
NASA Contractor Report 42 19

Sparse Matrix Methods
Research Using the CSM
Testbed Software System

Eleanor Chu and J. Alan George

GRANT NAG1-803
MARCH 1989

https://ntrs.nasa.gov/search.jsp?R=19890008070 2020-03-20T03:28:50+00:00Z

NASA Contractor Report 42 19

Sparse Matrix Methods
Research Using the CSM
Testbed Software System

Eleanor Chu and J. Alan George
University of Tennessee
KnoxviZe, Tennessee

Prepared for
Langley Research Center
under Grant NAG1-803

National Aeronautics and
Space Administration
Office of Management
Scientific and Technical
lnformatlon Division

1989

Contents

1 Introduction 3

2 The CSM Testbed Software System and Its Usage 4

3 The CSM Testbed Matrix Processors
3.1 The Basic Algorithms .
3.2 The I N V Implementation .
3.3 The SSOL Implementation .
3.4 Other Relevant SPAR Processors .

4 Developing New Matrix Factorization Processors
4.1 General Considerations .
4.2

4.2.1 SPARSPAK-A: Waterloo sparse linear equations package
The Design of an Interface .

4.2.2 The Design of the Processor SPK .
4.2.3 Implementation Issues .

Interfacing with the Global Database
4.2.5 Interfacing with SPARSPAK-A .
The Usage of the Interface .
4.3.1 The Execution Path .
4.3.2 User Input to the Processor SPK .
4.3.3 Output from the Processor SPK .
4.3.4 An Example . Solving the Testbed problem demo1

4.2.4

4.3

5 Numerical Experiments
5.1 The Specifications of the Test Problems .
5.2 The Numerical Properties of the Test Problems

5.2.1 The Conditioning of the System Stiffness Matrix

5.3 The Experimental Factorization Processors
5.4 Numerical Results .

5.2.2 The Accuracy of the Computed Solutions

Appendix A Installing the Processor SPK

Appendix B Installation-dependent Subroutines

11
11
13
23
24

26
26
27
27
32
35
38
42
51
51
52
54
56

59
59
62
62
62
65
65

73

77

84 Appendix C Listing of Programs
References

I

134

1 Introduction

This report describes our research on sparse matrix techniques for the Computational Struc-
tural Mechanics (CSM) Testbed [22] conducted for NASA grant NAG-1-803. Before provid-
ing a synopsis of the report, we give a brief overview of the work that has been completed
during the 10-month tenure of the grant.

A primary objective was to compare the performance of state-of-the-art techniques for
solving sparse systems with those that are currently available in the CSM Testbed. Thus,
one of the first tasks was to become familiar with the structure of the Testbed, and to install
some or all of the SPARSPAK package [2, 13, 141 in the Testbed.

We began by installing the CSM Testbed on our SUN workstations. We were the first
site to do this, and it was necessary to collaborate closely with the CSM group at Langley
in order to resolve some minor problems with the installation procedure.

A suite of subroutines to extract from the database the relevant structural and numer-
ical information about the matrix equations has been written. A driver program (proces-
sor) that employs these routines along with the SPARSPAK library has been written, and
we have successfully solved all the demonstration problems distributed with the Testbed.
These codes have been documented, and performance studies comparing the SPARSPAK
technology to the methods currently in the Testbed have been completed. In addition,
some preliminary studies have been done comparing some recently developed out-of-core
techniques with the performance of the Testbed processor INV.

An outline of the report is as follows. Section 2 contains a brief overview of the CSM
Testbed software and its usage. This is essentially background material for the uninitiated,
and can be ignored by those with experience in the usage of the Testbed.

Since the ultimate goal of sparse matrix research for the Testbed is to enhance the
performance and capabilities of the Testbed, some knowledge of the methods currently
employed is essential in the development of better techniques for the Testbed. Section 3
gives an overview of the sparse matrix techniques currently employed in the CSM Testbed.
Our presentation is focused on the internal working of the SPAR matrix processors [25].

Section 4 describes an interface which we have designed and implemented as a research
tool for installing and appraising new matrix processors in the CSM Testbed, along with a
description of a new processor SPK which consists of a subset of SPARSPAK-A [2] and a set
of subroutines which provide an interface between SPARSPAK-A and the global database
of the CSM Testbed. A guide for installing the processor SPK in the Testbed is provided
in Appendix A of this report. The installation dependent modules of this processor are
listed in Appendix B with comments indicating the changes to be done at a different site.
A listing of all interface subroutines is provided in Appendix C.

3

PRECEDING PAGE BLANK NOT FILMED

Finally, Section 5 contains results of numerical experiments we performed in solving
a set of Testbed demonstration problems using the processor SPK and other experimental
processors. These results are compared with the performance of the SPAR matrix processors
on the same set of test problems.

2 The CSM Testbed Software System and Its Usage

To facilitate our discussion throughout this report, we shall first briefly introduce the con-
cepts and terminology employed in the Testbed. Since our discussion is conducted primarily
for the readers who have not used the Testbed before, the readers who are familiar with its
usage can skip this section.

The CSM Testbed is a structural analysis system evolving from integrating the SPAR
finite element code [25] and the NICE data management and command processing utilities
[4, 5, 6, 7, 261. The FORTRAN programs for SPAR (Structural Performance Analysis and
Redesign) were developed in the 1970’s by Lockheed Missiles and Space Company and by
Engineering Information Systems, Incorporated. The SPAR system uses the finite element
approach to perform stress, buckling, vibration, and thermal analysis on linear structural
systems. The NICE (Network of Interactive Computational Elements) system was originally
developed at Lockheed Palo Alto Research Laboratories to support engineering analyses.
The major components of the NICE system include a data manager, a command language
and a command interpreter. Continued effort has been made by the CSM development
team at NASA Langley and at the Lockheed Palo Alto Research Laboratory to extend
the analysis capability of the Testbed since the implementation of its initial version (called
NICE/ SPAR).

The user interface for the Testbed is described in detail in the CSM Testbed User’s
Guide [24]. The language, directives, interface, global-database manager and input-output
manager of the CSM Testbed architecture are each documented in references [5, 6, 7, 8, 261.
For our purpose we shall simply walk through an example to quickly familiarize the readers
with the general usage of the Testbed. The example we use is a Testbed demonstration
problem presented in reference [25]. We shall refer to this example as problem “demol”
throughout this rep or t .
The operating environment Our discussion throughout this report refers to the version

of the Testbed currently operational on a SUN 3/50 workstation running the UNIX’
operating system at the University of Tennessee, Knoxville.

