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1 Introduction

This report describes our research on sparse matrix techniques for the Computational Struc-
tural Mechanics (CSM) Testbed [22] conducted for NASA grant NAG-1-803. Before provid-
ing a synopsis of the report, we give a brief overview of the work that has been completed
during the 10-month tenure of the grant.

A primary objective was to compare the performance of state-of-the-art techniques for
solving sparse systems with those that are currently available in the CSM Testbed. Thus,
one of the first tasks was to become familiar with the structure of the Testbed, and to install
some or all of the SPARSPAK package [2, 13, 14] in the Testbed.

We began by installing the CSM Testbed on our SUN workstations. We were the first
site to do this, and it was necessary to collaborate closely with the CSM group at Langley
in order to resolve some minor problems with the installation procedure.

A suite of subroutines to extract from the database the relevant structural and numer-
ical information about the matrix equations has been written. A driver program (proces-
sor) that employs these routines along with the SPARSPAK library has been written, and
we have successfully solved all the demonstration problems distributed with the Testbed.
These codes have been documented, and performance studies comparing the SPARSPAK
technology to the methods currently in the Testbed have been completed. In addition,
some preliminary studies have been done comparing some recently developed out-of-core
techniques with the performance of the Testbed processor INV.

An outline of the report is as follows. Section 2 contains a brief overview of the CSM
Testbed software and its usage. This is essentially background material for the uninitiated,
and can be ignored by those with experience in the usage of the Testbed.

Since the ultimate goal of sparse matrix research for the Testbed is to enhance the
performance and capabilities of the Testbed, some knowledge of the methods currently
employed is essential in the development of better techniques for the Testbed. Section 3
gives an overview of the sparse matrix techniques currently employed in the CSM Testbed.
Our presentation is focused on the internal working of the SPAR matrix processors [25].

Section 4 describes an interface which we have designed and implemented as a research
tool for installing and appraising new matrix processors in the CSM Testbed, along with a
description of a new processor SPK which consists of a subset of SPARSPAK-A [2] and a set
of subroutines which provide an interface between SPARSPAK-A and the global database
of the CSM Testbed. A guide for installing the processor SPK in the Testbed is provided
in Appendix A of this report. The installation dependent modules of this processor are
listed in Appendix B with comments indicating the changes to be done at a different site.
A listing of all interface subroutines is provided in Appendix C.
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Finally, Section 5 contains results of numerical experiments we performed in solving
a set of Testbed demonstration problems using the processor SPK and other experimental
processors. These results are compared with the performance of the SPAR matrix processors
on the same set of test problems.

2 The CSM Testbed Software System and Its Usage

To facilitate our discussion throughout this report, we shall first briefly introduce the con-
cepts and terminology employed in the Testbed. Since our discussion is conducted primarily
for the readers who have not used the Testbed before, the readers who are familiar with its
usage can skip this section.

The CSM Testbed is a structural analysis system evolving from integrating the SPAR
finite element code {25] and the NICE data management and command processing utilities
(4, 5, 6, 7, 26]. The FORTRAN programs for SPAR (Structural Performance Analysis and
Redesign) were developed in the 1970’s by Lockheed Missiles and Space Company and by
Engineering Information Systems, Incorporated. The SPAR system uses the finite element
approach to perform stress, buckling, vibration, and thermal analysis on linear structural
systems. The NICE (Network of Interactive Computational Elements) system was originally
developed at Lockheed Palo Alto Research Laboratories to support engineering analyses.
The major components of the NICE system include a data manager, a command language
and a command interpreter. Continued effort has been made by the CSM development
team at NASA Langley and at the Lockheed Palo Alto Research Laboratory to extend
the analysis capability of the Testbed since the implementation of its initial version (called
NICE/SPAR).

The user interface for the Testbed is described in detail in the CSM Testbed User’s
Guide [24]. The language, directives, interface, global-database manager and input-output
manager of the CSM Testbed architecture are each documented in references [5, 6, 7, 8, 26].
For our purpose we shall simply walk through an example to quickly familiarize the readers
with the general usage of the Testbed. The example we use is a Testbed demonstration
problem presented in reference [25]. We shall refer to this example as problem “demol”
throughout this report.

The operating environment Qur discussion throughout this report refers to the version
of the Testbed currently operational on a SUN 3/50 workstation running the UNIX!
operating system at the University of Tennessee, Knoxville.

The problem to be solved: The tubular beam shown in Figure 1 is cantilevered at joint
1 and statically loaded at joint 5. The static solution for a transverse shear load of
1000.0 and for an axial load of 10000.0 is required.

UNIX is a trademark of AT&T Bell Laboratories.
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L=40

Tube, inner radius = 2.00, outer radius = 2.25

E = 10. x 10°
v =0.3
p = 0.101

a=0.1x10"*

Figure 1: CSM Testbed Demonstration Problem - Tubular beam.

User input Edit a file to contain the script in Figure 2. The command stream demon-
strates how to solve the tubular beam problem in Figure 1 using the NICE command
language and the SPAR computational modules.

Comments The problem-oriented Testbed command language is called CLAMP -
an acronym for Command Language for Applied Mechanics Processors. The
commands with their leading keyword prefixed by an asterisk are called CLAMP
directives. They are special commands used to
- directly access a global database,

- define command procedures,

- implement branching and cycling for nonsequential command processing,

process macrosymbols in an advanced language construct,

request other available services.

For example, the directive
*open 1 demol.101 /new

contained in our script file will create a new library file with the library identifi-
cation number (LDI) equal to “1” and file name of “demo1.101”.

The SPAR processors are each implemented as a subroutine callable by the
Testbed executive module. The macroprocessor command to start the execu-
tion of a processor is [XQT. Therefore, during the execution of the Testbed, the
command to run the SPAR processor named TAB is




(XQT TAB

The input (user commands and/or data) to a processor are entered after the [XQT
command according to the requirements of the individual processor. The SPAR
input syntax and processor requirements are described in detail in reference [24].
Since the CLAMP directives may be intermixed with the processor commands in
the script file, it is worth noting that once the execution of a processor is initiated
by [XQT, it will begin and continue accepting input until either another [XQT, a
STOP or a *STOP is encountered. If a STOP occurs, execution will proceed to com-
pletion of the processor’s assigned task after which the next command, which can
be either a CLAMP directive or a macroprocessor command, begins execution.
A *STOP terminates execution immediately. Therefore, the user command STOP
in the sequence

[XQT SSOL
STOP
*T0C 1

is necessary to ensure that processor SSOL runs to completion before the directive
*TOC is processed.

The modular structure of the Testbed implies that multiple processors are typ-
ically executed to perform an analysis. These processors communicate through
a common database consisting of global-access data libraries (GAL) which are
operated on by the NICE data manager GAL-DBM [26]. Each GAL data library
may contain multiple nominal datasets. Each dataset is made up of named
records. The GAL-Processor interface facilities allow the Testbed processors to
generate, store, locate, and access all of the needed information in the global
database to perform a required analysis. The table of contents of an active data
library may be displayed during execution of the Testbed via the CLAMP di-
rective *T0C. In Figure 3, we display the table of contents for the data library
“demol.101” (LDI=1) created by executing the script in Figure 2.

To execute the analysis: Note that on UNIX systems the execution of the Testbed is
initiated by the first command “time nicespar << \eof” in the script file, where
“nicespar” is the name of the executable file and we assume that the name of the
directory where “nicespar” resides has been inserted in the user’s PATH environment
variable. Note also that “\eof” is the last entry of the script. Assuming that the name
of the file containing the script is “demol.com” and that it has been made executable
with the “chmod” command, the script may be run by typing

demol.com




To print the solutions on an ordinary text file: The default output file for the Testbed
is the standard output on UNIX systems. The command

demol.com > & demol.log &

thus redirects the output to the log file. The desired static solutions are produced by
processor SSOL and the actual data are contained in the dataset named STAT.DISP.1.1.
To print the static solutions on the log file, the SPAR utility processor VPRT may be
executed after [XQT SSOL. The command to be inserted into the script is

[XQT VPRT
TPRINT STAT DISP 1 1

The output corresponding to this command is displayed in Figure 4. Note that each
constrained component is flagged with an asterisk by the processor VPRT.

More details: We shall come back to this example from time to time to provide the details
which are not needed until our discussion at a later point.




time nicespar << \eof

*open 1 demo1.101 /new

*set echo=off

[xqt TAB
START &
JOINT LOCATIONS
100 0.
2 00 10.
3 00 20.
4 00 30.
5 0 0 40.
MATERIAL CONSTANTS
1 10.E+6 .3 .101 .1E-4
BEAM ORIENTATIONS
11111,
E21 SECTION PROPERTIES
TUBE 1 2. 2.25
CONSTRAINT DEFINITION 1
ZERO1 234586
1
[xqt ELD

E21

b WN

1
2
3
q
[xqt E
[xqt EKS

[xqt RSEQ
reset METHOD=1 LJSPRT=1 LADPRT=1
[xqt TOPO
reset PRTKMAP=1 PRTAMAP=1
[xqt K
reset spdp=2
[xqt IRV
reset spdp=2
[xqt AUS
ALPRA
CASE TITLES
1 >TRANSVERSE LOAD
2AXTAL LOAD
SYSVEC
APPLIED FORCES
CASE 1: I=2: J=b5: 1000.
CASE 2: I=3: J=5: 10000.
[xqt SSOL
[xqt GSF
{xqt PSF
stop
*TOC 1
\eof

. Start and time Testbed execution

. Open data library

. Do not echo input

. Macroprocessor command to execute TAB
. b nodes points in beam

. Direct TAB input

. Constrain 6 components of joint 1
. to be zero

. Define elements

. Define element connectivity

. Create element datasets

. Calculate element intrinsic
. stiffness matrices

. Resequence nodes

. Form maps which guide the assembly

. and factorization of system matrices
. Assemble system stiffness matrix

. Output dataset in double precision

. Factor system stiffness matrix

. in double precision

. Direct AUS input
. Define load titles for 2 cases

. Dir-2 load on joint 5 of 1000.
. Dir-3 load on joint 5 of 10000.
. Solve for static displacements
. Compute stresses

. Print stresses

. Print Table of contents of library 1

Figure 2: A runstream for solving problem demol.
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+ Form: GAL82
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Seq¥#
i
2

*

N W

©

10
11
12
13
14
16
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Date

05:14:
06:14:
05:14:
05:14:
05:14:
06:14:
05:14:
0b5:14:
05:14:
05:14:
06:14:
05:14:
05:14:
05:14:
06:14:
06:14:
0b:14:
06:14:
05:14:
06:14:
05:14:
05:14:
0b:14:
06:14:
05:14:
06:14:
05:14:
06:14:
06:14:
05:14:
0b:14:
06:14:
B s EEEnane s R R A P R TR SRS

88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88

17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:

File: demo1.101

File size: 22082 words
Time Lk Records

54:17 [o] 1 TAB
54:17 O 1 TAB
54:17 (o] 1 TAB
55:17 o] 3 TAB
66:17 O 1 TiB
§5:17 0 1 TAB
65:17 0 1 TAiB
55:17 (o] 1 TAB
55:17 © 1 TAB
56:17 O 1 TAB
56:17 O 1 TAB
56:17 (o] i ELD
56:17 © 1 ELD
56:17 0 1 ELD
66:17 0 1 ELD
56:17 (o] 1 ELD
56:17 O 1 ELD
66:17 o] i ELD
56:17 © 1 ELD
56:17 0 4 E
56:17 O i1 E
66:17 O 1 RSEQ
56:17 0 1 TOPO
56:17 O 1 TOPO
56:17 (] 1 K
56:17 0 65 INV
56:17 0 2 AUS
56:17 o] 2 AUS
56:17 o] 2 SsOL
66:17 © 2 SSOL
§6:17 0 4 GSF
56:17 0 4 GSF

Figure 3: Table of Contents of Library 1.

No. of Datasets:

Processor Dataset name

JDF1.BTAB.
JREF .BTAB.
ALTR.BTAB.
GMTR.BTAB.
ALTR.BTAB.
JLOC.BTAB.
MATC.BTAB.
MREF .BTAB.
BA.BTAB.2.
CcOn..1
QJJT.BTAB.
DEF.E21.1.
GD.E21.1.2
GTIT.E21.1.2
DIR.E21.1.2
ELTS.NAME
ELTS.NNOD
ELTS.ISCT

s
E21.EFIL.1.2
DEM.DIAG
JSEQ.BTAB.2.
KMAP..9.3
AMAP..9.3
K.SPAR.36
IEV.K.1
CASE.TITL.
APPL.FORC.
STAT.DISP.
STAT.REAC.
STRS.E21.1.1
STRS.E21.1.2

O NN NOON N R

NN

[N

NN sBA B

[Tt

17

32



*+ BEGIN VPRT **

1STATIC DISPLACEMENTS.

TRANSVERSE LOAD
OJOINT 1
0.000e+00%
0.000e+00
0.000e+00
0.000e+00
B 0.000e+00

o WP

AXTAL LOAD

OJOINT 1
0.000e+00%
0.000e+00
0.000e+00
0.000e+00
0.000e+00
EXIT VPRT CPUTIME=

9N bW

DATA SPACE=

+0000+00*
.000e+00
.000e+00
.000e+00
.000e+00 O.

2

0.000e+00*
0.250e-01
0.
0.181e+00
0.2866+00
1STATIC DISPLACEMENTS.

0
(o]
897e-01 o]
o}
(o]

2

OO0.0

600000 WORDS

3

.000e+00*
.000e+00
.000e+00
.000e+00
.000e+00

3
000e+00*

.300e-02
.599e-02
.899e-02

120e-01

0.5 I/0(DIR,BUF)=

4
0.000e+00*
~0.463e-02
=0.793e-02
-0.992e-02
-0.106e-01

4
0.0000+00%*
0.000e+00
0.000e+00
0.000e+00
0.000e+00

(o] 0

Ip= 1/

[
0.0000+00%
0.000e+00
0.000e+00
0.000e+00
0.000e+00

ID= 1/

3
0.000e+00%*
0.000e+00
0.0006+00
0.000e+00
0.000e+00

1/ 1

6
0.0006+00*
0.000e+00
0.000e+00
0.000e+00
0.000e+00
1/ 2

8
0.000e+00%
0.000e+00
0.000e+00
0.000e+00
0.000e+00

Figure 4: The contents of dataset STAT.DISP.1.1.
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3 The CSM Testbed Matrix Processors

Reference [23] contains a set of logic flowcharts developed for the key subroutines of each
of the SPAR matrix processors TOPO, K, INV, SSOL and AUS. These charts together with
the commented FORTRAN source code are very helpful in our understanding of the sparse
matrix techniques currently employed in the Testbed. In this section, we shall attempt to
describe the algorithms and data structures which are implemented by the processors INV
and SSOL.

3.1 The Basic Algorithms

The factorization algorithm: Processor INV applies a specialized Gaussian elimination
scheme to factor a sparse symmetric matrix K into LDLT, where L is a unit lower
triangular matrix and D is a diagonal matrix. This algorithm is numerically stable if
the matrix K is also positive definite, which is the case when K is the system stiffness
matrix. The basic algorithm can be easily described for a dense symmetric matrix A
as follows. We assume that A is of dimension n X n. Let us denote the elements of A
and M = LT as a;; and m;;, where1 < i< nandi < j < n,and D = {dy,ds,...,dn}.
Note that each off-diagonal a;; is overwritten by m;; and that each a;; is overwritten
by d;! if the algorithm presented in Figure 5 is successfully executed. Algorithm I
assumes that the a;; elements are stored row by row.

Algorithm I The basic LDLT factorization scheme

for 1 1,2,...,ndo
if a;; =0 then
quit
else
a; «— 1/ay
fork—i+1,...,ndo
m « Q;p ¥ A4
for j « k,...,ndo
Apj ¢ Akj — M * Qg5
for k—1i1+1,...,ndo
Ak € Qik * Qi 4

Figure 5: Computing D~! and M = LT factors of A.

11



The following features of the algorithm above will be exploited in its sparse imple-
mentation.

1. To compute D! and the off-diagonal elements of M = LT, the elements stored
and accessed are those on the diagonal and in the upper triangular part of A. For
example, when n = b, the algorithm performs the transformation in Figure 6.

— — T
a11 a12 a13 A1 4 a1,57 dTl Mi2 my3 My My
1
azy A23 A4 Q25 d;! M2z Maq Mas
az3 aszs ass - dz! m34mags
A4 Q45 dzl My
as5 d:!
L _ L ]

Figure 6: Overwriting A by D~ and M = LT,

2. The a;;’s which have been overwritten by the elements of D! and M = LT
will not be needed in the remaining elimination stages. In particular, during the
ith elimination stage, the elements accessed and modified are confined to row 3
through row n as shown in Figure 7 for ¢ = 3 and n = 5, where ® represents
elements which are not accessed.

r ® ® ® ® ® i ® ® ® @ ® T

| ® ® ® ® ® ® ® 8
asz3 ass4 a4sgs _ d;l mgz4 M35

Q44 Q45 G44 G4

as 5 as 5

Figure 7: LDLT factorization of A - the third stage.
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Solving the triangular systems: Since Algorithm]I stores the factors D ~! and M = LT,
we shall describe the solution scheme in terms of these two factors. Both of the forward
and backward substitution schemes presented below access the elements of the factor
M row by row.

Step 1. Forward substitution scheme (Solve MTy = b).

fori—1,...,ndo
Yi — b;
for k=:i+1,...,ndo
br = b — Mk * Y

Step 2. Backward substitution scheme (Solve Mz = D~1y).

for p—1,...,ndo
ie—n—p+1
s—0
forj=i+1,...ndo
8§ — 8+ my; xz;
2, —di vy, — s

3.2 The INV Implementation

In this section, we shall discuss in various degrees of details the following aspects of the
sparse factorization scheme implemented by the processor INV.

1. The algorithm - a block LDLT factorization scheme.
2. Memory requirement.

3. Data structures.

4. The handling of zero constraints.

5. The handling of nonzero constraints.

6. Data archived to the global database.

A block LDLT factorization scheme: The processor INV has tailored Algorithm I to
perform an out-of-core block LDLT factorization of large sparse matrices arising in
the finite element analysis of structural mechanics problems. Before we describe the
INV implementation of this scheme, let us first explain the block LDLT algorithm

13




by applying it to a dense symmetric matrix A in block form. To be specific, let us
consider the 2 X 2 block matrix in Figure 8, where 4;; = {a&?}, Aip = {ai’;)},
Ar0 = {ai’;’)}, with affj = ag-i), ai’}’) = ag.':), and 1 < k,7 <3.

o o o) | o o o
A e o) oD o o

Ay g ol o) ol | e} ol afY

A= =\ = on oo b e e s
Ala ol o) oD | el ey o

A7 oD oD e o ol

R A

Figure 8: Partitioning symmetric A into four 3 x 3 blocks.
The block LDLT scheme works in the following manner.

Step 1. Apply Algorithm I to matrix A, ; to perform the following transformation.

af) of) af) 1/df) ml)  mf)
ORI I P )
o) 1/d$)

In other words, at the end of step 1, we have in fact zeroed out the nonzeros
in the lower triangular part of A;; and stored the multipliers £;; = my; in the
upper triangular part of Ay ;.

14



Step 2. Apply the multiplers mf;) to the A; » block as if LU (U = DLT) decompo-
sition were applied to reduce (A1, A1,2) to an upper trapezoidal matrix. That

is, the A; 5 block is overwritten by the resulting {uﬁ’;)} of the following transfor-

mation.
1 1
0 1 —mf{) 1
0 —mi} 1/ \ -m{) o

o)

1,1

o ) ol

1 a(i-’)

3,0 %32

1,2

(31) (#4)

ajz.3

(9 o)

W o

1,3
S| D g
R

Step 3. Zero out the block A{z implicitly by applying the multipliers directory to
block A, 2. The multipliers can be computed on the fly from

iy mgy my
miy mid mid | =
m{d mid il

o) o) o)
o W )
o9 o)

1/d{)

1/d$)

1/d§)

The A, block is then updated to be 112,2 = {&Sg’)} which is obtained by the

following computation.

1 uf’y
0 1 tLgi;?
0 0 1 u?,?
) ) D 1 )
g R R SR |
ni - 2 0 0 1)\ 4

uiy

£

(i1)

Uz 2
(iv)
ai,2

40

2,2

(iv)
a3 2

uy

u$d

uiy

(iv)
ai,3

(iv)

a3

(iv)
az 3

W

uf)

()

Uz 1

a("”)

1,1

afiy

)

o0

1,2

s

(34)

U3z 2

ofy

(#)

Ui 3

uid

(#9)

Uz 3

a5y

Since the A, diagonal block is symmetric, only the upper triangular part of
A, is updated in the actual computation.

Step 4. "S:? — uﬁ?/dﬁi), for Vk, j.

15




Note that the transformations accomplished by the above four steps can be expressed
with respect to the block upper triangular part of the given matrix as follows.

a1 Q1,2 413 1Q14 Q15 a1 dfl my2 Mi3 | M4 Mis Mg
a21 Q@32 3423 ] a24 Q25 G286 az1 d;1 mz3 | M24 M2s Mae
31 asz2 ass | as4 azs ass Q31 as;2 d; ! M3 4 M35 M3e
_— —_—— —_— —_—— —_—— —— — —_— —_—— —— —_— —— —_—
@44 Q45 G4 G44 Qg5 A4
@54 G55 Q56 asg ds5 dsg
Qg4 Qg5 G6e g4 ass dgg

The final step: For this particular example, the factorization is completed after

transforming
- ~ ~ -1
G44 Q45 Q46 dy’ mys myg
= = -1
ass dasg i ds mse
- -1
dg 6 ds

by Algorithm 1.

The output matrix: The coefficient matrices of the resulting triangular systems,
namely MTy = b and Mz = D-ly, are available from the output matrix given
by

di' mip M1z mig mus mug
dy! ma3 mas mgg Mae

d3? m34 Mzs Mag

dil myg My

ds—l ms ¢

dg!

The following observations may be made on the block LDLT factorization scheme
described above.

1. The elements in the lower triangular part of the diagonal A;; blocks are not
accessed during the process of computing the D! and LT = M factors.

2. The block of rows which have been updated to contain the d,:l’s and my;’s of
the factors are no longer needed in the future stages of elimination.

3. Observe that the updating of A, ; block in Step 3 can be reformulated as follows.

U N e s AN B
e I A v S [ Y )
R R e ) AN B



and

) a ol
£

i

Therefore, if the elements of A; 5 are not available in memory at the time the first
block row (A1, A1 2) is being processed, the modifications can be accumulated

(iv)

i1

afy afy

afy ofy

(iv)
ag 3

5

(o o

o$7 8l

=

in the {sﬁ';.)}’s which are later added to the respective elements of A2 when

they are read into memory.

Although it appears straightforward to generalize the block LDLT scheme to a sym-
metric sparse block matrix such as the example given in Figure 9, where each K, ; is
a dense square matrix of some uniform dimension, an efficient implementation of the

sparse block LDLT scheme requires sophisticated data structures.

K1 | Ki2 K
K22 | K23 Ky | Kape
Kss | Ksa | Ksg | Kape
K Ky
Ky g Ky
Kee

Figure 9: Upper triangular block structure of a symmetric sparse matrix K.

Memory requirement: Suppose that the matrix K in Figure 9 is stored out-of-core and
the rows of K are to be read into memory one block row (i.e., JDF rows if JDF is
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the dimension of each submatrix) at a time. In order to factor the first block row
(Kiy1,K1,2,K15) and store the modifications to be applied to the blocks K22, Kags
and Ky later, we need memory space to store the blocks in Figure 10 as well as
the indexing overhead incurred by the data structures employed. In order to proceed

Kip | Ki2 | Kis

S2,2 S2.5

Figure 10: The storage needed for processing (K} i, Ky, Ki5)

with the factorization of the second block row (K32, K23, K25, K2 6), enough working
space must be available to accommodate the blocks in Figure 11. To minimize the
memory requirement, processor INV actually re-uses the space occupied by blocks K ;,
Ky, and K; 5 to accommodate the blocks needed for the current elimination stage,
assuming that the factors of (K11, K12, K1) have been archived to the database.
The block submatrices needed to remain in memory for each of the next four stages

Kyp | Kags Kap K26 Ky —Kaa+ Sy

S3,3 Si S3,6 Kyy — Kag+ Sa g

S5 Ss.5

Se.,6

Figure 11: The storage needed for processing (K22, K23, K25, K26)

are depicted in Figure 12. Observe that although K45 block is null in X, it is to be
filled in the third elimination stage. Therefore, the space to accommodate S45 block
must be allocated. Fortunately, the fill-in locations can be determined prior to the
numerical factorization phase. With the fill-in information available, the maximum
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Ka 3 f(s,A KS.B ks 8 Kq 4 Ih é KB 5 Ks.s Ke,s

S4,4 Sa6 Ss,5 | Ss,6 Se,6
Ses | Ss,6 Se.6
Se,8

Figure 12: The storage needed to process K3 ., K44, K5, and Kg,.

number of submatrices ever needed to be in memory can also be determined. As
far as the indexing overhead is concerned, a simple and effective strategy is to store
one pointer for each submatrix assuming that the elements within each submatrix are
stored in consecutive locations. Using this indexing strategy, the number of pointers
required to be in memory for each particular elimination stage is equal to the number
of submatrices to be present.

Data structures: The data structures employed by the Testbed matrix processors can
again be more easily explained using our block 2 X 2 example given in Figure 8.

Data structure of the input coefficient matrix: Processor INV assumes that the
block upper triangular part of the coefficient matrix

is stored out-of-core in a block-row-oriented manner. That is, the data of the
blocks are stored in a one dimensional array following the block sequence as
depicted in Figure 13.

[ [ o [ 5 |

Figure 13: The block sequence of input matrix.

Within each A; j block, the elements are stored column by column. For example,
the elements of the A;; block are stored following the sequence in Figure 14.
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l a1, [a2,1 | as,1 I ax,zJ az; | as2 I ax,ai az,q a3,3 l

Figure 14: The element sequence of block Ay ;.

Data structure of the working array §: Except for the first block row of the in-
put matrix, the data retrieved from the buffer for each block row are necessarily
updated by adding the modifications {s;;} accumulated in a working array S.
Therefore, it is not surprising that the elements within each JDF x JDF (JDF= 3
in our example) §; ; block are stored in the same manner as the input 4; ; block.
For our example, the diagonal block 4,2 must be updated by S22 before it can
be factored. Suppose that the respective addresses of these two blocks in the

buffer and working array are given by the pointers KMAP(IX) and AMAP(JX)
as depicted in Figure 15.

