo T O  200 

NUMJNT = IBUF(1) ------ --- --. 
READ IN MAX UNCONSTRAINED DEGREES OF FREEDOM O F  THE MODEL 

MAXDOF = IBUF(1) 
STAGE = 20 
RETURN 

ERROR HANDLING 

CONTINUE 
IERR = 1013 
IF ( MSGLVL .GE. 2 ) CALL IPMSG 
RETURN 

IERR = 1014 
IF ( MSGLVL .GE. 2 ) CALL EMSG 
RETURN 

C 
END 
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C******************* ' f** .+**+***+****Lfl**************************************** 
C******************************************************************************* 
C GETDOF ..... GET DEGREES O F  FREEDOM 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - THIS ROUTINE RETRIEVES THE DEGREE O F  FREEDOM 
FOR EACH INDIVIDUAL JOINT FROM THE DATABASE. 

PARAMETERS INITIALIZED - 
IDOF - IDOF(K) STORES THE STARTING EQUATION NUMBER F O R  

JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS 
GIVEN BY IDOFIK+l I  - IDOFfKI. THE TOTAL NUMBER 
O F  EQUATIONS is EQUAL T O  IDOF(NUMJNTt1)  - 1. 

INDIVIDUAL JOINT. 
MAXDOF - THE MAXIMUM DEGREE OF FREEDOM RETRIEVED FOR AN 

THIS SUBROUTINE MUST BE MODIFIED FOR PROBLEMS WITH 
VARIABLE DEGREES O F  FREEDOM P E R  NODE 

.............................................................................. 

C 

C 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE GETDOF ( IDOF. IBUF ) 

INTEGER'4 IDOF(1). IBUF(1) 

C 

C 

1 

C 

CHARACTER'IO LIBNAM 
CHARACTER*51 
INTEGER'4 IPRNTE, IPRNTS, MAXINT 
INTEGER*4 MSGLVL, IERR, MAXCSM 
INTEGER'4 BUFMAX, MXUSED, MXREQD. STAGE 
INTEGER*4 MAXDOF, NEQNS , NUMJNT 
REAL RATIOS, RATIOL, TIME 

COMMON ICSMSYSI IPRNTE. IPRNTS. MAXINT, RATIOS. RATIOL. TIME 

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD 

COMMON ~ C S M U S R ~  LIBNAM, MSGLVL, IERR, MAXCSM,' 
JDFSET. KMAP. KSPAR. CON. APPLF.  APPLM. STATD 

COMMON ICSMCONI BUPMAX,  MXUSED, MXREQD, STAGE 
COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT 

C 

C 

11 
C 

C 
C 
C 
C 
C 

100 

C 
500 

INTEGER'4 DEGREE, I 

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 ) 
FORMAT( ISX, 'GETDOF - G E T  DEGREES OF FREEDOM ... ' ) 

IF (( STAGE .LT. 20 ) .OR. ( IERR .NE. 0 )) GO TO LOO 

_____________. 
THE FOLLOWING LINES O F  CODE IS TEMPORARY 
F O R  THE-FIXED DEGREE PROBLEMS __----____--- 

DEGREE = MAXDOF 
IDOF(1)  = 1 
DO 100 I = 2. NUMJNT+l  

IDOF(1) = IDOF(1-1)tDEGREE 
IF ( MAXDOF .LT. DEGREE ) MAXDOF = DEGREE 

CONTINUE 
NEQNS = IDOF(NUMJNTt1)  - 1 
STAGE = 30 
RETURN 

CONTINUE 
IERR = 1019 
I F  ( MSGLVL .GE. 2 ) CALL EMSG 
RETURN 
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C 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C**** * * * * *" ."* * * * * * * * * * * * * * * * * * * * * * *~**~"~"*** * * * * * * * * * * * * * * * * * * * * * * * * * * * *"* * * * *  
C GTZERO .... DETECT DUMMY ROWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - THIS ROUTINE IDENTIFIES DUMMY ROWS (ALL ZEROS) IN 
THE DATA MATRIX. 

INPUT PARAMETERS - 
DOF - AN INTEGER ARRAY OF SIZE EQUAL T O  THE TOTAL NUMBER OF 

JOINTS PLUS ONE. 
IDOF(K) STORES THE STARTING EQUATION NUMBER F O R  
JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS 
GIVEN BY I D O F ( K t 1 )  - IDOF(K).  
OF  EQUATIONS IS EQUAL TO IDOF(NUMJNTt1)  ~ 1. 

THE TOTAL NUMBER 

OUTPUT PARAMETERS - 
MASK - THE LINEAR ARRAY MASK STORES A 0 FOR EACH 

ZERO DIAGONAL ELEMENT ENCOUNTERED AND A -1 
F O R  EACH NONZERO DIAGONAL ELEMENT. 

WORKING PARAMETERS - 
FBUF - A BUFFER OF MAXIMUM RECORD SIZE FOR RETRIEVING 

REAL OR DOUBLE PRECISION DATA FORM THE TESTBED. 

ERROR CODES - 
1021 - INCORRECT EXECUTION SEQUENCE. 

SUBPROGRAM MODULES - 
QKINFO, GTRECF. EMSQ 

CSM TESTBED DATASETS ACCESSED ~ 

K.SPAR.* 

REMARK - THIS ROUTINE IS NEEDED F O R  THE CURRENT RELEASE OF 
TESTBED DATABASE BECAUSE THE CONSTRAINT DATASET DOES NOT 
INCLUDE ZERO ROWS. IN ADDITION, NOTE THAT CURRENTLY 
THE TESTBED STORES MAXDOF EQUATIONS P E R  JOINT. THEREFORE, 
DUMMY ROWS MUST BE INSERTED FOR THE JOINTS WITH DEGREES 
LESS THAN MAXDOF. 

C 
C****************************************************************~************** 
C 

C 
SUBROUTINE GTZERO ( DOF, FBUF, MASK ) 

DOUBLE PRECISION FBUF(1)  
INTEGER*4 MASK(I), DOF(1)  

C 

C 

C 

1 

1 

C 

CHARACTER'IO LIBNAM 
CHARACTER'Kl 
CHARACTER'I RTYPE 
INTEGER'I IPRNTE, IPRNTS, MAXINT 
INTEGER'4 IDSN , LDI , NLEN , NREC , TRACE 
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE 
INTEGER'I MSGLVL, IERR, MAXCSM 
INTEGER.4 
REAL RATIOS, RATIOL, TIME 

COMMON ICSMSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON ICSMSPKl IDSN , LDI , NLEN , NREC , RTYPE I 

COMMON ICSMCONI BUFMAX, MXUSED, MXREQD, STAGE 
COMMON ICSMUSRl LIBNAM, MSGLVL, IERR, MAXCSM, 

COMMON IPRBLEMI  MAXDOF , NEQNS , NUMJNT 

JDFSET,  KMAP, KSPAR, CON, APPLF,  APPLM, STATD 

MAXDOF , NEQNS , NUMJNT 

TRACE 

JDFSET, KMAP, KSPAR, CON, APPLF,  APPLM, STATD 
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11 
C 

C 
C 
C 
C 

100 
C 
C 
C 
C 
C 

C 

C 
C 
C 

C 
C 
C 
C 

550 

C 
C 
C 

C 
C 
C 

400 

500 
200 

C 
C 
C 

1 

1 
22 

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 ) 
FORMAT( /5X, 'GTZERO - DETECT DUMMY ROWS ... ' ) 

IF ( ( STAGE .LT. 30 ) .OR. ( IERR .NE. 0 ) ) GO TO 500 

INITIALIZE MASK T O  BE -1 

D O  100 I = 1, NEQNS 
MASK(1) = -1 

CONTINUE 

EACH DATASET IS IDENTIFIED BY A STRING OF 
'MAINKEY.EXTENSION.CYCLEl.CYCLE2.CYCLE5' 
MAXIMUM NUMBER OF CHARACTERS CONTAINED IS 51 

CALL QKINFO ( KSPAR ) 
IF ( IERR .NE. 0 ) RETURN 

OVERHD = 0 
KOUNT = 0 
NZEROS = 0 
TRACE = TRACE + 10 
DO 200 I = 1, NREC 

LEN = NLEN 
CALL GTRECF ( I, FBUF, LEN ) 
IF ( IERR .NE. 0 ) RETURN ____----____- 
DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD ---_----_--- ----- 

JGRPS = PBUF(1)  
ITEMS = 1 
OVERHD = OVERHD + 1 
DO 500 I1 = 1, JGRPS 

CONRNG = FBUF(ITEMS+l)  
JOINT = FBUF(ITEMS+Z) 
NROWS = DOF(JOINT+l )  - DOP(JO1NT) ____--____ 
COMPUTE THE SIZE OF DATA ITEMS. IN TOTAL 
CONRNG SUBMATRICES INCLUDING DIAGONAL SUBMATICES ___----___ 

ISIZE = 0 
DO 550 IS = 1, CONRNG 

CJNT = FBUF(ITEMSS1t IS )  
NCOLS = D O F ( C J N T t 1 )  - DOP(CJNT)  
ISIZE = ISIZE + NROWS*NCOLS 

CONTINUE 
ITEMS = ITEMS + 1 + CONRNG 
OVERHD = OVERHD + 1 + CONRNG 

ACCESS THE DIAGONAL ELEMENTS ON THE DIAGONAL MATRIX 

IROW = DOF(JO1NT).  1 
NCOLS = NROWS 
DO 4 0 0  IS = 1, NCOLS 

COEF = PBUP(ITEMS+l:IS-l)*NROWS+IS) 

A DUMMY ROW IS DETECTED 

I F  ( COEF .EQ. O.ODO ) THEN 
MASK ( I R O W  + IS ) := 0 
KOUNT = KOUNT + :L 

ENDIF 
CONTINUE 

ITEMS = ITEMS + ISIZE 
NZEROS = NZEROS + ISIZE 

CONTINUE 
CONTINUE 

STAGE = 40 

PRINT DEBUGGIN DATA ... 
I F  ( MSGLVL .GE. 5 ) WRITE ( IPRNTS, 22 ) KOUNT, 

OVERHD, NZEROS 
FORMAT ( lSX,  'NUMBER OF DUMMY ROWS: ' , I8 

115X. 'K.SPAR.* INDEX OVERHEAD:'. I8 
1 j15X; 'K.SPAR.* NONZEROS : ' , IB j 
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RETURN 

SO0 CONTINUE 
c 
C ERRORHANDLING ... 
c 

IERR = 1021 
IF ( MSGLVL .GE. 2 ) CALL EMSG 
RETURN 

C 
END 
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C**********L***************~******************************~********************** 
C GTCOND .... RETRIEVE CONSTRAINT INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - THIS ROUTINE RETRIEVES THE CONSTRAINED COMPONENTS 
OF EACH JOINT AND TREATS THE DUMMY ROWS AS CONSTRAINED 
TO BE ZERO. 