The problem to be solved: The tubular beam shown in Figure 1 is cantilevered at joint
1 and statically loaded at joint 5. The static solution for a transverse shear load of
1000.0 and for an axial load of 10000.0 is required.

‘UNIX is a trademark of AT&T Bell Laboratories.

4

a,‘ ,.& .

P-
2 3 4 5

L - /:
L=40

Tube, inner radius = 2.00, outer radius = 2.25

E = 10. x lo6

u = 0.3

p = 0.101

= 0.1 x io-’

Figure 1: CSM Testbed Demonstration Problem - Tubular beam.

User input Edit a file to contain the script in Figure 2. The command stream demon-
strates how to solve the tubular beam problem in Figure 1 using the NICE command
language and the SPAR computational modules.

Comments The problem-oriented Testbed command language is called CLAMP -
an acronym for Command Language for Applied Mechanics Processors. The
commands with their leading keyword prefixed by an asterisk are called CLAMP
directives. They are special commands used to
- directly access a global database,
- define command procedures,
- implement branching and cycling for nonsequential command processing,
- process macrosymbols in an advanced language construct,
- request other available services.
For example, the directive

*open 1 demol.101 /new

contained in our script file will create a new library file with the library identifi-
cation number (LDI) equal to “1” and file name of “demo1.101”.
The SPAR processors are each implemented as a subroutine callable by the
Testbed executive module. The macroprocessor command to start the execu-
tion of a processor is CXQT. Therefore, during the execution of the Testbed, the
command to run the SPAR processor named TAB is

5

[XqT TAB

The input (user commands and/or data) to a processor are entered after the [XqT
command according to the requirements of the individual processor. The SPAR
input syntax and processor requirements are described in detail in reference [24].
Since the CLAMP directives may be intermixed with the processor commands in
the script file, it is worthnoting that once the execution of a processor is initiated
by [XqT, it will begin and continue accepting input until either another CXQT, a
STOP or a *STOP is encountered. If a STOP occurs, execution will proceed to com-
pletion of the processor’s assigned task after which the next command, which can
be either a CLAMP directive or a macroprocessor command, begins execution.
A *STOP terminates execution immediately. Therefore, the user command STOP
in the sequence

[XqT SSOL
STOP

*TOC 1

is necessary to ensure that processor SSOL runs to completion before the directive
*TOC is processed.
The modular structure of the Testbed implies that multiple processors are typ-
ically executed to perform an analysis. These processors communicate through
a common database consisting of global-access data libraries (GAL) which are
operated on by the NICE data manager GAL-DBM [26]. Each GAL data library
may contain multiple nominal datasets. Each dataset is made up of named
records. The GAL-Processor interface facilities allow the Testbed processors to
generate, store, locate, and access all of the needed information in the global
database to perform a required analysis. The table of contents of an active data
library may be displayed during execution of the Testbed via the CLAMP di-
rective *TOC. In Figure 3, we display the table of contents for the data library
“demol.101” (LDI=l) created by executing the script in Figure 2.

To execute the analysis: Note that on UNIX systems the execution of the Testbed is
initiated by the first command “time nicespar << \eof” in the script file, where
“nicespar” is the name of the executable Me and we assume that the name of the
directory where “nicespar” resides has been inserted in the user’s PATH environment
variable. Note also that “\eof” is the last entry of the script. Assuming that the name
of the file containing the script is “demol.com” and that it has been made executable
with the “chmod” command, the script may be run by typing

demo1 .com

6

To print the solutions on an ordinary text file: The default output file for the Testbed
is the standard output on UNIX system. The command

demol.com > & demo1.log &

thus redirects the output to the log file. The desired static solutions are produced by
processor SSOL and the actual data are contained in the dataset named STAT .DISP, 1-1.
To print the static solutions on the log fle, the SPAR utility processor VPRT may be
executed after CXQT SSOL. The command to be inserted into the script is

[XqT VPRT
TPRINT STAT DISP 1 1

The output corresponding to this command is displayed in Figure 4. Note that each
constrained component is flagged with an asterisk by the processor VPRT.

More details: We shall come back to this example from time to time to provide the details
which are not needed until our discussion at a later point.

7

t ime n icespa r << \eof
+open 1 demol.101 /neu
+ s e t echo=off

START 5
JOIUT LOCATIONS
1 0 0 0 .
2 0 0 10.
3 0 0 20.
4 0 0 30.
6 0 0 40.
HATERIAL CONSTAUTS
1 10.E+6 .3 . l o 1 .lE-4
BEAH ORIEUTATIONS
1 1 1 1 1 .
E21 SECTION PROPERTIES
TUBE 1 2 . 2.25
CONSTRAIIfT DEFINITIOU 1
ZERO 1 2 3 4 5 6
1

[rqt ELD
E21
1 2
2 3
3 4
4 6

[xqt TAB

Cxqt E . Create element d a t a s e t s
[xqt EKS . Calcu la t e element i n t r i n s i c

Cxqt RSEQ . Resequence nodes

[rq t TOP0

Crqt K . Assemble system s t i f f n e s s ma t r ix

[xqt I E V

[xqt PUS

. s t i f f n e s s ma t r i ces

r e s e t HETHOD=l LJSPRT-1 LADPRT=l
. Formmaps which guide t h e assembly

r e s e t PRTKHAP=l PRTAHAP=l . and f a c t o r i z a t i o n of system ma t r i ces

r e s e t spdp=2 . Output d a t a s e t i n double p r e c i s i o n

r e s e t spdp=2 . i n double p r e c i s i o n
. Factor system s t i f f n e s s ma t r ix

ALPHA . Direc t PUS input
CASE TITLES . Define l o a d t i t l e s f o r 2 cases
1 JTRAUSVERSE LOAD
2 JAXIAL LOAD
SYSVEC
APPLIED FORCES

CASE 1: I=2: J=S: 1000.
CASE 2: 14: J=S: 10000.

Crqt SSOL
[rq t GSF
[rq t PSF

s t o p
*TOC 1
\eof

. S t a r t and t ime Testbed execut ion

. Open d a t a l i b r a r y

. Do not echo inpu t

. Hacroprocessor command t o execute TAB

. 6 nodes p o i n t s i n beam

. Direct TAB inpu t

. Constrain 6 components of j o i n t 1
. t o be ze ro

. Define elements

. Define element connec t iv i ty

. Dir-2 load on j o i n t 5 of 1000.

. D i r - 3 l o a d on j o i n t 5 of 10000.

. Solve f o r s t a t i c displacements

. Compute s t r e s s e s

. P r i n t s t r e s s e s

. P r i n t Table of contents of l i b r a r y 1

Figure 2: A runstream for solving problem demol.