[ JT.,,T as.4 J as .t | a.,?l as,slis?[ a.,.,J as.e | ass |
i

KMAP(IX)

I 7 0 E 0 O R R B
T

AMAP(JX)

Figure 15: Indexing the buffer and working arrays.
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The integration of A; 2 into the working array is accomplished by the following
segment of FORTRAN statements.

c
C GET POINTER TO THE BUFFER
[+ 2 —
LKSUB = KMAP(IX)
[+ J R —— _—
C GET POINTER TO WORKSPACE STORAGE FROM AMAP
C

K = AMAP(JX)
DD 100 J = 1, JDF
D0 200 I = 1, JDF
S(1,J3,K) = S(I,J,K) + A(LKSUB)
LKSUB = LKSUB + 1
200 CONTINUE
100  CONTINUE

For a general sparse matrix, because the data stored in the working array § are
dynamically changed by accommodating new data in the space occupied by data
which have been written out to the database, the 5; ; blocks corresponding to the
consecutive 4; ; blocks in the buffer array may not be neighbors in the working
storage. To integrate NSUBS (NSUBS > 1) A;;’s into §, the starting address
of each 5; ; must be computed from AMAP each time, resulting in the revised
code segment.

c J—— R
C GET POINTER TO THE BUFFER
Cc ———
LKSUB = KMAP(IX)
DO 300 ISUB = 1, NSUBS
c
¢ GET PODINTER TO WORKSPACE STORAGE FROM AMAP
c JGAP IS KNOWN FROM THE DATA FORMAT OF AMAP
c

JX = JX + JGAP
K = AMAP(JX)
DO 100 J =1, JDF
DO 200 I = 1, JDF
s(I,3,K) = s(I,J,K) + A(LKSUB)
LKSUB = LKSUB + 1
200 CONTINUE
100 CONTINUE
300 CONTINUE

21




Conversion of the input data structure: Note that the data structure described
above for the input buffer and working array is in fact the output format of
the processor which assembles the system stiffness matrix from the finite ele-
ment model. Since the block LDLT factorization scheme and the following for-
ward /backward substitution algorithms are row-oriented, the properly updated
JDF x JDF submatrices of the current block row are copied from § into another
one-dimensional array B, where the data are stored row by row with respect to
the global matrix. For example, assuming that the dimensions of § and B are
declared as S(JDF,JDF,*) and B(JDF,CONRNG,*), the following FORTRAN
statements retrieve the first row of (411, 412), i.e. {a11,012,++,816}, from §
and store them in the consecutive locations in B.

c _______ —
C K INDEXES THE CURRENT ROW IN B
c _____ _—
K=1
c _______ —_—
c M INDEXES THE CURRENT ROW IN S
c R
M=1
c ______________
C OBTAIN THE NUMBER OF BLOCKS IN CURRENT ROW
c [Ep—
CONRNG = 2
DO 100 J= 1, CONRNG
c _— _—
c ASSUME THAT THE LOCATION OF THE CURRENT
c BLOCK IN S CAN BE OBTAINED FROM SUBMAP(J)
c _____ -
LKSUB = SUBMAP(J)
D0 200 I = 1, JDF
B(I,J,K) = S(M,I,LKSUB)
200 CONTINUE
100 CONTINUE

Since the modifications computed from B are to be accumulated into S for up-
dating the input matrix in the future stages of the elimination process, the di-
mensioning of B as B(JDF,CONRNG,*) in parallel with the dimensioning of
S is desirable. The conversion of index from S to B, or vice versa, for each
element can thus be easily expressed in FORTRAN as demonstrated in the
above code segment. However, there are other times the code would be much
cleaner by viewing B as a two dimensional array declared as B(JDFCON,*),
where JDFCON=JDFx CON. The technique which the processor INV uses to
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index the same array in either way is to declare two formal parameters, namely
B(JDF,CONRNG,*) and BB(JDFCON,*) in the subroutine which does the fac-
torization, whereas the actual parameters corresponding to B and BB in the
calling sequence are identical. With this trick, B and BB in the subroutine refer
to the same actual parameter and the programmer can work with either B or
BB according to his need to access the data in a particular pattern.

Handling zero constraints: Processor INV handles zero constraints by ignoring the cor-
responding rows in the process of transferring data from § to B. That is, if the
unknown z; = 0, then row ¢ will not be copied to B. For example, if it is known that
z, = 0, then only row 1 and row 3 in (411, A;2) would be copied to array B. The
actual transformation of (A1, Ay 2) is carried out in B as shown below.

1
a;; @12 @13 G114 G5 G186 dy” my3 mLE Mg My mye
asy @gz2 asz3 434 Qqzs GA36 azx aszz d3 Mmaq4 mas Mag

Consequently, row 3 in S becomes row 2 in B, i.e., it is possible that K<M in our
sample code segment.

Handling nonzero constraints: Processor INV handles nonzero constraints by ignoring
the corresponding rows in the factorization process. For example, if it is known that
23 = ug # 0 in addition to z; = 0, the transformation of (A, 1, A1 2) by processor INV
will not affect row 3, i.e.,

-1
a1 a2 413 414 Q15 18 d1 mp2 M3 M4 M5 Thge
azi1 asz2 ass a34 4ass asze azy 4ag2 agzaz 4agz4g azs Q3@

Elements archived: Write out to database those elements of BB which are needed for
the subsequent use by processor SSOL in effecting the forward/backward substitution
process. For example, assuming z, = 0, and 23 = uz # 0, the output elements
resulting from factoring the (411, A1,2) block are given by

~1
dit my3 my3 mug4 Tus Myg
ag3 4agz4 0azs a3g

3.3 The SSOL Implementation

Input Data: Processor SSOL retrieves from the database the factors archived by processor
INV. For our example of the block 2 X 2 matrix, assuming that the constraints are
z2 = 0 and 23 = u3 # 0, the data given below are stored in a row-oriented manner in
the database.

di! my; ™us mye Mis Mg
as3 434 A35 Gae

di' mas mag

ds_l m5,5

dg!
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In addition to the factors, the right-hand side vector f and the nonzero-constraint
vector @ are also available in the database.

Handling constraints: In essence, processor SSOL simply adapts the forward/backward
substitution schemes we presented for Algorithm I to solve the following triangular
systems, which are to be implicitly formed from the data retrieved.

1 o fi
mys azg 1 s Ja
mys ass Mas 1 o= fs
™16 aze Mg Mse 1 ys Je
Ys
and
Ty
1 my2 mi3 Mmye Mus My 0 it N
1 Mas Mge ug | _ dy ! Ya
1 mse T4 - d5_1 Ys
1 z5 dz? Yo
zg

In particular, the SSOL implementation takes advantage of the following observations.

1. The equations corresponding to zero constraints can be ignored in the forward
substitution phases.

2. The coefficients of the equations corresponding to nonzero constraints are needed
to adjust the right-hand side vector in the forward substitution phase.

3. If the solution vectors contain the constraints, the equations corresponding to
constraints (either zero or nonzero) can be skipped in the backward substitution
phase.

Output Solutions: The computed z; ;’s are written out to the global database.

3.4 Other Relevant SPAR Processors

In order to briefly introduce the functions of other relevant SPAR processors, and give the
readers some idea how they may be used to perform an analysis, we found that the following
information available in The CSM Testbed User’s Manual [24] useful. Given below is a list of
processors together with comments on their individual functions. In addition, the ordering
of the processors in the list serves as a template for performing the linear static analysis,
which is one of the simplest types of analysis which can be performed with the Testbed.

1. Processor TAB. Define joint locations, constraints, reference frames, and possibly ma-
terial and section properties. Material and section properties may be defined using
either processor TAB or processors AUS and LAU (Steps 2 and 3).
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2.

10.

11.

12,
13.

14,

Processor AUS. Build tables of material and section properties if the facilities in pro-
cessor TAB were not used.

Processor LAU. Form constitutive matrix if material and section properties were not
input in processor TAB.

. Processor ELD. Define elements. Element definitions include element connectivity,

element material reference frame number, element material and section type numbers.

Processor E. Initialize element datasets; create the dataset which will contain all im-
portant element information (e.g., intrinsic coordinates, element-to-global transfor-
mations, intrinsic stiffness matrices).

Processor EKS. Calculate element intrinsic stiffness matrices.
Processor RSEQ. Resequence nodes for minimum total execution time.

Processor TOP0. Form maps which guide the assembly and factorization of system
matrices.

. Processor K. Assemble global (system) stiffness matrix.

Processor INV. Factor system stiffness matrix.

Processor AUS and EQNF. Create applied nodal loading. If element loading is applied,
Processor EQNF must be executed to calculate equivalent nodal loading.

Processor SSOL. Solve for static displacements.
Processor GSF. Calculate element stress resultants.

Post-process using any of the following processors: VPRT, PSF, PLTA, PLTB, PLOT,
CONT, T2PT.
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4 Developing New Matrix Factorization Processors

4.1 General Considerations

We have described in detail in Section 3 the internal working of processors INV and SSOL.
The former performs the out-of-core LDLT factorization of a sparse matrix in block form,
and the latter solves the resulting triangular systems by forward and backward substitution
schemes. The following considerations have prompted us to investigate alternative sparse
factorization schemes.

1. The techniques employed by INV are particularly tailored to the large sparse linear
systems arising in the structural models. The models considered are composed of
finite elements connected at specified joints. Each joint can have three translational
and three rotational components of deflection, totaling a maximum of six degrees of
freedom per joint. The system stiffness matrix is stored and operated on as an array
of JDF X JDF submatrices, where 3 <JDF< 6 is the maximum number of degrees of
freedom per joint in the model of a particular problem. However, in general the joints
need not have the same number of degrees of freedom. This storage scheme thus
necessitates storing dummy data — an identically zero row for each missing degree
of freedom at each joint. Although the factorization scheme only operates on the
non-null submatrices and some operations on the dummy rows are skipped by the
processor INV, it does not fully exploit the sparsity within each submatrix. While
this strategy is understandably very efficient if uniform degrees of freedom per joint
prevail, it may not best suit the models with drastically varied degrees of freedom,
which is not uncommon in finite element modeling applied to disciplines other than
mechanical structural analysis.

2. As described in Section 3, the data structures employed incur the index overhead of
one pointer per submatrix for all submatrices occurring in each elimination stages.
Therefore, the index overhead is proportional to the number of submatrices instead of
the size of them. Consequently, while the primary storage for the system stiffness ma-
trix and the factors is reduced for models with fewer degrees of freedom, the secondary
storage for their indices may remain the same and could become a significant part of
the total storage. Furthermore, unlike the working storage which is determined by
the maximum number of submatrices which ever occur during the entire factorization
process, the addresses of the submatrices are repeatedly stored for each elimination
stage.

3. The system stiffness matrix, the factors and their respective indexing information are
each stored in separate datasets in the global database. The datasets are read into
memory or written out to the database one record at a time. The choice of record
length determines the number of disk read/write operations and the required buffer
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space. While the maximum record length of a dataset is restricted by the available
buffers, the minimum record length must be long enough to contain all of the items
which are needed to completely process one entire row of submatrices. Therefore,
the processor INV can perform in-core factorization if each record of each dataset
contains all information needed to complete the entire factorization process. In that
case, the in-core storage is required to accommodate at least one copy of the system
stiffness matrix, one copy of the factors along with the indexing information needed
for all elimination stages, and a working array of the same size as needed in the
out-of-core case. Since some other out-of-core sparse factorization schemes currently
available perform in-place factorization and are readily adapted to performing in-core
factorization, it appears worthwhile to compare their performance in both in-core and
out-of-core cases.

4. When applying the out-of-core block LDLT scheme as implemented by the processor
INV to a dense matrix, its advantage of reducing memory requirement disappears
because the working array for the first elimination stage must contain the entire upper
triangular part of the stiffness system matrix.

5. The possible ill-conditioning of the system stiffness matrix is not detected by the
current Testbed software.

4.2 The Design of an Interface

It is apparent from our earlier discussions that the format of the datasets is directly con-
nected to the factorization scheme currently employed in the Testbed. It is thus likely that
the particular arrangement of data items in the datasets may not be compatible with the
data-accessing pattern of the other factorization algorithms to be considered. In order to
evaluate the performance of alternative sparse factorization schemes in the Testbed without
redesigning the database at a time when the scheme of choice is not certain yet, we have
devised a set of subroutines which serve as an interface between the global database of the

Testbed and SPARSPAK-A [2]. Although some components of the interface are specific for
SPARSPAK-A, we hope that its overall design and the availability of some utility modules

will prove to be useful in adapting the interface to work with other sparse matrix solvers.
A few words about the capabilities of SPARSPAK-A are in order.

4.2.1 SPARSPAK-A: Waterloo sparse linear equations package

In this section we briefly review the important features of SPARSPAK-A, which is a package
of Fortran programs designed to efficiently solve large sparse systems of linear equations by
direct methods. The structure and use of the package are described in the SPARSPAK-A
User’s Guide [2]. The collection of algorithms implemented by SPARSPAK-A and their
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storage schemes are discussed in reference [12]. Although we shall consider only symmetric
positive definite problems here, the actual package handles both symmetric and unsymmet-
ric problems subject to the condition that the matrix structure is symmetric and that row
and/or column interchanges are not required to maintain numerical stability. To solve a
sparse symmetric positive definite linear system

Az =D,
the user and SPARSPAK-A interact through the following steps:

Step 1. The user supplies the nonzero structure of A to the package using a set of subrou-
tines described in Section 2.2 of reference [2].

Step 2. The package finds a “good” ordering (permutation P) for A, and allocates stor-
age for the triangular factorization of PAPT = LLT, as described in Section 2.3 of
reference [2].

Step 3. The user supplies the numerical values for the matrix A to the package, as described
in Section 2.4 of reference [2].

Step 4. The package factors PAPT into LLT, as described in Section 2.5 of reference [2].

Step 5. The user supplies numerical values for b, as described in Section 2.4 of reference [2].
(This step may come before Step 4, and may be intermixed with Step 3.)

Step 6. The package computes the solution by solving Ly = Pb and LTz = y, and then
setting @ = PTz, as described in Section 2.5 of reference [2].

Step 7. The user may call a subroutine to obtain an estimate of the relative error in z
as well as the inverse of the condition number of A4 if so desired. The subroutine is
described in Section 2.6 of reference [2].

The names of the subroutines available for reordering a symmetric matrix in Step 2,
together with the algorithms they implemented, are listed in Table 1. Corresponding to
each ordering choice in Step 2, a different set of subroutines are provided for Steps 3, 4, 6
and 7. The subroutines used in Steps 1 and 5 are, however, independent of the ordering
methods.

In the context of comparing the performance of the SPARSPAK-A factorization algo-
rithm with that of the Testbed processor INV, we should note the following. Firstly, the
coefficient matrix A will have been ordered differently because the ordering algorithm in
the Testbed is applied to the joints in the finite element model before the system stiffness
matrix is assembled, whereas SPARSPAK-A reorders the coefficient matrix itself. Since
associated with each joint in the finite element model is a dense JDF XJDF submatrix,
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Table 1: SPARSPAK-A ordering choices.

SPARSPAK-A

Subroutine Ordering algorithm

ORDRA1 Reverse Cuthill-McKee ordering [21]
ORDRA3 One-way Dissection ordering [9]
ORDRB3 Refined quotient tree ordering [10]
ORDRAS5 Nested Dissection ordering [11]
ORDRBS5 Minimum Degree ordering [17]

the resequencing of the joints relocates the submatrices (as a whole) in the system stiffness
matrix. On the other hand, since the ordering algorithms in SPARSPAK-A are applied to
the structure of the assembled system stiffness matrix, the zeros within each submatrices
(due to constrained variables or dummy rows) may be exploited and the resulting matrix
may not be in block form.

Secondly, the Cholesky factorization scheme and the upper/lower triangular system
solvers implemented by SPARSPAK-A do not handle constraints or dummy rows (rows of
zeros). It is therefore necessary to adjust both the system stiffness matrix and the right-hand
side before the nonzero structure and the numerical values are input to SPARSPAK-A. In
the current version of Testbed, while the constraint information is available in a designated
dataset, the dummy rows can be detected only by reading the assembled system stiffness
matrix. The implication is that the system stiffness matrix has to be examined twice —
once for determining its “adjusted” nonzero structure (needed in Step 1), and once for
retrieving its numerical coefficients (needed in Step 3). We consider the way we handle
the dummy rows as an interim measure until the dataset format of the generic element
processor is available. It is expected that the generic element processor will neither assume
uniform degrees of freedom nor store dummy data. Complete details on adjusting the
nonzero structure and the numerical values for input to SPARSPAK-A are given later in
this section.

Thirdly, SPARSPAK-A employs a particular version of the Cholesky factorization algo-
rithm. Since this version of the algorithm computes the Cholesky factor one column at a
time and the part of the matrix remaining to be factored is not accessed during the scheme,
it is commonly referred to as the “Column-Cholesky” algorithm. Depending on how the
modifications to each designated column are accumulated, the Column-Cholesky algorithm
can be described in two different forms. Given in Figure 16 is the commonly known scalar-
product form. These formulas can be derived directly by equating the elements of A to the
corresponding elements of the product LLT.
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for j — 1,2,...,n do
i—1
i — e — Tili By
fori—j+1,74+2,...,n

bij = (a,-,,- - Yid fi,kfj.k) /5

Figure 16: The scalar-product Column-Cholesky Factorization Algorithm.

The vector-sum Column-Cholesky algorithm described in Figure 17 is an alternative
formulation which avoids explicitly forming the individual inner products.

for 1 =1,2,...,ndo
for k=1,2,...,7—1do

ajj ajj Lik
— - l]'k ,
Qnj Qnj lnk
li; = /i

fork=5+1,7+2,...,ndo
lij « axj/aj;

Figure 17: The vector-sum Column-Cholesky Factorization Algorithm.

SPARSPAK-A applies the vector-sum Column-Cholesky algorithm to factor a general
sparse matrix. Readers are referred to [12] for a comprehensive description of various storage
schemes which result in efficient implementations of the algorithm.

Forn = 5 and j = 3, the in-place Column-Cholesky factorization scheme thus transforms
a;3 to £; 3 for 3 <7 < 5 as depicted in Figure 18. Note that the elements actually involved

£ £

L1 L2 £, £

f317 £33 as3 — | €31 L33 L33

£37 f42 a43 Qa4 £y L33 f43 asa

f51 f52 asz ass asgs 51 €52 €53 ase asgs

Figure 18: Computing the third column of the Cholesky factor L.
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in computing the third column of L, denoted as L3, in the above example are shown in
Figure 19. They are the coefficients of the third column of A and those of the computed L
with their row indices greater than or equal to 3. Liu [15] makes the observation that if A is

31 f32 aags — | €31 L33 las
£37 a2 ag3 £y f42 L4
€51 f52 asg £51 €53 fs53

Figure 19: The ¢; ;’s accessed and the a; ;’s modified in computing L.3

read into memory one column at a time and each column of L is written out to the auxiliary
storage as soon as it is computed, the in-core working space can be economized by keeping
only those ¢; ;’s which are needed for the current stage of elimination. Suppose the computed
{; ;’s are saved in a linear array sequentially, we use the above example to demonstrate the
necessary data reorganization when the size of this working array is LNZSZE= 9. As
shown in Figure 20, the £; ; elements are relocated (by overwriting elements which are not
accessed any more) to make room for the newly computed ¢;;’s. For this example, data
reorganization is necessary only before computing the third column and the fourth column
of L. Clearly, the larger the size of the working array the fewer number of times the data
reorganization needs to be done.

le I L. Ils,1 I 4L Itb,lJ
Lll.x [lz,l I 41 I 4 l £y ,1 | L2,2 [ 43,2 I Ly,2 l 5,2 |

Lls,l I 4 I L lls,z Il4.2 [15.2 [ L33 [14,3 Ils.a I

Lh,x I tb.lJ 442 l Ly 2 Ih,: I {3 | Laa | Ly 4 l

ng,x I £5,1 | 4,2 Ila,z ] L3 l Ls,3 | L I Ly,4 I Ly s |

Figure 20: The organization of £; ;’s in the working array.
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In reference [15], Liu applies the idea above to large sparse matrices in his development of
an adaptive general sparse out-of-core Cholesky factorization scheme. One of the advantages
the algorithm features is that the frequency of data structure reorganization is adaptive to
the available working space. Liu’s implementation of the out-of-core Cholesky scheme is
compatible with SPARSPAK-A and is intended to be used in Step 3. We have incorporated
this set of subroutines into an experimental processor in the Testbed and we shall report
its performance on a set of CSM Testbed demonstration problems in Section 5.

4.2.2 The Design of the Processor SPK

Currently the entire interface together with the driver and a subset of SPARSPAK-A mod-
ules are installed as a single processor SPK which can be invoked by the macroprocessor
command [XQT SPK during the execution of the Testbed. The choice provided by this
particular subset of SPARSPAK-A modules is the “Minimum Degree ordering [17]”. Fol-
lowing the guideline contained in Section 6.2.1 of reference [22] for coding new processors,
the main program of the processor SPK is implemented as a subroutine (named “SPK™)
called by the Testbed executive module “NICESPAR”. Referring to the control diagram
given in Figure 21, observe that the subroutine SPK calls another module “SPKA” which
serves as the driver of SPARSPAK-A modules. In short, the subroutine SPKA allocates
memory, sets up the problem by calling CSM-Interface modules, and solves the problem by
calling SPARSPAK-A computational modules. The role the CSM-interface modules play
is to retrieve the assembled linear system to be solved from the global database and input
the problem in an appropriate formm to SPARSPAK-A. The design of the processor at this
level is thus generic and may be used with other sparse matrix packages.

The CSM-interface consists of twenty-two modules. For easy reference, we list the
subroutine or function name of each module and its formal parameters (if there is any) in
Table 2 together with those of the two driver subroutines SPK and SPKA. All of these
modules are written in the FORTRAN 77 language and a complete listing of programs
is provided in Appendix C of this report. We shall discuss some implementation issues
in section Section 4.2.3 and describe how these modules interface with the Testbed global
database and SPARSPAK-A in Sections 4.2.4 and 4.2.5. The usage of the interface is
described in Section 4.3.
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NICESPAR

—_— o —

SPK

SPKA

CSM-interface I_-SPRSPAK-A_]
modules L modules ]

GAL-Processor | | SPARSPAK-A |
L_entry points L modules N

Global
database

Figure 21: The control diagram of the new processor SPX.
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Table 2: The SPX driver and interface modules.

DRIVERS

SUBROUTINE SPK

SUBROUTINE SPKA (A, MXSTOR)
DOUBLE PRECISION A(1)
INTEGER MXSTOR

CSM-INTERFACE INITIALIZATION MODULES

SUBROUTINE SPKCSM
REAL FUNCTION CTIME ( IDUMMY)
INTREGER IDUMMY

CSM-.INTERFACE PROBLEM INPUT MODULES

SUBROUTINE GETJDF ( IBUF )

INTEGER*4 IBUF(1)

SUBROUTINE GETDOF ( DOF, IBUF)

INTEGER*4 DOF(1), IBUF(1)

SUBROUTINE GTZERO { DOF, FBUF, MASK )

DOUBLE PRECISION FBUF(1)

INTEGER*4 MASK(1), DOF(1)

SUBROUTINE GTCOND ( DOF, IBUF, KC, MASK, CSIZE )
INTEGER*4 DOF(1), IBUF(1), KC(1), MASK(1), CSIZE
SUBROUTINE GTMOTI ( FBUF, MASK, FCON, CSIZE )
INTEGER*4 MASK(1), CSIZE

DOUBLE PRECISION FBUF(1), FCON(1)

SUBROUTINE GETIJ ( DOF, IBUF, ICLQ, MASK, 5 )
INTEGER*4 DOF(1), IBUPF(1), ICLQ(1), MASK(1), S(1)
SUBROUTINE GTFORC ( FBUF, MASK, § )

INTEGER*4 MASK(1)

DOUBLE PRECISION FBUF(1), 5(1)

SUBROUTINE GINUME ( DOF, FBUF, MASK, FCON, §)
INTEGER*4 DOF(1), MASK(1

DOUBLE PRECISION PBUF(1), FCON(1), 5(1)

CSM.INTERFACE UTILITY MODULES

INTEGER FUNCTION SPACE ( IDUMMY )
INTEGER*4 IDUMMY

SUBROUTINE LIBOPN

SUBROUTINE QKINFO | DSNAME)
CHARACTER*51 DSNAME

SUBROUTINE GTRECI ( RECNUM, IBUF, LEN )
INTEGER*4 RECNUM, IBUF(1), LEN
SUBROUTINE GTRECF [ RECNUM, FBUF, LEN )
INTEGER*4 RECNUM, LEN

DOUBLE PRECISION FBUF(1)

CSM-INTERFACE ERROR HANDLING MODULES

SUBROUTINE EMSG
SUBROUTINE EMSGO
SUBROUTINE EMSG1
SUBROUTINE EMSG2
SUBROUTINE DEMSGO

CSM-INTERFACE STATISTICS MODULES

SUBROUTINE GETSOL ( FBUF, SOL, RATIO )
DOUBLE PRECISION FBUF(1), SOL(1), RATIO
SUBROUTINE STATCS
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4.2.3 Implementation Issues

The two implementation issues we shall discuss in this section are “memory allocation” and
“module/module communication”.

Memory allocation Firstly, we note that the maximum working array storage available to
the processor SPK is determined by the blank common dimension identically declared
in the Testbed executive NICESPAR and the subroutine SPK, namely

COMMON A(KSZZZ)

Consequently, if the number of words provided by the blank common is insufficient
for the processor SPX to solve a particular problem in-core, the dimension of the blank
common must be increased, and the Testbed and the subroutine SPK must both be
recompiled.

We supply blank common of dimension KSZZZ (words) to the subroutine SPKA
as a floating-point array of dimension MXSTOR. To accomplish this, we have the
subroutine SPK execute the following statement:

CALL SPKA ( A, MXSTOR )

where the value of MXSTOR is either KSZZZ or KSZZZ/2 depending on whether A
is declared as a single-precision or double-precision array in the subroutine SPKA.

All integer and floating-point arrays required by the CSM-Interface modules and
SPARSPAK-A are then allocated by the subroutine SPKA from the one dimensional
floating-point array A(MXSTOR). Note that in order to interact with SPARSPAK-
A, the user is required to pass a working array S to the package and the location
of S is the only parameter appearing in all of the SPARSPAK-A interface modules.
In our case, the array § must be allocated from the working array A(MXSTOR).
We have thus divided A(MXSTOR) into two segments. The top segment accom-
modates arrays to be passed to the CSM-interface modules and the entire bottom
segment is passed to SPARSPAK-A. If we let the variable MXUSED denote the size
of the top segment, the parameter to be passed to SPARSPAK-A is A(SPK), where
SPK = MXUSED+1.

A labeled common block CSMMAP is designated to keep the locations (origins in
A) of the various arrays. The variables in COMMON /CSMMAP/ and the relative
locations they represent are depicted in Figure 22. The type and size of the working
arrays are tabulated in Table 3. Note that the buffer space for reading integer and
floating-point records has been overlapped.
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Table 3: The type and size of the SPK working arrays.

Type Formal Actual Size Comments
parameter | parameter
INTEGER*4 DOF A(DOF) NUMJNT+1 NUMJINT= total # of joints
MASK A(MASK) | NEQNS NEQNS = total # of equations
KC A(KC) MAXDOF+1 MAXDOF =6
ICLQ A(ICLQ) MAXDOF
IBUF A(BUF) BUFMAX maximum buffer length
DOUBLE PRECISION | FBUF A(BUF) BUFMAX maximum buffer length
FCON A(FCON) | CSIZE total # of nonzero constraints
SPK A(SPK) MAXSTOR—SPK+1 | the bottom segment of A

Module/module communication The following labeled common blocks have been used
to organize the communication between the SPK modules and the CSM Testbed mod-
ules, between the SPK modules and the SPARSPAK-A modules, and among the mod-
ules within the interface.

1. COMMON /IANDO/ IIN, IOUTX. The two integer variables contain user input

and output unit numbers assigned by the Testbed subroutine INTRO when the
new processor begins execution.

The /IANDO/ common appears in the SPK initialization subroutine SPKCSM
and the SPARSPAK-A initialization subroutine SPRSPK.

. COMMON /SPAUSR/ MSGLVA, IERRA, MAXSA, NVARS. The /SPAUSR/

common allows user and/or processor SPK to communicate with SPARSPAK-A
or vice versa. The meaning of the four integer variables are explained in Section
4.3.2 and Section 4.3.3.

The /SPAUSR/ common appears in the SPK subroutine SPKA which serves as
the driver of SPARSPAK-A.

. The following common blocks are for communication among the SPK modules.

COMMON /CSMSYS/ (6 variables)

COMMON /CSMSPK/ (6 variables)

COMMON /CSMUSR/ (11 variables)

COMMON /CSMMAP/ (7 variables)

COMMON /CSMCON/ (4 variables)

COMMON /CSMDTA/ (8 variables)

COMMON /PRBLEM/ (3 variables)
The collection of related variables into a labeled common block avoids passing
long parameter lists in the use of the subroutines and yet makes the coupling
between modules easy to identify. Comments on the variables contained in these

labeled commons are made at appropriate places throughout Sections 4.2.4, 4.2.5
and 4.3.
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Figure 22: Storage allocation of the SPK working arrays.
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labeled commons are made at appropriate places throughout Sections 4.2.4, 4.2.5
and 4.3.

4.2.4 Interfacing with the Global Database

There are eight modules in the interface which retrieve data from the global database and
process them. The names of these subroutines are “GETJDF”, “GETIJ”, “GTZERO”,
“GTCOND”,“GTFORC”,“GTMOTI”,“GTNUMS5” and “GETSOL”. We shall use “Gxxxxx”
to represent an arbitrary one of them. All of these modules retrieve datasets from the
Testbed via two utility modules which are either “QKINFO and GTRECI” (for retrieving
integer records) or “QKINFO and GTRECF” (for retrieving records containing floating-
point numbers). Figure 23 depicts the coupling of the interface modules with the GAL-
processors. Readers are referred to reference [26] for a complete description of the calling
sequence and the operation of each GAL-processor employed.