INPUT PARAMETERS - 
D O F  - AN INTEGER ARRAY OF SIZE EQUAL TO THE TOTAL NUMBER OF 

JOINTS PLUS ONE, 
IDOF(K) STORES THE STARTING EQUATION NUMBER FOR 
JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS 
GIVEN BY IDOF(K+I )  - IDOF(K). THE TOTAL NUMBER 
OF EQUATIONS IS EQUAL TO IDOF(NUMJNTt1)  - 1. 

MASK - RECORD OF DUMMY ROWS. 

OUTPUT PARAMETERS - 
MASK - RECORD OF CONSTRAINED VARIABLES IN ADDITION TO 

DUMMY ONES. 
CSIZE - TOTAL NUMBER 01' NONZERO CONSTRAINTS. 

WORKING PARAMETERS - 
IBUF - A BUFFER OF MAXIMUM RECORD SIZE FOR RETRIEVING 

KC 
INTEGER DATA FORM THE TESTBED. - AN TEMPORARY INTEGER ARRAY OF SIZE ( M A X D O F t I )  
NEEDED IN DECODING THE CONSTRAINT DATA. 

E R R O R C O D E S -  
1022 - INCORRECT EXECUTION SEQUENCE. 

SUBPROGRAM MODULES - 
QKINFO, GTRECI, DECODE, EMSG 

CSM TESTBED DATASETS AClCESSED - 
CON..* OR CON..i ( IF  MULTIPLES EXISTS IN DATA LIBRARY) 

REMARKS - 
IT IS ASSUMED THAT THE CONSTRAINED DATA IS STORED 
IN THE DATASET IN THE ORDER OF JOINT NUMBERS. 

C**' 
C 

CHARACTER.40 LIBNAM 
CHARACTER*Il  
CHARACTER*I RTYPE 
INTEGER'I IPRNTE, IPRNTS, MAXINT 
INTEGER'I IDSN , L D I  , N L E N  , N R E C  , T R A C E  
INTEGER'I BUFMAX, MXUSED, MXREQD, STAGE 
INTEGER'I MSGLVL, IERR, MAXCSM 
INTEGER*I 
REAL RATIOS, RATl:OL, TIME 

COMMON ICSMSYSI IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON ICSMSPKl IDSN , LDI , NLEN , NREC , RTYPE . 
COMMON ICSMCONl BUFMAX, MXUSED, MXREQD, STAGE 
COMMON ICSMUSRI L1BNA.M. MSGLVL. IERR. MAXCSM. 

JDFSET, KMAP, KSPAR, CON. APPLF. APPLM, STATD 

MAXDOP , NEQNS , NUMJNT 

C 

1 TRACE 

1 ' JDFSET,'KMAP, KSPAR, CON, APPLF, APPLM, STATD 
COMMON IPRBLEMI MAXDOF , NEQNS , NUMJNT 

C 
INTEGER'I I, 11, IRO W, JOINT, K, LEN, DEGREE, ZKOUNT,FKOUNT, 

1 ZDUMMY 
C 
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11 
C 

C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

500 

200 
100 

C 
C 
C 
C 

400 

C 
C 
C 

1 

1 
1 
1 

22 

C 
300 

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 ) 
FORMAT( ISX, 'GTCOND - G E T  CONSTRAINTED VARIABLES... ' 

I F  ( ( STAGE .LT. 40 ) .OR. ( IERR .NE. 0 ) ) GO TO 500 

EACH DATASET IS IDENTIFIED BY A STRING OF 
'MAINKEY.EXTENSION.CYCLEl.CYCLE2.CYCLE3~ 
MAXIMUM NUMBER OF CHARACTERS CONTAINED IS 51 

CALL QKINFO ( CON ) 
I F  ( IERR .NE. 0 ) RETURN 
TRACE = TRACE + 10 

KOUNTING NONZERO CONSTRAINTS 

CSIZE = 0 

KOUNTING ZERO CONSTRAINTS _________ 
ZKOUNT = 0 
JOINT = 1 
DO 100 I = 1, NREC 

LEN = NLEN 
CALL GTRECI ( I, IBUF, LEN ) 
IF ( IERR .NE. 0 ) RETURN 
DO 200 I1 = 1, LEN 

I F  ( JOINT .GT. NUMJNT ) G O  TO '200 

CONSTRAINTS ARE ENCODED INTO 7 BITS 
WHICH ARE DECODED INTO AN INTEGER 
ARRAY KC OF SIZE 7 ! 

CALL DECODE ( IBUF(II), KC ) 
DEGREE = D O F ( J O I N T t 1 )  - DOF(JO1NT) 
IROW = D O F ( J 0 I N T )  - 1 
DO 500 K = 1, DEGREE 

IF ( KC(K) .EQ. 1 ) THEN 

ZERO CONSTRAINTS 

MASK(IROW+K) = 0 
ZKOUNT = ZKOUNT + 1 

ELSE I F  ( KC(K) .EQ. '2 ) THEN 

NONZERO CONSTRAINTS 
_______ 

MASK(IROW+K) = 1 
CSIZE = CSIZE + 1 

ENDIF 
CONTINUE 

JOINT = JOINT + 1 
CONTINUE 

CONTINUE 

KOUNTING UNCONSTRAINED DEGREES OF FREEDOM AND 
THE N E T  ZERO CONSTRAINTS INCLUDING DUMMY ROWS 

--__---------__ 

---_-___---____ 
FKOUNT = 0 
ZDUMMY = 0 
DO 400 I = 1, NEQNS 

IF ( MASK(1) .EQ. -1 ) FKOUNT = FKOUNT + 1 
IF ( MASK(1) .EQ. 0 ) ZDUMMY = ZDUMMY + 1 

CONTINUE 
STAGE = 60 

PRINT DEBUGGING DATA ... 
IF ( MSGLVL .GE. 3 ) WRITE (IPRNTS, 22) ZKOUNT, CSIZE, 
FKOUNT, ZDUMMY 
FORMAT( 13X, 26H ZERO CONSTRAINTS ARE , I8 

/ lSX,  ZBHNONZERO CONSTRAINTS ARE 
I l S X ,  26HFREE VARIABLES ARE 
/ lSX,  26HDUMMY ROWS + 0 CONSTRAINTS, I8 ) 

, I8 
, I8 

RETURN 

CONTINUE 
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c -_--_ 
C ERROR HANDLING 
c 

IERR = 1022 
IF ( MSGLVL .DE. 2 ) CALL EMSG 
RETURN 

C 
END 
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................................................................................. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C GTMOTI .... GET NONZERO CONSTRAINTS 
................................................................................. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - TO RETRIEVE NUMERIC F O R  NONZERO CONSTRAINTS. 

INPUT PARAMETERS 
MASK - CONSTRAINT INFORMATION FOR EACH VARIABLE. 

OUTPUT PARAMETERS 
MASK - THE LOCATIONS CORRESPONDING TO NONZEROR CONSTRAINTS 

CONTAIN A POINTER TO THE NUMERIC VALUE IN FCON. 
FCON - AN ARRAY O F  CSIZE FLOATING-POINT CONSTRAINTS. 

WORKING PARAMETERS 
FBUF - A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX. 

THE ACTUAL T Y P E  IS AS DECLARED. 

ERROR CODES - 
1026 - INCORRECT EXECUTION SEQUENCE. 
1026 - UNEXPECTED NONZERO CONSTRAINT VALUE. 
lO2P - ZERO ENTRY FOR A NONZERO CONSTRAINT OCCURS. 

SUBROUTINE PROGRAMS - 
QKINFO. GTRECF, EMSG. 

CSM TESTBED DATASETS ACCESSES. 
APPL.MO T1.i.j. 

REMARKS - 
IT IS ASSUMED THAT THE CONSTRAINT VALUES ARE STORED 
IN SEQUENCE FROM 1 TO NEQNS. -__----__-----____ 

C******************************************************************************** 
C 

C 
SUBROUTINE GTMOTI ( FBUF, MASK, FCON, CSIZE ) 

INTEGER'4 MASK(I), CSIZE 
DOUBLE PRECISION FBUF(I ) ,  FCON(1) 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

CHARACTER'IO LIBNAM 
CHARACTER*61 
CHARACTER*4 RTYPE 
INTEGER*4 IPRNTE, IPRNTS, MAXINT 
INTEGER.4 IDSN , L D I  , N L E N  , N R E C  , T R A C E  
INTEGER'4 BUFMAX, MXUSED, MXREQD, STAGE 
INTEGER.4 MSGLVL, IERR, MAXCSM 
INTEGER*4 
REAL RATIOS, RATIOL, TIME 

COMMON ICSMSYSI IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON ICSMSPKI IDSN , LDI , NLEN , NREC , RTYPE , 
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE 
COMMON ICSMUSRI LIBNAM, MSGLVL, IERR, MAXCSM, 

COMMON IPRBLEMI MAXDOF , NEQNS , NUMJNT 

JDFSET, KMAP, KSPAR, CON, APPLF,  APPLM, STATD 

MAXDOP , NEQNS , NUMJNT 

C 

1 TRACE 

1 JDFSET, KMAP, KSPAR, CON, APPLF,  APPLM, STATD 

C 
C*****************. .************************************************************* 
C 

C 
INTEGER'4 NITEMS, K P T R ,  LEN, I, J 

I F  ( MSGLVL .DE. 3 ) WRITE ( IPRNTS, 11 ) 
11 FORMAT( I S X ,  'GTMOTI . G E T  NONZERO CONSTRAINTS... ' ) 

C 

C 

C 
C NONZERO CONSTRAINTS ARE NOT EXPECTED 

IF (( STAGE .LT. 60 ) .OR. ( IERR .NE. 0 ) ) GO T O  1000 

IF ( CSIZE .EQ. 0 ) THEN -----__----_ 
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C 
IF ( MSGLVL .GE. 5 ) WRITE ( IPRNTS, 21 ) 
FORMAT( /lox, 'APPLIED DISPLACEMENTS ARE NOT EXPECTED.') 

STAGE = 60 
RETURN 

21 

ENDIF 
C c _-I---------_ 

C 
c 

RETRIEVE NEQNS ITEMS FORM 'APPL.MOTI.* ' 

CALL QKINFO ( APPLM ) 
I F  ( IERR .NE. 0 ) RETURN 
TRACE = TRACE + 10 
NITEMS = 0 
K P T R  = 0 
DO 100 I = 1, NREC 

LEN = MINO ( NEQNS - NITEMS, NLEN ) 
I F  ( LEN .GT. 0 ) THEN 

CALL GTRECF ( I, FBUF, LEN ) 
I F  ( IERR .NE. 0 ) RETURN 
DO 200 J = 1, LEN 

NITEMS = NITEMS 4- 1 
C 
C 
C 

C 
C 
C 

C 
C 
C 

CHECK ERROR DUE T O  INCONSISTENT CONSTRAINT VALUES 

1 

1 

IF (( MASK(N1TEMS) .NE. 1 ) .AND. 