8

.
+ Library I File: demoi.101 +
+ Form: GAL82 File s i ze : 22062 words l o . of Datasets: 32 +
.
Seq#

I
2
3+
4
6
6
7
8
9
10
11
1 2
13
14
1 6
16
17
18
19
20
21
22
23
24
26
26
27
28
29
30
31
32

Date Time
06:14:88 17:54:17
06:14:88 17:64:17
06:14:88 17:54:17
06:14:88 17:56:17
06:14:88 17:66:17
06:14:88 17:65:17
06:14:88 17:55:17
06:14:88 17:55:17
06:14:88 17:55:17
06:14:88 17:56:17
06:14:88 17:56:17
06 :14:88 17:56:17
05:14:88 17:66:17
06:14:88 17:56:17
06:14:88 17:56:17
06:14:88 17:66:17
06:14:88 17:66:17
06:14:88 17:66:17
06:14:88 17:56:17
05:14:88 17:66:17
06:14:88 17:66:17
06:14:88 17:56:17
06:14:88 17:56:17
06:14:88 17:66:17
06:14:88 17:66:17
06:14:88 17:56:17
06:14:88 17:56:17
05:14:88 17:66:17
05:14:88 17:56:17
06:14:88 17:56:17
06:14:88 17:66:17
05:14:88 17:66:17

Lk Records Processor Dataset name
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I TAB
I TAB
I TAB
3 TAB
1 TAB
I TAB
I TAB
1 TAB
I TAB
1 TAB
I TAB
I ELD
I ELD
1 ELD
I ELD
1 ELD
I ELD
I ELD
I ELD
4 E
I E
I RSEQ
I TOPO
I TOPO
1 K
6 IEV
2 IUS
2 PUS
2 SSOL
2 SSOL
4 GSF
4 GSF

JDFI.BTAB.I.8
JREF.BTAB.2.6
ALTR. BTAB .2.4
GHTR.BTAB .6.6
ALTR.BTAB.2.4
JLOC.BTAB.2.6
MATC.BTAB.2.2
MREF.BTAB.2.7
BA.BTAB.2.9
COI..i
QJJT.BTAB.2.19
DEF.EZI.I.2
GD . E21. I. 2
GTIT.EZ1. I. 2
DIR.EZI.I.2
ELTS. EAHE
ELTS. EEOD
ELTS. ISCT
IS
EZI.EFIL.I.2
DEM.DIAG
JSEQ.BTAB.2.17
MAP. .9.3
AMAP. .9.3
K . SPAR. 36
IIV .K. I
CASE.TITL.I.1
APPL.FORC.l.1
STAT.DISP.I.1
STAT.REAC.1.1
STRS.EZI . I. I
STRS.E21.1.2

.

Figure 3: Table of Contents of Library 1.

9

** BEGIE VPRT ** DATA SPACE= 600000 WORDS

TRANSVERSE LOAD
lSTATIC DISPLACEMEETS.

OJOIRT I 2 3 4
1 0.0000+00* 0.0000+00* 0.000e+00* 0.0000+00*
2 0.0000+00 0.2600-01 0.0000+00 -0.4630-02
3 O.OOOo+OO 0.8970-01 0.0000+00 -0.7930-02
4 0.0000+00 0.1810+00 0.0000+00 -0.9920-02
6 0.0000+00 0.2860+00 0.0000+00 -0.1060-01

1STATIC DISPLACMEETS.

OJOIET 1 2 3 4
AXIAL LOAD

1 o.oooe+oo* o.oooo+oo* 0.0000+00* 0.0000+00*
2 0.0000+00 0.000e+00 0.3000-02 0.0000+00
3 0.0000+00 0.0000+00 0.6990-02 0.0000+00
4 0.0000+00 0.0000+00 0.8990-02 0.0000+00
6 0.0000+00 0.000e+00 0.1200-01 0.000e+00

EXIT VPRT CPUTIME= 0.6 I/O(DIR ,BUF) = 0 0

I D = l / 1/ 1

6 6
0.0000+00* 0.0000+00*
0.0000+00 o.oooo+oo
0.0000+00 o.oooo+oo
0.0000+00 0.0000+00
0.0000+00 0.0000+00

I D = l / l / 2

6 8
0.0000+00* 0.0000+00*
0.0000+00 0.0000+00
0.0000+00 0.000e+00
0.000e+00 0.0000+00
0.000e+00 0.000e+00

Figure 4: The contents of dataset STAT.DISP.1.1.

10

3 The CSM Testbed Matrix Processors

Reference [23] contains a set of logic flowcharts developed for the key subroutines of each
of the SPAR matrix processors TOPO, K, I N V , SSOL and AUS. These charts together with
the commented FORTRAN source code are very helpful in our understanding of the sparse
matrix techniques currently employed in the Testbed. In this section, we shall attempt to
describe the algorithms and data structures which are implemented by the processors I N V
and SSOL.

3.1 The Basic Algorithms

The factorization algorithm: Processor I N V applies a specialized Gaussian elimination
scheme to factor a sparse symmetric matrix K into L D L T , where L is a unit lower
triangular matrix and D is a diagonal matrix. This algorithm is numerically stable if
the matrix K is also positive definite, which is the case when K is the system stiffness
matrix. The basic algorithm can be easily described for a dense symmetric matrix A
as follows. We assume that A is of dimension n x n. Let us denote the elements of A
and M = LT as a;j and mij, where 1 5 i 5 n and i 5 j 5 n, and D = { d l , da, . . . , &}.
Note that each off-diagonal a;j is overwritten by m ; j and that each a;; is overwritten
by dT1 if the algorithm presented in Figure 5 is successfully executed. Algorithm I
assumes that the a;j elements are stored row by row.

Algorithm I The basic LDLT factorization scheme

for i t 1,2, . . . , n do
if a;; = 0 then

else
quit

uii +- l / U i i

for L t i+ 1, ..., n do
m t a ; k * a;;
for j t k, ..., n do

for H t i+ 1, ..., n do
a k j t a k j - m * aij

a ; k c a;k * ai,;

Figure 5 : Computing D-' and M = LT factors of A.

11

The following features of the algorithm above will be exploited in its sparse imple-
mentation.

1. To compute D-I and the off-diagonal elements of M = L T , the elements stored
and accessed are those on the diagonal and in the upper triangular part of A . For
example, when n = 5, the algorithm performs the transformation in Figure 6.

Figure 6 : Overwriting A by D-I and M = LT.

2. The a;j's which have been overwritten by the elements of D-' and M = LT
will not be needed in the remaining elimination stages. In particular, during the
it" elimination stage, the elements accessed and modified are confined to row i
through row n as shown in Figure 7 for i = 3 and n = 5 , where @ represents
elements which are not accessed.