Gxxxxx

QKINFO GTRECx

" LMPIND || oMeEka | | amcEcy | | omcorn | amepty ! [ rmercp |
J L Jd L 1 L J L 4 L

- — — — — — [ — — — — —

Global

database
Dataset name l l

Figure 23: The coupling of CSM-interface modules and GAL-processors.

‘For each designated dataset, the labeled common /CSMSPK/ is used to
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1. provide the input arguments LDI and TRACEFE to the GAL-processors. (The meaning
of LDI and TRACE is given in Table 4.)

2. store the dataset attributes the interface module QKINFO acquires from the GAL-
processors LMFIND, GMEGKA and GMGECY .

3. communicate the dataset attributes to the interface modules Gxxxx, and the GAL-
processors GMCORN and GMGETN via the interface module GTRECI or GTRECF.

The /CSMSPK/ common thus appears in QKINFO, GTRECI, GTRECI and each Gxxxx
module. The variables contained in /CSMSPK/ and their meaning are given in Table 4.

Table 4: The variables in COMMON /CSMSPK/.
COMMON /CSMSPK/

variable | meaning

IDSN Dataset sequence number.

LDI Logical Device Index of library device.
NLEN | The record length.

NREC | The number of records in the dataset.
RTYPE | The data type.

TRACE | A positive integer used as identifying label
in error traceback prints.

Since the actual data contained in each dataset is unique, each subroutine Gxxxxx must
be specifically coded to interpret the data retrieved. The datasets to be accessed by the
eight interface modules are listed in Table 5. For each dataset, given in Table 5 are also
the name of its source processor and the name of the dedicated interface module. The
last column of Table 5 indicates the appropriate utility module which should be called to
retrieve the type of data provided by the specified dataset.

The data retrieved from each dataset and how they are handled by the interface routines
are described below. Readers are referred to reference [22] for a description of the format
of each dataset.

JDF1.BTAB.1.8 provides the total number of joints and the maximum number of active
(unconstrained) degrees of freedom a joint may have in the model.

The subroutine GETJDF retrieves the data and stores them in the variables NUMJNT
and MAXDOF in the labeled common

/PRBLEM/ MAXDOF, NEQNS, NUMJNT

In an attempt to be flexible in handling the more general case in the future, the sub-
routine GETDOF stores the active degrees of freedom for each individual joint in an
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Table 5: Datasets accessed by Gxxxxx and GTRECx.

” Source Processor J Dataset l Gxxxxx | GTRECx ﬂ

TAB JDF1.BTAB.1.8 GETJDF | GTRECI

K K.SPAR.jdf2 GTZERO | GTRECF
TAB CON..ncon GTCOND | GTRECF
TOPO KMAP..nsubs.ksize GETILJ GTRECI
AUS APPL.FORC.iset. 1 GTFORC | GTRECF
AUS APPL.MOTIiset. 1 GTMOTI | GTRECF

K K.SPAR.jdf2 GTNUMS5 | GTRECF
SSOL STAT.DISP.iset.ncon | GETSOL | GTRECF

accumulated form in an integer array DOF so that the number of degrees for joint
number [ can be computed from DOF(I+1)-DOF(I), where DOF(1)=1, and that
DOF(NUMJNT+1)-DOF(1) gives the total number of equations of the assembled
system. The latter value is also stored in the variable NEQNS in the /PRBLEM/ com-
mon. Since the current version of the CSM Testbed assumes uniform degrees of free-
dom per joint in storing the system stiffness matrix, DOF(I+1)— DOF(I)=MAXDOF
for1 <I <NUMJNT.

K.SPAR.jdf2 provides the assembled global stiffness matrix stored as an array of JDF x JDF
submatrices, where JDF is the maximum degrees of freedom in the model and its value
is available from the the variable MAXDOF in the /PRBLEM/ common block. Note
that the integer jdf2 in the name of this dataset is the square of the value of JDF.

The subroutine GTZERO retrieves the system stiffness matrix and detects dummy
rows by examining its diagonal elements. For each zero diagonal coefficient detected,
a zero is entered into the integer array MASK at the location MASK(I), where I
is the equation number of the dummy row. The convention we have adopted is
that MASK(J)= —1 if the J*h equation is neither constrained nor a dummy row,
MASK(J)= 0 if it corresponds to a dummy row or a zero constraint, MASK(J)=1 if
it corresponds to a nonzero constraint.

CON..ncon provides constraint information for each joint degree of freedom. The informa-
tion available indicates for each joint which component is free, which component is
constrained to be zero and which component has a non-zero constraint. Such informa-
tion is encoded so that one integer is stored for each joint in the model. The current
encoding mechanism assumes that the maximum number of degrees of freedom a joint
may have is “six”. The constraints corresponding to the six degrees of freedom are
encoded into the right most six bits of a seven-bit integer. The subroutine DECODE
accepts an integer as input and returns the status of each of the MAXDOF degrees
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of freedom in the leading MAXDOF locations of a working array of length seven.

The subroutine GTCOND retrieves the encoded datafrom CON..ncon, calls DECODE
to obtain the constraint status for each joint in the model, and sets the corresponding
entries in the integer array MASK to be “0” or “1” as explained above. An inte-
ger output parameter CSIZE records the total number of nonzero constraints whose
numerical values are expected to be available in the dataset APPL.MOTLiset.1.

Therefore, after both subroutines GTZERO and GTCOND are executed, all con-
straint information is available for other SPK modules in the integer array MASK.
Note that we have treated the dummy rows as if they correspond to zero constraints.

KMAP..nsubs.ksize provides the block nonzero structure of the system stiffness matrix.
Note that the value of nsubs in the name of the dataset represents the total number
of submatrices in the system stiffness matrix for the model, and that the integer ksize
is the maximum number of joints active at any time during the assembly of the system
matrix.

The subroutine GETIJ accesses KMAP..nsubs.ksize and the integer array MASK to
obtain the matrix structure for input to SPARSPAK-A. We explain how the con-
straints are handled in Section 4.2.5.

APPL.FORC.iset.1 provides applied forces and moments on each joint in each active direc-
tion. The integer iset in the dataset name identifies a unique load case.

The subroutine GTFORC retrieves the data but inputs a retrieved numerical value
as a component of the right-hand side vector to SPARSPAK-A only if it does not
correspond to a variable constrained to be zero (i.e., MASK(I)# 0 if I is the equation
number).

Since the right-hand side is initialized to be identically zero in SPARSPAK-A, and the
modifications to the right-hand side caused by nonzero constraints are to be “added”

to the appropriate components by subroutine GTNUMS5, the input of right-hand side
to SPARSPAK-A is not completed before the subroutine GTNUMS is executed.

APPL.MOTlLiset.1 provides applied motions on each joint in each active direction. As
mentioned earlier, the integer ncon in the name of this dataset identifies a particular
constraint case, and numerical values for the nonzero constraints detected by the
subroutine GTCOND are expected from this data set.

The subroutine GTMOTI retrieves the available applied motions and stores them
in a floating-point array FCON(I), where 1 < I <CSIZE, and CSIZFE is the total
number of nonzero constraints determined in the subroutine GTCOND. Therefore,
when CSIZE= 0, the subroutine GTMOTI will return without attempting to access
the dataset. However, when CSIZE> 0, it is a fatal error if the dataset is missing or
less than CSIZE values are available.
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STAT.DISP.iset.ncon provides the computed static displacements for each joint in each

active direction. Unique solution is obtained by specifying the load set and constraint
case in the name of the dataset.
The subroutine GETSOL retrieves the Testbed solution from this dataset and verifies
the correctness of the SPARSPAK-A solution by computing its relative error with
respect to the Testbed solution. More details in this aspect are provided in Section 5
on numerical experiments.

4.2.5 Interfacing with SPARSPAK-A

The processor SPK may interact with SPARSPAK-A via the interface modules given in
Table 6, which correspond to our choice of the minimum degree ordering (subroutine OR-
DRB5) for the new processor.

Table 6: SPARSPAK-A interface modules - a subset.

| Initialization of SPARSPAK-A | SPRSPK JJ
Structure input IJBEGIN

INIJ (1,7, S)

INROW (I, NIR, IR, S)
INIJIJ ( NIJ, II, JJ, S)
INCLQ ( NCLQ, CLQ, S)

IJEND(S )
[| Ordering | ORDRB5 (S) [
Matrix input INAIJ5 (I, J, VALUE, 3

INROWS ( I, NIR, IR, VALUES, S)
INMATS ( NIJ, II, JJ, VALUES, S)

Right-hand side input INBI(I, VALUE, S)
INBIBI ( NI, II, VALUES, S)
INRHS (RHS, S )

[| Factorization and/or Solution | SOLVE5 ( S') |
| Relative error estimation | EREST5 ( RELERR, S') |
| Print statistics | STATSA Al

Save and Restart the computation | SAVEA (K, S)
RSTRTA (K, )
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The coupling of the SPK modules and SPARSPAK-A is depicted in Figure 24. The mod-
ules which interact with SPARSPAK-A are “SPKA”, “GETIJ”, “GTFORC?” and “GT-
NUMS5”. The module SPKA serves as the driver program of SPARSPAK-A. The module
GETIJ inputs the nonzero structure of the system stiffness matrix to SPARSPAK-A. The
modules GTFORC and GTNUMS5 are involved in inputting nonzero coefficients and the
right-hand side to SPARSPAK-A. The particular SPARSPAK-A subroutines to be called
by each of these interface modules are explicitly given inside the dashed boxes.
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Figure 24: The coupling of the processor SPK and SPARSPAK-A.
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Since SPARSPAK-A modules do not handle constraints, the retrieved system stiffness
matrix and the right-hand side must be adjusted before they can be input to SPARSPAK-A.
The necessary modifications to the structure and the numerical values are detailed below.

Input the structure of the system stiffness matrix to SPARSPAK-A - In this sec-
tion we describe how the subroutine GETIJ inputs the the structure of the system
stiffness matrix to SPARSPAK-A. The dataset KMAP..nsubs.ksize contains the sys-
tem topology map. From this map we can retrieve the following information for each
joint.

JNT - The number of the current joint.

CONRNG - The number of submatrices including the diagonal in the upper triangle
for the current joint.

CONECT(CONRNG-1) - A list of joints connected to the current joint.

Let us consider the following finite-element model which is given as an example in
reference [23].

Figure 25: A model.

Table 7: A model.

Element Connected

# type Nodes

1 BEAM | 1,2

2 ? 2,3

3 » 34

4 ? 2,5

5 ? 3,6

6 PLATE | 1,2,5

7 ? 2,3,6,5

8 ? 3,4,6

For this model, the information expected to be available in KMAP..nsubs.ksize is
listed in Table 8.
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Table 8: From dataset KMAP..nsubs.ksize.

[[ INT | CONRNG | CONECT(CONRNG-1) ||
1 2,5

1

3
4,

M

6
6

| »f | i~

(=1 0 I N R C) |
=R DO W] W] W

Given in Figure 26 is the upper triangular block structure of the system matrix (in-
cluding the diagonal blocks) described by Table 8.

(1,1) (1,2) (1,5)

(2,2) | (2,3) (2,5) | (2,6)

(33) | (34) | (35) | (3.6)

(4,4) (4:6)

(5,5) (5.,6)

(6.6)

Figure 26: Upper triangular block structure of the system matrix for the model problem.
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If each joint has three degrees of freedom in the model, each block is a 3 X 3 submatrix
and the system stiffness matrix K has the nonzero entries as given in Figure 27.

DDV
SR
¥R
BRSO D®
BRIBIRS
[
VBRI
VIR
PRI ®
PRI
DRV
BRI R®
VOB ®
BRI IBRD
BRI B®RB

®D®
DD
DS®

BRI IPIRIIRIIRR®
PRIV RIPIFIFISD
PRI RIIRISIRY

Figure 27: Nonzero entries in the upper triangle of K (including diagonal submatrices.)

If every degree of freedom is active (unconstrained) on each joint, then the structure
input to SPARSPAK-A is as specified in Figure 27. It should be pointed out that
because SPARSPAK-A anticipates only “symmetric” nonzero structure, the struc-
ture input routine always records a logical nonzero in both (i,7) and (j, ¢) positions
regardless of which index pair is actually being entered. Furthermore, the package
automatically removes duplications so that it does not matter if both (¢, j) and (j,1)
pairs are entered.

In order to demonstrate how we handle the constrained degrees of freedom, let us
assume that the second degree of freedom on joint number 5 is constrained. In this
case, the corresponding columns and rows of data in K except for the diagonal elements
will be treated as zero entries. The nonzero positions SPARSPAK-A is informed of
consist of the remaining nonzeros as given in Figure 28.
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Figure 28: Remaining nonzero entries in the upper triangle of X.

As seen from Figure 28, the equations corresponding to the constrained degree of freedom
is the fourteenth equation. We have thus ignored the nonzero entries in locations (i, 14)
and (14, 7) for all #’s except for the diagonal entries. Accordingly, the numerical coefficients
corresponding to these ignored locations must not be input to SPARSPAK-A and the right-
hand side must be appropriately adjusted to reflect the change of the system matrix. We
next explain the internal working of our numerical input module.

Input the numerical values to SPARSPAK-A - The subroutine which inputs the nu-
merical values to SPARSPAK-A and modifies the right-hand side according to each
constrained degree of freedom is GTNUMz:, where 7 = 1,3, and 5 distinguishes the
SPARSPAK input modules INAIJ: called for each ordering.

To see how the right-hand side should be modified, we refer to Figure 29 for the same
example, where we label each ignored coefficient a; ; explicitly, and indicate that the
coefficient for the diagonal entry ay414 is set to 1.

Let the nonzero constraint corresponding to the second degree of freedom on joint
number 5 be ¢14. Our change to the system matrix and right-hand side should reflect
the following.

1. The fourteenth equation is replaced by

T14 = C14 -
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Figure 29: Nonzero entries in the upper triangle of K.
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Thus, the right-hand side elements b;, 1 =1,2,3,4,5,6,7,8,9,13 are modified to

be

b; — b; — a;14 X c14

49




and the right-hand side element b;, j = 15,16,17,18 must be modified to be
bj — bj — G145 X C14 .

To summarize, for each a;; coefficient retrieved from the dataset K.SPAR..*, sub-
routine GTNUM: checks whether the corresponding degree of freedom is constrained.
If that is the case, the value of 1.0 will be input to SPARSPAK-A as a;; and the
constraint value is input to SPARSPAK-A as b;.

For each off-diagonal element a; ;, GTNUMi checks the following four possible cases.

1. If both z; and z; are constrained, no action needs to be taken.

2. If z; is active and z; is constrained to be c; then
b —b; —a;; X ¢j.

3. If 2; is constrained to be ¢; and z; is active then modify
bj «— b; —a;; Xc;.

4. If neither z; nor z; is constrained, input the retrieved a; ; value to SPARSPAK-A
and specify the location to be (j, 7). (SPARSPAK-A requires the numerical value
to be input for the lower triangular part only.)
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4.3 The Usage of the Interface
4.3.1 The Execution Path

The usage of the interface in solving a Testbed problem is reflected by the execution path of
the subroutine SPKA as sketched in Table 9. The execution sequence is enforced by checking
and updating the value of the variable STAGE in the common block /CSMCON/. The
values of STAGE for the successful completion of each corresponding step are listed in the
last column of Table 9.

Table 9: The execution path of the subroutine SPKA

Execution path SPARSPAK-A | Interface Dataset /CSMCON/
subroutine subroutine | dependency STAGE
Step 1.1 Start SPRSPK SPKCSM [§]
1.2 LIBOPN 10
1.3 CTIME
Step 2.1 Problem input GETJDF JDF1.BTAB.1.8 20
2.2 GETDOF 30
2.3 GTZERO K.SPAR.jdf2 40
2.4 GTCOND CON..ncon 50
2.5 GTMOTI APPL.MOTIiset. 1 60
Step 3 Structure input IJBEGIN GETIJ KMAP..nsubs.ksize 70
INCLQ
INLJ
IJEND
Step 4 Order and ORDRB5
allocate storage
Step 5 Input numerical INBI GTFORC APPL.FORC.iset.1 80
values for b
Step 6 Input numerical INALT5 GTNUMs K.SPAR.jdf2 90
values for A and b INBI
Step 7 Factor A and solve SOLVES
for solution «
Step 9 Relative error estimation | ERESTS
(optional)
Step 10 Compare z with GETSOL STAT.DISP.iset.ncon
{optional) | CSM Testbed solution
Step 11 Collect statistics STATSA STATCS
(optional)
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4.3.2 User Input to the Processor SPK

In our current implementation of the processor SPK, the user-processor communication is
accomplished using an external text file. The input requirement and format are reflected
by the following code segment of the subroutine SPKA

c
SUBROUTINE SPRA ( A, MXSTOR )
c
c
INDADA = 41
c
c SET MSGLVL AS DESIRED
c
READ ( INDATA, 12 ) MSGLVL
c
c SET MSGLVA AS DESIRED
c
READ ( INDATA, 12 ) MSGLVA
c @ ————-
c SET MAXIMUM BUFFER LENGTH
[of [Py - ——
READ ( INDATA, 12 ) BUFMAX
12 FORMAT( I4 )
C ————
c INPUT NAME OF LIBRARY AND DATASETS FOR GIVEN PROBLEM
C -
READ ( INDATA, 22 ) LIBNAM
22 FORMAT( 440 )
READ ( INDATA, 32 ) JDFSET
READ ( INDATA, 32 ) KMAP
READ ( INDATA, 32 ) KSPAR
READ ( INDATA, 32 ) COX
READ ( INDATA, 32 ) APPLF
READ ( INDATA, 32 ) APPLM
READ ( INDATA, 32 ) STATD
32 FORMAT( 451 )
RETURN
c
END

The following comments are in order.

1. As shown in the above code segment, we have designated the logical unit number
41 to be used for the input data file. This choice is made under the restriction that
logical unit numbers 1 through 40 should not be used for files other than libraries to
avoid possible conflicts with CLIP and GAL [22].
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2. The variable MSGLVA stands for “message level of SPARSPAK-A”. The user may
govern the amount of output from SPARSPAK-A by setting MSGLVA to the values
Table 10.

Table 10: The valid input values of MSGLVA.

MSGLVA amount of cutput
0 no information is provided.
1 only warnings and errors are printed.
2 warnings, errors and summary are printed.
3 warnings, errors, summary and some statistics are printed.
4 detailed information for debugging purposes.

3. The variable MSGLVL allows user to control the amount of output from the interface
modules. Given in Table 11 are the input values acceptable for MSGLVL.

Table 11: The valid input values of MSGLVL.

MSGLVL amount of output
0,1 no information is provided.
2 warnings, errors and summary are printed.
3 detailed information for debugging purposes.

4. The value of BUFMAX should be set to the maximum record length of any dataset
the processor SPK ever needs to retrieve.

5. The variables initialized by user input are collected into the two labeled common

/SPAUSR/ and /CSMUSR//.

6. An example — To solve the linear system of the test problem demo1 using SPARSPAK-
A, edit a file named “fort.41” to contain the following data:

2

2

2240
/usr.MC68020/nlai/echu/ns/DEMO/demo1.101
JDF1.BTAB.1.8
KMAP..9.3
K.SPAR.36
CON. .1
APPL.FORC.1.1
APPL.MOTI.1.1
STAT.DISP.1.1
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Note that the path name of the library file “demo1.101” is installation dependent. The
dataset names listed above can be identified from the table of contents of the library
demo1.101 given in Figure 3. Note that the datasets APPL.FORC.iset.1 and APPL.MOTLiset.1
may not both exist, and it is indeed the case for the problem demol — one cannot find the
name APPL.MOTI 1.1 listed in the table of contents of its data library. However, as noted
above, we have required the user to input both names in order to maintain a uniform format
for user input. In this case, the variable APPLM is simply a dummy variable, because the
subroutine GTMOTI will not attempt to access this dataset as explained in Section 4.2.4.

4.3.3 Output from the Processor SPK

1. Output from SPARSPAK-A: Readers are referred to Section 7 of the SPARSPAK-A
User’s Guide [2] for a complete description of the statistics and error messages output.

2. Output from the interface modules:

(a) Statistics gathering (STATCS) — The information contained in Table 12 may be
printed by the following statement.

CALL STATCS

Table 12: Information printed by the subroutine STATCS.

[ MSGLVL | Information | variable | Common block ||
0,1,2,3 Total CSM-time required CSMTIM | /CSMDTA/
Maximum CSM-storage required | CSMSTR
2,3 Size of storage array MAXCSM | /CSMUSR/
2,3 Number of joints NUMJNT | /PRBLEM/
Max degree of freedom per joint | MAXDOF
Number of equations NEQNS
3 Addresses of arrays DOF /CSMMAP/
BUF
MASK
KC
ICLQ
FCON
SPK

(b) Error messages (IERR) — When fatal error is detected, so that the computation
cannot proceed, a positive code is assigned to the variable JERR in the common
block /CSMUSR/. The names of the modules in which the error occurs, the
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Table 13: Error messages of the processor SPK.

| MODULE [ IERR | Error message i

SPACE 1001 | Insufficient storage. The last stage completed
and the required storage are printed
LIBOPN 1011 | Cannot open dataset library

1012 | The maximum logical device index = 30. The LDI
returned exceeds this value.

GETJDF 1013 | Incorrect execution sequence.

1014 | Dataset does not have all expected items.
GETDOF | 1019 | Incorrect execution sequence.

GTZERO 1021 | Incorrect execution sequence.

GTCOND | 1022 | Incorrect execution sequence.

GETILJ 1023 | Incorrect execution sequence.

GTFORC | 1024 | Incorrect execution sequence.

GTMOTI | 1025 | Incorrect execution sequence.

1026 | Unexpected nonzero constraint value.

1027 | Zero entry for a nonzero constraint occurs.
GTNUMS | 1028 | Incorrect execution sequence.

QKINFO 2001 | LMFIND: cannot find dataset.

2002 | GMGEKA: record does not exist.

2003 | GMGECY: record group key undefined.
2004 | GMGECY : segmented record group noted.
2009 | Insufficient buffer space. The required value
for the input variable BUFMAX is printed
GTRECI 2005 | record type mismatch ...

2006 | GMGETN: error detected by LMERCD ...
GTRECF | 2007 | record type mismatch ---

2008 | GMGETN: error detected by LMERCD - -

numerical error codes, and the corresponding error messages as given in Table 13

may be printed by setting the variable MSGLVL to be “2” or a higher number.
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ORIGINAL PAGE 1S
OF POOR QUALITY

4.3.4 An Example - Solving the Testbed problem demo1
Input data:

2

2

2240

/usr .MC688020/nlal/echu/ns/DEMD/demol.101
JDF1.BTAB.1.8

KMAP..9.3
K.SPAR.36
CON..1
APPL.FORC.1.1
APPL .MOTI.1.1
STAT.DISP.1.1

The following output is produced by the macroprocessor command [xqt SPK:

** BEGIN SPK *»* DATA SPACE= 600000 WORDS
1
sexxaxxsrs UNIVERSITY OF WATERLOO
shkknkndkkx SPARSE MATRIX PACKAGE
sxsnannexx ( S PARSPAK)
o e o RELEASE 3
wxknnnsnnk  (C) JANUARY 1984
wekxskrnns ANSI FORTRAN
whkkxkxknk DOUBLE PRECISION
okkopkkrkks LAST UPDATE JANUARY 1984

OUTPUT URIT FOR ERRDR MESSAGES [}
OUTPUT UNIT FOR STATISTICS [}

LIBOPX- OPEN /usr.MC68020/nlai/echu/ns/DEM0/demo1.101
<DM> OPEN, Ldi: 2, File: /usr.MC88020/nlal/echu/ns/DEMO/demol.101 ,
Attr: rold, Block I/0

DATASETS TO BE ACCESSED:

JDF1.BTAB.1.8
KMAP..9.3
K.SPAR.36
CO¥..1
APPL.FORC.1.1
APPL .MOTI.1.1
STAT.DISP.1.1

GETJDF - GET NUMBER OF JOINTS ARD ...
GETDOF - GET DEGREES OF FREEDONM ...

GTZERO

DETECT DUMMY ROWS ...

GTCOND - GET CONSTRAINTED VARIABLES...

GTMOTI

GET NONZERO CONSTRAINTS...
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GETIJ - INPUT NONZERD STRUCTURES...

IJBEGE - BEGIN STRUCTURE INPUT ...

INIJ - INPUT OF ADJACENCY PAIRS ...

IJEED - END OF STRUCTURE IEPUT ...

ORDRB6 - MIEIMUM DEGREE ORDERIENG ...

GTFORC - IFPUT RIGHT HAND SIDE...

IFBI - IKPUT OF RIGHT HAND SIDE ...

GTNUMS - GET RONZERO NUMERIC...

INAIJE - IBPUT OF MATRIX COMPORENTS ...

SOLVES - GENERAL SPARSE SOLVE ...

ERESTS - ERROR ESTIMATOR ...

GETSOL - COMPARE WITE TESTBED SOLW ...
MAX. REL ERR COMPARED TO STAT.DISP.i.1

IS 0.4824782e-07 IN COMPONENT 26
CSM SOL = 0.28520867228508e+00 WE HAVE 0.28520868604578e+00

STATCS - SYSTEM-CSM STATISTICS ...

SIZE OF STORAGE ARRAY (MAXCSM) 300000
NUMBER OF JOIRTS 5
MAX DEGREES OF FREEDOM PER JOIET 6
HUMBER OF EQUATIONS 30
TOTAL CSM-TIME REQUIRED 3.740
MAXIMUM CSM-STORAGE REQUIRED 2271.

STATSA - SYSTEM-A STATISTICS ...

SIZE OF STORAGE ARRAY (MAXSA) 297729
NUMBER OF EQUATIONS 30
EUMBER OF OFF-DIAGONAL NONZEROS 336
TIME FOR ORDERING 0.020
STORAGE FOR ORDERING 442.
TIME FOR ALLOCATION 0.000
STORAGE FOR ALLOCATION 308.
STORAGE FOR SOLUTION 367.
TIME FOR FACTORIZATION 0.040
TIME FOR SOLUTION 0.020
OPERATIONS IR FACTORIZATION 956.
OPERATIONS IN SOLUTION 396,
TIME FOR ESTIMATING RELATIVE ERROR 0.040
OPERATIONS IN ESTIMATING REL ERROR 1330.
STORAGE FOR ESTIMATING REL ERROR 397.
ESTIMATE OF RELATIVE ERROR 2.088e-08
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TOTAL TIME REQUIRED
MAXIMUM STORAGE REQUIRED

EXIT SPK CPUTIME=

4.2 I/0(DIR,BUF)=

0.120
442.
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5 Numerical Experiments

In this section, we report experimental results of several matrix factorization processors we
have installed in the CSM Testbed.

5.1 The Specifications of the Test Problems

For all processors, the tests are performed on the NICE/SPAR demonstration problems
listed in Table 14. The finite element model of CSM focus problem 1 has been refined to
generate larger problems focusl, focus2, focus3 and focus4. The five different meshes we
have used are given in Table 15.