I F  (( MASK(N1TEMS) .EQ. 1 ) .AND. 

IF ( MASK(N1TEMS) .EQ. 1 ) THEN 

( FBUF(J )  .NE. O.ODO )) GO TO 1100 

( FBUP(J )  .EQ. O.OD0 )) GO TO 1200 

ENTER NUMERIC FOR NONZERO CONSTRAINT 

200 

100 

C 
C 
C 
C 
1000 

C 
1100 

K P T R  = K P T R  + 1 
FCON(KPTR)  = FBUP(J )  

STORE THE ADDRESS POINTER IN MASK 

MASK(N1TEMS) = KlPTR 
ENDIF  

CONTINUE 
ENDIF 

CONTINUE 
STAQE = 60 
RETURN 

ERROR HANDLING 

CONTINUE 
IERR = 1025 
IF ( MSGLVL .GE. 2 ) CALL EIMSG 
RETURN 

CONTINUE 
IERR = 1026 
I F  ( MSGLVL .GE. 2 ) CALL EMSG 
RETURN 

C 
1200 CONTINUE 

IERR = 1027 
IF ( MSGLVL .DE. 2 ) CALL BMSG 
RETURN 

C 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

................................................................................ 
C GETIJ .... INPUT NONZERO STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C************L*******~******lf++++*+LL************************~*************** 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - TO RETRIEVE NONZERO STRUCTURES FROM DATASET KMAP..* 
AND INPUT THE SAME TO SPARSPAK-A. 

INPUT PARAMETERS 
D O F  - AN INTEGER ARRAY OF SIZE EQUAL TO THE TOTAL NUMBER OF 

JOINTS PLUS ONE. 
IDOF(K) STORES THE STARTING EQUATION NUMBER F O R  
JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS 
GIVEN BY I D O F ( K t 1 )  - IDOF(K). THE TOTAL NUMBER 
OF EQUATIONS IS EQUAL T O  IDOF(NUMJNTt1)  - 1. 

MASK ~ CONSTRAINT INFORMATION FOR EACH VARIABLE. 

OUTPUT PARAMETERS 
S - NONZERO STRUCTURES SET UP BY SPARSPAK-A. 

WORKING PARAMETERS 
IBUF - AN INTEGER BUFFER O F  SIZE BUFMAX. 
ICLQ - A TEMPORARY ARRAY OF SIZE MAXDOF. 

ERROR CODES - 
1025 - INCORRECT EXECUTION SEQUENCE. 

SUBROUTINE PROGRAMS - 
QKINFO, GTRECI,  EMSG 

SPRSPAK-A SUBROUTINES - 
IJBEGN, INCLQ. INIJ, IJEND. 

CSM TESTBED DATASETS ACCESSES. 
KMAP..* 

C 
C*** .*** . ****~.*** . **********************~******** . **** . *******~*****~***********  
C 

C 

C 

SUBROUTINE GETIJ  ( DOF, IBUF, ICLQ, MASK, S ) 

INTEGER'I D O F ( I ) ,  IBUF( l ) ,  ICLQ(1). MASK(1). S ( l )  

C 

C 

1 

1 

c: 

CHARACTER*40 LIBNAM 
CHARACTER'S1 
CHARACTER*I RTYPE 
INTEGER'I IPRNTE, IPRNTS, MAXINT 
INTEGER*4 IDSN , L D I  ,NLEN , N R E C  , T R A C E  
INTEGER'I BUFMAX, MXUSED, MXREQD, STAGE 
INTEGER*4 MSGLVL, IERR, MAXCSM 
INTEGER'I 
REAL RATIOS, RATIOL, TIME 

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE , 

COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE 
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM, 

COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT 

JDFSET,  KMAP, KSPAR, CON, APPLF,  APPLM. STATD 

MAXDOF , NEQNS , NUMJNT 

TRACE 

JDFSET, KMAP, KSPAR, CON, APPLF,  APPLM, STATD 

C 

1 
1 

C 

11 
C 

C 

C 
C 

INTEGER*( CONRNG, I ,  11, ICOL, IROW, ITEMS, J, JGRPS,  JOINT, 
K, NCLQ, LEN, IX, JX,  LRNG, NODES, J J , N R O W S ,  
NCOLS 

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 ) 
FORMAT( /SX, 'GETIJ - INPUT NONZERO STRUCTURES ... ' ) 
IF (( STAGE .LT, 60 ) .OR. ( IERR .NE. 0 ) ) GO TO 1000 

CALL IJBEGN ____-_---__-_-__ 
INIJ INSURES NONZERO FOR ALL DIAGONAL ELEMENTS 
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C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

C 
C 
C 

IF POSITION (NEQNS, NEQNS) IS ENTERED 

CALL INIJ ( NEQNS, NEQNS , S ) 

ACCESS EACH RECORD IN DATA SET 'KMAP..* ' 
CALL QKINFO ( KMAP ) 
IF ( IERR .NE. 0 ) RETURN 
TRACE = TRACE + 10 
DO 100 I = 1, NREC 

LEN = NLEN 
CALL GTRECI ( I, IBUF, LEN ) 
IF ( IERR .NE. 0 ) RETURN 

DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD 

JGRPS = IBUF(1) 
ITEMS = 1 
DO 200 I1 = I ,  JGRPS 

G E T  THE CURRENT JOINT AND COMPUTE THE ROW NUMBER 

JOINT = IBUF( ITEMSt1)  

NUMBER O F  DEGREES F O R  CURRENT JOINT 

NROWS = DOF(JOINT+I )  - DOF(JO1NT) 

COMPUTE THE THE ROW NUMBER BY IROW + K, 
WHERE IROW IS GREATER THAN OR EQUAL T O  0 

IROW = DOF(JO1NT) - f 
NCLQ = 0 
DO 300 K = 1, NROWS 

I F  ( MASK ( IROW + :K ) .EQ. -1 ) THEN 

THIS ROW IS NOT CONSTRAINED _________ 
NCLQ = NCLQ + 1 
ICLQ(NCLQ) = IROW + K 

ENDIF 
300 CONTINUE 

C 
C INPUT DIAGONAL BLOCK TO SPARSPAK 
C 

C 
C SKIP UNRELATED ITEMS IN CURRENT JOINT GROUP 
C 

IF ( NCLQ .GT. 0 ) CALL INCLQ( NCLQ, ICLQ, S ) 

LRNG = IBUF( ITEMSt2)  
ITEMS = ITEMS + 1 
D O  azo JJ = 1, LRNG 

NODES = IBUF(1TEMS + 1) 
ITEMS = ITEMS + 6 + (NODES"(NODES+I))/Z 

220 CONTINUE 
C 
C 
C 

C 
C 
C 
C 

_--. 
NUMBER OF SUBMATRICES FOR THE CURRENT JOINT 

CONRNG = IBUF(ITEMS+I)  
ITEMS = ITEMS + 1 

ENTER NONZERO IN 'THE CONNECTED SUBMATRIX 
IN ADDITION TO THE DIAGONAL SUBMATRIX 

DO 400 J = 1, CONRNG-1 
JOINT = IBUF(1TEMS + J )  

DEGREE OF FREEDOM OF THE CONNECTED JOINT 

NCOLS = DOF(JOINT+l ) -  DOF(JO1NT) 

COMPUTE STARTING COLUMN NUMBER 

ICOL = DOF(JO1NT) - 1 

COMPUTE NONZERO POSITION COLUMN BY COLUMN 
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1 
C 
C 
C 
C 

550 
500 
400 

C 
C 
C 
200 

C 
C 
C 

C 
100 

C 
1000 
C 
C 
C 

D O  500 J X  = 1, NCOLS 
DO 660 IX = 1, NROWS 

IF ( ( M A S K ( I C 0 L t J X )  .EQ. - 1  ) .AND. 
( M A S K ( I R 0 W t I X )  .EQ. -1  ) ) THEN 

T H E  CORRESPONDING VARIABLES 
ARE N O T  CONSTRAINED 

-----____ 

CALL INIJ  ( IROWSIX,  I C O L t J X ,  S ) 
ENDIF 

CONTINUE 
CONTINUE 

CONTINUE 
ITEMS = ITEMS t Z'CONRNG - 1 

END O F  CURRENT JOINT GROUP 

CONTINUE 

END O F C U R R E N T R E C O R D  _______ 
CONTINUE 

CALL IJEND ( S ) 
STAGE = 70 
RETURN 

CONTINUE 

ERROR HANDLING 

IERR = 1023 
IF ( MSGLVL .DE. 2 ) CALL EMSG 
RETURN 

C 
E N D  
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - TO RETIEVE RIGHT HAND SIDE FROM DATASET APPL.PORC.i.j 
AND INPUT THOSE COMPONENTS CORRESPONDING TO UNCONSTRAINED 
VARIABLES T O  SPARSPAK-A,. 

INPUT PARAMETERS 
MASK - CONSTRAINT INFOELMATION FOR EACH VARIABLE. 
S - INPUT TO SPARSPAK-A ROUTINES. 

OUTPUT PARAMETER 
S - SPARSPAK-A OUPUT. 

WORKING PARAMETERS 
FBUF - A REAL OR DOUBLE, PRECISION BUFFER O F  SIZE BUFMAX. 

THE ACTUAL T Y P E  IS AS DECLARED. 

ERROR CODES - 
1024 - INCORRECT EXECUTION SEQUENCE. 

SUBROUTINE PROGRAMS - 
QKINFO, GTRECF, EMSG. 

SPRSPAK-A SUBROUTINES - 
INBI. 

CSM TESTBED DATASETS ACCESSES - 
APPL.FORC.i.j. 

~ 

REMARKS - 
I T  IS ASSUMED THAT THE ROWS CORRESPONDING TO DUMMY AND 
CONSTRAINED VARAIBLES ARE INCLUDED IN THE DATA MATRIX. 

C 

C 

1 

1 

C 

CHARACTER*40 LIBNAM 
CHARACTER.51 
CHARACTER*4 RTYPE 
INTEGER*4 IPRNTE, IPRNTS, MAXINT 
INTEGER'4 IDSN . L D I  .NLEN . N R E C  . T R A C E  

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD 

~~ ~~ ~ ~ 

INTEQER'4 
INTEGER'I 

BUFMAX. MXUSED, MXREQD; STAGE 
MSGLVL. IERR. MAXCSM 

INTEGER'I MAXDOF , NEQNS , NUMJNT 
REAL RATIOS, RATIOL, TIME 

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE , 
COMMON ICSMCONI BUFMAX. MXUSED. MXREQD. STAGE 

TRACE 

COMMON ~ C S M U S R ~  LIBNAM, MSGLVL, IERR, MAXCSM, 
JDFSET, KMAP, KSPAR, CON, APPLF,  APPLM, STATD 

COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT 

I F  (( STAGE .LT. 70 ) .OR. ( IERR .NE. 0 ) ) GO T O  1000 
C c 
C RETRIEVE RIGHT HAND SIDE FORM 'APPL.FORC.* ' 
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C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

200 

100 

C 
900 

C 
C 
C 

11 

C 
1000 
C 
C 
C 

C 

CALL QKINFO ( APPLF ) 

NOTE APPLYPORC..  DOES NOT NECESSARILY EXIST -___-__________ 
IF ( IERR .NE. 0 ) GO T O  900 
TRACE = TRACE + 10 
IROWS = 0 
DO 100 I = 1, NREC 

LEN = MINO ( NEQNS - IROWS, NLEN ) 
IF ( LEN .GT. 0 ) THEN _-___. 