Figure 7: LDLT factorization of A - the third stage.

12

Solving the triangular systems: Since Algorithm1 stores the factors D -l and M = LT,
we shall describe the solution scheme in terms of these two factors. Both of the forward
and backward substitution schemes presented below access the elements of the factor
M row by row.

Step 1. Forward substitution scheme (Solve M T y = b) .

for i t 1, ..., n do
yi 4- bi
for k = i + 1, ..., n do

bk = bk - m;k * 31;

Step 2. Backward substitution scheme (Solve M z = D-'y).

for p t 1, ..., n do
i t n - p + 1
s4-O
for j = i + 1, ... n do

s t s + m ; j * z j
Z; t dF1 * y; - s

3.2 The I N V Implementation

In this section, we shall discuss in various degrees of details the following aspects of the
sparse factorization scheme implemented by the processor I N V .

1. The algorithm - a block LDLT factorization scheme.

2 . Memory requirement.

3. Data structures.

4. The handling of zero constraints.

5 . The handling of nonzero constraints.

6. Data archived to the global database.

A block LDLT factorization scheme: The processor I N V has tailored Algorithm I to
perform an out-of-core block LDLT factorization of large sparse matrices arising in
the finite element analysis of structural mechanics problems. Before we describe the
I N V implementation of this scheme, let us first explain the block LDLT algorithm

13

by applying it to a dense symmetric matrix A in block form. To be specific, let us
consider the 2 x 2 block matrix in Figure 8, where Al, l = { a t j } , A1,2 = { a k j },
A2,2 = {u t ;) } , with u t] = a!?, a:) = a!:), and 1 5 k,j 5 3.

(ii)

Figure 8: Partitioning symmetric A into four 3 x 3 blocks.

The block LDLT scheme works in the following manner.

Step 1. Apply Algorithm I to matrix A1,l to perform the following transformation.

In other words, at the end of step 1, we have in fact zeroed out the nonzeros
in the lower triangular part of A l , l and stored the multipliers !;j = mj; in the
upper triangular part of A1,l.

14

Step 2. Apply the multiplers rntj to the A1,2 block as if LU (U = D L T) decompo-
sition were applied to reduce (Al , l , A1,2) to an upper trapezoidal matrix. That
is, the A1,2 block is overwritten by the resulting {ut:)} of the following transfor-
mation.

I , (i i) , (i i) , (i i)
1,l 1,z 1,s

, (i i) ,(i i) , (i i)
2 , l 2,2 2,3

, (i i) , (i i) ,(ii)
3,l 3,2 3 ,3

Step 3. Zero out the block A& implicitly by applying the multipliers directory to
block A2,2 . The multipliers can be computed on the fly from

m(ii) (ii) (ii)
1 , l m2,1 m3,1

(ii) (ii) (ii)
m1,2 rn2,2 m3,2

(ii) rn(ii) rn(ii)
m1,3 2,3 3,3

, (i i) , (i i) , (i i)
1,l l,z 1.3

(ii) (ii) u(ii)
U1,l U2,l

- - l/d(,")

The A2,2 block is then updated to be A2,2 = {at; '} which is obtained by the
following computation.

(i i) ,(i i) (i i)
, l , l 1 ,2 ,1 ,3

,(i i) (i i) ,(ii)
2 , l ,2,2 2 , 3

(i i) (i i) (i i)
u3,1 ,3,2 u3 ,3

$4 , (iv) J i V)
1 , l 1,2 1,3

J i V) 3 , l p) 3,2 Ji.) 3 , 3

(i i) ,(ii) (i i)
,1,1 1 ,2 ,1,3

,(i i) ,(i i) ,(i i)
2 , l 2,2 2 ,3

(i i) (i i) (i i)
u3,1 ,3,2 ,3,3

s i (i w) si(iu) si(iu)
1,l 1,2 1,3

&(iu) - (i v) & (i v)
2 , l a2,2 2 ,3

- (i u) & (i V) &(am)
'3,l 3 ,2 3 , 3

Since the A2,2 diagonal block is symmetric, only the upper triangular part of
A2,2 is updated in the actual computation.

Step 4. u t i) t u$)/d:), for VH,j.

15

Note that the transformations accomplished by the above four steps can be expressed
with respect to the block upper triangular part of the given matrix as follows.

\ \

The Anal step: For this particular example, the factorization is completed after
trans forming

by Algorithm I.
The output matrix: The coefficient matrices of the resulting triangular systems,

namely MTy = b and M z = D-ly, are available from the output matrix given
by

d,l m1,2 ml,3 ml,4 m1,5 m1,6

m2,3 m2,4 m2,5 m2,6

d i l m3,4 m3,5 m3,6

dT1 m4,5 m4,6

The following observations may be made on the block LDLT factorization scheme
described above.

1. The elements in the lower triangular part of the diagonal A;,i blocks are not

2. The block of rows which have been updated to contain the dkl's and mkj's of

3. Observe that the updating of A2,2 block in Step 3 can be reformulated as follows.

accessed during the process of computing the D-l and LT = M factors.

the factors are no longer needed in the future stages of elimination.

16

and

Therefore, if the elements of A2,2 are not available in memory at the time the first
block row (All l , Al,2) is being processed, the modifications can be accumulated
in the {SF,;)}% which are later added to the respective elements of A2,2 when
they are read into memory.

Although it appears straightforward to generalize the block L D L T scheme to a sym-
metric sparse block matrix such as the example given in Figure 9, where each Ki,j is
a dense square matrix of some uniform dimension, an efficient implementation of the
sparse block LDLT scheme requires sophisticated data structures.

Figure 9: Upper triangular block structure of a symmetric sparse matrix K.