Table 14: NICE/SPAR demonstration problems.

i NICE/SPAR demonstration problems H

p648 CSM focus problem 1 — Buckling of a blade-stiffened
panel with a discontinuous stiffener

focusl | p648 with finer mesh I

focus2 | p648 with finer mesh II

focus3 | p648 with finer mesh III

focus4 | p648 with finer mesh IV

demol | Beam problem

demo?2 | Vibration of a circular membrane

demo3 | Circular plate problems

demo4 | Rectangular plate problems

demo6 | Cylindrical shell problems

demo7 | Buckling of a cylindrical shell due to torsional loading
demo9 | Beam problems

demo10 | Saturn 5 Launcher Umbilical Tower (LUT)

demo12 | Hyperbolic paraboloid static solution

demol13 | Composite toroidal shell

Each problem is completely specified by the datasets in Table 16 except that the load
set APPL.FORC.iset.1 and the applied displacement dataset APPL.MOTlLiset.1 may not
both exist. For example, there is no applied force vector for the panel focus problem and
there is no applied displacements for the static analysis of the mast problem. The value of
ncon selects one of possibly more than one constraint cases and the value of iset specifies a
particular load case of applied force and moments, which is also the load case of the applied
motions if there exist nonzero constraints. Corresponding to each pair of (ncon,iset) there
is aunique solution which may be retrieved from the dataset STAT.DISP.iset.ncon to verify
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Table 15: User-specified meshes for CSM focus problem 1.

u User-specified meshes for CSM focus problem 1 ﬂ
NRINGS | NSPOKES | NELX | NELE | NELBS | NELS
p648 2 8 3 1 1 1
mesh I 4 16 3 1 1 1
mesh II 2 8 6 2 2 2
mesh ITT 2 8 12 2 2 2
mesh IV 4 16 6 2 2 2

the correctness of an experimental processor. The full names of the datasets can be found in
the table of contents of the data library which can be looked up during or after the execution
of a particular analysis in the Testbed. As shown in the example given in Table 16, a “0”
component in the dataset name can be represented by a null entry. A sample content list of
the data library demo1.101 is given in Section 2 of this report, which was produced by the
CLAMP directive *T0C during the execution of problem demol. For each test problem, the
path name of its data library and the names of the datasets in Table 16 consist of the user
input to an experimental processor. Note that the use of * as a component of the dataset
name implies a generic wild-card match, hence it should not be used unless the dataset with
its name matching the remaining components is unique in the data library.

Table 16: Data sets accessed by CSM-SPARSPAK interface modules.
” The accessed CSM Testbed datasets —ﬂ

Name An example

(ncon, iset) = (3,6)
JDF1.BTAB.1.8 JDF1.BTAB.x
KMAP..nsubs.ksize KMAP. %
K.SPAR.jdf2 K.SPAR.x
CON..ncon CON..8
APPL.FORC.iset. 1 APPL.FORC.6.1
APPL.MOTlIiset. 1 APPL.MOTILG6.1
STAT.DISP.iset.ncon | STAT.DISP.6.3

The system Az = b presented to each experimental processor is the upper triangular
part of the system stiffness matrix retrieved from the dataset K.SPAR.jdf2 subject to the
changes necessitated by the way we handle constraints and dummy rows. The modified
system has the following characteristics.

1. The coefficient matrix and the right-hand side are modified so that each equation
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corresponding to a constrained variable z; can be replaced by
Ti; = Ci,

where ¢; > 0 is the specified constraint.

2. The identically zero rows are detected before problem input and the corresponding
variables are treated as being constrained to zero.

3. The dimension of the modified coefficient matrix is equal to the product of the number
of joints and the degree of freedom per joint in the model. The number of equations of
each demonstration problem is given in Table 17 under the column heading “neqns”.

In Table 17, we summarize the characteristics of the linear systems retrieved for each
demonstration problem. The entries in the column labeled “# nonzeros in K.SPAR” are
computed from nsubs x jdf2, where we recall that nsubs is the total number of submatrices
in the block upper triangular part (including the diagonal blocks) of the system stiffness
matrix and that jdf2 =JDF X JDF represents the number of elements in each submatrix.
Therefore, the nonzero count here includes the coeflicients in the lower triangular part of the
diagonal blocks and the coefficients in the dummy rows as well as the rows corresponding
to the constrained variables. The actual off-diagonal nonzero elements input to an experi-
mental processor are listed in the last column under the heading of “# off-diag nonzeros in
A,

Table 17: Characteristics of NICE/SPAR demonstration systems.

” Characteristics of the linear systems Az = b
# dummy # zero # nonzero | # nonzeros # off-diag

problem | # joints | d.o.f | neqns rows constraints | constraints | in K.SPAR | nonzeros in 4
p648 108 6 648 78 98 10 17064 9706
focusl 192 6 1152 154 116 12 31320 18458
focus2 276 6 1656 228 167 17 45792 26824
focus3 480 6 2880 396 167 17 81216 50560
focus4 388 6 2328 332 185 19 65088 38656
demol 5 6 30 0 6 0 324 168
demo2 101 3 303 101 203 0 4077 342
demo3 101 5 505 0 80 0 11325 7830
demo4 54 5 270 0 55 0 5675 3546
demo6 121 6 726 0 97 0 19476 14151
demo7 132 6 792 0 36 0 22464 18576
demo9 11 6 66 0 6 0 756 474
demo10 372 6 2232 0 24 0 47376 39072
demol2 36 6 216 0 18 o 5256 3978
demo13 337 6 2022 0 96 0 59364 49743
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5.2 The Numerical Properties of the Test Problems
5.2.1 The Conditioning of the System Stiffness Matrix

In Table 18, we list the estimated condition number of the system stiffness matrix for each
test problem. The condition numbers are provided by SPARSPAK- A and their computation
is described in reference [1]. The order of magnitude of the condition numbers indicates
that the single-precision solution of these problems my not have significant digits in some
components. By comparing the single-precision static displacement solutions obtained from
the Testbed processors INV and SSOL for the same problem using different joint orderings,
our numerical experiments confirm that the loss of all significant digits can indeed occur in
small components of the solution.

Table 18: Numerical properties of NICE/SPAR demonstration problems.

Condition number of
the system stiffness matrix
SPARSPAK-A estimate of
problem condition number
p648 2.2 x 107
focusl 3.7 x 107
focus2 2.2 x 10°
focus3 2.0 x 107
focus4 2.6 x 107
demol 5.8 x 107
demo?2 2.2 x 107
demo3 1.7 x 107
demo4 1.8 x 107
demo6 2.0 x 107
demo7 3.2 x 107
demo9 4.8 x 10°
demo10 5.0 x 1010
demol2 ' 5.6 x 109
demo13 1.4 x 107

5.2.2 The Accuracy of the Computed Solutions

The condition number estimates we presented in Table 18 indicate that in order to have sig-
nificant digits in all components of the solution to be stored in the dataset STAT.DISP.iset.ncon,
the system stiffness matrix should be stored in double-precision and processors INV and SSOL
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should perform the numerical computation in double-precision. The following information
from reference [24] tells us how to ensure that the computations by each processor are
performed with the desired precision.

1. Processor K stores the system stiffness matrix in double precision if the user input
parameter SPDP is reset to 2 as shown in a sample script given later in this paragraph.

2. Processor INV calculates the triangular matrix using double precision if the input
system stiffness matrix dataset is stored in double precision. However, the factors
output by processor INV will be stored in the precision determined by resetting the
user-controlled argument SPDP: 1 (default) = single precision, 2 = double precision.

3. Processor SSOL computes the displacement solution vector in double-precision if the
factored matrix is stored in double-precision.

Therefore, each reset SPDP in the following script excerpt ensures that the output dataset

is in double precision, which in turn ensures that the computation by the next processor is
performed in double precision.

[xqt X

reset SPDP=2
[xqt INV

reset SPDP=2
{xqt ssoOL

For each demonstration problem, the solution provided by an experimental processor is
not expected to be identical to the Testbed solutions due to potentially different amounts
of round-off error caused by the following factors.

1. The coefficient matrix of the linear system to be solved by an experimental processor
is ordered differently. That is, processors INV and SSOL solve (in double precision)

(PAPT) Pi = Pf ,
whereas our experimental processor solves (in double precision)
(PAPT) P2 = Pf .

Since the permutation matrix P is induced by resequencing the joints in the model,
it is not the same as the permutation matrix P chosen by SPARSPAK-A for the
coefficient matrix in general.
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2. Even for the same ordering of A, the factorization algorithms implemented by different
processors employ a different computation sequence.

3. The system stiffness matrix is ill-conditioned.

However, with the condition number estimates available for each system stiffness matrix,
we can estimate the relative error in our solution £ by the algorithm described in reference {1]
and implemented in SPARSPAK-A. On the other hand, by assuming that the Testbed
solution Z is the correct solution we can compute the relative error in £ by

~

|&; — &;]

max

Vi |£;]
We can now verify the correctness of our experimental processors if the relative error com-
puted above is very close to the relative error estimated by SPARSPAK-A with respect to
the true (but unknown) solution. We have listed these two quantities in Table 19 for all test
problems and we see that they are essentially of the same magnitude or sufficiently close

for all problems.

Table 19: Comparing NICE/SPAR solutions & with SPARSPAK-A solutions 2.

problem | max Ii‘.‘f‘ SPARSPAK-A estimate of
the relative error in 2
p648 5.9 x 108 6.9 x 10~°
focusl 6.4x 108 2.7%x 10-8
focus2 5.9 x 10-% 4.6 x 10~8
focus3 5.8 x 108 4.9 x 10-3
focus4 7.3x10°8% 3.8x 10-8
demol | 4.8x 10-8 1.4 x 108
demo2 [ 5.0 x 108 5.4 x 10~°
demo3 4.7%x 107 2.9x 10-8
demo4 5.0 x 10~8 6.4 x 10~°
demo6 1.6 x 10—° 1.2x 108
demo? | 6.2 x 10-8 1.9 x 108
demo9 | 2.7 x 10-8 1.7 x 10-°
demol10 | 5.6 x 10~ 1.6 x 105
demol2 | 5.7x 10-8 4.4 x 10~
demo13 | 5.8 x 10~ 6.9 x 10-8
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5.3 The Experimental Factorization Processors

In this section, we briefly describe the three sparse matrix factorization processors we have
installed in the CSM Testbed. The three processors employ different methods in solving a
sparse symmetric positive definite system

Az =b.

1. Processor SPK: The method employed by the processor SPK is the direct solver pro-
vided by SPARSPAK-A corresponding to the minimum degree ordering algorithm in
reference [19).

2. Processor EXP1: The factorization method employed by the experimental processor
EXP1 is the multifrontal method implemented by Liu as described in reference [16].

3. Processor EXP2: The factorization method employed by the experimental processor
EXP2 is the adaptive sparse out-of-core Cholesky scheme recently developed by Liu
[15].

Since the factorization methods employed by the processors EXP1 and EXP2 use the same
storage scheme as that used by the minimum degree ordering in SPARSPAK-A and they
were intended to be used in conjunction with SPARSPAK-A [15, 16], the same interface
modules for inputing the problem to SPARSPAK-A can be used.

5.4 Numerical Results

We first compare the factorization time of the three experimental processors with that of
the processor INV. Since the joint ordering can affect the execution time of processor INV
significantly, we have attempted to report the timing results for all available joint elimination
sequences. The ordering algorithms currently available in the CSM Testbed are listed in
Table 20.

Table 20: The joint ordering methods employed in the CSM Testbed.

" acronym r ordering algorithm ]
ND Nested dissection (fill minimizer) [12]

MDG | Minimum degree (fill minimizer) (12, 17]

RCM | Reverse Cuthill-McKee (profile minimizer) [12]

GPS | Gibbs-Poole-Stockmeyer (bandwidth minimizer) (3]

SEQ Sequential joint elimination sequence (i.e., no reordering of joints)

Since the ordering algorithms used by processors EXP1 and EXP2 are the topological
orderings of the elimination tree induced by the minimum degree ordering [15, 18], we have
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thus used “MDG*” to represent any one of them. One consequence of the choice of ordering
algorithms by the experimental processors is that the amount of fill-in in the Cholesky factor
is the same for the three of them. From the factorization times reported in Table 21 we
see that the in-core factorization time of processors SPK and EXP1 are significantly smaller
than the INV times in most cases as one would expect in view of the I/O conducted by
the latter. Except for problem demo?7, the saving in execution time ranges from 30% to
58% compared to the fastest INV time. As we have pointed out earlier, the reordering of

Table 21: NICE/SPAR (INV) and SPARSPAK-A factorization times.

I Factorization times (in seconds) B

NICE/SPAR (INV) SPK | EXP1| EXP2
problem | SEQ | ND | MDG | RCM | GPS || MDG* | MDG* | MDG*
focusl 466 | 151 106 196 | 239 44 43 61
focus2 236 145 445 76 76 102
focus3 770 441 313 378
focus 482 288 940 148 146 188
demo6 61 [ 53 53 82 82 33 32 45
demo? 96 | 124 101 113 | 112 93 92 113
demol0 60 | 304 62 203 | 166 41 40 72
demol3 | 406 283 337

the joint sequence in the model produces a different permutation matrix from that induced
by applying the same ordering algorithm to the coeflicient matrix itself. In Table 22, we
compare the quality of the minimum degree algorithm when applying to each case, where
we give the nonzero counts in the system stiffness matrix A and the computed factors. Due
to the different storage schemes employed by the processor INV and SPARSPAK-A, the
fill-in is not measured in exactly the same manner as Table 22 indicates.

Table 22: Comparing the fill-in of different processors.

Processor INV SPK, EXP1, EXP2

# nonzeros | # nonzeros # off-diag # off-diag
problem | ordering | in K.SPAR | in INV.K | ordering | nonzeros in A | nonzeros in L
focusl MDG 31320 71040 MDG* 18458 47487
focus2 MDG 45792 99324 MDG* 26824 72519
focus3 MDG 81216 221526 MDG* 50560 184042
focus4 MDG 65088 165480 MDG* 38656 120682
demo7 MDG . 22464 62172 MDG* 18576 62829
demo10 MDG 47376 79992 MDG* 39072 71076
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The performance of processors SPK and EXP1 are essentially the same in terms of ex-
ecution time. In terms of storage, the in-core multifrontal Cholesky factorization scheme
of processor EXP1 requires additional working storage compared with the in-place Cholesky
method provided by processor SPK. However, it should be pointed out that the multifrontal
method lends itself readily to out-of-core implementation [20], in which case the amount
of in-core storage required to perform the entire factorization turns out to be precisely the
same as the required working storage for the in-core version. Readers are referred to ref-
erence [20] for various strategies in minimizing the working storage. In reference [18] the
behaviour of the multifrontal method in a paging environment is studied.

In order to compare the out-of-core performance of processor EXP2 with that of processor
INV, we should note the following.

1. The number of in-core data reorganizations of the adaptive sparse out-of-core Cholesky
scheme [15] is dynamically adjusted to the available memory. In particular, if the de-
clared working space is sufficiently large for the given problem, the entire factorization
process will be carried out in-core without reorganizing the data structures. In order
to provide a meaningful comparison of the performance of processor EXP2 in execution
time as well as storage requirement with that of processor INV, we have run the proces-
sor EXP2 with the minimum amount of in-core storage that will allow EXP2 to execute.
This number can be determined in advance of the actual numerical factorization.

2. The processor EXP2 does I/O using ordinary text files. In particular, the sparse
coefficient matrix is saved in a text file and read into memory one column at a time,
and the computed Cholesky factor is written to a text file one column at a time. In the
current implementation, auxiliary storage is not used to reduce the in-core overhead
storage, although it is possible to do so as suggested in reference [15].

3. We have explained in detail how the processor INV carries out the out-of-core block
LDILT factorization process in Section 3.2 of this report. The I/O traffic involved
amounts to retrieving the system stiffness matrix from the dataset K.SPAR.x as well

as the indexing information from the dataset AMAP..ic2.isize, and outputting the
computed factors to the dataset INV.K.ncon. Because the data are read from or

written to the database one record at a time, the number of disk I/O operations is
determined by the record length of each dataset. The default record length of these
three datasets are listed below in Table 23.

Recall that one record has to accommodate at least the amount of data needed to pro-
cess one block row of the coefficient matrix. Hence the default record length may not
be big enough for larger or denser problems and they can again be changed by reset-
ting the designated argument when executing the source processor of each respective
dataset. In particular, if necessary, processor TOPO will automatically increase the
AMAP record length twice up to a maximum size of 225X LRAMAP words. The
number of records contained in each dataset are given under the column heading
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Table 23: Database interface of processor INV.

I

Database interface of processor INV

|

Source processor

Reset argument

Dataset name

Default record length

K LREC K.SPAR.x 2240 words
TOPO LRAMAP AMAP..ic2.1s1ze 1792 words
INV LRA INV.K.ncon

3584 words

“Records” in the table of contents of the data library created for each particular
analysis.

In summary, the volume of I/O involving each individual dataset is roughly the prod-
uct of the number of records and the record length (strictly speaking, the last record
may contain fewer items than are permitted by the specified record length), whereas
the number of disk read/write operations is determined by the number of records.

. The in-core storage required by the processor INV must accommodate one record

of each dataset in Table 23 in addition to accommodating the maximum number
of submatrices involved during the factorization process. Therefore, as suggested in
reference [24], the memory requirement for processor INV may be estimated by the
following formula.

number of words = J + Ly + m (L1 + Ly, + nzl,) ,

where

J = the number of joints in the structure.

L, = record length of input dataset K.SPAR.jdf2.

Ly = record length of INV.K.ncon dataset.

L3 = record length of AMAP..ic2.isize dataset.

m = 1 for single precision; 2 for double precision.

n = maximum number of degrees of freedom per joint (default 3, 4, 5, or 6).

I, = the maximum number of submatrices in use during any one stage of the fac-
torization process. Its value can be obtained from the processor TOPO output
parameter SIZE INDEX or from the value of isize from AMAP..ic2.isize.

It was suggested in reference [24] that this formula may be used to estimate the
amount of space in blank common required by processor INV. If the number of words
required is larger than the dimension of blank common, the blank common dimension
must be increased and the Testbed must be recompiled.
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In Table 24, we compare the factorization time and the memory requirement of processor
INV with that of the experimental processor EXP2. For each problem, we give the number
of nonzero elements in the Cholesky factor computed by SPARSPAK-A (recall that the
amount of fill-in is the same for all three experimental processors) under the column heading
“NOFNZ”. The ratio of memory requirement to the size of the computed Cholesky factor
is computed for each problem and displayed for both processors. Note that the quantity of
n%l, we use in measuring the memory requirement of processor INV is an underestimate as
explained above. We use “LNZSZE” to indicate the maximum number of nonzeros which
have to be present in-core for the adaptive sparse Cholesky factorization process to be
successfully executed. The results in Table 24 indicate that the processor EXP2 can be quite
competitive in both time and space.

Table 24: Comparing two out-of-core factorization processors.

INV EXP2
problem | NOFNZ Nﬁ'}{m Time (sec) | Z¥Z3ZE | Time (sec)
focusl 47487 61% 107 35% 61
focus2 72519 47% 147 31% 102
focus3 184042 36% 449 32% 378
focus4 120682 46% 288 31% 188
demo6 28302 62% 53 44% 45
demo7 62829 46% 108 45% 113
demo10 71076 39% 62 5% 72
demol3 180315 6% 406 25% 337

Comparing the factorization algorithm of processor EXP2 (adaptive out-of-core Cholesky)
with that of processor SPK, we see that the difference in their execution time can be ac-

counted for in the following three aspects.
1. The time spent in data structure reorganization.
2. The time for reading in the coefficient matrix A column by column.
3. The time for writing out the computed Cholesky factor L column by column.

The timing results reported in Table 24 are those with the minimum amount of mem-
ory and maximum number of data structure reorganizations. Since the frequency of data
structure reorganizations can be reduced by providing more memory, there is a potential
tradeoff between time and space. However, the timing results in Table 25 indicate that the
time spent in this regard is too small to justify the more significant increase in storage. We
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Table 25: Data structure reorganization and factorization time.

EXP2 EXP2
problem | NOFNZ | LNZSZE | # REORGIZ Time | LNZSZE | # REORGZ Time
focusl 47487 28872 2 59 sec 16823 29 61 sec
focus2 72519 34020 3 99 sec 22647 31 102 sec
demo6 28302 17676 3 44 sec 12394 34 45 sec
demol0 71076 27900 2 69 sec 3330 169 72 sec

can thus conclude that the I/O time can be considered to be the sole factor in determining
the speed of processor EXP2.

Since the multifrontal Cholesky method is also a good candidate for out-of-core imple-
mentation, and we pointed out earlier that the “working storage” required in its in-core ver-
sion is precisely what is needed as working storage in its out-of-core version, it makes sense
to evaluate its out-of-core potential by comparing its minimum working storage requirement
with the memory requirement of processor EXP2. The results we present in Table 26 indicate
that the two are quite comparable as far as the test problems are concerned.

Table 26: Comparing processor EXP1 with EXP2

Multifrontal (EXP1) | Column-Cholesky (EXP2)
problem | NOFNZ | LNZSZE/NOFNZ LNZSZE/NOFNZ
focusl 47487 34% 35%
focus2 72519 31% 31%
focus3 184042 36% 32%
focus4 120682 28% 31%
demo6 28302 44% 44%
demo?7 62829 56% 45%
demol0 71076 6% 5%
demol3 180315 21% 25%

For completeness, we provide in Table 27 the timing results of three other processors
which are also essential in solving the linear system arising from a Testbed problem, namely
TOPO, K and SSOL.

Finally, we provide in Table 28 the total time in executing the processor SPK in the
Testbed and indicate separately the time attributed to the numerical factorization phase
and the triangular solution phase. The SPK time thus includes the time for retrieving data
from the global database and setting up the problem for the SPARSPAK-A solver.

In summary, our preliminary findings indicate that there are alternative sparse matrix
techniques which are suitable for more general applications and appear to be also competi-
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Table 27: Timing results of TOPO, K, INV, SSOL.
problem | TOPO | K | INV | SSOL Total
focusl 523} 107 13 | 148 sec
focus2 6| 34| 147 17 | 204 sec
focus3 16 | 61 | 449 33 | 559 sec
focus4 10 | 49 | 288 24 | 371 sec
demo6 3111 | 53 9| 76 sec
demo7 4 (13| 108 12 | 137 sec
demol0 518 | 62 16 | 101 sec
demol3 11 | 47 | 406 48 | 512 sec

Table 28: Execution time of the processor SPK.

problem | fact soln SPK

focusl 44 sec | 2 sec | 65 sec
focus2 76 sec | 4 sec | 107 sec
focus3 313 sec | 9 sec | 376 sec
focus4 148 sec | 6 sec | 194 sec
demo6 33 sec | 2 sec | 48 sec
demo? 93 sec | 3 sec | 113 sec
demol0 41 sec | 4 sec | 73 sec
demol3 | 283 sec | 9 sec | 331 sec
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tive in execution time and storage usage compared to the techniques currently employed in
the CSM Testbed.
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Appendix A Installing the Processor SPK

The processor SPK consists of a subset of SPARSPAK-A [2] modules and a set of subroutines
which provide an interface between SPARSPAK-A and the global database of the CSM
testbed. All of the subroutines are provided as a single directory SPARSE on a UNIX tar
tape. The Fortran source for the package is distributed among a number of subdirectories.
There are “make” files provided, so that the person installing the package needs only to
execute a few commands to compile the package and create the run-time library.

It is advisable to read “§4 Developing New Matrix Factorization Processors” of this
report before beginning installation of the package. Since the SPARSE package is used in
conjunction with the CSM testbed, we assume in the sequel that the NICE/SPAR processors
have been properly installed in the directory /usr/ns/nice and /usr/ns/spar, and that
the SPARSE package is to be installed in the directory /usr/ns/sparse. The hierarchy
of the directory /usr/ns and the files relevant to the installation and use of the SPARSE
package are depicted in Figure 30.

The steps to install the SPARSE package are as follows.

1. Create a directory for SPARSE:

cd /usr/ns
mkdir sparse
cd sparse

2. Copy the files from tape to disk: Put the tape in the tape drive and “tar” the files to
the new disk directory:

tar xvf /dev/device

where device should be the appropriate name of the tape drive on your machine. Do
an “ls” to make sure that three directories (install, csm-intrface and spk-subset)
have been copied from the tape.

3. Edit the installation-dependent subroutines: The package has installation-dependent
subroutines SPK, CTIME, SPKCSM, DTIME and SPRSPK which provide timing
information to the package and set some installation-dependent parameters. In ap-
pendix §B, we provide a set of examples for these subroutines. The sample programs
are written for a SUN/3 workstation running the UNIX operating system at the Uni-
versity of Tennessee Knoxville. Comments in these listings indicate changes which may
be necessary. The subroutine SPK is contained in the directory csm-intrface/driver,
the subroutines CTIMFE and SPKCSM are contained in the directory csm-intrface/system,
and DTIME and SPRSPK are contained in the directory spk-subset/system. Sam-
ples of subroutines required by CTIMFE, DTIMFE and SPRSPK can be found in the
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/usr/ns

} nice spar sparse
install sparselib.a  spk-subset csm-intrface
Makefile nicespar.ams makefile.ns.spar driver
spk.f spka.f spkobjs.a

Figure 30: The file system of the directory /usr/ns.
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directory spk-subset/local; these subroutines are appropriate for machines running
Berkeley 4.2 or 4.3 UNIX and their derivatives such as SUN 05.

. Edit the make file /usr/ns/sparse/install/Makefile: Compilation of the package
is performed using a collection of UNIX make files. The most important make file is
called Makefile found in the directory install; it will invoke the other make files.
The distributed make files assume that the package is running on a SUN workstation.
There are comments in Makefile to help you make the appropriate changes to it
for your installation. There is no need to change the make files in any other sparse
directories.

. Create and install the compiled library: After making the required changes to Makefile,
you are ready to create and install the compiled library. Execute the following com-
mands.

cd /usr/ns/sparse/install
make install

A compiled library sparselib.a will be created in the directory sparse.

. Install a new processor in the testbed: Since the SPARSE package is installed as
a processor SPK in the testbed and a CSM processor is a subroutine called by the
NICE/SPAR main program, it is necessary to compile the SPK driver routines in the
directory /usr/ns/sparse/csm-intrface/driver and edit the main program master
file nicespar.ams in the directory /usr/ns/spar. The object code of the SPK driver
routines spk.f and spka.f is contained in a separate library called spkobjs.a in
the driver directory so that it may be updated independent of sparselib.a. In
addition, the makefile in the directory /usr/ns/spar must be edited so that the two
libraries can be linked to the executable when it is created. A copy of the properly
edited nicespar.ams and a copy of the edited makefile can be found in the directory
install. The former has the file name nicespar.ams and the latter has the file name
makefile.ns.spar. With these two files available, the following commands may be
executed to install the new processor SPK in the testbed. Note that you must have
write permission in the directory spar to do this.

cd /usr/ns/sparse/install

make spk

cd ../../spar

mv makefile makefile.old

mv nicespar.ams nicespar.ams.old

cp ../sparse/install/makefile.ns.spar makefile
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cp ../sparse/install/nicespar.ams nicespar.ams
make

7. When the file korcoma.inc is changed: Since the include file korcoma.inc in the
directory spar declares the size of the in-core storage available for every SPAR pro-
cessor, the driver source code spk.f of processor SPK must contain the line

include ’/usr/ns/spar /korcoma.inc’

and it must be recompiled each time the declared size is changed. Since the depen-
dence of spk.o on korcoma. inc is specified in the appropriate make file, the following
commands will not only detect whether the declaration file korcoma.inc has been
modified since spk.o was last created but also recompile spk.f and update the li-
brary spkobjs.a if that is the case. Finally the executable in the directory spar is
recreated to link to the modified spkobjs.a after the “make” command in the last
line is executed.

cd /usr/ns/sparse/install
make spk

cd ../../spar

make

8. Recover space used by intermediate files: If the system on which you are running
is short of disk space, a substantial amount of space used during the installation of
SPARSE can be recovered by deleting the “.0” files and other intermediate files gen-
erated during the creation of the library. To do this, execute the following commands.

cd /usr/ns/sparse/install
make clean

If for some reason you must later re-create some or all of the library sparselib.a,

these intermediate files will have to be regenerated, at considerable cost in computer
time. Thus, it is advisable to execute “make clean” only if you really need the space.
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Appendix B Installation-dependent Subroutines

R AR AN N A A A K0 AT R K AN R K S K K K o oo o
(KO AR KKK AN K ACRK K SR N R R S K R K o K R o R K K K o K SR K Sk o o
C SPK ..... A NEW CSM PROCESSOR

(G HAHR HHRCRCH HEHAE H HCH RKG SACHK N HE HCKCHC o K  K  SOR HR K KH Ko o Koo K 6 R K K Ko o K ook K o ok ok o
A R K K M R KKK KK KRR KR K KKK K S K SR KR KRR K K K KK oK K o K

PURPOSE - THIS IS THE DRIVER FOR INSTALLING INTO NICE/SPAR
OUR INTERFACE MODULES AS A SINGLE PROCESSOR WHICH
SOLVES CSM TESTBED PROBLEMS USING SPARSPAK-A MODULES.