READ NEXT RECORD 

CALL GTRECF ( I, FBUF, LEN ) 
IF ( IERR .NE. 0 ) RETURN 

RETRIEVE EACH ITEM IN CURRENT RECORD 

DO 200 J = 1, LEN 
IROWS = IROWS + 1 
I F  ( MASK ( IROWS ) .EQ. -1  ) THEN 

THE VARIABLE IS NOT CONSTRAINED __________. 
CALL INBI ( IROWS, PBUF(J),  S ) 

ENDIF 
CONTINUE 

ENDIF 
CONTINUE 

STAGE = 80 
RETURN 

CONTINUE 

RIGHTHAND SIDE DOES NOT EXIST 

IF ( MSGLVL .GE. 3 ) WRITE ( IPRNTS, 21 ) 

IERR = 0 
STAGE = 80 
RETURN 

FORMAT( /lox, 'THERE IS NO APPLIED FORCE VECTOR') 

CONTINUE 

ERROR HANDLING 

IERR = 1024 
IF ( MSGLVL .GE. 2 ) CALL EMSG 
RETURN 

END 
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................................................................................ 
C******************************************************************************~ 
C 
................................................................................ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

GTNUMS ... INPUT NONZERO NUMERICS 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - T O  RETRIEVE AND INPUT NUMERICAL NONZEROS OF THE 
SYSTEM MATRIX. IN ADDITION, RIGHT HAND SIDE IS APPROP- 
RIATELY ADJUSTED USING CONSTRAINTS AVAILABLE. 

INPUT PARAMETERS 
DOF - AN INTEGER ARRAY OF SIZE EQUAL T O  THE TOTAL NUMBER OF 

JOINTS PLUS ONE. 
IDOF(K) STORES THE STARTING EQUATION NUMBER FOR 
JOINT K,  THE DEGREIES OF FREEDOM FOR JOINT K IS 
GIVEN BY IDOF(K+I )  - IDOF(K). THE TOTAL NUMBER 
OF EQUATIONS IS EQUAL T O  IDOF(NUMJNT+l)  - 1. 

CONTAIN A POINTER TO THE NUMERIC VALUE IN FCON. 
THE OTHER LOCATIONS INDICATE FREE OR CONSTRAINED 
TO ZERO VARIABLES. 

FCON - AN ARRAY OF CSIXE FLOATING-POINT CONSTRAINTS. 
S - STORAGE ARRAY F O R  SPARSPAK-A. 

MASK - THE LOCATIONS CORRESPONDING TO NONZEROR CONSTRAINTS 

WORKING PARAMETERS 
FBUF - A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX. 

THE ACTUAL T Y P E  IS AS DECLARED. 

ERROR CODES.  
1028 - INCORRECT EXECUTION SEQUENCE, 

SUBROUTINE PROGRAMS - 
QKINFO, GTRECF,  EMSG. 

SPARSPAK-A ROUTINES - 
INAIJII, INBI. 

CSM TESTBED DATASETS ACCESSES - 
K.SPAR.*. 

REMARKS - 
IT IS ASSUMED THAT THE VARIABLES ARE ORDERED IN THE 
GIVEN ORDER OF THE JOINTS AND DEGREES. 

" 
C 

C 
SUBROUTINE GTNUMS ( DOF, FBUF, MASK, FCON, S ) 

INTEGER'I DOF( I ) ,  MASK(1) 
DOUBLE PRECISION P B U F ( l ) ,  FCON(l) ,  S ( 1 )  

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 

1 

1 

C 

CHARACTER'IO LIBNAM 
CHARACTER.51 
CHARACTER'I RTYPE 
INTEGER'I IPRNTE, IPRNTS, MAXINT 
INTEGER'4 IDSN , L D I  , N L E N  , N R E C  , T R A C E  
INTEGER.4 BUFMAX, MXUSED, MXREQD, STAGE 
INTEGER"4 MSGLVL, IEIRR, MAXCSM 
INTEGER*I 
REAL RATIOS, RATIOL, TIME 

COMMON lCSMSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON ICSMSPKl IDSN , LDI , NLEN , NREC , RTYPE , 
COMMON {CSMCONl BUFMAX, MXUSED, MXREQD, STAGE 
COMMON ICSMUSRI LIBNAM, MSGLVL, IERR, MAXCSM, 

COMMON IPRBLEMl  MAXUOF . NEQNS , NUMJNT 

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM. STATD 

MAXDOF , NEQNS , NUMJNT 

TRACE 

JDFSET, KMAP, KSPAR, CON, APPLF,  APPLM, STATD 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

INTEGER'I CONRNG, I, 11, ICOL, IROW, ISTRT, ITEMS, 
1 JGRPS,  JOINT, M, MTXKNT, MYI, MYJ, NCOL, 
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1 

11 
C 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

1 

C 
C 
C 

1 

1 

1 
C 

NROW, LEN , NCOLS, NROWS 
DOUBLE PRECISION COEF, BIX. BJX 

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 ) 
FORMAT( /SX, 'GTNUM5 . G E T  NONZERO NUMERIC ... ' ) 
IF (( STAGE .LT. 80 ) .OR. ( IERR .NE. 0 ) ) GO T O  1000 

_____--------- 
ACCESS EACH RECORD IN DATA SET 'K.SPAR.* ' 

CALL QKINFO ( KSPAR ) 
IF ( IERR .NE. 0 ) RETURN 
TRACE = TRACE + 10 
DO 100 I = 1, NREC 

LEN = NLEN 
CALL GTRECF ( I ,  FBUF, LEN ) 
IF ( IERR .NE. 0 ) RETURN 

DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD 

JGRPS = PBUF(1) 
ITEMS = 1 
DO 200 I1 = 1, JGRPS 

G E T  NUMBER OF SUBMATRICES ________. 
CONRNG = FBUF(ITEMS+l)  

G E T  THE CURRENT JOINT 
__----- 
--_---- 

JOINT = FBUF(ITEMS+I)) 
IROW = DOF(JO1NT) ~ 1 
NROWS = D O F / J O I N T + l )  - D O F ( J 0 I N T )  
ISTRT = ITEMS -t i + CONRNG . 
RETRIEVE U P P E R  TRIANGULAR PART OF DIAGONAL SUBMATRIX 

NCOLS = NROWS 
DO 400 NCOL = 1, NCOLS 

MYJ = IROW + NCOL 
DO 500 NROW = 1, NROWS 

ISTRT = ISTRT -+ 1 
I F  ( NROW .GT. NCOL ) GO T O  500 
COEF = FBUF(1STRT) 
MY1 = IROW + NROW ----------- 
RETRIEVE THE NONZERO CONSTRAINTS 

I F  ( MASK(MY1) .GT. 0 ) BIX = FCON(MASK(MY1)) 
I F  ( MASK(MYJ) .GT. 0 ) BJX = FCON(MASK(MYJ)) 
I F  ( MY1 .EQ. MYJ ) THEN 

I F  ( MASK(MY1) .NE. -1 ) THEN 

CHANGE DIAGONAL ELEMENT T O  B E  1.ODO 
F O R  CONSTRAINED R O W  

COEF = 1.ODO 

ENTER NONZERO CONSTRAINT VALUE AS RHS ----------- 
I F  ( MASK(MY1) .GT. 0 ) 

CALL INBI ( MYI, BIX, S ) 
ENDIF _________ 
INPUT DIAQONAL ELEMENT COEF -________ 

CALL INAIJS ( MYI, MYI, COEF, S ) 
ELSE IF ((MASK(MYJ) .GT. 0 ) .AND. 

(MASK(MY1) .EQ. -1 )) THEN 
CALL INBI ( MYI, -COEF*BJX, S ) 

(MASK(MYJ) .EQ. -1 )) THEN 
CALL INBI ( MYJ, -COEF*BIX, S ) 

ELSE IF ((MASK(MY1) .GT. 0 ) .AND. 

ELSE I F  ((MASK(MY1) .EQ. -1) .AND. 
(MASK(MYJ) .EQ. -1)) THEN 
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C 
C 

500 
C 
C 
C 
400 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

1 
C 
C 
C 
C 

1 

1 

1 

1 

900 
C 
C 
C 

C 
C 
C 

C 
C 
C 

800 

600 

199 
200 

C 
C 
C 

I N P U T  C O E F  IN LOWER TRIANGULAR MATRIX 

CALL INAIJ5 ( MYJ, MYI, COEF, S ) 
ENDIF 

CONTINUE 

NEXT COLUMN IN DIAGONAL SUBMATRIX 

CONTINUE 

RETRIEVE OFF-DIAGONAL SUBMATRICES IN THE UPPER 
TRIANGULAR P A R T  OF THE SYSTEM STIFFNESS MATRIX 

MTXKNT = CONRNG - 1 
I F  ( MTXKNT .EQ. 0 ) G O  T O  199 
ITEMS = ITEMS + 2 
DO 6 0 0  M = 1, MTXKNT 

JOINT = FBUF(1TEMS + M) 
ICOL = DOF(JO1NT) .  1 
NCOLS = D O F ( J O I N T t 1 ) .  DOF(JO1NT) 
DO 800 NCOL = 1, NCOLS 

MYJ = ICOL + NCOL 
DO BOO NROW = 1, NROWS 

ISTRT = ISTRT -I 1 
C O E F  = FBUF(ISTR1P) 
MY1 = IROW + NROW 

RETRIEVE NONZERLO CONSTRAINTS 

IF ( MASK(MY1) .GT. 0) BIX = FCON(MASK(MY1)) 
IF ( MASK(MYJ) .GT. 0) BJX = FCON(MASK(MYJ)) 

I N P U T  COEF O R  MODIFY RIGHT HAND SIDE 

IF (( MASK(MY1) .EQ. -1  ) .AND. 
( MASK(MYJ) .EQ. -1 )) THEN 

ENTER COEF WITH SYMMETRIC POSITION 
IN LOWER TRIANGULAR T O  SPARSPAK-A 

IF ( MY1 .LT. MYJ ) 

IF ( MY1 .GT. MYJ 1 
CALL INAIJli ( MYJ, MYI, COEF, S ) 

CALL INAIJ5 ( MYI, MYJ,  COEF, S ) 
ELSE IF ( (MASK(MY1) .GT. 0 ) .AND. 

CALL INBI ( MYJ, -COEF*BIX, S ) 
ELSE I F  ( (MASK(MYJ) .GT. 0 ) .AND. 