Memory requirement: Suppose that the matrix K in Figure 9 is stored out-of-core and
the rows of K are to be read into memory one block row (i.e., JDF rows if JDF is

17

the dimension of each submatrix) at a time, In order to factor the first block row
(K1,17K1,2,K1,5) and store the modifications to be applied to the blocks K2,2, K2,5

and K5,5 later, we need memory space to store the blocks in Figure 10 as well as
the indexing overhead incurred by the data structures employed. In order to proceed

Figure 10: The storage needed for processing (K I , ~ , K1,2, K1,s)

with the factorization of the second block row (K z , ~ , K z , ~ , K z , ~ , K z , ~) , enough working
space must be available to accommodate the blocks in Figure 11. To minimize the
memory requirement, processor I N V actually re-uses the space occupied by blocks K1,1,

Kl,2 and K1,S to accommodate the blocks needed for the current elimination stage,
assuming that the factors of (Kl ,~,K1,2,K1,5) have been archived to the database.
The block submatrices needed to remain in memory for each of the next four stages

Figure 11: The storage needed for processing (K z , ~ , K2,3, K2,5, K2,e)

are depicted in Figure 12. Observe that although K4,5 block is null in IC, it is to be
filled in the third elimination stage. Therefore, the space to accommodate S4,5 block
must be allocated. Fortunately, the fill-in locations can be determined prior to the
numerical factorization phase. With the fill-in information available, the maximum

18

Figure 12: The storage needed to process K3,*, K+, Ks,* and K6,*.

number of submatrices ever needed to be in memory can also be determined. As
far as the indexing overhead is concerned, a simple and effective strategy is to store
one pointer for each submatrix assuming that the elements within each submatrix are
stored in consecutive locations. Using this indexing strategy, the number of pointers
required to be in memory for each particular elimination stage is equal to the number
of submatrices to be present.

Data structures: The data structures employed by the Testbed matrix processors can
again be more easily explained using our block 2 x 2 example given in Figure 8.

Data structure of the input coefficient matrix: Processor I N V assumes that the
block upper triangular part of the coefficient matrix

is stored out-of-core in a block-row-oriented manner. That is, the data of the
blocks are stored in a one dimensional array following the block sequence as
depicted in Figure 13.

Figure 13: The block sequence of input matrix.

Within each Ai,j block, the elements are stored column by column. For example,
the elements of the Al,1 block are stored following the sequence in Figure 14.

19

Figure 14: The element sequence of block A1,l.

... a4,4 a5,4 Q6.4 ~ 4 . 5 a5.5 a6.5 a4.6 a5.6 a6 ,6

KMA P(IX)

1
... ... 1 ' 1

A MA P(JX)

Figure 15: Indexing the buffer and working arrays.

20

The integration of A2,2 into the working array is accomplished by the following
segment of FORTRAN statements.

C
C
C

C
C
C

200
100

.........................
G E T P O I N T E R T O TEE BUFFER

K = AMAP(JX)
DO 100 J = 1, J D F

DO 200 I = 1, J D F
S (I , J , K) = S (1 , J . K) + A (L K S W)
L K S W = L K S W + 1

C O N T I N U E
C O N T I N W

For a general sparse matrix, because the data stored in the working array S are
dynamically changed by accommodating new data in the space occupied by data
which have been written out to the database, the S i j blocks corresponding to the
consecutive Ai,j blocks in the buffer array may not be neighbors in the working
storage. To integrate NSUBS (NSUBS 2 1) A;,j’s into S, the starting address
of each Si,j must be computed from AMAP each time, resulting in the revised
code segment.

C
C
C

C
C
C
C

200
100
300

21

Conversion of the input data structure: Note that the data structure described
above for the input buffer and working array is in fact the output format of
the processor which assembles the system stiffness matrix from the finite ele-
ment model. Since the block LDLT factorization scheme and the following for-
ward/backward substitution algorithms are row-oriented, the properly updated
JDF x JDF submatrices of the current block row are copied from S into another
one-dimensional array B , where the data are stored row by row with respect to
the global matrix. For example, assuming that the dimensions of S and B are
declared as S(JDF, JDF, *) and B(JDF,CONRNG, *), the following FORTRAN
statements retrieve the fist row of (Al , l ,A1,2) , i.e. { u l , l , u l , 2 , . . . , u l , ~ } , from S
and store them in the consecutive locations in B.

C
C
C

C
C
C

C
C
C

200
100

____________________----------
K INDEXES THE CURRENT ROW I N B

CONRNG = 2
DO 100 J= I. CONRNC

ASSUME THAT THE LOCATION OF THE CURRENT
BLOCK I N S CAN B E OBTAINED FROM S W M A P (J)

L K S W = S W M A P (J)
DO 200 I = 1 . J D F

CONTINUE
B (I , J , K) = S (M , I , L K S W)

CONTINUE

Since the modifications computed from B are to be accumulated into S for up-
dating the input matrix in the future stages of the elimination process, the di-
mensioning of B as B(JDF,CONRNG,*) in parallel with the dimensioning of
S is desirable. The conversion of index from S to B , or vice versa, for each
element can thus be easily expressed in FORTRAN as demonstrated in the
above code segment. However, there are other times the code would be much
cleaner by viewing B as a two dimensional array declared as B(JDFCON,*),
where JDFCON= JDFx CON. The technique which the processor INV uses to

22

index the same array in either way is to declare two formal parameters, namely
B(JDF,GONRNG, *) and BB(JDFCON, *) in the subroutine which does the fac-
torization, whereas the actual parameters corresponding to B and BB in the
calling sequence are identical. With this trick, B and BB in the subroutine refer
to the same actual parameter and the programmer can work with either B or
BB according to his need to access the data in a particular pattern.

Handling zero constraints: Processor I N V handles zero constraints by ignoring the cor-
responding rows in the process of transferring data from S to B. That is, if the
unknown 2; = 0, then row i will not be copied to B. For example, if it is known that
2 2 = 0, then only row 1 and row 3 in (Al,l,A1,2) would be copied to array B. The
actual transformation of (A l , ~ , A1,2) is carried out in B as shown below.

(al,l a1,2 a1,3 a1,4 a1,5 a1,6) - (fi,: ml,2 m1,3 m1,4 m1,5 m1,6
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,2 ai1 m3,4 m3,5 m3,6

Consequently, row 3 in S becomes row 2 in B, i.e., it is possible that K<M in our
sample code segment.

Handling nonzero constraints: Processor I N V handles nonzero constraints by ignoring
the corresponding rows in the factorization process. For example, if it is known that
2 3 = u 3 # 0 in addition to 22 = 0, the transformation of (Al , l , Al,2) by processor I N V
will not affect row 3, i.e.,

a1,l a 1 , 2 a1,3 a1,4 a1,5 a1,e) - (a,' m1,2 m1,3 m1,4 m1,5 m1,6

a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,l a3,2 a3,3 a3,4 a3,5 a3,6

Elements archived: Write out to database those elements of BB which are needed for
the subsequent use by processor SSOL in effecting the forward/backward substitution
process. For example, assuming 2 2 = 0, and 2 3 = u 3 # 0 , the output elements
resulting from factoring the (A l , l , A1,2) block are given by

dcl mi,a mi,3 mi,4 m1,5 ml,6

a3,3 a3,4 a3,5 a3,6

3.3 The SSOL Implementation
Input Data: Processor SSOL retrieves from the database the factors archived by processor

I N V . For our example of the block 2 x 2 matrix, assuming that the constraints are
2 2 = 0 and 2 3 = u 3 # 0, the data given below are stored in a row-oriented manner in
the database.