THE NEW PROCESSOR IS CODED AND INSTALLED INTO NICE/SPAR DIRECTLY
FOLLOWING THE GUIDELINES GIVEN IN NASA TECHNICAL MEMORANDOM
89096, NAMELY

(a) THE NAME OF THE PROCESSOR SHOULD BE NO LONGER THAN FOUR
CHARACTERS.

(b) THE PROCESSOR SHOULD BE WRITTEN AS A FORTRAN 77 SUBROUTINE
WHOSE NAME IS THE PROCESSOR NAME.

(c) THE SUBROUTINE SHOULD HAVE NO ARGUMENTS.

{d) THE PROCESSOR SHOULD BEGIN EXECUTION WITH A CALL TO THE
LIBRARY SUBROUTINE “INTRO" WITH THE PROCESSOR NAME
AS THE ONLY ARGUMENT. THE GIVEN NAME IS USED BY THE
“GAL” DATA MANAGER AS THE CREATING PROCESSOR FOR
NEW DATASETS INSERTED IN “GAL” LIBRARIES; IT ALSO
APPEARS IN THE INTERACTIVE PROMPT STRING IF THE
“SPAR READER” ROUTINE IS USED FOR INPUT COMMAND
PROCESSING.

(e) THE LABELED COMMON BLOCK /IANDO/ WITH 2 INTEGER VARIABLES
CONTAINING USER INPUT AND OUTPUT UNIT NUMBERS SHOULD BE
INCLUDED IN APPROPRIATE MODULES. THE UNIT NUMBERS ARE
ASSIGNED IN THE SUBROUTINE “INTRO".

(f) CALL LIBRARY SUBROUTINE “FIN” TO CLOSE “GAL"” LIBRARIES.

B T T P
W A R N I N
P o A K R R R 0 0 0 o R R K 0 K
THE PATH NAME OF THE INCLUDE FILE ‘“‘korcoma.inc”
IS INSTALLATION DEPENDENT.

e o RS SN 0 S O S S 0 K 0600 0 0 2K 0 0 O 0 3 0 03 o R O 0 K O

SUBROUTINE SPK

INCLUDE DECLARATION CONTAINING BLANK COMMON VARIABLES AND
DIMENSIONS:

PARAMETER (KSZZZ= 200000

COMMON KORE, KEVEN, KORT, A(KSZZZ)

include '/usr.MC68020/nlal/echu/ns/spar/korcoma.inc’

INTEGER MXSTORE

IDENTIFY PROCESSOR 1T0 CSM ARCHITECTURE

CALL INTRO ( 'SPK')

WORKING STORAGE A IS DECLARED AS KSZZZ WORDS WHICH IS
EQUIVALENT TO HALF THAT MANY DOUBLE-PRECISION FLOATING
POINT NUMBERS.

[+ JeNoRoNeRuNoRoNo e NENeRNoXoNoRoKoReNo o BN sNoRoRoNoRo No NoRoNoNoNe No NoN e X o No RoNoRoNoNo X ol o No N o RoRo NoRoRoNo NoRe Xo No Ne]

MXSTOR = KSZZ%/2

CALL SPKA ( A, MXSTOR )
CALL FIN ( 0,0 )

CALL EXIT

END
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C
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[¢] CTIME ..... ELAPSED PROCESSOR TIME
AR A A AR ORI KA H A AN HCHCR I I AR A A MR A AR R RO AR AR R A A K K
C
PR s L

PURPOSE . CTIME RETURNS THE ELAPSED PROCESSOR TIME SINCE
IT WAS LAST CALLED. IT USES THE COMMON VARIABLE TIME
TO REMEMBER THE TIME WHEN CTIME WAS LAST CALLED.

a0 0 3 3 oK R o 3K 0 3 2 HC e 0 oK N K o 6 K R K ok ELE AR T N o 3 e ok KK o KKK K

W A R N I N @G

R R K G R K R SR 00 80K K R K o o K 3 R R KK o o
THIS IS AN INSTALLATION DEPENDENT ROUTINE. IT
SHOULD BE SET UP BY THE INSTALLER OF THE PACKAGE.
IN THIS EXAMPLE, ROUTINE GTIMER IS THE TIMER ROUTINE
THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN/3
WORKSTATION RUNNING THE UNIX OPERATING SYSTEM AT THE
UNIVERSITY OF TENNESSEE KNOXVILLE.

0 RO RO RN SR SR S MO 3 R 0o R 9K 0 e o S U 0 K O

INPUT PARAMETER -
IDUMMY . A DUMMY INTEGER VARIABLE.

PROGRAM SUBROUTINE -
GTIMER.

2000 20000 O A K o K O e 0O RS R R S R 0 o R 003 o 0 o R e R KK

REAL FUNCTION CTIME ( IDUMMY )

B T L

[evNeRENeNoNoNoNoReXoNoReNoRo NoRoRoNoNo o N e Ro e e Re Ko Xo!

INTEGER IDUMMY, IPRNTRE, IPRNTS, MAXINT
REAL RATIOL,RATIOS, TIME , X
c
c****lll**ﬂ******‘**‘*l*t*l*********#******#*******!****#!*****i**ﬁ************
c
COMMON [CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 TIMB
c
C*l‘*‘**#*********‘*‘i*!*ﬂ‘*‘***l***ﬁti*******#******l**********l********&******
c
CALL GTIMER ( X )
CTIME = X . TIME

TIME = X
RETURN
C
END
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SPKCSM ..... INITIALIZE PARAMETERS
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PURPOSE . TO SET SYSTEM PARAMETERS AND ASSIGN DEFAULT
VALUES TO SOME USER PARAMETERS. IT IS A MACHINE
DEPENDENT ROUTINE. THIS ROUTINE HAS TO BE CALLED
BEFORE ANY OTHER PACKAGE MODULE.

PARAMETERS INITIALIZED -

IPRNTE . THE OUTPUT UNIT NUMBER FOR ERROR MESSAGES.

IPRNTS - THE OUTPUT UNIT NUMBER FOR STATISTICS.

RATIOL . THE RATIO OF THE NUMBER OF BITS IN A FLOATING
POINT VARIABLE TO THAT IN A LONG INTEGER
VARIABLE. FOR EXAMPLE, IF FLOATING POINT
NUMBERS OCCUPY TWICE AS MANY BITS AS LONG
INTEGERS, RATIOL SHOULD BE SET TO 2.

RATIOS - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
POINT VARIABLE TO THAT IN A SHORT INTEGER
VARIABLE.

MAXINT - THE LARGEST POSITIVE INTEGER THAT CAN BE
STORED IN A SHORT INTEGER VARIABLE.

TIME . VARIABLE USED BY THE TIMER ROUTINE CTIME.

SEE REMARK
STAGE . STARTING STAGE OF SYSTEM-CSM.

REMARK - THIS INTERFACE PACKAGE ASSUMES THE EXISTENCE OF
A REAL TIME FUNCTION CTIME WHICH RETURNS THE ELAPSED
PROCESSOR TIME SINCE IT WAS LAST CALLED. WITH THE
COMMON VARIABLE TIME, THE INSTALLER OF THE PACKAGE
SHOULD BE ABLE TO WRITE SUCH A FUNCTION, USING THE
INSTALLATION TIMER.

0200 0 o oK IR R RO R K K R K0 S0 K MMM N 0K R A0 0O R R o K 0 oA K

SUBROUTINE SPKCSM

30k N SRR OO OIS 9 3 G 3 o o K 3 G M 3B e oK 0o R KK S 3 0 SRR O R O K o oK R ok K

L B i e ke ke e ke R R Ko Ro R RN o Ne NeRoNe NoNoRo NoNoNo No No ol

CHARACTER*40 LIBNAM

CHARACTER*51 CDUMMY

INTEGER*4 IIN, IOUTX

INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MSGLVL, IRRR , MAXCSM

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIMB
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE

COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(7)
COMMON /IANDO/ IIN, IOUTX

A A AN 06 20 0 3 o 3k e K 3 36 3 e 2 0 2R e KRR N

W A R N I N G
S0 6o 0 0 K 0 R 0 S0 2 R R R SR K R 2 K KR R K 3 K o 2k ol o

THE FOLLOWING 4 LINES OF CODE ARE INSTALLATION
DEPENDENT. THEY MAY HAVE TO BE MODIFIED BY THE
PERSON INSTALLING THIS PACKAGE.

OUR CURRENT ENVIRONMENT -
- RATIOL AND RATIOS ARE BOTH 2.
- MAXINT = 2**15 - 1 = 32767

INSTALLATION DEPENDENT PARAMETERS

TIME = 0.0

[> 3N NeRoNoNoNoRoRoNoNoRo NoNoRoNoRe}

RATIOL = 2
=2

.0
RATIOS 0

Q

MAXINT = 32767

79



aaaaa

Qa o aaaa

IPRNTE AND IPRNTS ARE BOTH SET TO THE WRITER UNIT
NUMBER ASSIGNED TO IOUTX WHEN THE NEW PROCESSOR
IS IDENTIFIED TO THE CSM-ARCHITECTURE.

IPRNTE = IOUTX
IPRNTS = I0OUTX

INITIALIZING THE EXECUTION STAGE FOR THE INTERFACE ...

STAGE =0
RETURN

END
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C-— SPARSPAK-A (ANSI FORTRAN) RELEASE III — NAME = DTIME
C (C) UNIVERSITY OF WATERLOO JANUARY 1984
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(o] DTIME ..... DELTA TIMB
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PURPOSE . DTIME RETURNS THE BLAPSED PROCESSOR TIME SINCE
IT WAS LAST CALLED, IT USES THE COMMON VARIABLE TIME
TO REMEMBER THE TIME WHEN DTIME WAS LAST CALLED.

R KK * E * »

W A R N I N @

200200 3 2 20 300 3 e e o e K - »
THIS IS AN INSTALLATION DEPENDENT ROUTINE. IT
SHOULD BE SET UP BY THE INSTALLER OF THE PACKAGE.
IN THIS EXAMPLE, ROUTINE GTIMER IS THE TIMER ROUTINE
THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN/3
WORKSTATION RUNNING THE UNIX OPERATING SYSTEM AT THE
UNIVERSITY OF TENNESSEE KNOXVILLE.

SR ok 6 oK 3 o 3R oK o R oK K 3 O 7 K R o 3 o Rk K K oK Kok ok ok ok o ek e K ok o K K K K

INPUT PARAMETER -
IDUMMY - A DUMMY INTEGER VARIABLE.

PROGRAM SUBROUTINE -
GTIMER.

30502000 9030 I 0 D oI R SRR R R A R R K 0 M 0 2 00 2 0 3 2K 0 R K K R 0 3 o K

[eNoXoNoNeXoRoNoNoNoReNoNoNoRoNoNoNoNoRoNoNoRoNol

REAL FUNCTION DTIME ( IDUMMY )

(G AR AR MK KRR AR K A A KR O K SR KKK K K
¢}

INTEGER IDUMMY, IPRNTE, IPRNTS, MAXINT

REAL MCHEPS, RATIOL, RATIOS, TIME , X

C*#****“‘**t*****#***#**‘*****!l*‘****lﬁ*!**************!********“l********t*
c

COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 MCHEPS, TIME

c
c********l***!#*****#*#*'*ﬂ*‘t***‘!***#l**i#t**!ﬁ‘##!*##**!**********!ttt*ttt##
c

CALL GTIMER ( X )

DTIME = X . TIME

TIME = X
RETURN
[o]
END
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C— SPARSPAK-A (ANSI FORTRAN) RELEASE III — NAME = SPRSPK
C (C) UNIVERSITY OF WATERLOO JANUARY 1984

G5 R R AR R KGR0 R R 00 R KKK 000K KKK R K R 0 0 R K K K 23 o o

(G5 4 4 K KRR 0 K 0 KKK A A 0 30 R KKK KK KK R o o 6 R 6 R R 6 8 SR S 0 R kR K MK SRR R R o o o
SPRSPK ..... START SPARSPAK-A
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PURPOSE - TO SET SYSTEM PARAMETERS AND ASSIGN DEFAULT
VALUES TO SOME USER PARAMETERS. IT IS A MACHINE
DEPENDENT ROUTINE. THIS ROUTINE HAS TO BE CALLED
BEFORE ANY OTHER PACKAGE MODULE.

PARAMETERS INITIALIZED -

IPRNTE - THE OUTPUT UNIT NUMBER FOR ERROR MESSAGES.

IPRNTS - THE OUTPUT UNIT NUMBER FOR STATISTICS.

RATIOL - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
POINT VARIABLE TO THAT IN A LONG INTEGER
VARIABLE. FOR EXAMPLE, IF FLOATING POINT
NUMBERS OCCUPY TWICE AS MANY BITS AS LONG
INTEGERS, RATIOL SHOULD BE SET TO 2.

RATIOS - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
POINT VARIABLE TO THAT IN A SHORT INTEGER
VARIABLE.

MAXINT . THE LARGEST POSITIVE INTEGER THAT CAN BE
STORED IN A SHORT INTEGER VARIABLE.

MCHEPS - THE MACHINE EPSILON (UNIT ROUNDOFF ERROR).

TIME - VARIABLE USED BY THE TIMER ROUTINE DTIME.

SEE REMARK.
STAGEA - STAGE VARIABLE FOR SYSTEM-A.

REMARK - THIS PACKAGE ASSUMES THE EXISTENCE OF A REAL TIME
FUNCTION DTIME WHICH RETURNS THE ELAPSED PROCESSOR TIME
SINCE IT WAS LAST CALLED. WITH THE COMMON VARIABLE
TIME, THE INSTALLER OF THE PACKAGE SHOULD BE ABLE TO
WRITE SUCH A FUNCTION, USING THE INSTALLATION TIMER.

PROGRAM SUBROUTINES .
ALLOW , STIMER.

[eloNoRoNoRoRoloNoNoNoRoNoNoNoReNoNoNoReRoRo Ro RoRoRo o Ro Ro Ro Ro Ro o)

K K K 0 KR KR R KKK SRR KR K SR e 0 0 K 3R M KR K K K e
C

SUBROUTINE SPRSPK
C

(2K AR oo I R KR 0000 00 R O R R KN 0 K R HOROK M R K

INTEGER ICPADA,ICPADB, IERRA ,IERRB , IPRNTE,

1 IPRNTS, MAXINT, MAXSA , MAXSB , MCOLS ,
1 MDCONS, MDEQNS, MSCONS, MSEQNS, MSGLVA,
1 MSGLVB, NVARS , STAGEA, STAGEB

INTEGER IIN, IOUTX

REAL MCHEPS, RATIOL, RATIOS, TIME

DOUBLE PRECISION EPS , EPS1
C
c********!l*l*!****‘**"*‘l.*****************ll#lllll!ﬂ‘i‘***********************
(o

COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 MCHEPS, TIME

COMMON /SPAUSR/ MSGLVA, IBRRA , MAXSA , NVARS

COMMON /[SPACON/ STAGEA, ICPADA(49)

COMMON /SPBUSR/ MSGLVB, IERRB , MAXSB , MCOLS , MSEQNS,

MDEQNS, MSCONS, MDCONS
COMMON /SPBCON/ STAGEB, ICPADB(49)

COMMON /IANDO/ IIN, IOUTX
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THE FOLLOWING 6 LINES OF CODE ARE INSTALLATION
DEPENDENT. THEY MAY HAVE TO BE MODIFIED BY THE
PERSON INSTALLING THIS PACKAGE.

ON A SUN/3 WORKSTATION AT THE UNIVERSITY OF TENNESEE KNOXVILLE:
- STIMER IS THE ROUTINE TO START THE TIMER,
- ALLOW IS THE ROUTINE TO ALLOW FOR A NUMBER OF
ARITHMETIC UNDERFLOWS BEFORE SYSTEM ABORTS.
- RATIOL AND RATIOS ARE 2 AND 4 RESPECTIVELY.
« MAXINT = 2%*15 - 1 = 32767

[sXoNeNoNoNoNoNoNoNoRe NoNoNoXeo]

TIME = 0.0
CALL STIMER
CALL ALLOW ( 1234567 )

Q

RATIOL = 2.0
RATIOS = 2.0

MAXINT = 32767

IPRNTE AND IPRNTS ARE BOTH SET TO THE WRITER UNIT
NUMBER ASSIGNED TO IOUTX WHEN THE NEW PROCESSOR
IS IDENTIFIED TO THE CSM-ARCHITECTURE.

aaaaaa o

IPRNTE =
IPRNTS = IOUTX

COMPUTB THE MACHINE EPSILON.
BEPS = 1.0D0
100 CONTINUE
EPS = BPS/2.0D0
BEPS1 = 1.0D0 + EPS
IF ( EPS1.GT.1.0D0) GO TO 100
MCHEPS = EP$*2.0D0

aQaao

WRITE (IPRNTS,11)
11 FORMAT ( 1H1
1 /BX, 40H****xxxxxx UNIVERSITY OF WATERLOO
1 /5X, 40H***#xxuxxs SPARSE MATRIX PACKAGE
1 /BX, 40H**#kssmsks (5P ARSP AK)
1 /BX, 40H**kkxxxxks  RELEASE 3
1 JBX, 40H***kskinkx (C) JANUARY 1984 )

WRITE (IPRNTS,22)
22 PORMAT ( 5X, 40H**#=*sssxsx ANSI FORTRAN )

WRITE (IPRNTS,33)
33 FORMAT ( 65X, 40H***»*xxx*x DOUBLE PRECISION )

WRITE (IPRNTS,44)
44 FORMAT ( 8X, 40H**x*xxxxxx DAST UPDATE JANUARY 1984 )

WRITE (IPRNTS,55) IPRNTE, IPRNTS
55 FORMAT (//10X, 33HOUTPUT UNIT FOR ERROR MESSAGES W IT
1 /10X, 35sSHOUTPUT UNIT FOR STATISTICS ,I17)

INITIALIZING USER VARIABLES FOR SYSTEM-A ...

STAGEA =0
RETURN

END
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Appendix C Listing of Programs
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SPK ..... A NEW CSM PROCESSOR
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PURPOSE . THIS IS THE DRIVER FOR INSTALLING INTO NICE/SPAR
OUR INTERFACE MODULES AS A SINGLE PROCESSOR WHICH
SOLVES CSM TESTBED PROBLEMS USING SPARSPAK-A MODULES.

FOLLOWING THE GUIDELINES GIVEN IN NASA TECHNICAL MEMORANDOM
89096, NAMELY

(a) THE NAME OF THE PROCESSOR SHOULD BE NO LONGER THAN FOUR
CHARACTERS.

(b) THE PROCESSOR SHOULD BE WRITTEN AS A FORTRAN 77 SUBROUTINE
WHOSE NAME IS THE PROCESSOR NAME.

(c) THE SUBROUTINE SHOULD HAVE NO ARGUMENTS.

(d) THE PROCESSOR SHOULD BEGIN EXECUTION WITH A CALL TO THE
LIBRARY SUBROUTINE “INTRO"” WITH THE PROCESSOR NAME
AS THE ONLY ARGUMENT. THE GIVEN NAME IS USED BY THE
“GAL” DATA MANAGER AS THE CREATING PROCESSOR FOR
NEW DATASETS INSERTED IN “GAL" LIBRARIES; IT ALSO
APPEARS IN THE INTERACTIVE PROMPT STRING IF THE
“SPAR READER" ROUTINE IS USED FOR INPUT COMMAND
PROCESSING.

(¢) THE LABELED COMMON BLOCK /TANDO/ WITH 2 INTEGER VARIABLES
CONTAINING USER INPUT AND OUTPUT UNIT NUMBERS SHOULD BE
INCLUDED IN APPROPRIATE MODULES. THE UNIT NUMBERS ARE
ASSIGNED IN THE SUBROUTINE “INTRO".

(f) CALL LIBRARY SUBROUTINE “FIN” TO CLOSE “GAL" LIBRARIES.

50020 3 2 O S S 2 3 3 N S 0 30 30 3 S 30 2 e 3 K ek
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THE PATH NAME OF THE INCLUDE PILE ‘korcoma.inc”
IS INSTALLATION DEPENDENT.
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SUBROUTINE SPK

INCLUDE DECLARATION CONTAINING BLANK COMMON VARIABLES AND
DIMENSIONS:

PARAMETER (KSZZZ= 200000

COMMON KORB, KEVEN, KORT, A(KS2Z2)

include '/nsr.MC68020/nlal/echu/ns/spar/korcoma.inc’

INTEGER MXSTORE

IDENTIFY PROCESSOR TO CSM ARCHITECTURE

CALL INTRO ( 'SPK' )

WORKING STORAGE A IS DECLARED AS KSZZZ WORDS WHICH IS
EQUIVALENT TO HALF THAT MANY DOUBLE-PRECISION FLOATING
POINT NUMBERS.

[eXeXoNoNoTNoNoRo o NN BN e Ko No NoRo R o Ro Xo BN o No o NoNoNoNoNoNo No NeRoRo NoloNo NoNoNoNo e Ro o No RoNe NoloNoRo Ro No RoRo Ro N oK o]

MXSTOR = KSZ2%/2

CALL SPKA ( A, MXSTOR )
CALL PIN { 0,0 )

CALL EXIT

END
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SPKA ..... A DRIVER FOR INTERFACE MODULES AND SPARSPAK-A
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PURPOSE - THIS IS THE DRIVER CALLING INTERFACE MODULES TO

SOLVE CSM TESTBED PROBLEMS USING SPARSPAK-A MODULES.

INPUT PARAMETERS -

A - AN ARRAY OF MXSTOR DOUBLE-PRECISION FLOATING POINT
NUMBERS.
MXSTOR . SIZE OF ARRAY A IN DOUBLE-PRECISION FLOATING-POINT
NUMBERS.

USER INPUT .

MSGLVL - MESSAGE LEVEL FOR INTERFACE MODULES.
MSGLVA - MESSAGE LEVEL FOR SPARSPAK-A MODULES.
BUFMAX - MAXIMUM BUFFER LENGTH ANTICIPATED.
LIBNAM . NAME OF THE DATA LIBRARY.

JDFSET - NAME OF DATASET JDF1.BTAB.1.8

KMAP . NAME OF DATASET KMAP.0.nsubs ksise

KSPAR - NAME OF DATASET K.SPAR.jdf2.0

CON. NAME OF DATASET CON.G.ncon.0

APPLF . NAME OF DATASET APPL.FORC.iset.1

APPLM - NAME OF DATASET APPL.MOTlL.iset.1

STATD - NAME OF DATASET STAT.DISP.iset.ncon

INTERFACE MODULES -

SPKCSM, LIBOPN, CTIME, SPACE , GETJDF, GETDOF, GTZERO, GTCOND,
GTMOTI, GETL] , GTFORC, GTNUMS, STATCS, GETSOL.

SPARSPAK-A INTERFACE MODULES -

SPRSPK, ORDRBS, SOLVES, ERESTS, STATSA.

LOGICAL READER UNIT NUMBER FOR USER INPUT . 41
o K G R 0 SRR SR 0 0 a0 R SR S R R 3 S KSR KK 3 K R K Ko K KK
SUBROUTINE SPKA ( A, MXSTOR )

DOUBLE PRECISION A(1)
INTEGER MXSTOR

[oXo N0}

o]

CHARACTER*40 LIBNAM
CHARACTER*51 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

INTEGER*4 IPRNTE, IPRNTS, MAXINT

INTEGER*4 MSGLVL , IERR , MAXCSM

INTEGER*4 DOF, BUF, MASK, KC, ICLQ, FCON, SPK

INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE

INTEGER*4 MAXDOF, NEQNS, NUMJINT

INTEGER*4 MSGLVA,IERRA , MAXSA , NVARS

REAL GZTIME, GCTIME, GIJTIM, GFTIME, GMTIME,GNTIME,
CSMTIM, CSMSTR

REAL RATIOS, RATIOL, TIME

INTEGER*4 SPACE

REAL CTIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIMB

COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM,
JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

COMMON /CSMMAP/ DOF, BUF, MASK, KC, ICLQ, PCON, SPK

COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE

COMMON /CSMDTA/ GZTIME, GCTIME, G1JTIM, GFTIME, GMTIME,GNTIME,
CSMTIM, CSMSTR

COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT

COMMON /[SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS

G RN MG oo A R R R SIS 2 R R R SR IESREOK SRS 9 0 R 060 03K 3 R o 00K oo oo

[+

INTEGER*4 JLONG, NLONG, CSIZE
INTEGER*¢ IDUMMY, INDATA
REAL RN, RNJNT, ROFFS, ROFFL, DUMMY
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DOUBLE PRECISION RELERR, RELRES

INITIALIZE SPARSPAK.A AND SYSTEM TIMER

CALL SPRSPK

INITIALIZE THE CSM.SPARSPAK INTERFACE PACKAGE

CALL SPKCSM

INDATA = 41
READ ( INDATA, 12 ) MSGLVL
FORMAT (14

SET MAXIMUM BUFFER LENGTH

READ ( INDATA, 12 ) BUFMAX

INPUT NAME OF LIBRARY AND DATASETS FOR GIVEN PROBLEM

READ ( INDATA, 22 ) LIBNAM
FORMAT( A40 )

READ ( INDATA, 32 ) JDFSET
READ ( INDATA, 32 ) KMAP
READ ( INDATA, 32 ) KSPAR
READ ( INDATA, 32 ) CON
READ ( INDATA, 32 ) APPLF
READ ( INDATA, 32 ) APPLM

READ ( INDATA, 32 ) STATD
FORMAT( A51)

OPEN THE LIBRARY

CALL LIBOPN

INITIALIZE THE TIMER

DUMMY = CTIMB(0)

MXREQD = BUFMAX

SIZE OF STORAGE ARRAY

MAXCSM = MXSTOR

CHECK MAXCSM AGAINST MXREQD

IF ( SPACE ( IDUMMY ) .NE. 0 ) GO TO 9999

RETRIEVE TOTAL NUMBER OF JOINTS AND STORE IN NJMJNT

CALL GETIDF (A )

COMPUTE FURTHER STORAGE REQUIREMENT

ROFFS = RATIOS - 0.01
ROFFL = RATIOL - 0.01
RNINT = NUMINT + 1
JLONG = IFIX((RNJNT+ROFFL)/RATIOL)

MXREQD = JLONG 4 BUFMAX

IF ( SPACE ( IDUMMY ) .NE. 0 ) GO TO 9999
COMPUTE ADDRESSES

DOF =1

BUF = DOF + JLONG

RETRIEVE DEGREES OF FREEDOM PER JOINT,
AND INITIALIZE MAXDOF AND NEQNS

CALL GETDOF ( A(DOF), A(BUF) )
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ADJUST BUFFER SPACE

MXREQD = MXREQD . BUFMAX

BUFMAX = MAX0 ( BUFMAX, NEQNS )
MXREQD = MXREQD + BUFMAX

IF ( SPACE ( IDUMMY ) .NE. 0 ) GO TO 9999
MXUSED = MXREQD

COMPUTE FURTHER STORAGE REQUIREMENT

RN = NEQNS

NLONG = IFIX ((RN4+ROFFL)/RATIOL)
MXREQD = MXUSED 4 NLONG

IF ( SPACE ( IDUMMY ) .NE. 0 ) GO TO 9999

COMPUTE ADDRESSES

DETECT DUMMY ROWS

CALL GTZERO (A(DOF), A(BUF), A(MASK) )
MXUSED = MXREQD

COMPUTE FURTHER STORAGE REQUIREMENT

MXREQD = MXUSED + 7
IF ( SPACE ( IDUMMY ) .NE. 0 ) GO TO 9999

COMPUTE ADDRESSES

KC = MASK + NLONG

DETECT CONSTRAINED VARIABLES

CALL GTCOND (A(DOPR), A(BUF), A(KC), A(MASK), CSIZE)
MXUSED = MXREQD

COMPUTE FURTHER STORAGE REQUIREMENT

MXREQD = MXUSED + MAXDOF 4} CSIZE
IF ( SPACE ( IDUMMY ) .NE. 0 ) GO TO 9999

TOTAL STORAGE TO BE USED

MXUSED = MXREQD

COMPUTE ADDRESSES

ICLQ = KC + 7
FCON = ICLQ + MAXDOF

GATHER NONZERO CONSTRAINTS

CALL GTMOTI ( A(BUF), A(MASK), A(FCON), CSIZE )

INTERFACE WITH SPARSPAK-A

SPK = MXUSED + 1
MAXSA = MAXCSM . MXUSED

INPUT NONZERO STRUCTURE TO SPARSPAK-A

CALL GETIJ(A(DOF), A(BUF), A(ICLQ), A(MASK), A(SPK))

DETERMINE SYMMETRIC ORDERING

CALL ORDRBS ( A(SPK) )

INPUT RIGHT HAND SIDE

CALL GTPORC( A(BUF),A(MASK), A(SPK) )

INPUT MATRIX COEFFICIENTS AND RIGHT HAND SIDE MODIFICATIONS

CALL GTNUMS(A(DOF), A(BUF), A(MASK), A(FCON), A(SPK))
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PERFORM NUMERICAL PACTORIZATION AND SOLUTION

CALL SOLVES ( A(SPK) )
CSMTIM = CTIME(0)
CALL BERESTS ( RELERR, A(SPK))

COMPARE WITH KNOWN NICESPAR SOLUTION

CALL GETSOL (A(BUF), A(SPK), RELRES )
CALL STATCS
CALL STATSA

CONTINUE
RETURN

END
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PURPOSE - TO SET SYSTEM PARAMETERS AND ASSIGN DEFAULT
VALUES TO SOME USER PARAMETERS. IT IS A MACHINE
DEPENDENT ROUTINE. THIS ROUTINE HAS TO BE CALLED
BEFORE ANY OTHER PACKAGE MODULE.