(MASK(MY1) .EQ. -1) ) THEN 
CALL INBI ( MYI, -COEF*BJX, S ) 

(MASK(MYJ) .EQ. -1) ) THEN 

ENDIF 
CONTINUE 

NEXT COLUMN 

CONTINUB 

NEXT SUBMATRIX 

CONTINUE 

PROCESS THE NEXT JOINT GROUP I N  THE CURRENT RECORD 

ITEMS = ISTRT 
CONTINUE 

N E X T R E C O R D  

100 CONTINUE 
STAQE = 90 
RETURN 

C 
1000 CONTINUE 
c 
C ERROR HANDLING 
c 

IERR = 1028 
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IF ( MSGLVL .GE. 2 ) CALL EMSG 
RETURN 

C 
END 
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C.********************************. .*************~******************~************* 
Ca**** * * * * * * * * * * * * * * ' t *L** . * * * . l . I . . l t t * * * * * * * *v** * *~*~*** * * * * * * * * *a** * * * * * * * * *~**  

C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C 
C SUBROUTINE PROGRAMS.  
C EMSG. 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 

C 

SPACE .... CHECK AVAILABLE STORAGE 

PURPOSE - CHECK STORAGE REQUIRED AGAINST STORAGE AVAILABLE. 

INTEGER FUNCTION SPACE ( IDUMMY ) 

INTEGER*4 IDUMMY 

CHARACTER*4O LIBNAM 
CHARACTER'S1 CDUMMY 
INTEGER*4 MSGLVL , IERR , MAXCSM 
INTEGER'I BUFMAX, MXlJSED, MXREQD, STAGE 

COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(7) 
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE 

C 

C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

IF ( MXREQD .LE. MAXCSM ) THEN 
SPACE = 0 
RETURN 

SPACE = 1 
GO TO 100 

ELSE 

ENDIF 
C c 
C ERROR HANDLINQ c 
100 CONTINUE 

IERR = 1001 
I F  ( MSGLVL .GE. 2 ) CALL EMSG 
RETURN 

C 
END 
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C**********************************************.********************************* 
C***LLLLL.*+*********** t t l t l *** I l ***** t f****************************************a 

C LIBOPN .... OPEN DATA LIBRARY ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
~ X L * * * * * * * * * * L * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C 
C PURPOSE - THIS ROUTINE OPENS AN EXISTING LIBRARY RESIDENT 
C ON A DISKFILE OR MAIN STORAGE, AND CONNECTS I T  T O  A 
C LOGICAL DEVICE INDEX (LDI). THE NAME O F  THE LIBRARY 
C IS SPECIFIED BY PARAMETER LIBNAM. 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PARAMETERS INITIALIZED - 
LDI - LOGICAL DEVICE INDEX ASSIGNED TO THE EXTERNAL 

DEVICE SPECIFIED BY LIBNAM. 

E R R O R C O D E S -  
0 - N O E R R O R .  
1011 - UNSUCCESSFUL OPEN. 
1012 - THE LOGICAL DEVICE NUMBER EXCEEDS THE MAXIMUM VALUE 

O F  30. 
C 
C GAL-PROCESSOR ENTRY POINTS - 
C LMOPEN, EMSG. 
C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

SUBROUTINE LIBOPN 

CHARACTER'IO LIBNAM 
CHARACTER'LI 
CHARACTER'I RTYPE 
INTEGER*4 IPRNTE, IPRNTS, MAXINT 
INTEGERl4 MSGLVL, IERR , MAXCSM 
INTEGER'4 IDSN , L D I  , N L E N  , N R E C  , T R A C E  
INTEGER*4 ICPAD , STAGE 
REAL RATIOS, RATIOL, TIME 

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON ICSMUSRl LIBNAM, MSGLVL, IERR , MAXCSM, 

COMMON ICSMSPKl IDSN , LDI , NLEN NREC , RTYPE , 

COMMON ICSMCONl ICPAD(3), STAGE 

INTEGER'I LMOPEN 

JDFSET. KMAP. KSPAR, CON, APPLF,  APPLM. STATD 

C 

1 

1 TRACE 

JDFSET, KMAP, KSPAR, CON, APPLF,  APPLM, STATD 

C 

C 
C**** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *~*** * * * * * * * * * * *~*** * * * * * * * * * * *  
C 

C 

11 
C 

C 
C 
C 
C 

C 
C 
C 

1 
21 

1 
1 
1 
1 

CHARACTER* 10 LIBKEY 
INTEGER*4 LIMIT 

I F  ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 ) LIBNAM 
FORMAT ( ISX, 'LIBOPN- OPEN I ,  A40 ) 

IERR = 0 
~~ 

LIBKEY IS A STRING OF FORM 'MAINKEYIQUALIFIER' 
MAXIMUM NUMBER OF CHARACTERS IS 10 

LIBKEY = 'ROLD ' 
LIMIT = 0 
TRACE = 1000 
LDI = LMOPEN ( LIBKEY, 0 ,  LIBNAM, LIMIT, TRACE ) 

LDI RANGES FROM 1 THROUGH 30 FOR SUCCESSUL OPEN 

IF (( LDI .LT. 1 ) .OR. ( LDI .GT. 30 )) GO TO 100 
STAGE = 10 
IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 21 ) JDFSET, KMAP, 

KSPAR, CON, APPLF,  APPLM, STATD 
FORMAT(/bX, SIHDATASETS TO BE ACCESSED: 

ISX, 3 l H  
/lox, A l l ,  
/lox, A l l ,  
/lox, A61, 
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1 /lox, A51, 
1 /lox, A51, 
1 /lox, A51, 
1 /lox, A51 ) 

RETURN 
C 

c 
C ERROR HANDLING 
c 

100 CONTINUE 

IF ( LDI .LE. 0 ) IERR = I011 
IF ( LDI .GT. 30) IERR = 1012 
IF ( MSQLVL .GE. 2 ) CALL EMSG 
RETURN 

C 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
................................................................................. 
G********** ' ****=**************************=************=******=***********~***~*  

QKINFO ... ANQUIRE DATASET ATTRIBUTES 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - ACQUIRE THE ATTRIBUTES OF A NAMED DATA SET. 

INPUT PARAMETER - 
DSNAME - NAME O F  THE DATASET. 

PARAMETERS UPDATED - 
IDNS - UNIQUE SEQUENCE NUMBER O F  NAMED DATASET. 
NLEN - LOGICAL LENGTH (ITEMS) O F  A RECORD. 
RTYPE - RECORD TYPE. 
NREC - TOTAL NUMBER OF RECORDS IN THE DATASET. 

E R R O R C O D E S .  
0 . N O E R R O R .  
2001 - DATASET DOES NOT EXIST. 
2002 - NO RECORD EXISTS IN DATASET. 
2005 - RECORD GROUP KEY IS UNDEFINED. 
2004 - SEGMENTED RECORD GROUP NOTED. 
2009 - RECORD LENGTH GREATER THAN BUFFER LENGTH 

GAL-PROCESSOR ENTRY POINTS - 
LMFIND, GMGEKA, GMGECY, EMSG. 

m*** lll*I**If.I.... .... I.... *.I.. I..* I*.LL*I.I*I*.. ...* ...***I* I***.. **.. .*..**l* u 
C 

C 

C 
................................................................................ 
C 

SUBROUTINE QKINFO ( DSNAME ) 

CHARACTER"b1 DSNAME 

CHARACTER*40 LIBNAM 
CHARACTER.51 CDUMMY 
CHARACTER-4 RTYPE 
INTEGER'I MSGLVL, IERR, MAXCSM 
INTEGER.4 IDSN , L D I  , N L E N  , N R E C  , T R A C E  
INTEGER.4 BUFMAX, MXUSED, MXREQD, STAGE 

COMMON lCSMUSRl LIBNAM, MSGLVL, IERR, MAXCSM, CDUMMY(7) 
COMMON ICSMSPKl IDSN , LDI , NLEN , NREC , RTYPE , 
COMMON l C S M C 0 N l  BUFMAX, MXUSED, MXREQD, STAGE 

INTEGER*I LMFIND 

C 

1 TRACE 

C 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 

C 
C 
C 
C 
C 

c 
C 
C 
C 
C 

C 
C 
C 
C 

C 

CHARACTER*l OP 
CHARACTER. 12 RKEY 

INTEGER*4 IHI , I L O  , M D I M  

OBTAIN THE SEQUENCE NUMBER OF DATASET DSNAME 
MAXIMUM LENGTH OF DSNAME IS 61 CHARACTERS 

TRACE = TRACE + 10 
IDSN = LMFIND ( LDI. DSNAME, TRACE ) 
I F  ( IDSN .EQ. 0 ) GO TO 100 

~ 

OP IS PRESENTLY A DUMMY ARGUMENT FOR BOTH 
GMGEKA AND GMGECY. 

OP = " 

RKEY CONTAINS THE RECORD KEY LIFTJUSTIFIED. 
MAXIMUM LENGTH IS 12 CHARACTERS. 

RKEY = 'DATA ' 
TRACB = TRACE + 10 
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C 
C 

C 
C 
C 
C 

c 
C 
C 
C 

C 
C 
C 
C 
100 

C 
200 

C 
300 

C 
400 

C 
bo0 

C 

RETRIEVE ATTRIBUTES RTYPE AND NLEN F O R  RECORDS OF GIVEN KEY 

CALL GMQEKA ( OP,  LDI, IDSN, R.KEY, RTYPE, NLEN, MDIM, TRACE ) 
IF ( NLEN .EQ. 0 ) 00 T O  200 
IF ( NLEN .GT. BUFMAX ) GO T O  LOO 

--- ------ ---- 
NUMBER O F  RECORDS FOUND WITH GIVEN KEY 

TRACE = TRACE + 10 
CALL GMGECY ( OP, LDI, IDSN, RKEY, NREC, ILO, IHI, TRACE ) 
IF ( NREC .EQ. 0 ) GO T O  300 

NREC E IHI-ILO+l F O R  AN UNSEGMENTED RECORD GROUP 

I F  ( NREC .NE. (IHI-ILO+1) ) GO T O  400 
RETURN 

ERROR HANDLING 

CONTINUE 
----_ 

IERR = 2001 
I F  ( MSGLVL .GE. 3 ) CALL EMSC: 
RETURN 

CONTINUE 
IERR = 2002 
IF ( MSGLVL .GE. 3 ) CALL EMSO 
RETURN 

CONTINUE 
IERR = 2003 
I F  ( MSGLVL .GE. 3 ) CALL EMSG 
RETURN 

CONTINUE 
IERR = 2004 
IF ( MSGLVL .GE. 3 ) CALL EMSG 
RETURN 

C 0 NTINUE 
IERR = 2009 
BUFMAX = NLEN 
IF ( MSGLVL .DE. 3 ) CALL EMSG 
RETURN 

END 
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C.ftt~l*.*******l'**fl*I.ll+fLLLL1--I*fX******~-~~".*****-~~~~~~.*********-***~* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C GTRECI ... READ A RECORD FROM A DATASET 
C***********"***************~*********~*****~*********************~************  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C PURPOSE - THIS ROUTINE READS A RECORD FROM A NAMED DATASET. 
C THE DATASET MUST BE OF TYPE INTEGER. 
C 
C INPUT PARAMETERS - 
C RECNUM - RECORD CYCLE OF AN INDIVIDUAL RECORD. 
C 
C OUTPUT PARAMETERS- 
C LEN . THE NUMBER OF ITEMS CONTAINED IN THE RECORD. 
C 
C WORKING PARAMETERS - 
C IBUF . A BUFFER O F  MAXIMUM RECORD SIZE FOR READIN DATASETS 
C OF TYPE INTEGER. 
C 
C ERROR CODES. 
C 0 - N O E R R O R .  
C 2008 - RECORD TYPE IN THE DATASET IS NOT INTEGER. 
C 2 0 0 6 .  ERROR IN GMGETN DETECTED BY LMERCD. 
C 
C GAL-PROCESSOR ENTRY POINTS - 
C GMCORN, GMGETN, LMERCD, EMSG. 
C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 