23

In addition to the factors, the right-hand side vector f and the nonzero-constraint
vector fi are also available in the database.

Handling constraints: In essence, processor SSOL simply adapts the forward/backward
substitution schemes we presented for Algorithm I to solve the following triangular
systems, which are to be implicitly formed from the data retrieved.

Y1
u3

Y5 = (;)
Y6

and

21

1 m1,2 m1,3 m1,4 m1,5 m1,6

m4,5 1 m5,6 [::] = (d" d;l d51) (i)
1 x5 d;' (z6

In particular, the SSOL implementation takes advantage of the following observations.

1. The equations corresponding to zero constraints can be ignored in the forward
substitution phases.

2. The coefficients of the equations corresponding to nonzero constraints are needed
to adjust the right-hand side vector in the forward substitution phase.

3. If the solution vectors contain the constraints, the equations corresponding to
constraints (either zero or nonzero) can be skipped in the backward substitution
phase.

Output Solutions: The computed q j ' s are written out to the global database.

3.4 Other Relevant SPAR Processors

In order to briefly introduce the functions of other relevant SPAR processors, and give the
readers some idea how they may be used to perform an analysis, we found that the following
information available in The CSM Testbed User's Manual [24] useful. Given below is a list of
processors together with comments on their individual functions. In addition, the ordering
of the processors in the list serves as a template for performing the linear static analysis,
which is one of the simplest types of analysis which can be performed with the Testbed.

1. Processor TAB. Define joint locations, constraints, reference frames, and possibly ma-
terial and section properties. Material and section properties may be defined using
either processor TAB or processors AUS and LAU (Steps 2 and 3).

24

2. Processor AUS. Build tables of material and section properties if the facilities in pro-
cessor TAB were not used.

3. Processor LAU. Form constitutive matrix if material and section properties were not
input in processor TAB.

4. Processor ELD. Define elements. Element definitions include element connectivity,
element material reference frame number, element material and section type numbers.

5. Processor E. Initialize element datasets; create the dataset which will contain all im-
portant element information (e.g., intrinsic coordinates, element-to-global transfor-
mations, intrinsic stiffness matrices).

6. Processor EKS. Calculate element intrinsic stiffness matrices.

7. Processor RSEQ. Resequence nodes for minimum total execution time.

8. Processor TOPO. Form maps which guide the assembly and factorization of system
matrices.

9. Processor K. Assemble global (system) stiffness matrix.

10. Processor I N V . Factor system stiffness matrix.

11. Processor AUS and EQNF. Create applied nodal loading. If element loading is applied,
Processor EQNF must be executed to calculate equivalent nodal loading.

12. Processor SSOL. Solve for static displacements.

13. Processor GSF. Calculate element stress resultants.

14. Post-process using any of the following processors: VPRT , PSF , PLTA, PLTB , PLOT,
CONT. T2PT.

25

4 Developing New Matrix Factorization Processors

4.1 General Considerations

We have described in detail in Section 3 the internal working of processors I N V and SSOL.
The former performs the out-of-core LDLT factorization of a sparse matrix in block form,
and the latter solves the resulting triangular systems by forward and backward substitution
schemes. The following considerations have prompted us to investigate alternative sparse
factorization schemes.

1. The techniques employed by I N V are particularly tailored to the large sparse linear
systems arising in the structural models. The models considered are composed of
finite elements connected at specified joints. Each joint can have three translational
and three rotational components of deflection, totaling a maximum of six degrees of
freedom per joint. The system stiffness matrix is stored and operated on as an array
of J D F x JDF submatrices, where 3 5 J D F 5 6 is the maximum number of degrees of
freedom per joint in the model of a particular problem. However, in general the joints
need not have the same number of degrees of freedom. This storage scheme thus
necessitates storing dummy data - an identically zero row for each missing degree
of freedom at each joint. Although the factorization scheme only operates on the
non-null submatrices and some operations on the dummy rows are skipped by the
processor I N V , it does not fully exploit the sparsity within each submatrix. While
this strategy is understandably very efficient if uniform degrees of freedom per joint
prevail, it may not best suit the models with drastically varied degrees of freedom,
which is not uncommon in finite element modeling applied to disciplines other than
mechanical structural analysis.

2. As described in Section 3, the data structures employed incur the index overhead of
one pointer per submatrix for all submatrices occurring in each elimination stages.
Therefore, the index overhead is proportional to the number of submatrices instead of
the size of them. Consequently, while the primary storage for the system stiffness ma-
trix and the factors is reduced for models with fewer degrees of freedom, the secondary
storage for their indices may remain the same and could become a significant part of
the total storage. Furthermore, unlike the working storage which is determined by
the maximum number of submatrices which ever occur during the entire factorization
process, the addresses of the submatrices are repeatedly stored for each elimination
stage.

3. The system stiffness matrix, the factors and their respective indexing information are
each stored in separate datasets in the global database. The datasets are read into
memory or written out to the database one record at a time. The choice of record
length determines the number of disk read/write operations and the required buffer

26

space. While the maximum record length of a dataset is restricted by the available
buffers, the minimum record length must be long enough to contain all of the items
which are needed to completely process one entire row of submatrices. Therefore,
the processor I N V can perform in-core factorization if each record of each dataset
contains all information needed to complete the entire factorization process. In that
case, the in-core storage is required to accommodate at least one copy of the system
stiffness matrix, one copy of the factors along with the indexing information needed
for all elimination stages, and a working array of the same size as needed in the
out-of-core case. Since some other out-of-core sparse factorization schemes currently
available perform in-place factorization and are readily adapted to performing in-core
factorization, it appears worthwhile to compare their performance in both in-core and
out-of- core cases.

4. When applying the out-of-core block LDLT scheme as implemented by the processor
INV to a dense matrix, its advantage of reducing memory requirement disappears
because the working array for the first elimination stage must contain the entire upper
triangular part of the stiffness system matrix.

5 . The possible ill-conditioning of the system stiffness matrix is not detected by the
current Test b e d soft ware.

4.2

It is apparent from our earlier discussions that the format of the datasets is directly con-
nected to the factorization scheme currently employed in the Testbed. It is thus likely that
the particular arrangement of data items in the datasets may not be compatible with the
data-accessing pattern of the other factorization algorithms to be considered. In order to
evaluate the performance of alternative sparse factorization schemes in the Testbed without
redesigning the database at a time when the scheme of choice is not certain yet, we have
devised a set of subroutines which serve as an interface between the global database of the
Testbed and SPARSPAK-A [2]. Although some components of the interface are specific for
SPARSPAK-A, we hope that its overall design and the availability of some utility modules
will prove to be useful in adapting the interface to work with other sparse matrix solvers.
A few words about the capabilities of SPARSPAK-A are in order.