PARAMETERS INITIALIZED -

IPRNTE - THE OUTPUT UNIT NUMBER FOR ERROR MESSAGES.

IPRNTS - THE OUTPUT UNIT NUMBER FOR STATISTICS.

RATIOL - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
POINT VARIABLE TO THAT IN A LONG INTEGER
VARIABLE. FOR EXAMPLE, IF FLOATING POINT
NUMBERS OCCUPY TWICE AS MANY BITS AS LONG
INTEGERS, RATIOL SHOULD BE SET TO 2.

RATIOS - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
POINT VARIABLE TO THAT IN A SHORT INTEGER
VARIABLE.

MAXINT - THE LARGEST POSITIVE INTEGER THAT CAN BE
STORED IN A SHORT INTEGER VARIABLE.

TIME . VARIABLE USED BY THE TIMER ROUTINE CTIME.

SEE REMARK
STAGE - STARTING STAGE OF SYSTEM.CSM.

REMARK . THIS INTERFACE PACKAGE ASSUMES THE EXISTENCE OF
A REAL TIME FUNCTION CTIME WHICH RETURNS THE ELAPSED
PROCESSOR TIME SINCE IT WAS LAST CALLED. WITH THE
COMMON VARIABLE TIME, THE INSTALLER OF THE PACKAGE
SHOULD BE ABLE TO WRITE SUCH A FUNCTION, USING THE
INSTALLATION TIMER.
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SUBROUTINE SPKCSM
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CHARACTER*40 LIBNAM

CHARACTER*51 CDUMMY

INTEGER*4 IIN, IOUTX

INTEGER*4 IPRNTE, IPRNTS5, MAXINT
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*¢ MSGLVL, IERR , MAXCSM

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE

COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(7)
COMMON /IANDO/ IIN, IOUTX
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THE FOLLOWING 4 LINES OF CODE ARE INSTALLATION
DEPENDENT. THEY MAY HAVE TO BE MODIFIED BY THE
PERSON INSTALLING THIS PACKAGE.

OUR CURRENT ENVIRONMENT -
- RATIOL AND RATIOS ARE BOTH 2.
- MAXINT = 2**15 . 1 = 32767

INSTALLATION DEPENDENT PARAMETERS

TIME = 0.0

[o BN NeRoNoNoNoNoNoReNoNoNoNoNo NoXo)

RATIOL = 2.0
RATIOS = 2.0

MAXINT = 32787
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IPRNTE AND IPRNTS ARE BOTH SET TO THE WRITER UNIT
NUMBER ASSIGNED TO IOUTX WHEN THE NEW PROCESSOR
1S IDENTIFIED TO THE CSM.ARCHITECTURE.

IPRNTE = IOUTX
IPRNTS = I0UTX

INITIALIZING THE EXECUTION STAGE FOR THE INTERFACE ...

STAGE =10
RETURN

END
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PURPOSB - CTIME RETURNS THE ELAPSED PROCESSOR TIME SINCE
IT WASLAST CALLED. IT USES THE COMMON VARIABLE TIME
TO REMEMBER THE TIME WHEN CTIME WAS LAST CALLED.
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WARNING
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THIS IS AN INSTALLATION DEPENDENT ROUTINE. IT

SHOULD BE SET UP BY THE INSTALLER OF THE PACKAGE.

IN THIS EXAMPLE, ROUTINE GTIMER IS THE TIMER ROUTINE

THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN/3
WORKSTATION RUNNING THE UNIX OPERATING SYSTEM AT THE

UNIVERSITY OF TENNESSEE KNOXVILLE.
o o o R R K K 0 A KK 305 0K K R R K 0 6 3K o 6 o 0 R KK 6 o S S R o KR o 0 o

INPUT PARAMETER -
IDUMMY - A DUMMY INTEGER VARIABLE.

PROGRAM SUBROUTINE .
GTIMER.

[oXeNeNoNoNoNoRoNoRoNoNsNoNoNoNoRoNoNoNoNeoNol
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REAL FUNCTION CTIME ( IDUMMY )
C
G K R O R K R R R R K M Kok
C
INTEGER IDUMMY, IPRNTE, IPRNTS, MAXINT
REAL RATIOL,RATIOS, TIME , X
[¢}
K G S KR R KRR R ORI A K A
(¢}
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
1 TIME
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c
CALL GTIMER ( X )
CTIME = X . TIMB
TIMBE = X
RETURN

END
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GETIDF ..... GET NUMBER OF JOINTS ...
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PURPOSE - THIS ROUTINE RETRIEVES THE TOTAL NUMBER OF JOINTS
FOR THE PROBLEM TO BE SOLVED.

PARAMETERS INITIALIZED -
NUMJINT - THE TOTAL NUMBER OF JOINTS.

ERROR CODES .
0 - ERROR CODES
1013 . INCORRECT EXECUTION SEQUENCE
1014 . THE NUMBER OF ITEMS AVAILABLE FROM THE RETRIEVED
DATASET IS LESS THAN TWO. SEE REMARK.

REMARK -
THE CURRENT VERSION OF TESTBED DATABASE ASSUMES THAT
ALL JOINTS HAVE THE MAXIMUM DEGREES OF FREEDOM, THE
NUMBER OF JOINTS AND THE MAXIMUM DEGREES PER JOINT IS
FROM THE FIRST TWO ITEMS RETRIEVED. IN CASE OF
VARIABLE DEGREES OF FREEDOM PER JOINT, DUMMY DATAIS
STORED.

PROGRAM SUBROUTINES -
QKINFO, GETRECI, EMSG

CSM TESTBED DATASETS ACCESSED .
JDF1.BTAB.*
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SUBROUTINE GETJDF ( IBUF )

INTEGER*4 IBUF(1)
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CHARACTER*40 LIBNAM

CHARACTER*51 JDFSET, KMAP,KSPAR, CON, APPLF, APPLM, STATD
INTEGER*4 IPRNTE, IPRNTS, MAXINT

INTEGER™*4 MSGLVL, IERR, MAXCSM

INTEGER™*4 BUFMAX, MXUSED, MXREQD, STAGE

INTEGER*4 MAXDOF, NEQNS , NUMJINT

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDPSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJINT
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C
INTEGER*4 LEN

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 )
11 FORMAT ( /5X, 'GETIDF . GET NUMBER OF JOINTS AND ... ")

IF (( STAGE .LT. 10 ) .OR. ( IERR .NB. 0 )) GO TO 100

EACHDATASET IS IDENTIFIED BY A STRING OF
‘MAINKEY.EXTENSION.CYCLE1.CYCLE2.CYCLESJ3'’
MAXIMUM NUMBER OF CHARACTERS CONTAINED IS 51

aaaaaa o

CALL QKINFO ( JDFSET )
IF ( IERR .NE. 0 ) RETURN

Q

STAGE = 15

aaQ

GET THE FIRST TWO ITEMS OF THE FIRST RECORD
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LEN = 2

CALL GTRECI ( i, IBUF, LEN )
IF ( IERR .NE. 0 ) RETURN

1IF ( LEN .LT.2 ) GO TO 200

NUMJINT = IBUF(1)

READ IN MAX UNCONSTRAINED DEGREES OF FREEDOM OF THE MODEL

MAXDOF = IBUF(2)
STAGE = 20
RETURN

ERROR HANDLING
CONTINUE
IERR = 1013
IF ( MSGLVL .GE. 2 ) CALL EMSG
RETURN

IERR = 1014
IF ( MSGLVL .GB. 2 ) CALL EMSG
RETURN

END
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C GETDOPF ..... GET DEGREES OF FREEDOM
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PURPOSE - THIS ROUTINE RETRIEVES THE DEGREE OF FREEDOM
FOR EACH INDIVIDUAL JOINT FROM THE DATABASE.

PARAMETERS INITIALIZED -

IDOF - IDOF(K) STORES THE STARTING EQUATION NUMBER FOR
JOINT K. THE DEGREES OF FREEDOM FOR JOINT K 18
GIVEN BY IDOF(K+1) - IDOF(K). THE TOTAL NUMBER
OF EQUATIONS IS EQUAL TO IDOF(NUMINT+1) - 1.

MAXDOF . THE MAXIMUM DEGREE OF FREEDOM RETRIEVED FOR AN
INDIVIDUAL JOINT.

NEQNS . THE NUMBER OF EQUATIONS EQUALS THE TOTAL DEGREES
OF FREEDOM.

CSM TESTBED DATASET ACCESSED -
CURRENTLY NONE.
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THIS SUBROUTINE MUST BE MODIFIED FOR PROBLEMS WITH
VARIABLE DEGREES OF FREEDOM PER NODE
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c
SUBROUTINE GETDOF ( IDOF, IBUF )
c
INTEGER*4 IDOF(1), IBUF(1)
c
Cx**t*t****ll!nlln‘llll*t*t*t**t****!l*t&tltlﬁ***tﬁt*#tut**#***tx**ttut*-«t*ttm****u***
c
CHARACTER*40 LIBNAM
CHARACTER*51 JDFSET, KMAP,KSPAR, CON, APPLF, APPLM, STATD
INTEGER*¢ IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL, IERR, MAXCSM
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MAXDOF, NBQNS , NUMJNT
REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIMB
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT

(2K 2K IR o K R K SR NS R KRR KGO K K R K SR A SRR R

o}
INTEGER*4 DEGREE,I

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 )
11 FORMAT( /5X, 'GETDOF . GET DEGREES OF FREEDOM ...")

1P (( STAGE .LT. 20 ) .OR. ( IERR .NE. 0 )) GO TO 500

THE FOLLOWING LINES OF CODE IS TEMPORARY
FOR THE-FIXED DEGREE PROBLEMS

aaaaa o

DEGREE = MAXDOF
IDOFR(1) = 1
DO 1001 = 2, NUMINT+1
IDOF(I) = IDOF(I-1)4DEGREER
IF ( MAXDOF .LT. DEGREE ) MAXDOF = DEGREER
100  CONTINUE
NEQNS = IDOP(NUMJINT+1) - 1
STAGE = 30
RETURN

500 CONTINUE
IERR = 1019
IF ( MSGLVL .GE. 2 ) CALL EMSG
RETURN
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END
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PURPOSE . THIS ROUTINE IDENTIFIES DUMMY ROWS (ALL ZEROS) IN
THE DATA MATRIX.

INPUT PARAMETERS -
DOF . AN INTEGER ARRAY OF SIZE EQUAL TO THE TOTAL NUMBER OF
JOINTS PLUS ONE.
IDOF(K) STORES THE STARTING EQUATION NUMBER FOR
JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
GIVEN BY IDOF(K+1) - IDOF(K). THE TOTAL NUMBER
OF EQUATIONS IS EQUAL TO IDOF(NUMIJINT+1) - 1.

OUTPUT PARAMETERS -
MASK . THE LINEAR ARRAY MASK STORES A 0 FOR EACH
ZERO DIAGONAL ELEMENT ENCOUNTERED AND A -1
FOR EACH NONZERO DIAGONAL ELEMENT.

WORKING PARAMETERS -
FBUF . A BUFFER OF MAXIMUM RECORD SIZE FOR RETRIEVING
REAL OR DOUBLE PRECISION DATA FORM THE TESTBED.

ERROR CODES -
1021 - INCORRECT EXECUTION SEQUENCE.

SUBPROGRAM MODULES -
QKINFO, GTRECF, EMSG

CSM TESTBED DATASETS ACCESSED -
K.SPAR.*

REMARK . THIS ROUTINE IS NEEDED FOR THE CURRENT RELEASE OF
TESTBED DATABASE BECAUSE THE CONSTRAINT DATASET DOES NOT
INCLUDE ZERO ROWS. IN ADDITION, NOTE THAT CURRENTLY
THE TESTBED STORES MAXDOF EQUATIONS PER JOINT. THEREFORE,
DUMMY ROWS MUST BE INSERTED FOR THE JOINTS WITH DEGREES
LESS THAN MAXDOF.
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SUBROUTINE GTZERO ( DOF, FBUF, MASK )

[c BN Yo XoXoNo oo NoNoReNeNoRoReoRoNoNeNe e NoNoRoNoNeRoRoNoNoNoNoRoNoNo NoNo o RoRo Neo Neo No]

DOUBLE PRECISION FBUF(1)

INTEGER*4 MASK(1), DOF(1)
c
C*******!l!*lﬂ#l**#***#***t*****#*******##ﬂ***‘***#l***#‘****##l*&*t*!***********
c

CHARACTBER*40 LIBNAM

CHARACTER*51 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

CHARACTER*4 RTYPE

INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 IDSN ,LDI ,NLEN ,NREC , TRACE
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MSGLVL, IERR, MAXCSM

INTEGER*4 MAXDOF , NEQNS , NUMJNT

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN ,LDI ,NLEN , NREC ,RTYPE,

1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMINT

O KR KKK KKK S KKK KR KR SRR KK AR oK K
C
INTEGER*4 CONRNG, I, II, IROW, IS, ITEMS, JGRPS, JOINT, LEN
INTEGER*4 CINT, NROWS,NCOLS, ISIZE, KOUNT, OVERHD, NZEROS
DOUBLE PRECISION COEF
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IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 )
11 FORMAT( /5X, 'GTZERO - DETECT DUMMY ROWS ... ')

IF ( ( STAGE .LT. 30 ) .OR. ( IERR .NE. 0 ) ) GO TO 500

INITIALIZE MASK TO BE .1
DO 160 I = 1, NEQNS
MASK(I) = -1
00 CONTINUE

aaaa a

EACH DATASET IS IDENTIFIED BY A STRING OF
'‘MAINKEY.EXTENSION.CYCLE1.CYCLE2.CYCLEY’
MAXIMUM NUMBER OF CHARACTERS CONTAINED IS &1

[oXoNoNeNo N

CALL QKINFO ( KSPAR )
IF ( IBRR .NE. 0 ) RETURN

Q

OVERHD = 0

KOUNT = 0

NZEROS = 0

TRACE = TRACE + 10

DO 200 I = 1, NREC
LEN = NLEN
CALL GTRECF ( I, FBUF, LEN )
IF ( IERR .NE. 0 ) RETURN

DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD

Qaaa

JGRPS = FBUF(1)
ITEMS = 1
OVERHD = OVERHD + 1
DO 300 II = 1, JGRPS
CONRNG = PBUF(ITEMS+1)
JOINT = FBUF(ITEMS+2)
NROWS = DOF(JOINT+1) - DOR(JOINT)

COMPUTE THE SIZE OF DATA ITEMS. IN TOTAL
CONRNG SUBMATRICES INCLUDING DIAGONAL SUBMATICES

aaaQ

ISIZE = 0

DO 350 IS = 1, CONRNG
CINT = PBUF(ITEMS+141S)
NCOLS = DOF(CJNT+1) - DOF(CINT)
ISIZE = ISIZE + NROWS*NCOLS

350 CONTINUE
ITEMS = ITEMS + 1 + CONRNG
OVERHD = OVERED 4 1 + CONRNG

c
c ACGCESS THE DIAGONAL ELEMENTS ON THE DIAGONAL MATRIX
c
IROW = DOF(JOINT). 1
NCOLS = NROWS
DO 400 IS = 1, NCOLS
COEP = PBUF(ITEMS+(IS-1)*NRO WS 4IS)
CcC m— .
c A DUMMY ROW IS DETECTED
C ——— e e
IF ( COEF .EQ. 0.0D0 ) THEN
MASK (IROW 415 )= 0
KOUNT = KOUNT 4 1
ENDIF
400 CONTINUE
ITEMS = ITEMS + ISIZE
NZEROS = NZEROS + ISIZE
300 CONTINUE
200 CONTINUB
STAGE = 40
C L ——
c PRINT DEBUGGIN DATA ...
C —_———————
IF ( MSGLVL .GE. 3 ) WRITE ( IPRNTS, 22 ) KOUNT,
1 OVERHD, NZEROS
22 FORMAT ( 15X, 'NUMBER OF DUMMY ROWS: ', I8
1 /15X, 'K.SPAR.* INDEX OVERHEAD:, I8
1 /15X, 'K.SPAR.* NONZEROS :  ’,18 )
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500

RETURN

CONTINUE

ERROR HANDLING ...

IERR = 1021

IF ( MSGLVL .GE. 2 ) CALL EMSG
RETURN

END
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PURPOSE - THIS ROUTINE RETRIEVES THE CONSTRAINED COMPONENTS
OF EACH JOINT AND TREATS THE DUMMY ROWS AS CONSTRAINED
TO BE ZERO.

INPUT PARAMETERS -

DOF. AN INTEGER ARRAY OF SIZE EQUAL TO THE TOTAL NUMBER OF
JOINTS PLUS ONE.
IDOF(K) STORES THE STARTING EQUATION NUMBER FOR
JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
GIVEN BY IDOF(K+1) - IDOF(K). THE TOTAL NUMBER
OF BEQUATIONS IS EQUAL TO IDOF(NUMJINT41) - 1.

MASK - RECORD OF DUMMY ROWS.

OUTPUT PARAMETERS -
MASK - RECORD OF CONSTRAINED VARIABLES IN ADDITION TO
DUMMY ONES.
CSIZE - TOTAL NUMBER OF NONZERO CONSTRAINTS.

WORKING PARAMETERS -
IBUF - A BUFFER OF MAXIMUM RECORD SIZE FOR RETRIEVING
INTEGER DATA FORM THE TESTBED.
KC . AN TEMPORARY INTEGER ARRAY OF SIZE (MAXDOF+1)
NEEDED IN DECODING THE CONSTRAINT DATA.

ERROR CODES -
1022 . INCORRECT EXECUTION SEQUENCE.

SUBPROGRAM MODULES .
QKINFO, GTREC], DECODE, EMSG

CSM TESTBED DATASETS ACCESSED -
CON..* OR CON..i (IF MULTIPLES EXISTS IN DATA LIBRARY)

REMARKS .
IT IS ASSUMED THAT THE CONSTRAINED DATA IS STORED
IN THE DATASET IN THE ORDER OF JOINT NUMBERS.

2 o K 3 RSB R K0 o R SN T S S SR o M G S K oK a0 K ok 6 K0 R R o K R o K e o R KK SRR o K K K

SUBROUTINE GTCOND ( DOF, IBUF, KC, MASK, CSIZE )

INTEGER*4 DOF(1), IBUR(1), KC(1), MASK(1), CSIZE

000 o R o M S0 AR O R O 0 KSR R K K K G 0 K NGO R e 0 2 D A 00 e 0 0 o K 0 A 06 e
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CHARACTER*40 LIBNAM
CHARACTER*51 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER*4 RTYPE

INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 IDSN ,LDI , NLEN ,NREC , TRACE
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MSGLVL, IERR, MAXCSM

INTEGER*4 MAXDOF , NEQNS , NUMJNT

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN ,LDI ,NLEN ,NREC ,RTYPE,

1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDPSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

N R0 N R K 0 R R KRR RS R KR K R

INTEGER*4 I, II, IROW, JOINT, K, LEN, DEGREE, ZKOUNT,FKOUNT,
1 ZDUMMY
c
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IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11)

FORMAT( /68X, 'GTCOND . GET CONSTRAINTED VARIABLES... ')

IF (( STAGE .LT. 40 ) .OR. ( IERR .NE. 0 ) ) GO TO 500

EACH DATASET IS IDENTIFIED BY A STRING OF
'‘MAINKEY.EXTENSION.CYCLE1.CYCLE2.CYCLEJ’
MAXIMUM NUMBER OF CHARACTERS CONTAINED IS 51

CALL QKINFO ( CON)
IF ( IERR .NE. 0 ) RETURN
TRACE = TRACE + 10

KOUNTING NONZERO CONSTRAINTS

KOUNTING ZERO CONSTRAINTS

ZKOUNT =0

JOINT =1
DO 1001 =1, NREC
LEN = NLEN

CALL GTRECI ( I, IBUF, LEN )
IF ( IERR .NE. 0 ) RETURN
DO 200 II = 1, LEN
IF ( JOINT .GT. NUMINT ) GO TO 200

CONSTRAINTS ARE ENCODED INTO 7 BITS
WHICH ARE DECODED INTO AN INTEGER
ARRAY KC OF SIZE 7!

CALL DECODE ( IBUF(II), KC
DEGREB = DOP(JOINT+1) - DOF(JOINT)
IROW = DOF(JOINT) - 1
DO 300 K = 1, DEGREE
IF ( KC(K) .EQ. 1 ) THEN
ZERO CONSTRAINTS
MASK(IROW+K) = 0
ZKOUNT = ZKOUNT + 1
ELSE IF ( KC(K) .EQ. 2 ) THEN
NONZERO CONSTRAINTS
MASK(IROW4K) = 1
CSIZE = CSIZE + 1
ENDIF
CONTINUE
JOINT = JOINT + 1
CONTINUE
CONTINUE

KOUNTING UNCONSTRAINED DEGREES OF FREEDOM AND
THE NET ZERO CONSTRAINTS INCLUDING DUMMY ROWS

FKOUNT = 0
ZDUMMY = 0
DO 400 I = 1, NEQNS
IF ( MASK(I) .EQ. -1 ) FKOUNT = FKOUNT + 1
IF ( MASK(I) .EQ. 0 ) ZDUMMY = ZDUMMY + 1
CONTINUB
STAGE = 50
PRINT DEBUGGING DATA ...
IF ( MSGLVL .GE. 3 ) WRITE (IPRNTS, 23) ZKOUNT, CSIZE,
FKOUNT, ZDUMMY
FORMAT( 15X, 26H ZERO CONSTRAINTS ARE ,I8
/15X, 26HNONZERO CONSTRAINTS ARBE , I8
/15X, 26HFREE VARIABLES ARE , I8
/15X, 26HDUMMY ROWS + 0 CONSTRAINTS, 18 )
RETURN

CONTINUE
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ERROR HANDLING

IERR = 1022
IF ( MSGLVL .GE. 2 ) CALL EMSG
RETURN

END
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PURPOSE - TO RETRIEVE NUMERIC FOR NONZERO CONSTRAINTS.

INPUT PARAMETERS
MASK - CONSTRAINT INFORMATION FOR EACH VARIABLE.

OUTPUT PARAMETERS
MASK - THE LOCATIONS CORRESPONDING TO NONZEROR CONSTRAINTS
CONTAIN A POINTER TO THE NUMERIC VALUE IN FCON.
FCON - AN ARRAY OF CSIZE FLOATING.POINT CONSTRAINTS.

WORKING PARAMETERS
FBUF . A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX.
THE ACTUAL TYPE IS AS DECLARED.

ERROR CODES .
1025 - INCORRECT EXECUTION SEQUENCE.
1026 - UNEXPECTED NONZERO CONSTRAINT VALUE.
1027 - ZERO ENTRY FOR A NONZERO CONSTRAINT OCCURS.

SUBROUTINE PROGRAMS .
QKINFO, GTRECF, EMSG.

CSM TESTBED DATASETS ACCESSES -
APPL.MO TLi.j.

REMARKS -
IT IS ASSUMED THAT THE CONSTRAINT VALUES ARE STORED
IN SEQUENCE FROM 1 TO NEQNS.
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SUBROUTINE GTMOTI ( FBUF, MASK, FCON, CSIZE )

[cBENeRoNoRoNoRoReReRoXoNoNoNoRoNoNoNoNoNoRoRoRoNoNo Yo R o No Ko No R e NoRoRo Ko X o)

INTEGER*4 MASK(1), CSIZE
DOUBLE PRECISION FBUF(1), FCON(1)
C
Peda e T e L ey e
c
CHARACTER*40 LIBNAM
CHARACTER*51 JDFSET, KMAP,KSPAR, CON, APPLF, APPLM, STATD
CHARACTER™*4 RTYPE
INTEGER™*4 IPRNTE, IPRNTS, MAXINT
INTEGER™*4 IDSN ,LDI ,NLEN ,NREC , TRACE
INTEGER™*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MSGLVL, IERR, MAXCSM
INTEGER*4 MAXDOF , NEQNS , NUMJINT
REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN ,LDI ,NLEN ,NREC , RTYPE,
1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IBERR, MAXCSM,
1 JDFSET, KMAP, KSPAR, CON, APPLP, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT
c
cl*ﬁtt***k***tiﬁlﬁ!#l!#*********#l**l‘ﬁ“'**N#*****************!*#*i*‘******t***)ﬁ
c
INTEGER*4 NITEMS, KPTR, LEN, I, J
c
IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 )
11 FORMAT( /5X, 'GTMOTI . GET NONZERO CONSTRAINTS...")

IF (( STAGE .LT.50 ) .OR. ( [ERR .NE. 0) ) GO TO 1000

IF ( CSIZE .EQ. 0 ) THEN

aa a o

NONZERO CONSTRAINTS ARE NOT EXPECTED
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IF ( MSGLVL .GE. 3 ) WRITE ( IPRNTS, 21)
FORMAT( /10X, 'APPLIED DISPLACEMENTS ARE NOT EXPECTED.")
STAGE = 60
RETURN
ENDIF

RETRIEVE NEQNS ITEMS FORM 'APPL.MOTIL* *

CALL QKINFO ( APPLM )
1P ( IERR .NE. 0 ) RETURN
TRACE = TRACE + 10
NITEMS = 0
KPTIR = 0
DO 100 I = 1, NREC
LEN = MINO ( NEQNS . NITEMS, NLEN )
IF ( LEN .GT. 0 ) THEN
CALL GTRECP ( I, FBUF, LEN )
IF ( IERR .NE. 0 ) RETURN
DO 200 J = 1, LEN
NITEMS = NITEMS + 1

CHECK ERROR DUE TO INCONSISTENT CONSTRAINT VALUES

IF (( MASK(NITEMS) .NE. 1 ) .AND.

1 ( FBUF(J) .NE. 0.0D0 )) GO TO 1100

IF (( MASK(NITEMS) .EQ. 1 ) .AND.

1 ( FBUF(J) .EQ. 0.0D0 )) GO TO 1200

QaQ

QaaQ

IF ( MASK(NITEMS) .EQ.1 ) THEN

ENTER NUMERIC FOR NONZERO CONSTRAINT

KPTR = KPTR + 1
FCON(KPTR) = FBUF(J)

STORE THE ADDRESS POINTER IN MASK

MASK(NITEMS) = KPTR
ENDIF
CONTINUE
ENDIF
CONTINUE
STAGE = 60
RETURN

ERROR HANDLING
CONTINUE
IERR = 1025
IF ( MSGLVL .GB. 2 ) CALL EMSG
RETURN

CONTINUE
IERR = 1026
IF ( MSGLVL .GE. 2 ) CALL EMSG
RETURN

CONTINUE
IERR = 1027
IP ( MSGLVL .GE. 2 ) CALL EMSG
RETURN

END

103



G AN BT AR AN KK R KRR R A R KK K KK o K K K K KKK o SR ek K
(369 R R K SRR SRR R R SRR R R S K RS R R MK KR KK K KK
(o] GET1J .... INPUT NONZERO STRUCTURES

G5 R R K KK R R K KK KR R 4 K o R e A S K 0 AR HAAOR K 3R
(G R AR SRS KRR RN SR AR SR S K S KO G S A KR R K AR R MK R K SR KR oK KK K

PURPOSE . TO RETRIEVE NONZERO STRUCTURES FROM DATASET KMAP..*
AND INPUT THE SAME TO SPARSPAK-A.