C 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

SUBROUTINE GTRECI ( RECNUM, IBUF, LEN ) 

INTEGER'I RECNUM, IBUF( l ) ,  LEN 

CHARACTER*40 DUMMY1 
CHARACTERv51 CDUMMY 
CHARACTER*4 RTYPE 
INTEGER'I IDSN , L D I  , N L E N  , N R E C  , T R A C E  
INTEGER*4 MSGLVL, IERR, DUMMY2 

COMMON ICSMSPKI IDSN . LDI . NLEN . NREC . RTYPE . C 

1 TRACE 
COMMON /CSMUSR/ DUMMY1, MSGLVL, IERR, DUMMYZ, CDUMMY( 7)  

C 
INTEGER*4 LMERCD 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

CHARACTER'I BUFTYP 
CHARACTER*12 OP,  RKEY 
CHARACTER*24 RNAME 
INTEGER*4 IERROR, IGAP , IHI , ILO , IOFF  , MDIM 

DETECT T Y P E  MISMATCH --__--- 
IF ( RTYPE .NE. 'I ' ) GO T O  500 . . . . . . . . . . . . . . . . . . . .  

CONSTRUCT NAME 'RKEY.RECNUM:RECNUM' FOR AN INDIVIDUAL RECORD 
MAXIMUM LENGTH IS 24 CHARACTERS: 12 FOR RKEY, 5 FOR EACH 
RECNUM REPRESENTING HIGH AND LOW CYCLES. 

RKEY = 'DATA ' 
ILO = RECNUM 
IHI = RECNUM 
CALL QMCORN ( RNAME, RKEY, ILO, IHI ) 

_____--___--____- 
OP ARGUMENT FOR GMGETx: 'MAINKEY/QUALIFIER' 
MAXIMUM LENGTH IS 11: 4 FOR KEY AND 6 FOR QUALIFIER 

OP = 'READILENGTH ' 
BUFTYP = 'I ' 
IGAP = 0 
I O F F  = 0 
CALL GMGETN ( OP, LDI, IDSN, RNAME, BUFTYF, IBUF, LEN, MDIM, 
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1 
C 
C 
C 
C 

C 
500 

C 
600 

C 

IGAP, IOFF, TRACE ) 

TEST ERROR CONDITION AFTER AN ERROR-SENSITIVE REFERENCE 
TO THE 1 1 0  MANAGER 

IERROR = LMERCD ( IERROR ) 
IF ( IERROR .NE. 0 ) GO TO 600 
RETURN 

CONTINUE 
IERR = 2005 
IF ( MSGLVL .GE. 3 ) CALL EMSG 
RETURN 

CONTINUE 
IERR = 2006 
IF ( MSGLVL .GE. 3 ) CALL EMSG 
RETURN 

END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C GTRECF ... READ A RECORD O F  TYPE REAL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE - THIS ROUTINE READS A RECORD FROM A NAMED DATASET. 
THE DATASET MUST BE O F  TYPE REAL OR DOUBLE PRECISION. 

INPUT PARAMETERS - 
RECNUM - RECORD CYCLE OF 

OUTPUT PARAMETERS- 
LEN - THE NUMBER O F  ITEMS 

AN INDIVIDUAL 

CONTAINED IN 

RECORD. 

THE RECORD. 

WORKING PARAMETERS - 
FBUF - A BUFFER O F  MAXIMUM RECORD SIZE FOR READIN DATASETS 

OF TYPE REAL OR DOUBLE PRECISION. THE ACTUAL TYPE 
IS AS DECLARED. 

E R R O R C O D E S -  
0 - N O E R R O R .  
2007 - RECORD TYPE IN THE DATASET IS NOT REAL. 
2008 - ERROR IN GMGETN DETECTED BY LMERCD. 

GAL-PROCESSOR ENTRY POINTS - 
GMCORN, GMGETN, LMERCD, EMSG. 

C 

C 
SUBROUTINE GTRECF ( RECNUM. FBUF. LEN ) 

INTEGER.4 RECNUM, LEN 
DOUBLE PRECISION FBUF(1)  

C 
C******.**~***..**************************************************************** 

CHARACTER.40 DUMMY1 
CHARACTER't.1 CDUMMY 
CHARACTER*4 RTYPE 
INTEGER'4 IDSN , L D I  , N L E N  , N R E C  , T R A C E  
INTEGER.4 MSGLVL, IERR, DUMMY2 

COMMON ICSMSPKl IDSN , LDI , NLEN , NREC , RTYPE, 

COMMON lCSMUSRl DUMMY1 , MSGLVL, IERR, DUMMY2 , CDUMMY(7) 

INTEGER.4 LMERCD 

TRACE 

C 

C 

1 

C 

C 
C******************************************************************************* 
C 

CHARACTER.4 BUFTYP 
CHARACTER'12 OP,  RKEY 
CHARACTER'24 RNAME 
INTEGER.4 IERROR, IGAP , IHI , ILO , I O F F  , MDIM 

C c 
C DETECT T Y P E  MISMATCH c 
c . . . . . . . . . . . . . . . . . . . .  
C CONSTRUCT NAME 'RKEY.RECNUM:RECNUM' FOR AN INDIVIDUAL RECORD 
C 
C RECNUM REPRESENTING HIGH AND LOW CYCLES. 
c . . . . . . . . . . . . . . . . . . . .  

IF ((RTYPE .NE. 'D ') .AND. (RTYPE .NE. 'S I ) )  GO TO 600 

MAXIMUM LENGTH IS 24 CHARACTERS: 12 F O R  RKEY, 6 FOR EACH 

RKEY = 'DATA ' 
ILO = RECNUM 
IHI = RECNUM 
CALL GMCORN ( RNAME, RKEY, ILO, IHI ) 

C c ----------------- 
C 
C c _-__------------- 

OP ARGUMENT FOR GMGETx: 'MAINKEY/QUALIFIER' 
MAXIMUM LENGTH IS 11: 4 F O R  KEY AND 6 FOR QUALIFIER 

OP = 'READ/LENGTH ' 
BUFTYP = 'D ' 
IGAP = 0 
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1 
C 
C 
C 
C 

C 
so0 

C 
600 

c 

IOFF = 0 
CALL GMGETN ( OP, LDI, IIISN, RNAME, BUFTYP, FBUF, LEN, MDIM, 

IGAP, IOFF, TRACE ) --_ _--_-_. 
TEST ERROR CONDITION AFTER AN ERROR-SENSITIVE REFERENCE 
T O  THE 110 MANAGER ----------. 

IERROR = LMERCD ( IERROR ) 
IF ( IERROR .NE. 0 ) GO TO 600 
RETURN 

CONTINUE 
IERR = 2007 
IF ( MSGLVL .GE. 3 ) CALL EMSG 
RETURN 

CONTINUE 
IERR = 2008 
IF ( MSGLVL .GE. 5 ) CALL EMSQ 
RETURN 

END 
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" 
C EMSG ... ERROR MESSAGE HANDLINE ROUTINE 
....................................................................... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C SYSTEM-CSM WHICH INTERFACES SPARSPAK-A WITH CSM TESTBED 
C DATABASE. 
C 
C PROGRAM SUBROUTINES - 
C EMSGO, EMSGI,  DEMSGO 
C 
C+LL*************+****l*I*ttt*t*ttt*t.tt**~**************************~*~***~***** 

C 

C 
C***.*************L***~********************************************************** 

C 

PURPOSE - THIS ROUTINE IS USED TO HANDLE ERROR MESSAGES IN 

SUBROUTINE EMSG 

CHARACTER'IO LIBNAM 
CHARACTER'51 CDUMMY 
INTEGER'I IPRNTE, IPRNTS, MAXINT 
INTEGER*I MSGLVL, IERR , MAXCSM 
REAL RATIOS, RATIOL, TIME 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 

C 

11 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 
C 
C 

100 

C 
200 

C 
C 
C 

C 

C 
C 
C 

300 

C 
1000 

C 
1100 
C 
C 
C 

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR 

INTEGER.4 LEVEL 

, MAXCSM, CDUMMY(7) 

WRITE ( IPRNTE, 11 ) 
FORMAT (/EX, 'EMSG - SYSTEM-CSM ERROR ... ' 

DETERMINE THE TYPE O F  MODULE THAT CALLED EMSG, 
AND CALL THE APPROPRIATE ERROR ROUTINE T O  PRINT 
THE ERROR MESSAGE 

I F  ( IERR .GT. 2000 ) GO TO 1000 

LEVEL = (IERR . lOOO)/lO -t 1 
GO TO ( 100, 200, 300 ) , LEVEL 

CONTINUE 

IERR RANGES FROM 1001 TO 1009 

CALL EMSGO 
RETURN 

CONTINUE 

IERR RANGES FROM 1011 T O  1019 

CALL EMSGI 
RETURN 

CONTINUE 

IERR RANGES FROM 1021 T O  1029 

CALL EMSG2 
RETURN 

CONTINUE 
LEVEL = ( IERR - 2000) /10 + 1 
GO TO ( 1100, 1200 ) , LEVEL 

CONTINUE 

IERR RANGES FROM 2001 TO 2009 

CALL DEMSGO 
RETURN 
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C 
1200 CONTINUE 

C 
RETURN 

END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C***********.** .************************~****************************~********** 
C EMSGO ..... ERROR MESSAGES FOR ... 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C******************************************************************************* 
C 
C 
C ROUTINE FOR THE MODULE SPACE. 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING 

SUBROUTINE EMSGO 

C 

C 

1 

C 

CHARACTER*40 LIBNAM 
CHARACTER*51 CDUMMY 
INTEGER*I IPRNTE, IPRNTS, MAXINT 
INTEGER.4 MSGLVL , IERR , MAXCSM 
INTEGER'4 BUFMAX, MXUSED, MXREQD, STAGE 
REAL RATIOS, RATIOL, TIME 