The Design of an Interface

4.2.1

In this section we briefly review the important features of SPARSPAK-A, which is a package
of Fortran programs designed to efficiently solve large sparse systems of linear equations by
direct methods. The structure and use of the package are described in the SPARSPAK-A
User’s Guide [2]. The collection of algorithms implemented by SPARSPAK-A and their

SPARSPAK-A: Waterloo sparse linear equations package

27

i

storage schemes are discussed in reference [12]. Although we shall consider only symmetric
positive definite problems here, the actual package handles both symmetric and unsymmet-
ric problems subject to the condition that the matrix structure is symmetric and that row
and/or column interchanges are not required to maintain numerical stability. To solve a
sparse symmetric positive definite linear system

A x = b ,

the user and SPARSPAK-A interact through the following steps:

Step 1. The user supplies the nonzero structure of A to the package using a set of subrou-
tines described in Section 2.2 of reference [2].

Step 2. The package finds a “good” ordering (permutation P) for A, and allocates stor-
age for the triangular factorization of PAPT = LLT, as described in Section 2.3 of
reference [2].

Step 3. The user supplies the numericalvalues for the matrix A to the package, as described
in Section 2.4 of reference [2].

Step 4. The package factors PAPT into L L T , as described in Section 2.5 of reference [2].

Step 5. The user supplies numerical values for b, as described in Section 2.4 of reference [2].
(This step may come before Step 4, and may be intermixed with Step 3.)

Step 6. The package computes the solution by solving Ly = Pb and L T t = y , and then
setting z = P T z , as described in Section 2.5 of reference [2].

Step 7. The user may call a subroutine to obtain an estimate of the relative error in x
as well as the inverse of the condition number of A if so desired. The subroutine is
described in Section 2.6 of reference [2].

The names of the subroutines available for reordering a symmetric matrix in Step 2,
together with the algorithms they implemented, are listed in Table 1. Corresponding to
each ordering choice in Step 2, a different set of subroutines are provided for Steps 3, 4, 6
and 7. The subroutines used in Steps 1 and 5 are, however, independent of the ordering
methods.

In the context of comparing the performance of the SPARSPAK-A factorization algo-
rithm with that of the Testbed processor INV, we should note the following. Firstly, the
coefficient matrix A will have been ordered differently because the ordering algorithm in
the Testbed is applied to the joints in the finite element model before the system stiffness
matrix is assembled, whereas SPARSPAK-A reorders the coefficient matrix itself. Since
associated with each joint in the finite element model is a dense J D F x J D F submatrix,

28

SPARSPAK-A
Subroutine

the resequencing of the joints relocates the submatrices (as a whole) in the system stiffness
matrix. On the other hand, since the ordering algorithms in SPARSPAK-A are applied to
the structure of the assembled system stiffness matrix, the zeros within each submatrices
(due to constrained variables or dummy rows) may be exploited and the resulting matrix
may not be in block form.

Secondly, the Cholesky factorization scheme and the upper/lower triangular system
solvers implemented by SPARSPAK-A do not handle constraints or dummy rows (rows of
zeros). I t is therefore necessary to adjust both the system stiffness matrix and the right-hand
side before the nonzero structure and the numerical values are input to SPARSPAK-A. In
the current version of Testbed, while the constraint information is available in a designated
dataset, the dummy rows can be detected only by reading the assembled system stiffness
matrix. The implication is that the system stiffness matrix has to be examined twice -
once for determining its “adjusted” nonzero structure (needed in Step l), and once for
retrieving its numerical coefficients (needed in Step 3). We consider the way we handle
the dummy rows as an interim measure until the dataset format of the generic element
processor is available. I t is expected that the generic element processor will neither assume
uniform degrees of freedom nor store dummy data. Complete details on adjusting the
nonzero structure and the numerical values for input to SPARSPAK-A are given later in
this section.

Thirdly, SPARSPAK-A employs a particular version of the Cholesky factorization algo-
rithm. Since this version of the algorithm computes the Cholesky factor one column at a
time and the part of the matrix remaining to be factored is not accessed during the scheme,
it is commonly referred to as the “Column-Cholesky” algorithm. Depending on how the
modifications to each designated column are accumulated, the Column-Cholesky algorithm
can be described in two different forms. Given in Figure 16 is the commonly known scalar-
product form. These formulas c m be derived directly by equating the elements of A to the
corresponding elements of the product LLT.

Ordering algorithm

29

for j t 1,2, . . ., n do

Figure 16: The scalar-product Column- Cholesk y Factorization Algorithm.

The vector-sum Column-Cholesky algorithm described in Figure 17 is an alternative
formulation which avoids explicitly forming the individual inner products.

for j = 1,2,. . . , n do
for k = 1,2, . . . , j - 1 do (a ;) t (a;) - l j k (

an j an j I n k

Figure 17: The vector-sum Column-Cholesky Factorization Algorithm.

SPARSPAK-A applies the vector-sum Column-Cholesky algorithm to factor a general
sparse matrix. Readers are referred to [12] for a comprehensive description of various storage
schemes which result in efficient implementations of the algorithm.

For n = 5 and j = 3, the in-place Column-Cholesky factorization scheme thus transforms
ai,3 to for 3 5 i 5 5 as depicted in Figure 18. Note that the elements actually involved

Figure 18: Computing the third column of the Cholesky factor L.

30

in computing the third column of L, denoted as L*3, in the above example are shown in
Figure 19. They are the coefficients of the third column of A and those of the computed L
with their row indices greater than or equal to 3. Liu [15] makes the observation that if A is

e3,1 e 3 , 2 a 3 , 3

e 4 , l e 4 , 2 a 4 , 3

t 5 , l t 5 , 2 a 5 , 3

e 3 , l e 3 , 2 e3,3
e 4 , l e 4 , 2 1 4 , 3

t 5 , l 15 ,2 e 5 , 3

Figure 19: The -!;,j’s accessed and the q j ’ s modified in computing L+3

read into memory one column at a time and each column of L is written out to the auxiliary
storage as soon as it is computed, the in-core working space can be economized by keeping
only those !;,j’s which are needed for the current stage of elimination. Suppose the computed
.!;,j’s are saved in a linear array sequentially, we use the above example to demonstrate the
necessary data reorganization when the size of this working array is LNZSZE= 9. As
shown in Figure 20, the l;,j elements are relocated (by overwriting elements which are not
accessed any more) to make room for the newly computed !;,j’s. For this example, data
reorganization is necessary only before computing the third column and the fourth column
of L. Clearly, the larger the size of the working array the fewer number of times the data
reorganization needs to be done.