INPUT PARAMETERS

DOF - AN INTEGER ARRAY OF SIZE EQUAL TO THE TOTAL NUMBER OF
JOINTS PLUS ONE.
IDOF(K) STORES THE STARTING EQUATION NUMBER FOR
JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
GIVEN BY IDOF(K+1) - IDOF(K). THE TOTAL NUMBER
OF EQUATIONS IS EQUAL TO IDOF(NUMINT+1) - 1.

MASK - CONSTRAINT INFORMATION FOR EACH VARIABLE.

[sNeoNeXoNoRoNoNoNoNoNoNoRo X!

OUTPUT PARAMETERS
S . NONZERO STRUCTURES SET UP BY SPARSPAK-.A.

WORKING PARAMETERS
IBUF . AN INTEGER BUFFER OF SIZE BUFMAX.
ICLQ - A TEMPORARY ARRAY OF SIZE MAXDOF.

ERROR CODES -
1023 - INCORRECT EXECUTION SEQUENCE.

SUBROUTINE PROGRAMS .
QKINFO, GTRECI, EMSG

SPRSPAK.A SUBROUTINES .
1JBEGN, INCLQ, IN1J, IJEND.

CSM TESTBED DATASETS ACCESSES .
KMAP..*

0 0 0 0 R 0 0 0 O RN K2 0 K R K SRR R KK SRR K R KK KK
SUBROUTINE GETIJ ( DOP, IBUF, ICLQ, MASK, 5)

INTBGER*4 DOF(1), IBUF(1), ICLQ(1), MASK(1), S(1)
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CHARACTER*40 LIBNAM

CHARACTER*51 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER*4 RTYPE

INTEGER*4 IPRNTE, IPRNTS, MAXINT

INTEGER*4 IDSN ,LDI ,NLEN ,NREC , TRACE

INTEGER™*4 BUFMAX, MXUSED, MXREQD, STAGE

INTEGER*4 MSGLVL, IERR, MAXCSM

INTEGER*4 MAXDOF , NEQNS , NUMJINT

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN ,LDI ,NLEN , NREC , RTYPE,

1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDPSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

c
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INTEGER*4¢ CONRNG, I, II, ICOL, IROW, ITEMS, J, JGRPS, JOINT,
1 K, NCLQ, LEN, IX, JX, LRNG, NODES, JJ, NROWS,
1 NCOLS

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11)
11 FORMAT( /5X, 'GETIJ - INPUT NONZERO STRUCTURES..." )

IF (({ STAGE .LT. 60 ) .OR.( IERR .NE.0) ) GO TOQ 1000

CALL IJBEGN

INIJ INSURES NONZERO FOR ALL DIAGONAL ELEMENTS

104



aaaa aaa aoaQa aaaQ aaa aa

QaQ

aao aoco.

220
(o]

aanaQ

aca aaa Qaa

IF POSITION (NEQNS, NEQNS) IS ENTERED

CALL INIJ ( NEQNS, NEQNS , §)

ACCESSEACH RECORD IN DATA SET 'KMAP..*!

CALL QKINFO ( KMAP )
IF ( IERR .NE. 0 ) RETURN
TRACE = TRACE + 10
DO 100 I = 1, NRBC
LEN = NLEN
CALL GTRECI ( I, IBUF, LEN )
IF ( IERR .NE. 0 ) RETURN

DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD

JGRPS =
ITEMS =
DO 200 II = 1, JGRPS

IBUF(1)
1

GET THE CURRENT JOINT AND COMPUTE THE ROW NUMBER

JOINT = IBUF(ITEMS+1)

NUMBER OF DEGREES FOR CURRENT JOINT

NROWS = DOF(JOINT+1) - DOF(JOINT)

COMPUTE THE THE ROW NUMBER BY IROW + K,
WHERE IROW IS GREATER THAN OR EQUAL TO ¢

IROW = DOF(JOINT) . 1
NCLQ = 0
DO 300 K = 1, NROWS

IF ( MASK ( IROW + K ) .EQ. -1 ) THEN

NCLQ = NCLQ + 1
ICLQ(NCLQ) = IROW + K
ENDIF
CONTINUE

INPUT DIAGONAL BLOCK TO SPARSPAK

IF ( NCLQ .GT.0 ) CALL INCLQ( NCLQ, ICLQ, S )

SKIP UNRELATED ITEMS IN CURRENT JOINT GROUP

LRNG = IBUF(ITEMS+12)

ITEMS = ITEMS + 2

DO 220 JJ = 1, LRNG
NODES = IBUF(ITEMS + 1)
ITEMS = ITEMS + 6 + (NODES*(NODES+1))/2
CONTINUE

NUMBER OF SUBMATRICES FOR THE CURRENT JOINT

CONRNG = IBUF(ITEMS+1)
ITEMS = ITEMS + 1

ENTER NONZERO IN THE CONNECTED SUBMATRIX
IN ADDITION TO THE DIAGONAL SUBMATRIX

DO 400 J =1, CONRNG-1
JOINT = IBUF(ITEMS + J)

DEGREE OF FREEDOM OF THE CONNECTED JOINT

NCOLS = DOF(JOINT+1). DOF(JOINT)

COMPUTE STARTING COLUMN NUMBER

ICOL = DOF(JOINT). 1

COMPUTE NONZERO POSITION COLUMN BY COLUMN
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DO 500 JX = 1, NCOLS
DO 550 IX = 1, NROWS
IF ( ( MASK(ICOL+JX) .EQ. -1 ) .AND.
( MASK(IROW +IX) .EQ. -1 } ) THEN
THE CORRESPONDING VARIABLES
ARE NOT CONSTRAINED
CALL INIJ ( IROW+IX, ICOL+JX, S )
ENDIF
CONTINUE
CONTINUE
CONTINUE
ITEMS = ITEMS + 2*CONRNG - 1
END OF CURRENT JOINT GROUP
CONTINUE

END OF CURRENT RECORD

CONTINUE

CALL IJEND ( S )
STAGE = 70
RETURN

CONTINUE

IERR = 1023
IF ( MSGLVL .GE. 2 ) CALL EMSG
RETURN

END
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PURPOSE . TO RETIEVE RIGHT HAND SIDE FROM DATASET APPL.PORC.i.j
AND INPUT THOSE COMPONENTS CORRESPONDING TO UNCONSTRAINED
VARIABLES TO SPARSPAK-A.

INPUT PARAMETERS
MASK - CONSTRAINT INFORMATION FOR EACH VARIABLE.
§ . INPUT TO SPARSPAK-A ROUTINES.

OUTPUT PARAMETER
S - SPARSPAK-A OUPUT.

WORKING PARAMETERS
FBUF . A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX.
THE ACTUAL TYPE IS AS DECLARED.

ERROR CODES -
1024 - INCORRECT EXECUTION SEQUENCE.

SUBROUTINE PROGRAMS -
QKINFO, GTRECF, EMSG.

SPRSPAK-A SUBROUTINES -
INBI.

CSM TESTBED DATASETS ACCRESSES -
APPL.FORC.i.j.

REMARKS .
IT IS ASSUMED THAT THE ROWS CORRESPONDING TO DUMMY AND
CONSTRAINED VARAIBLES ARE INCLUDED IN THE DATA MATRIX.

430 e 5o e e o o S0 R Nl NG 3R R0 R e 0 0 K0 kR R 2 6 Kk o R 2 3K K o K K R K R O O o
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SUBROUTINE GTFORC ( FBUF, MASK, §)

INTEGER*4 MASK(1

DOUBLE PRECISION FBUF(1), 5(1)
c
c!*ﬁ**#‘ﬂ***t**#*‘*i‘*"*****l!ﬂl******#‘#***********I*l*****#****#*********#****
c

CHARACTER*40 LIBNAM

CHARACTER*s1 JDPSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

CHARACTBR*4 RTYPE

INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 IDSN ,LDI ,NLEN ,NREC , TRACE
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MSGLVL, IERR, MAXCSM

INTEGER*4 MAXDOF , NEQNS , NUMJINT

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN ,LDI ,NLEN ,NREC , RTYPE,

1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

R 0 RO TR A A A A AR 00 RN R
[}
INTEGER*4 I,J,IROWS, LEN
C
IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11)
11 FORMAT( /5X, 'GTFORC - INPUT RIGHT HAND SIDE... ')

IF (( STAGE .LT. 70 ) .OR. ( IERR .NE. 0 ) ) GO TO 1000

RETRIEVE RIGHT HAND SIDE FORM 'APPL.FORC.* '
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CALL QKINFO ( APPLF )

NOTE APPLY.FORC..DOES NOT NECESSARILY EXIST

IF ( IERR .NE. 0 ) GO TO 900
TRACE = TRACE + 10
IROWS = 0
DO 100 I = 1, NREC
LEN = MINO ( NEQNS . IROWS, NLEN )
IF ( LEN .GT. 0 ) THEN
READ NEXT RECORD
CALL GTRECF ( I, FBUF, LEN )
IF ( IERR .NE. 0 ) RETURN

RETRIEVE EACH ITEM IN CURRENT RECORD

DO 200 J = 1, LEN
IROWS = IROWS + 1
IF ( MASK ( IROWS ) .EQ. .1 ) THEN

THE VARIABLE IS NOT CONSTRAINED

CALL INBI { IROWS, FBUF(J), S )
ENDIF
CONTINUE
ENDIF
CONTINUE
STAGE = 80
RETURN

CONTINUE
RIGHTHAND SIDE DOBS NOT EXIST
IF ( MSGLVL .GE. 3 ) WRITE ( IPRNTS, 21 )
FORMAT( /10X, 'THERE IS NO APPLIED FORCE VECTOR')
IERR = 0
STAGE = 80
RETURN

CONTINUE
ERROR HANDLING
IERR = 1024
IF ( MSGLVL .GE. 2 ) CALL EMSG
RETURN

END
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PURPOSE - TO RETRIEVE AND INPUT NUMERICAL NONZEROS OF THE
SYSTEM MATRIX. IN ADDITION, RIGHT HAND SIDE IS APPROP-
RIATELY ADJUSTED USING CONSTRAINTS AVAILABLE.

INPUT PARAMETERS

DOF . AN INTEGER ARRAY OF SIZE BQUAL TO THE TOTAL NUMBER OF
JOINTS PLUS ONE.
IDOF(K) STORES THE STARTING EQUATION NUMBER FOR
JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
GIVEN BY IDOF(K+1) - IDOF(K). THE TOTAL NUMBER
OF BQUATIONS 1S EQUAL TO IDOF(NUMJINT+1) - 1.

MASK - THE LOCATIONS CORRESPONDING TO NONZEROR CONSTRAINTS
CONTAIN A POINTER TO THE NUMERIC VALUE IN FCON.
THE OTHER LOCATIONS INDICATE FREE OR CONSTRAINED
TO ZERO VARIABLES.

FCON - AN ARRAY OF CSIZE FLOATING-POINT CONSTRAINTS.

S - STORAGE ARRAY FOR SPARSPAK-A.

WORKING PARAMETERS
FBUF - A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX.
THE ACTUAL TYPE IS AS DECLARED.

ERROR CODES -
1028 - INCORRECT EXECUTION SEQUENCE.

SUBROUTINE PROGRAMS -
QKINFO, GTRECF, EMSG.

SPARSPAK-A ROUTINES -
INAILJS, INBI.

CSM TESTBED DATASETS ACCESSES -
K.SPAR.*.

REMARKS -
IT IS ASSUMED THAT THE VARIABLES ARE ORDERED IN THE
GIVEN ORDER OF THE JOINTS AND DEGREES.

930 K o 2K o K 30 O K RN S S 3 0 o 3K e S0 33 3 6 o koK O 0 R K e sk oK K O 30 3 3Kk K K K

SUBROUTINE GTNUMS ( DOF, FBUF, MASK, FCON, S )

aQ QaaaaaqaaqaQaaacaacaaQaaaaaaaaaaaaaaQaQaaaaaaaaaaa

INTEGER*4 DOF(1), MASK(1
DOUBLE PRECISION PBUF(1), FCON(1), 5(1)

c*i*#********t***#*lll#*****‘*lﬁ#m**“lt*l‘***i#*#***lﬁ********!‘********)ﬂ**l)ﬁ*!lﬁ***
c
CHARACTER*40 LIBNAM
CHARACTER*51 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER*4 RTYPE

INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 IDSN ,LDI ,NLEN ,NREC , TRACE
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MSGLVL, IERR, MAXCSM

INTEGER*4 MAXDOF , NEQNS , NUMJNT

REAL RATIOS, RATIOL, TIMBE

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN ,LDI ,NLEN , NREC ,RTYPE,

1 TRACE
COMMON /GCSMCON/ BUPMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IBRR, MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMINT

GNNSR0S U 0 R K 0 0 K KRR O M

INTEGER*4 CONRNG, I, II, ICOL, IROW, ISTRT, ITEMS,
1 JGRPS, JOINT, M, MTXKNT, MYI, MYJ, NCOL,
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NROW, LEN , NCOLS, NROWS
DOUBLE PRECISION COEF, BIX, BJX

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 )
FORMAT( /5X, '"GTNUMS . GET NONZERO NUMERIC... ')

IF (( STAGE .LT. 30 ) .OR. ( IERR .NB. 0 ) ) GO TO 1000

ACCESS EACH RECORD IN DATA SET 'K.SPAR.™®

CALL QKINFO ( KSPAR )
IF ( IERR .NE. 0 ) RETURN
TRACE = TRACE 4 10
DO 100 I = 1, NREC
LEN = NLEN
CALL GTRECF ( I, FBUF, LEN )
IF ( IERR .NE. 0 ) RETURN

DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD

JGRPS
ITEMS =
DO 2001II = &, JGRPS

GET NUMBER OF SUBMATRICES

CONRNG = PBUF(ITEMS+1)

FBUF(1)

JOINT = FBUP(ITEMS+2)

JROW = DOF(JOINT) - 1

NROWS = DOF(JOINT+1) - DOF(JOINT)
ISTRT = ITEMS + 1 + CONRNG

RETRIEVE UPPER TRIANGULAR PART OF DIAGONAL SUBMATRIX

NCOLS = NROWS
DO 400 NCOL = 1, NCOLS
MYJ = IROW 4 NCOL
DO 500 NROW = 1, NROWS
ISTRT = ISTRT 4 1
1F ( NROW .GT. NCOL ) GO TO 500
COEF = PBUP(ISTRT)
MYI = IROW 4+ NROW

RETRIEVE THE NONZERO CONSTRAINTS

IF ( MASK(MYI) .GT. 0 ) BIX = FCON(MASK(MYI))
IF ( MASK(MYJ) .GT. 0 ) BJX = PCON(MASK(MYJ))
IF ( MYI .EQ. MYJ ) THEN

IF ( MASK(MYI) NE..1 ) THEN

CHANGE DIAGONAL ELEMENT TO BE 1.0D0
FOR CONSTRAINED ROW

COEF = 1.0D0

ENTER NONZERO CONSTRAINT VALUE AS RHS

IF ( MASK(MYI) .GT. 0 )
CALL INBI ( MYI, BIX, S )
ENDIF
INPUT DIAGONAL ELEMENT COEF
CALL INALJS ( MYI, MYI, COBF, S )
BLSE IP ((MASK(MYJ) .GT. 0 ) .AND.
(MASK(MYI) .EQ. -1 )) THEN
CALL INBI ( MYI, .COEF*BJX, S )
BELSE IF ((MASK(MYI) .GT. 0 ) .AND.
(MASK(MYJ) .BQ. -1 )) THEN
CALL INBI ( MYJ, .COBF*BIX, S )
BLSE IF ((MASK(MYI) .EQ. -1) .AND.
(MASK(MYJ) .BQ. -1)) THEN
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INPUT COEF IN LOWER TRIANGULAR MATRIX

CALL INAIJS ( MYJ, MYI, COBF, §)
ENDIP
CONTINUE

NEXT COLUMN IN DIAGONAL SUBMATRIX

CONTINUE

RETRIEVE OFF-DIAGONAL SUBMATRICES IN THE UPPER
TRIANGULAR PART OF THE SYSTEM STIFFNESS MATRIX

MTXKNT = CONRNG - 1
IF ( MTXKNT .EQ. 0 ) GO TO 199
ITEMS = ITEMS + 2
DO 600 M = 1, MTXKNT
JOINT = PBUP(ITEMS + M)
ICOL = DOF(JOINT) . 1
NCOLS = DOP(JOINT+1) . DOF(JOINT)
DO 800 NCOL = 1, NCOLS
MYJ = ICOL + NCOL
DO 900 NROW = 1, NROWS
ISTRT = ISTRT + 1
CORF = FBUPR(ISTRT)
MYI = IROW + NROW

RETRIEVE NONZERO CONSTRAINTS

IF ( MASK(MYI) .GT. 0) BIX = FCON(MASK(MYI))
IF ( MASK(MYJ) .GT. 0) BJIX = FCON(MASK(MYJ))

INPUT COEF OR MODIFY RIGHT HAND SIDE

IF (( MASK(MYI) .EQ. .1 ) .AND,
( MASK(MYJ) .BQ. -1 )) THEN

ENTER COEF WITH SYMMETRIC POSITION
IN LOWER TRIANGULAR TO SPARSPAK-A

IF ( MYI .LT. MYJ)
CALL INALJS ( MYJ, MYI, COEF, S )
IF ( MYI .GT. MYJ )
CALL INAIJS ( MYI, MYJ, COBF, S )
ELSE IF ( (MASK(MYI) .GT. 0 } .AND.
(MASK(MYJ) EQ. -1) ) THEN
CALL INBI ( MYJ, .CORF*BIX, S )
ELSE IF ( (MASK(MYJ) .GT. 0 ) .AND.
(MASK(MYI) .EQ. -1) ) THEN
CALL INBI ( MYI, -GOEF*BIX, S )
ENDIP
CONTINUE

NEXT COLUMN

CONTINUB

NEXT SUBMATRIX

CONTINUE

PROCESS THE NEXT JOINT GROUP IN THE CURRENT RECORD

ITEMS = ISTRT
CONTINUE

NEXT RECORD

CONTINUE

STAGE = 90
RETURN

CONTINUE

ERROR HANDLING

IERR = 1028
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IF ( MSGLVL .GE. 2 ) CALL EMSG
RETURN

END
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PURPOSE - CHECK STORAGE REQUIRED AGAINST STORAGE AVAILABLE.

EMSG.
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C
C
C
[¢] SUBROUTINE PROGRAMS .
C
(o
(o

INTEGER FUNCTION SPACE ( IDUMMY )
INTEGER*4 IDUMMY

CHARACTER*40 LIBNAM
CHARACTER*s1 CDUMMY
INTEGER*4 MSGLVL , IERR , MAXCSM
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
c
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(7)
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
c
c“‘**&“l****K*’K******ﬂ“‘l###ll!"l‘*****t*l#********‘(*********’I’I““*‘*t“"l‘
c
IF ( MXREQD .LE. MAXCSM ) THEN
SPACE = 0
RETURN
ELSE
SPACE = 1
GO TO 100
ENDIF

(¢
[e] —_
C ERROR HANDLING
[o] —_———
100 CONTINUE
IERR = 1001
IF ( MSGLVL .GE. 2 ) CALL EMSG
RETURN

END
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PURPOSE . THIS ROUTINE OPENS AN EXISTING LIBRARY RESIDENT
ON A DISKFILE OR MAIN STORAGE, AND CONNECTS IT TO A
LOGICAL DEVICE INDEX (LDI). THE NAME OF THE LIBRARY
IS SPECIFIED BY PARAMETER LIBNAM.

PARAMETERS INITIALIZED -
LDI - LOGICAL DEVICE INDEX ASSIGNED TO THE EXTERNAL
DEVICE SPECIFIED BY LIBNAM.

ERROR CODES -
0 - NO ERROR.
1011 - UNSUCCESSFUL OPEN.
1012 - THE LOGICAL DEVICE NUMBER EXCEEDS THE MAXIMUM VALUE
OF 30.

GAL-PROCESSOR ENTRY POINTS .
LMOPEN, EMSG.

[oNeNoRoNoNoNoNoNoNeNeNoNoNe NoNoNoNoRo]
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C
SUBROUTINE LIBOPN

C
GRS R K KGR RS KK K KK Ao o KK
c

CHARACTER*40 LIBNAM

CHARACTER*51 JDFSET, KMAP,KSPAR, CON, APPLF, APPLM, STATD

CHARACTER*4 RTYPR

INTEGER*4 IPRNTE, IPRNTS, MAXINT

INTEGER*4 MSGLVL, IERR , MAXCSM

INTEGER*4 IDSN ,LDI ,NLEN ,NREC , TRACE

INTEGER*4 ICPAD , STAGE

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM,
JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /CSMSPK/ IDSN ,LDI ,NLEN ,NREC ,RTYPE,
1 TRACE
COMMON /CSMCON/ ICPAD(3), STAGE

INTEGER*4 LMOPEN

o L s L
C

CHARACTER*10 LIBKEY

INTEGER*4 LIMIT

1F ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 11 ) LIBNAM
11  FORMAT ( /85X, 'LIBOPN. OPEN ', A40 )

IERR =10

LIBKEY IS A STRING OF FORM '"MAINKEY/QUALIFIER’
MAXIMUM NUMBER OF CHARACTERS IS 10

aaaa Q

LIBKEY = '‘ROLD '

LIMIT =0

TRACE = 1000

LDI = LMOPEN ( LIBKEY, 0, LIBNAM, LIMIT, TRACE )

LDI RANGES FROM 1 THROUGH 30 FOR SUCCESSUL OPEN

[sXoXo]

IF (( LDI .LT.1 ) .OR. ( LDI .GT. 30 )) GO TO 100
STAGE = 10
IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 21 ) JDFSET, KMAP,
1 KSPAR, CON, APPLF, APPLM, STATD
21 FORMAT(/5X, 35HDATASETS TO BE ACCESSED:
1 /58X, 35H
1 /10X, AS1,
1 /10X, AB1,
1 /10X, AB1,
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/10X, AB1,
/10X, AS1,
/10X, A51,
/10X, A51)
RETURN

CONTINUB

ERROR HANDLING

IF ( LDI .LE. 0 ) IERR = 1011

IF ( LDI .GT. 30) IERR = 1012

IF ( MSGLVL .GE. 2 ) CALL EMSG
RETURN

END
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c QKINFO ... ANQUIRE DATASET ATTRIBUTES
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PURPOSE - ACQUIRE THE ATTRIBUTES OF A NAMED DATA SET.

INPUT PARAMETER -
DSNAME - NAME OF THE DATASET.

PARAMETERS UPDATED -
IDNS - UNIQUE SEQUENCE NUMBER OF NAMED DATASET.
NLEN . LOGICAL LENGTH (ITEMS) OF A RECORD.
RTYPE . RECORD TYPE.
NREC - TOTAL NUMBER OF RECORDS IN THE DATASET.

[+

C

C

C

C

C

C

C

C

C

C ERROR CODES .

C 0 .NO ERROR.

C 2001 - DATASET DOES NOT EXIST.

C 2002 - NO RECORD EXISTS IN DATASET.

C 2003 - RECORD GROUP KEY IS UNDEFINED.

C 2004 - SEGMENTED RECORD GROUP NOTED.

C 2009 - RECORD LENGTH GREATER THAN BUFFER LENGTH
C
C
C
C
C

GAL.PROCESSOR ENTRY POINTS -
LMPIND, GMGEKA, GMGBCY, EMSG.

3 e 2 200 o 400 0RO o 0 R R 00RO R K6 R S R K K o RO 3 R ok KR oK ek oK K K ook o e K K

SUBROUTINE QKINFO ( DSNAME )

C

CHARACTER*51 DSNAME
C
C******‘!‘****‘*ﬂ*‘ﬁ#*‘**ﬁ**ﬂ****‘*ﬁ*‘**ﬁ*‘**t*****#**#*‘l*!**ﬂl‘***!‘**********#*
C

CHARACTER*40 LIBNAM

CHARACTER*51 CDUMMY

CHARACTER*4 RTYPE

INTEGER*4 MSGLVL, IERR, MAXCSM

INTEGER*4 IDSN ,LDI ,NLEN ,NREC , TRACE

INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGR

C
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM, CDUMMY(7)
COMMON /CSMSPK/ IDSN ,LDI ,NLEN ,NREC ,RTYPE,
1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
(&
INTEGER*4 LMFIND
C

(G R RAHAH ARNR RHCH K R e  RACR H K R a RC ACH  KHGCHK C o Aok R K K o AK HK  o o
(¢}

CHARACTER*1 OP

CHARACTER*12 RKEY

C
INTEGER™*4 IHI ,ILO , MDIM
C
(o)
[o] OBTAIN THE SEQUENCE NUMBER OF DATASET DSNAME
C MAXIMUM LENGTH OF DSNAME IS 51 CHARACTERS
(o]
TRACE = TRACE + 10
IDSN = LMPIND ( LDI, DSNAME, TRACE )
IF (IDSN .EQ. 0 ) GO TO 100
C
(o]
[o] OP IS PRESENTLY A DUMMY ARGUMENT FOR BOTH
(o) GMGEKA AND GMGECY.
o)
OP =1
C
Cc RKEY CONTAINS THE RECORD KEY LIFTJUSTIFIED.
(o MAXIMUM LENGTH IS 12 CHARACTERS.
[o]
RKERY = 'DATA '
TRACE = TRACE 4 10
C

116




aaQa aqaaa Qo

~QQQQ

200

300

400

500

RETRIEVE ATTRIBUTES RTYPE AND NLEN FOR RECORDS OF GIVEN KEY

CALL GMGEKA ( OP, LDI, IDSN, RKRY, RTYPE, NLEN, MDIM, TRACE )
IF ( NLEN .EQ. 0 ) GO TO 200
IF ( NLEN .GT. BUFMAX ) GO TO 500

NUMBER OF RECORDS FOUND WITH GIVEN KEY

TRACE = TRACE + 10
CALL GMGECY ( OP,LDI, IDSN, RKRY, NREC, ILO, IHI, TRACE )
IF ( NREC .EQ. 0 ) GO TO 300

NREC = IHI-ILO+1 FOR AN UNSEGMENTED RECORD GROUP

IF ( NREC .NE. (IHI.ILO+1) ) GO TO 400
RETURN

ERROR HANDLING
CONTINUE
IERR = 2001
IF ( MSGLVL .GE. 3 ) CALL EMSG
RETURN

CONTINUE
IERR = 2002
IF ( MSGLVL .GE. 3 ) CALL EMSG
RETURN

CONTINUE
IERR = 2003
IP ( MSGLVL .GE. 3 ) CALL EMSG
RETURN

CONTINUE
IERR = 2004
IF ( MSGLVL .GE. 3 ) CALL EMSG
RETURN

CONTINUE
IERR = 2009
BUFMAX = NLEN
IP ( MSGLVL .GE. 3 ) CALL EMSG
RETURN

END
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PURPOSE - THIS ROUTINE READS A RECORD FROM A NAMED DATASET.
THE DATASET MUST BE OF TYPE INTEGER.

INPUT PARAMETERS -
RECNUM . RECORD CYCLE OF AN INDIVIDUAL RECORD.

OUTPUT PARAMETERS-
LEN . THE NUMBER OF ITEMS CONTAINED IN THE RECORD.

WORKING PARAMETERS -
IBUF - A BUFFER OF MAXIMUM RECORD SIZE FOR READIN DATASETS
OF TYPE INTEGER.

ERROR CODES .
0 .NO ERROR.
2005 - RECORD TYPE IN THE DATASET IS NOT INTEGER.
2006 - ERROR IN GMGETN DETECTED BY LMERCD.