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, 

COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR ,MAXCSM,CDUMMY(7) 
COMMON ICSMCONI BUFMAX, MXUSED, MXREQD, STAGE 

TIME 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 
INTEGER*I IERROR 

IERROR = IERR - 1000 
GO T O  ( 100. 2 0 0  ) , IERROR 

C 
100 CONTINUE 

WRITE ( IPRNTE,  11 ) IERR, STAGE, MXREQD 
11 FORMAT ( / l o x ,  35HSPACE - ERROR NUMBER ,17 

1 /lox, 35HINSUFFICIENT STORAGE . 
1 /lox, 35HTHE LAST STAGE COMPLETED IS , I7 
1 /lox, 3bHTO CONTINUE MAXCSM IS AT LEAST , IT ) 

RETURN 
C 
200 CONTINUE 

C 
RETURN 

END 
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C******************************************************************************* 
C**********************************,******************************************** 
C EMSGl  ..... ERROR M!ESSAGES FOR ... 
C*******************************************************************************  
C*********************~********************************************************* 
C 
C PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING 
C 
C 

C 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

ROUTINE F O R  MODULES: LIBOPN, GETJDF,  GETDOF 

C*******************************************************************************  

SUBROUTINE EMSGl  

CHARACTER'IO LIBNAM 
CHARACTER'51 CDUMMY 
INTEGER*4 IPRNTE, IPRNTS, MAXINT 
INTEGER*4 MSGLVL , IERR , MAXCSM 
REAL RATIOS, RATIOL, TIME 

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR 

C 

, MAXCSM, CDUMMY(7) 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

INTEGER-4 IERROR 
C 

C 
C 
C 
C 

C 

C 
C 
C 

100 

11 
1 

C 

C 
C 
C 

200 

22 
1 
1 

C 
260 

C 
C 
C 
C 

C 

C 
C 
C 

300 

33 
1 

C 

C 
C 
C 

400 

I F  ( IERR .GT. 1012 ) GO TO 2 5 0  

_________. 
ERROR F O R  SUBROUTINE I JBOPN ______--- 

IERROR = IERR - 1010 
GO TO ( 100, 2 0 0  ) , IERROR 

CONTINUE 

IERR = 1011 

WRITE ( IPRNTE. 11 ) IERR 
FORMA-T ( / l o x ,  SIHLIBOPN - ERROR NUMBER ,17 

/lox, 35HCANNOT OPBN DATASET LIBRARY. ) 
RETURN 

CONTINUE 

IERR = 1012 

WRITE ( IPRNTE,  22 ) IERR 
FORMAT Illox. 35HLIBOPN - ERROR NUMBER ,17 

/lOX;'35HMAX LOG1Cd.L DEVICE INDEX = 30 , 
/lox, 35HLDI RETURNED EXCEEDS THIS VALUE. ) 

RETURN 

CONTINUE 
I F  ( IERR .GT. 1014 ) GO TO 450 

____----- 
ERROR FOR SUBROUTINE GETJDF 

IERROR = I E R R .  IO12 
GO T O  ( 300, 400 ) , IERROR 

CONTINUE 

IERR = 1013 

WRITE ( IPRNTE,  33 ) IERR 
FORMAT ( / l o x ,  35HGETJDF - ERROR NUMBER 117 

/lox, 35HINCORRECT EXECUTION SEQUENCE. 1 
RETURN 

CONTINUE 

IERR = 1014 
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WRITE ( IPRNTE, 4 4  ) IERR 
44 FORMAT ( /lox, 35HGETJDF - ERROR NUMBER ,17 

1 /lox, JSHDATASET DOES NOT HAVE ALL DATA. ) 
RETURN 

C 
450 CONTINUE 

I F  ( IERR .EQ. 1019 ) G O  TO 900 
RETURN 

C 
900 CONTINUE 

C 
C IERR = 1019 
C ---- 

WRITE ( IPRNTE, 99 ) IERR 
99 FORMAT ( /lox, J IHGETDOF - ERROR NUMBER ,17 

1 /lox, SIHINCORRECT EXECUTION SEQUENCE. ) 
RETURN 

C 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C******************************************************************************* 
C 
C 
C 
C GTMOTI, GTNUM5. 
C 
C*****.*****************L*.+************************************~**************** 
C 

C 
C********************************~****"***************************************** 
C 

EMSGZ ..... ERROR MESSAGES FOR ... 

PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING 
ROUTINE F O R  MODULES: GTZERO, GTCOND, GETIJ,  FTFORC. 

SUBRO UTINE EMS 0 2  

CHARACTER*40 LIBNAM 
CHARACTER'Kl CDUMMY 
INTEGER*4 IPRNTE, IPRNTS, MAXINT 
INTEGER*4 MSGLVL , IERIL , MAXCSM 
REAL RATIOS, RATIOL, TIME 

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, 

COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR ,MAXCSM, CDUMMY(7) 
C 
C**** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *~~*** * * * * * * * * * * * *~*** * * * * * * * * * * * * * * * * *~*** * * *~  

C 

1 TIME 

C 

C 

C 

C 
C 
C 

100 

11 
1 

C 

C 
C 
C 

200 

22 
1 

C 

C 
C 
C 

300 

33 
1 

C 

C 
C 
C 

400 

44 
1 

C 

C 
C 
C 

500 

66 
1 

INTEGER'4 IERROR 

IERROR = IERR - 1020 
GO TO ( 100, 2 0 0 ,  300, 400, 500., 600, 700, SOO), IERROR 

CONTINUE 

IERR = 1021 

WRITE ( IPRNTE,  11 ) IERR 
FORMAT ( / l o x ,  3KHGTZERO - ERROR NUMBER 

RETURN 
/lox, 'INCORRECT EXECUTION SEQUENCE 1 

CONTINUE 

IERR = 1022 

WRITE ( IPRNTE,  22 ) IERR 
FORMAT ( / l o x ,  JKHGTCOND - ERROR NUMBER 

/lox, 'INCORRECT EXECUTION SEQUENCE ' 
RETURN 

CONTINUE 

IERR = 1023 --__ 
WRITE ( IPRNTE. 33 ) IERR 
FORMAT ( / l o x ,  JLHGETIJ - ERROR NUMBER 

/lox, 'INCORRECT EXECUTION SEQUENCE ' 
RETURN 

CONTINUE 

IERR = 1024 

WRITE ( IPRNTE,  44  ) IERR 
FORMAT ( / l o x ,  35HGTFORC - ERROR NUMBER 

/lox, 'INCORRECT EXECUTION SEQUENCE 1 

RETURN 

CONTINUE 

IERR = 1025 

WRITE ( IPRNTE,  55 ) IERR 
FORMAT ( / l o x ,  36HGTMOTI - ERROR NUMBER 

/lox, 'INCORRECT EXEiCUTION SEQUENCE 1 

RETURN 
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C 

C 
C 
C 

6 0 0  

66 
1 

C 

C 
C 
C 

700 

77 
1 

C 

C 
C 
C 

800 

88 
1 

C 

CONTINUE 

IERR = 1026 

WRITE ( IPRNTE, 66 ) IERR 
FORMAT ( / l o x ,  JSHGTMOTI - ERROR NUMBER ,17 

/lox, 'UNEXPECTED NONZERO CONSTRAINT VALUE' ) 
RETURN 

CONTINUE 

IERR = 1027 

WRITE ( IPRNTE, 77 ) IERR 
FORMAT ( / l o x ,  JSHGTMOTI . ERROR NUMBER .17 

/lox, "ZERO ENTRY FOR A NONZERO CONSTRAINT OCCURS') 
RETURN 

CONTINUE 

IERR = 1028 

WRITE ( IPRNTE, 88 
FORMAT ( / l o x ,  3SHGTNUMi - ERROR NUMBER 

) IERR 

/lox, ' INCORRECT EXECUTION SEQUENCE ' 
RETURN 

END 
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................................................................................ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C DEMSGO ..... ERROR MESSAGES FOR DATASET ACCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C************ . *************~******"*********************************************  

C 
C PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING 
C F O R  MODULES ACCESSING DATASETS. 
C 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ * * * * ~ ~ * * * * * ~ * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * *  

C 

C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

SUBROUTINE DEMSGO 

CHARACTER'IO LIBNAM 
CHARACTER*Sl CDUMMY 
INTEGER'4 IPRNTE, IPRNTS, MAXINT 
INTEGER*4 MSGLVL , IERR , MAXCSM 
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE 
REAL RATIOS, RATIOL, TIME 

COMMON ICSMSYSI IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR 
COMMON ICSMCONI BUFMAX, MXUSED, MXREQD, STAGE 

C 

, MAXCSM, CDUMMY(7) 

c - 
C**** * * * * * * * * * * * * * * . * * * * * * * * * * * * * *~*** * * * * * * * * * * * * * * * * * * * * * *~*** * * * * * * * * * * * * * * * *  
C 

C 
INTEGER*4 IERROR 

C 
C 
C 
C 

C 

C 
C 
C 

100 

11 
1 

C 

C 
C 
C 

zoo 

22 
1 

C 

C 
C 
C 

300 

33 
1 

C 

C 
C 
C 

400 

44 
1 

C 

C 
C 

450 

I F  ( IERR .GT. 2004 ) GO T O  450 

ERROR FROM SUBROUTINE QKINFO 

IERROR = IERR - 2000 
GO TO ( 100, 200, 500,  400 ) , IERROR 

CONTINUE 

IERR = 2001 

WRITE ( IPRNTE,  11 ) IERR 
FORMAT ( / l o x ,  35HQKINFO - ERROR NUMBER $17  /lox, JSHLMFIND: CANNOT FIND DATASET. ) 

RETURN 

CONTINUE 

IERR = 2002 

WRITE ( IPRNTE,  22 ) IERR 
FORMAT ( / l o x ,  55HQKINFO . ERROR NUMBER ,17 

1 I lOX,  55HGMGEKA: RECORD DOES NOT EXIST. 
RETURN 

CONTINUE 

IERR = ZOO5 

WRITE ( IPRNTE. 33 ) IERR 
FORMAT ( / l o x ,  35HQKINFO - ERROR NUMBER ,17 /lox, 35HGMGECY: RECORD GROUP KEY UNDEFINED. ) 

RETURN 

CONTINUE 

IERR = 2004 

WRITE ( IPRNTE,  44 ) IERR. 
FORMAT(/lOX, 56HQKINFO . ERROR NUMBER ,17 /lox, 38HGMGECY: SEGMENTED RECORD GROUP NOTED. ) 

RETURN 

CONTINUE 

ERROR FROM SUBROUTINE GETRECI OR GTRECF 
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C 

C 
5 0 0  

C 
C 
C 

55 
1 

C 

C 
C 
C 

6 0 0  

66 
1 

C 

C 
C 
C 

700 

77 
1 

C 

C 
C 
C 

800 

88 
1 

C 

C 
C 
C 

900 

99 
1 

IERROR = IERR - 2004 
GO TO ( 5 0 0 ,  6 0 0 ,  700, 800 ,  900 ) IERROR 

CONTINUE 

IERR = 2005 

WRITE ( IPRNTE, 55 ) IERR 
FORMAT(/lOX, 35HGETRECI . ERROR NUMBER ,17 

/lox, 35HRECORD TYPE MISMATCH ... ) 
RETURN 

CONTINUE 

IERR = 2006 

WRITE ( IPRNTE, 66 ) IERR 
FORMAT(/lOX, 35HGETRECI - ERROR NUMBER $17 

/lox, 35HGMGETN: ERROR DETECTED BY LMERCD... ) 
RETURN 

CONTINUE 

IERR = 2007 
____. 

WRITE ( IPRNTE, 77 ) IERR 
FORMAT(/lOX, 35HGETRECF - ERROR NUMBER ,I 7 

/lox, 35HRECORD TYPE MISMATCH ... 1 
RETURN 

CONTINUE 

IERR = 2008 

WRITE I IPRNTE. 88 1 IERR 
FORMA’T(/lOX, 3bHGETRECP - ERROR NUMBER $1 7 

llOX. 55HGMGETN: ERROR DETECTED BY LMERCD... 
RETURN ’ 

CONTINUE 

IERR = 2009 

WRITE ( IPRNTE, 99 ) IERR, BUFMAX 
FORMAT(/lOX, 35HQKINFO - ERROR NUMBER ,17 

/lox, 35HBUFMAX MUST BE AT LEAST $17) 
RETURN 

C 
END 
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C GETSOL ..... RETRIEVE TESTBED SOLUTION ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C*+*************+**************X**"****************~~********m******************** 
C 
C PURPOSE - RETRIEVE THE TESTBED SOLUTION. ASSUMING THAT THE TESTBED 
C 
C 
C SOLVER "SOLVES". 
C 
C INPUT PARAMETERS - 
C 
C 
C SOLVER. 
C 

SOLUTION IS CORRECT, THE MAXIMUM RELATIVE ERROR IS THEN 
F O R  EACH COMPOMENT IN THE SOLUTION VECTOR RETURNED BY SPARSPAK-A 

COMPUTED 

SOL - T H E  LEADING NEQNS LOCATIONS O F  THIS VECTOR CONTAIN 
THE SOLUTION RETURNED BY SPARSPAK-A LINEAR SYSTEM 

C WORKING PARAMETER - 
C F B U F  - A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX. 
C 
C 

THE ACTUAL T Y P E  IS AS DECLARED. 

C OUTPUT PARAMETERS - 
C 
C 

RATIO - THE MAXIMUM RELATIVE ERROR ENCOUNTERED. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

SUBROUTINE GETSOL ( FBUF, SOL, RATIO ) 

DOUBLE PRECISION FBUF( l ) ,  SOL(l), RATIO 

CHARACTER*IO LIBNAM 
CHARACTER*Sl 
CHARACTER'I RTYPE 
INTEGER'I IPRNTE, IPRNTS, MAXINT 
INTEGER*4 IDSN , L D I  ,NLEN , N R E C  , T R A C E  
INTEGER'4 MSGLVL, IERR , MAXCSM 
INTEGER*4 MAXDOF , NEQNS , NIJMJNT 
REAL RATIOS, RATIOL, TIME 

COMMON ICSMSYSI IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON ICSMSPKI IDSN . LDI . NLEN . NREC . RTYPE . 

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD 

C 

1 TRACE 
COMMON ICSMUSRI LIBNAM, MSGLVL, IERR , MAXCSM, 

COMMON IPRBLEMI  MAXDOF 
1 JDFSET, KMAP, KSPAR, CON, APPLF,  APPLM, STATD 

, NEQNS , NUMJNT 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

INTEGER*I 
DOUBLE PRECISION DELTAX, CSM, WEHAVE, CSMMAX 

WRITE ( IPRNTS, I 1  ) 

I ,  11, LEN, NITEMS, INDEX, MAXIND 

C 

11 FORMAT (ISX, 4OHGETSOL ~ COMPARE WITH TESTBED SOLN ... ) 
C 

C 
IF ( IERR .NE. 0 ) GO T O  300 

C 
C 
C 

C 
C 

c 
C 
C TO RETRIEVE NEQNS SOLUTIONS 
c 

ACCESS RECORDS IN DATA SET 'STAT.DISP.* ' 

CALL QKINFO ( STATD ) 
IF ( IERR .NE. 0 ) GO TO 999 
TRACE = TRACE + 10 
RATIO = O.ODO 
NITEMS = 0 
CSMMAX = O.ODO 
DO 100 I = 1, NREC 

LEN = MINO ( NEQNS - NITEMS, NLEN ) 
I F  ( LEN .GT. 0 ) THEN __-- 

READ NEXT RECORD 

CALL GTRECF ( I, FBUF, LEN ) 
IF ( IERR .NE. 0 ) RETURN ____________ 
COMPUTE THE MAXIMUM RELATIVE ERROR 
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C 
C 

C 
C 
C 

1 

C 
C 
C 

200 

100 
C 
C 

FBUF CONTAINS THE DATABASE SOLUTION 

DO 2 0 0  I1 = 1, LEN 
NITEMS = NITEMS + 1 

G E T  THE COMPONENT WITH MAXIMUM MAGNITUDE 

IF ( DABS (FBUF(I1)) .GT. CSMMAX ) THEN 
CSMMAX = DABS (FBUF(I1)) 
MAXIND = NITEMS 

ENDIP 
DELTAX = DABS ( PBUF(I1) .  SOL(N1TEMS) ) 
IF ( FBUF(I1) .NE. O.ODO ) 

I F  ( DELTAX .GT. RATIO ) THEN 
DELTAX = DELTAX/DABS(FBUF(II)) 

RATIO = DELTAX 
INDEX = NITEMS 

SAVE THE PAIR WHICH CAUSES MAX REL ERR 

CSM = PBUF(I1) 
WEHAVE = SOL(1NDEX) 

ENDIF 
CONTINUE 

ENDIF 
C 0 N TINUE 

SUMMARY ..... 
----- 

c ----- 
IF ( MSGLVL .DE. 2 ) WRITE ( IPRNTS, 21 ) STATD,RATIO, 
1 INDEX, CSM, WEHAVE 

/lox, 'CSM SOL = I ,  E21.14, ' WE HAVE I ,  E21.14 ) 

21 FORMAT( /lox, 'MAX. REL ERR COMPARED T O  ', A51, 
1 /lox, 'IS ', E14.7, ' IN COMPONENT', 15, 
1 

RETURN 
C 

c -----__----__- 
C 
c __--______-___ 

300 CONTINUE 

ERROR HANDLING .... (NOT INCLUDED IN EMSG) 

I F  ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 31  ) 

RETURN 
31  FORMAT ( / l o x ,  35HGETSOL.INCORRECT EXECUTION SEQUENCE ) 

C 

c -----___---__- 
C 
c -----__----__- 

999 CONTINUE 

ERROR HANDLING .... (NOT INCLUDED IN EMSG) 

I F  ( MSGLVL .GE. 'I ) WRITE ( IPRNTS, 91 ) STATD 

RETURN 
91 FORMAT( /lox, 'CANNOT FIND I, A61 ) 

C 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C STATCS ...... PRINT STATISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CL************************************************.**********.**********.******** 
C 
C PURPOSE - THIS ROUTINE PRINTS TIME AND STORAGE REQUIREMENTS OF 
C THE CURRENT RUN. 
C 
c++**x***+*++***a***'++*'.'*"*"""..L'***************~***********************~* 

C 
SUBROUTINE STAT C S 

C 

1 

C 

1 

1 

C 

CHARACTER*IO LIBNAM 
CHARACTER'S1 
INTEGER*4 IPRNTE, IPRNTS, MAXINT 
INTEGER"4 MSGLVL , IERR , MAXCSM 
INTEGER'I 
INTEGER'4 BUFMAX, MXUSED, MXREQD, STAGE 
INTEGER*4 MAXDOF, NEQNS , NUMJNT 
REAL 

REAL RATIOS, RATIOL, TIME 

COMMON /CSMSYS/ IPRNTE,  IPRNTS, MAXINT, RATIOS, RATIOL, TIME 
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, 

COMMON /CSMMAP/ DOF, BUF, MASK, KC, ICLQ, FCON, SPK 
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE 
COMMON /CSMDTA/ GZTIME. GCTIME, GIJTIM, GFTIME, GMTIME,GNTIME, 

COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT 

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD 

DOF, BUF, MABK, KC, ICLQ, FCON, SPK 

GZTIME, GCTIME, GIJTIM, GFTIME, GMTIME,GNTIME, 
CSMTIM, CSMSTR 

JDFSET,  KMAP, KSPAR, CON, APPLF,  APPLM, STATD 

CSMTIM, CSMSTR 

................................................................................. 

C 
WRITE ( IPRNTS, 11 ) 

11 FORMAT (/5X,  4OHSTATCS - SYSTEM.CSM STATISTICS ... ) 
C 

IF ( STAGE .GE. 20 ) GO TO 100 
WRITE (IPRNTSJ2)  

RETURN 

100 CONTINUE 

22 FORMAT ( / l o x ,  35HNO STATISTICS AVAILABLE. ) 

C 

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 33 ) MAXCSM 

IF ( MSGLVL .GE. 2 ) WRITE 
33  FORMAT ( / l o x ,  35HSIZE OF STORAGE ARRAY (MAXCSM) , I10 ) 

IPRNTS, 44  ) NUMJNT.MAXDOF,NEQNS 
4 4  FORMAT ( / l o x ,  35HNUMBER OF JOINTS , 110 

I /lox, 35HMAX DEGREE OF FREEDOME P E R  JOINT , I10 
1 /lox, 35HNUMBER OF EQUATIONS $110 

IF ( MSGLVL .GE. 3 ) THEN 
WRITE ( IPRNTS, 46 ) 
WRITE ( IPRNTS, 46 ) DOF,BUF,MASK,KC,ICLQ,FCON,SPK 

45 FORMAT ( / l o x ,  35HADDRESSES OF ARRARYS 1 
46 FORMAT ( / l o x ,  lOHDOF , I10 

1 /lox. lOHBUF , I10 
1 /lox, lOHMASK , I10 
1 /lox, IOHKC , I10 
1 /lox, IOHICLQ , I10 
1 /lox, 1OHFCON , I10 
1 /lox, IOHSPK , I10 ) 

ENDIF  

CSMSTR = MXREQD 
WRITE (IPRNTS, 133) CSMTIM, CSMSTR 

C 

133 FORMAT ( IOX, 35HTOTAL CSM-TIME REQUIRED , F13.3 
1 /lox, 35HMAXIMUM CSM-STORAGE REQUIRED , F1O.O ) 

RETURN 
C 

END 
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