[oNeNoNoNoNoNoNoNoRoNeNoNoNoNoRo NoNo NoNe]

GAL.PROCESSOR ENTRY POINTS -
GMCORN, GMGETN, LMERCD, EMSG.

K K A 5 K K o SR SRR K K MO SK KSR H0 R K K o 3 MG SR R 3K oK M KK KK o o KK 0K
SUBROUTINE GTRECI ( RECNUM, IBUF, LEN )

INTEGER*4 RECNUM, IBUF(1), LEN

3K K R I R N0 0 K R K KK R O RSB o KR K ROK o KR 3K R K K o ko Kok oK K R oK o K ok
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CHARACTER*40 DUMMY1

CHARACTER*51 CDUMMY

CHARACTER*4¢ RTYPE

INTEGER*¢ IDSN ,LDI ,NLEN ,NREC , TRACE
INTEGER*4 MSGLVL, IERR, DUMMY2

COMMON /CSMSPK/ IDSN ,LDI ,NLEN ,NREC ,RTYPE,
1 TRACE

COMMON /CSMUSR/ DUMMY1, MSGLVL, IERR, DUMMY2, CDUMMY(7)
c

INTEGER*4 LMERCD
[
C**!#***##**‘*****Nl*#ﬂ*******#*!l!******l‘*********‘!***********‘*!‘*******N**!ﬁ*
c

CHARACTER*4 BUFTYP

CHARACTER*12 OP, RKEY

CHARACTER*24 RNAME

INTEGER*4 IERROR, IGAP ,IHI ,ILO ,IOFF , MDIM

IF ( RTYPE .NB. 1') GO TO 500

CONSTRUCT NAME 'RKEY.RECNUM:RECNUM' FOR AN INDIVIDUAL RECORD
MAXIMUM LENGTH 1S 24 CHARACTERS: 12 FOR RKEY, 5 FOR EACH
RECNUM REPRESENTING HIGH AND LOW CYCLES.

aaoaa aaaaq

RKEY ='DATA

ILO = RECNUM

IHI = RECNUM

CALL GMCORN ( RNAME, RKEY, ILO, IHI )

OP ARGUMENT FOR GMGETx: 'MAINKEY/QUALIFIER’
MAXIMUM LENGTH IS 11: 4 FOR KEY AND 6 FOR QUALIFIER

[oXeNeNoNo]

OP = 'READ/LENGTH '

BURTYP = 1"

IGAP =0

IOFF = 0

CALL GMGETN ( OP, LDI, IDSN, RNAME, BUFTYP, IBUF, LEN, MDIM,
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IGAP, IOFF, TRACE )

TEST ERROR CONDITION AFTER AN ERROR.SENSITIVE REFERENCE
TO THE I/O MANAGER

IERROR = LMERCD ( IERROR )
IF ( IERROR .NE. 0 ) GO TO 600
RETURN

CONTINUE
IERR = 2005
IP ( MSGLVL .GB. 3 ) CALL EMSG
RETURN

CONTINUE
IERR = 2008
IF ( MSGLVL .GE. 3 ) CALL BMSG
RETURN

END
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c GTRECF ... READ A RECORD OF TYPE REAL ...
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PURPOSE - THIS ROUTINE READS A RECORD FROM A NAMED DATASET.
THE DATASET MUST BE OF TYPE REAL OR DOUBLE PRECISION.

aacaaaa

INPUT PARAMETERS -
RECNUM . RECORD CYCLE OF AN INDIVIDUAL RECORD.

OUTPUT PARAMETERS.-
LEN . THE NUMBER OF ITEMS CONTAINED IN THE RECORD.

WORKING PARAMETERS -
FBUF - A BUFFER OF MAXIMUM RECORD SIZE FOR READIN DATASETS
OF TYPE REAL OR DOUBLE PRECISION. THE ACTUAL TYPE
IS AS DECLARED.

ERROR CODES .
0 - NO ERROR.

2007 - RECORD TYPE IN THE DATASET IS NOT REAL.
2008 - ERROR IN GMGETN DETECTED BY LMERCD.

GAL-PROCESSOR ENTRY POINTS -
GMCORN, GMGETN, LMERCD, EMSG.

2000 20 3 3 2 3K SR NN O RS R RO RO R S O R O R R SR RS O R R R R K O

SUBROUTINE GTRECF ( RECNUM, FBUF, LEN )

BN RoNeRoNoNoNoRoNoNoNoReNoNoXe No o Xo Xo Kol

INTEGER*4 RECNUM, LEN

DOUBLE PRECISION FBUF(1)
C
R K R R R K o R R R e K K R R O K K K
[¢]

CHARACTER*40 DUMMY1

CHARACTER*51 CDUMMY

CHARACTER*4 RTYPBE

INTEGER*4 IDSN ,LDI ,NLEN ,NREC , TRACE

INTEGER*4 MSGLVL, IERR, DUMMY2

COMMON /CSMSPK/ IDSN ,LDI ,NLEN ,NREC , RTYPE,
1 TRACE
COMMON /CSMUSR/ DUMMY1 , MSGLVL, IERR, DUMMY2 , CDUMMY({(7)

INTEGER*4 LMERCD

(R R G RS KR O 02RO N R o KKK KK MR KK KKK KRR KKK K KK

C
CHARACTER*4¢ BUFTYP
CHARACTER*12 OP,RKEY
CHARACTER*24 RNAME
INTEGER*4 IERROR, IGAP ,IHI ,ILO ,IOFF , MDIM

DETECT TYPE MISMATCH

IF ((RTYPE .NE. 'D ') .AND. (RTYPE .NE. 'S ')) GO TO 500

CONSTRUCT NAME 'RKEY.RECNUM:RECNUM'’ FOR AN INDIVIDUAL RECORD
MAXIMUM LENGTH IS 24 CHARACTERS: 12 FOR RKEY, § FOR EACH
RECNUM REPRESENTING HIGH AND LOW CYCLES.

naaaa oo

RKEY = 'DATA’

ILO = RECNUM

IHI = RECNUM

CALL GMCORN ( RNAME, RKEY, ILO, IHI )

OP ARGUMENT FOR GMGETx: 'MAINKEY/QUALIFIER'
MAXIMUM LENGTH IS 11: 4 FOR KEBY AND 6 FOR QUALIFIER

aQaaaa

OP = 'READ/LENGTH '
BUFTYP = 'D’
IGAP =0
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500

600

IOFF = 0
CALL GMGETN ( OP, LDI, IDSN, RNAME, BUFRTYP, FBUF, LEN, MDIM,

1 IGAP, IOFF, TRACE )

TEST ERROR CONDITION AFTER AN ERROR-SENSITIVE REFERENCE
TO THE 1/0 MANAGER

IERROR = LMERCD ( IBERROR )
IF ( IERROR .NE. 0 ) GO TO 800
RETURN

CONTINUE
IERR = 2007
IF ( MSGLVL .GE. 3 ) CALL EMSG
RETURN

CONTINUE
IERR = 2008
IF ( MSGLVL .GE. 3 ) CALL BMSG
RETURN

END

121



(R A RN R MR KR K M R KK o R K R o RS KK SR K o R ook KK R K o KK o ke ok ok Kl o ok K Ok o
(G R AR R K R 3 R o R KK R K R A K O KK R K 3R 6 R K oo Ko R SRRk ok o

C EMSG ... ERROR MESSAGE HANDLINE ROUTINE
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PURPOSE . THIS ROUTINE IS USED TO HANDLE ERROR MESSAGES IN
SYSTEM.CSM WHICH INTERFACES SPARSPAK-A WITH CSM TESTBED
DATABASE.

PROGRAM SUBROUTINES -
EMSGO0, EMSG1, DEMSGO

K ¢ ke K KR Bk 3 3 3 e 3K R K K R K K 3K oK K o K K oK 00 K o K R e K R K K oK R R 2k K 00 K K 3 K K K oK K oK oK

SUBROUTINE EMSG

5196 3 00 0 A A 2K K R 3K KRR 3K S SRR R S oK A 0 R oK oK R S e o 2 Sk 3 0 6 e 00K 6 0 oK 0 0K K K oK K oK

aoa aaoaaaaaaaa

CHARACTER*40 LIBNAM

CHARACTER*51 CDUMMY

INTEGER*4 IPRNTE, IPRNTS, MAXINT

INTEGER*4 MSGLVL, IERR , MAXCSM

REAL RATIOS, RATIOL, TIME
c
c‘**’l*****************‘l**‘(***)ﬁ*lﬁ*****N*‘*K*****’i*********ﬁ‘*ﬁ**lﬁ'***‘***********
c

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIMB

COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY/(7)

INTEGER*4 LEVEL

c
WRITE ( IPRNTE, 11 )
i1 FORMAT (/56X, 'EMSG - SYSTEM-CSM ERROR ... * )
c
c
c DETERMINE THE TYPE OF MODULE THAT CALLED EMSG,
c AND CALL THE APPROPRIATE ERROR ROUTINE TO PRINT
c THE ERROR MESSAGE
c
c
IF ( IERR .GT. 2000 ) GO TO 1000
c
LEVEL = (IERR - 1000)/10 + 1
GO TO ( 100, 200, 300 ) , LEVEL
c
100 CONTINUE
C @ ——
c IERR RANGES FROM 1001 TO 1009
C | ——
CALL EMSGO
RETURN
c
200 CONTINUE
C -
c IERR RANGES FROM 1011 TO 1019
C —_————ee
CALL EMSG1
RETURN
c
300 CONTINUE
¢ @ e— -
c IERR RANGES FROM 1021 TO 1029
C e et e e e e e e
CALL EMSG2
RETURN
c

1000 CONTINUEB
LEVEL = (IERR . 2000)/10 + 1
GO TO ( 1100, 1200 ) , LEVEL

C

1100 CONTINUE

c -

C IERR RANGES FROM 2001 TO 2009
C e e e

CALL DEMSGO
RETURN
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1200 CONTINUR
RETURN

(o}

END
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C EMSGO ..... ERROR MESSAGES FOR ...
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C

C PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING
C ROUTINE FOR THE MODULE SPACE.

C

AN AR R K S R 6 RN K R K SRR SH S R KSR MR R o KK R K oA Ko K o o o K

C
SUBROUTINE EMSGO

(G AN AN K K R KA KK KR K KR R o o ko ke koK ek

C
CHARACTER*40 LIBNAM
CHARACTER*51 CDUMMY
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL , IERR , MAXCSM
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE

REAL RATIOS, RATIOL, TIME
C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
1 TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR ,MAXCSM,CDUMMY(7)
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
C

GO KK R 00 R RS R R R RS K 00 O 0 0 MM o

(&}
INTEGER*4 IERROR
C
IERROR = IERR - 1000
GO TO ( 100, 200 ) , IERROR
Cc
100 CONTINUE
WRITE ( IPRNTE, 11 ) IERR, STAGE, MXREQD

11  FORMAT (/10X, 35HSPACE . ERROR NUMBER 17
1 /10X, 38HINSUFFICIENT STORAGRE . ,
1 /10X, 35HTHE LAST STAGE COMPLETED IS 17
1 /10X, 38HTO CONTINUE MAXCSM IS AT LEAST ,17)
RETURN
c
200 CONTINUE
RETURN
c
END
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EMSG1 ... ERROR MESSAGES FOR ...
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C

C PURPOSE . THIS ROUTINE IS AN ERROR MESSAGE PRINTING
C ROUTINE FOR MODULES: LIBOPN, GETJDF, GETDOF

C

KRR AR HCH KR A AR AR AR SRR AR K o o KK KK K o K o o Sk o KooK o

SUBROUTINE EMSG1

(G AR AR N R AR A MR e KO R K R e ol S R K K KK KKK K KK MR KK R K K

C
CHARACTER*40 LIBNAM
CHARACTER*51 CDUMMY
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL , IERR , MAXCSM

REAL RATIOS, RATIOL, TIME
(o}
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(7)
(o}

GRS R OF OR RS K K S KRR KR ko K OR KK ROK K

INTEGER*4 IERROR

IP ( IERR .GT. 1012 ) GO TO 250

IERROR = IERR - 1010
GO TO ( 100, 200 ) , IERROR

c
100 CONTINUE
[o] ————
c IERR = 1011
C [
WRITE ( IPRNTE, 11 ) IERR
11 PORMAT (/10X, 35HLIBOPN . ERROR NUMBER 17
1 /10X, 35S HCANNOT OPEN DATASET LIBRARY. )
RETURN

c
200 CONTINUE
C [ ——
c IERR = 1012
C e et s e
WRITE ( IPRNTE, 22 ) IERR
22  FORMAT (/10X, 35HLIBOPN . ERROR NUMBER 17
1 /10X, 35s3HMAX LOGICAL DEVICE INDEX =30 ,
1 /10X, 35HLDI RETURNED EXCBEDS THIS VALUE. )
RETURN

250 CONTINUE
IF ( IBRR .GT. 1014 ) GO TO 450

c
c
c BRROR FOR SUBROUTINE GETJDF
¢ @ —_—
IERROR = IERR - 1012
GO TO ( 300, 400 ) , IBRROR

C

300 CONTINUB

C ————

C IERR = 1013

C —_—
WRITE ( IPRNTE, 33 ) IERR

33 FORMAT (/10X, 33HGETJDF - ERROR NUMBER , 17
1 /10X, 353HINCORRECT EXECUTION SEQUENCE. )

RETURN

C

400 CONTINUE
c ————
] IERR = 1014
[o]
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44

450

900

WRITE ( IPRNTE, 44 ) IERR

FORMAT ( /10X, 35HGETJDF . ERROR NUMBER 17
/10X, 35HDATASET DOES NOT HAVE ALL DATA. )

RETURN

CONTINUE
IF ( IERR .EQ. 1019 ) GO TO 900
RETURN

CONTINUE

IERR = 1019

WRITE ( IPRNTE, 99 ) IERR
FORMAT ( /10X, 35HGETDOF . ERROR NUMBER 17

/10X, 3s3HINCORRECT EXECUTION SEQUENCE. )
RETURN

END
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EMSG2 ..... ERROR MESSAGES FOR ...
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c
c PURPOSE - THIS ROUTINB IS AN ERROR MESSAGE PRINTING
c ROUTINE FOR MODULES: GTZERO, GTCOND, GETILJ, FTFORC,
c GTMOTI, GTNUMS,
c
c*****lﬁ*****ﬂ*********i*********#***X*****************l*************************
c
SUBROUTINE EMSG2

c
C**********“*******************************************t**#************il***)ﬁ**
c

CHARACTER*40 LIBNAM

CHARACTER*51 CDUMMY

INTEGER*4  IPRNTE, IPRNTS, MAXINT

INTEGER*¢  MSGLVL, IERR , MAXCSM

REAL RATIOS, RATIOL, TIME
c

COMMON [CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 TIME

COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR ,MAXCSM, CDUMMY/(7)

c

(G R o o KR R R S KRR R 5 S 0 R K K Ko SR 3 S oK o
[}
INTEGER*4 IERROR

c
IERROR = IERR . 1020
GO TO ( 100, 200, 300, 400, 500, 800, 700, 800), IERROR
c
100 CONTINUE
C PR—
c IERR = 1021
C PR
WRITE ( IPRNTE, 11 ) IERR
11 FORMAT (/10X, 353HGTZERO . ERROR NUMBER V17
1 /10X, 'INCORRECT EXECUTION SEQUENCE ' )
RETURN
c
200 CONTINUB
C ————
c IERR = 1022
C [
WRITE ( IPRNTE, 22 ) IERR
22 FORMAT (/10X, 33HGTCOND . ERROR NUMBER V17
1 /10X, 'INCORRECT EXECUTION SEQUENCE ° )
RETURN
c
300 CONTINUE
C ————
c IERR = 1023
C ——
WRITE ( IPRNTE, 33 ) IERR
33 FORMAT (/10X, 35HGETIJ . BRROR NUMBER 17
1 /10X, INCORRECT EXECUTION SEQUENCE * )
RETURN
c
400 CONTINUE
C ————
c IERR = 1024
C PESRS—
WRITE ( IPRNTE, 44 ) IERR
44 FORMAT (/10X, 383HGTFORC . ERROR NUMBER 17
1 /10X, 'INCORRECT EXECUTION SEQUENCE ° )
RETURN
c
500 CONTINUE
C PSS
c IERR = 1025
C P
WRITE ( IPRNTE, 55 ) IERR
55 FORMAT (/10X, 38HGTMOTI . ERROR NUMBER 17
1 /10X, INCORRECT EXECUTION SEQUENCE ° )
RETURN
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00

CONTINUE

IERR = 1026

WRITE ( IPRNTE, 66 ) IERR

FORMAT (/10X, 3s3HGTMOTI - ERROR NUMBER , 17
/10X, 'UNEXPECTED NONZERO CONSTRAINT VALUE’ )

RETURN

CONTINUE
IERR = 1027
WRITE ( IPRNTE, 77 ) IERR
FORMAT (/10X, 33HGTMOTI . ERROR NUMBER , 17
/10X, 'ZERO ENTRY FOR A NONZERO CONSTRAINT OCCURS?)

RETURN

CONTINUE

IERR = 1028

WRITE ( IPRNTE, 88 ) IERR

FORMAT (/10X, 353HGTNUMi - ERROR NUMBER , I7
/10X, 'INCORRECT EXECUTION SEQUENCE * )

RETURN

END
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C DEMSGO ..... ERROR MESSAGES FOR DATASET ACCESSES
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C

C PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING
¢} FOR MODULES ACCESSING DATASETS.

(o]
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(o
SUBROUTINE DEMSGO
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C
CHARACTER*40 LIBNAM
CHARACTER*51 CDUMMY
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL , IERR , MAXCSM
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE

REAL RATIOS, RATIOL, TIMB
c
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(7)
COMMON [CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
[
cl***il******‘*i"*ﬂ‘li*******i’l‘*’I*"*‘*t**************’!*********l**************
c
INTEGER*4 IERROR
c
IF ( IERR .GT. 2004 ) GO TO 450
(]
C ———
c ERROR FROM SUBROUTINE QKINFO
C  ———

IERROR = IERR - 2000
GO TO ( 100, 200, 300, 400 ) , IERROR

o
o

CONTINUE

IERR = 2001
WRITE ( IPRNTE, 11 ) IERR
11 FORMAT (/10X, 33HQKINFO - ERROR NUMBER , I7
1 /10X, 33HLMFIND: CANNOT FIND DATASET. )
RETURN

Q0. Q

c
200 CONTINUE
C —_—
c IERR = 2002
C ————
WRITE ( IPRNTE, 22 ) IERR
22 FORMAT (/10X, 35HQKINFO . BRROR NUMBER 17
1 /10X, 3sSHGMGEKA: RECORD DOES NOT EXIST. )
RETURN

C

300 CONTINUE

C ———

C IERR = 2003

C —————
WRITE ( IPRNTE, 33 ) IERR

a3 FORMAT (/10X, 35HQKINFO - ERROR NUMBER JI7
1 /10X, 353HGMGECY: RECORD GROUP KEY UNDEFINED. )

RETURN

c
400 CONTINUE
C —_——
c IERR = 2004
C ————
WRITE ( IPRNTE, 44 ) IERR.
44  FORMAT(/10X, 36HQKINFO - ERROR NUMBER 17
1 /10X, 38HGMGECY: SEGMENTED RECORD GROUP NOTED. )
RETURN

450 CONTINUE

Q

C BERROR FROM SUBROUTINE GETRECI OR GTRECF
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IERROR = IERR - 2004
GO TO ( 500, 600, 700, 800, 900 ) IERROR

CONTINUEB
IERR = 2005
WRITE ( IPRNTE, 55 ) IERR
FORMAT(/10X, 33HGETRECI . BRROR NUMBER
/10X, 3s3HRECORD TYPE MISMATCH ...
RETURN

CONTINUE

IERR = 2008

WRITE ( IPRNTE, 66 ) [ERR
FORMAT(/10X, 38HGETRECI - ERROR NUMBER

/10X, 3SHGMGETN: ERROR DETECTED BY LMERCD...

RETURN

CONTINUE
IERR = 2007
WRITE ( IPRNTE, 77 ) IERR
FORMAT(/10X, 353HGETRECF - ERROR NUMBER
/10X, 33HRECORD TYPE MISMATCH ...
RETURN

CONTINUE

IERR = 2008
WRITE ( IPRNTE, 88 ) IERR
FORMAT(/10X, 35HGETRECF - BRROR NUMBER

/10X, 33HGMGETN: ERROR DETECTED BY LMERCD...

RETURN

CONTINUE
IERR = 2009
WRITE ( IPRNTE, 99 ) IERR, BUFMAX
FORMAT(/10X, 3s3HQKINFO . ERROR NUMBER
/10X, 3sSHBUFMAX MUST BE AT LEAST
RETURN

END
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GETSOL ..... RETRIEVE TESTBED SOLUTION ...
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PURPOSE - RETRIEVE THE TESTBED SOLUTION. ASSUMING THAT THE TESTBED
SOLUTION IS CORRECT, THE MAXIMUM RELATIVE ERROR 1S THEN COMPUTED
FOR EACH COMPOMENT IN THE SOLUTION VECTOR RETURNED BY SPARSPAK-A
SOLVER ‘“SOLVES5".

INPUT PARAMETERS -
SOL - THE LBADING NEQNS LOCATIONS OF THIS VECTOR CONTAIN
THE SOLUTION RETURNED BY SPARSPAK-A LINEAR SYSTEM
SOLVER.

WORKING PARAMETER -
FBUF - A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX.
THE ACTUAL TYPE IS AS DECLARED.

OUTPUT PARAMETERS -
RATIO - THE MAXIMUM RELATIVE ERROR ENCOUNTERED.

[oNeNeoReNoNoRoNoNoNoReNoNoNoNeNoNoNo]

(o R R N KKK R IR K R A RS Ko R K K K Ko OO K A MO KK

c
SUBROUTINE GETSOL ( FBUF, SOL, RATIO )
c
DOUBLE PRECISION FBUF(1), SOL(1), RATIO
c
c#t****ﬁ**t*l*****ll‘t#k*#**lﬁi“l'l***##*#k**‘*#*ill**##‘lﬁ***l#"‘*****'l*****t
c
CHARACTER*40 LIBNAM
CHARACTER*51 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER*4 RTYPE

INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER™*4 IDSN ,LD1 ,NLEN ,NREC , TRACE
INTEGER*4 MSGLVL, IERR , MAXCSM
INTEGER*4 MAXDOF , NEQNS , NUMINT

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN ,LDI ,NLEN ,NREC ,RTYPE,
1 TRACE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM,
JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

AR AU A HC AR A R R R R OK 2 K KO KK o K o K K o S Ko K o o

C
INTEGER*4 1, 1I, LEN, NITEMS, INDEX, MAXIND
DOUBLE PRECISION DEBLTAX, CSM, WEHAVE, CSMMAX

Q

WRITE ( IPRNTS, 11 )
11 FORMAT (/5X, 40HGETSOL . COMPARE WITH TESTBED SOLN ... )

IF ( IERR .NE. 0 ) GO TO 300

ACCESS RECORDS IN DATA SET 'STAT.DISP.*’
TO RETRIEVE NEQNS SOLUTIONS

acaaa @

CALL QKINFO ( STATD )

IF ( IERR .NB. 0 ) GO TO 999

TRACE = TRACBE + 10

RATIO = 0.0D0O

NITEMS = 0

CSMMAX = 0.0D0

DO 100 I = 1, NREC
LEN = MINO ( NEQNS . NITEMS, NLEN )
IF ( LEN .GT. 0 ) THEN

READ NEXT RECORD

aaan

CALL GTRECF ( I, FBUF, LEN )
1P ( IERR .NE. 0 ) RETURN

o] COMPUTE THE MAXIMUM RELATIVE ERROR
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C FBUF CONTAINS THE DATABASE SOLUTION

DO 200 II = 1, LEN
NITEMS = NITEMS + 1

GET THE COMPONENT WITH MAXIMUM MAGNITUDE

[eXoXe]

IF ( DABS (FBUF(II)) .GT. CSMMAX ) THEN
CSMMAX = DABS (FBUF(II))
MAXIND = NITEMS
ENDIF
DELTAX = DABS ( FBUF(II) - SOL(NITEMS) )
IF ( FBUF(II) .NE. 0.0D0
1 DELTAX = DELTAX/DABS(FBUF(II))
IF ( DELTAX .GT. RATIO ) THEN
RATIO = DELTAX
INDEX = NITEMS

SAVE THE PAIR WHICH CAUSES MAX REL ERR

aaaQ

CSM = FBUF(II)
WEHAVE = SOL(INDEX)
ENDIP
200 CONTINUE
ENDIF
100 CONTINUE

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 21 ) STATD, RATIO,
1 INDEX, CSM, WEHAVE
21 FORMAT( /10X, '"MAX. REL ERR COMPARED TO *, A51,
1 /10X, °'1s ', E14.7,' IN COMPONENT"', I5,
1 /10X, 'CSM SOL = ', E21.14, ' WE HAVE ', B21.14 )

RETURN
C
300 CONTINUE
C
(e ERROR HANDLING .... (NOT INCLUDED IN EMSG)
C

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 31)
31 FORMAT (/10X, 33HGETSOL-INCORRECT EXECUTION SEQUENCE )
RETURN

99 CONTINUE

ERROR HANDLING .... (NOT INCLUDED IN EMSG)

IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 91 ) STATD
91 FORMAT( /10X, 'CANNOT PIND ', A51 )
RETURN

END
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C
(] PURPOSE - THIS ROUTINE PRINTS TIME AND STORAGE REQUIREMENTS OF
C THE CURRENT RUN.
(o]
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C
SUBROUTINE STATCS

o]

CHARACTER*40

CHARACTER*51

LIBNAM
JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

IPRNTE, IPRNTS, MAXINT

MSGLVL , IERR , MAXCSM

DOF, BUF, MASK, KC, ICLQ, FCON, SPK
BUFMAX, MXUSED, MXREQD, STAGE
MAXDOF, NEQNS , NUMJINT

REAL GZTIME, GCTIME, GIJTIM, GFTIME, GMTIME,GNTIME,
1 CSMTIM, CSMSTR
REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON [CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM,
1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /CSMMAP/ DOF, BUF, MASK, KC, ICLQ, FCON, SPK
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMDTA/ GZTIME, GCTIME, GIJTIM, GFTIME, GMTIME,GNTIME,
1 CSMTIM, CSMSTR
COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT
g********l************l‘****’lli#****l‘*!l‘(********l*!****t#t*****v*!******ﬂt‘il*****
[
WRITE ( IPRNTS, 11 )
11  FORMAT (/5X, 40HSTATCS . SYSTEM.CSM STATISTICS ... )
[
IF ( STAGE .GE. 20 ) GO TO 100
WRITE (IPRNTS,22)
22 FORMAT (/10X, 35HNO STATISTICS AVAILABLE. )
RETURN

100 CONTINUE
IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 33 ) MAXCSM

33 FORMAT (/10X, 35HSIZE OF STORAGE ARRAY (MAXCSM) ,I10)
IF ( MSGLVL .GE. 2 ) WRITE ( IPRNTS, 44 ) NUMJINT,MAXDOF ,NEQNS

44 FORMAT (/10X, 35 HNUMBER OF JOINTS , 10
1 /10X, 33HMAX DEGREF OF FREEDOME PER JOINT 110
1 /10X, 3s3HNUMBER OF EQUATIONS ,ho )
IF ( MSGLVL .GE. 3 ) THEN
WRITE ( IPRNTS, 45 )
WRITE ( IPRNTS, 46 ) DOF,BUF,MASK KC,ICLQ,FCON,SPK
45 FORMAT (/10X, 35HADDRESSES OF ARRARYS
46 FORMAT (/lOX, 10HDOPF , I10
1 /10X, 10HBUF , 10
1 /10X, 10HMASK , 110
1 /10X, 10HKC , 110
1 /10X, 10HICLQ , 110
1 /10X, 10HFCON ,110
1 /10X, 10HSPK yI10 )
ENDIF
<
CSMSTR = MXREQD
WRITE (IPRNTS, 133) CSMTIM, CSMSTR
133  FORMAT ( 10X, 33HTOTAL CSM.TIME REQUIRED , F13.3
1 /10X, 3sHMAXIMUM CSM.STORAGE REQUIRED , F10.0 )
RETURN
c
END
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