Figure 20: The organization of -!;,j’s in the working array.

31

In reference [15], Liu applies the idea above to large sparse matrices in his development of
an adaptive general sparse out-of-core Cholesky factorization scheme. One of the advantages
the algorithm features is that the frequency of data structure reorganization is adaptive to
the available working space. Liu’s implementation of the out-of-core Cholesky scheme is
compatible with SPARSPAK-A and is intended to be used in Step 3. We have incorporated
this set of subroutines into an experimental processor in the Testbed and we shall report
its performance on a set of CSM Testbed demonstration problems in Section 5.

4.2.2

Currently the entire interface together with the driver and a subset of SPARSPAK-A mod-
ules are installed as a single processor SPK which can be invoked by the macroprocessor
command [XqT SPK during the execution of the Testbed. The choice provided by this
particular subset of SPARSPAK-A modules is the “Minimum Degree ordering [17]”. Fol-
lowing the guideline contained in Section 6.2.1 of reference [22] for coding new processors,
the main program of the processor SPK is implemented as a subroutine (named “SPK”)
called by the Testbed executive module “NICESPAR”. Referring to the control diagram
given in Figure 21, observe that the subroutine SPK calls another module “SPKA” which
serves as the driver of SPARSPAK-A modules. In short, the subroutine SPKA allocates
memory, sets up the problem by calling CSM-Interface modules, and solves the problem by
calling SPARSPAK-A computational modules. The role the CSM-interface modules play
is to retrieve the assembled linear system to be solved from the global database and input
the problem in an appropriate form to SPARSPAK-A. The design of the processor at this
level is thus generic and may be used with other sparse matrix packages.

The CSM-interface consists of twenty-two modules. For easy reference, we list the
subroutine or function name of each module and its formal parameters (if there is any) in
Table 2 together with those of the two driver subroutines SPK and SPKA. All of these
modules are written in the FORTRAN 77 language and a complete listing of programs
is provided in Appendix C of this report. We shall discuss some implementation issues
in section Section 4.2.3 and describe how these modules interface with the Testbed global
database and SPARSPAK-A in Sections 4.2.4 and 4.2.5. The usage of the interface is
described in Section 4.3.

The Design of the Processor SPK

32

r - - - 1
NICESPAR '-1'

modules modules L - - - - l

1- -1-
rGE-Processog rSPARSPAK-A1

entry points modules

Global t database

L - - - J L - - - J

Figure 21: The control diagram of the new processor SPK.

33

ORIGINAL PAGE IS
Of, POOR QUALm

Table 2: The SPK driver and interface modules.

DRIVERS

SUBROUTINE SPK
SUBROUTINE SPKA (A, MXSTOR)
DOUBLE PRECISION A(1)
INTEGER MXSTOR

CSM-INTERFACE INITIALIZATION MODULES

SUBROUTINE SPKCSM
REAL FUNCTION CTIME (IDUMMY)
INTEGER IDUMMY

CSM-INTERFACE PROBLEM INPUT MODULES

SUBROUTINE G E T J D F I IBUF I
INTEGER*4 IBUF(1)
SUBROUTINE GETDOF (DOF, IBUF)
INTEGER'I DOP(1). IBUF(1)
SUBROUTINE GTZERO I DOF. FBUF. MASK 1
DOUBLE PRECISION FB'UF(1)'
INTEGER*4 MASK(I), DOF(1)
SUBROUTINE GTCOND (DOF, IBUF, KC, MASK, CSIZE)
INTEGER.4 DOF(I) , IBUF(l) , KC(l) , MASK(I) , CSIZE
SUBROUTINE GTMOTI (FBUF, MASK, FCON, CSIZE)
INTEGER'4 MASK(I), CSIZE
DOUBLE PRECISION PBUF(I) , FCON(1)
SUBROUTINE GETIJ DOF. IBUF. ICLO. MASK. S I
INTEGER*4 DOF(l) , <BUF(l\, ICLQ(l) , MASK(1); S(;)
SUBROUTINE GTFORC (FBUP, MASK, S)
INTEGER*4 MASK(1)
DOUBLE PRECISION FBUF(I) , S(1)
SUBROUTINE GTNUMI (DOF, FBUF, MASK, FCON, S)
INTEGER'4 D O N I) . MASKI11
DOUBLE PRECIS~ON FBUF~I'), FCON(I), s(i)

CSM-INTERFACE UTILITY MODULES

INTEGER FUNCTION SPACE (IDUMMY)
INTEGER'4 IDUMMY
SUBROUTINE LIBOPN
SUBROUTINE OKINPO I DSNAMEI
CHARACTER*& DSNAME
SUBROUTINE GTRECI [RECNUM, IBUF, LEN)
INTEGER'I RECNUM, IBUP(l) , LEN
SUBROUTINE G T R E C F (RECNUM, FBUF, LEN)
INTEGER.4 RECNUM, LEN
DOUBLE PRECISION PBUF(1)

CSM-INTERFACE ERROR HANDLING MODULES

SUBROUTINE EMSG
SUBROUTINE EMSGO
SUBROUTINE EMSGl
SUBROUTINE EMSGZ
SUBROUTINE DEMSGO

CSM-INTERFACE STATISTICS MODULES

SUBROUTINE GETSOL (FBUF, SOL, RATIO)
DOUBLE PRECISION FB'uF(i) , SOL(I), RATIO
SUBROUTINE STATCS

34

c

4.2.3 Implementat ion Issues

The two implementation issues we shall discuss in this section are “memory allocation” and
“module/module communication”.

Memory allocation Firstly, we note that the maximum working array storage available to
the processor SPK is determined by the blank common dimension identically declared
in the Testbed executive NICESPAR and the subroutine SPK, namely

COMMON A(KSZZZ)

Consequently, if the number of words provided by the blank common is insufficient
for the processor SPK to solve a particular problem in-core, the dimension of the blank
common must be increased, and the Testbed and the subroutine SPK must both be
recompiled.
We supply blank common of dimension KSZZZ (words) to the subroutine SPKA
as a floating-point array of dimension MXSTOR. To accomplish this, we have the
subroutine SPK execute the following statement:

CALL SPKA (A , MXSTOR)

where the value of MXSTOR is either KSZZZ or KSZZZ/2 depending on whether A
is declared as a single-precision or double-precision array in the subroutine SPKA.
All integer and floating-point arrays required by the CSM-Interface modules and
SPARSPAK-A are then allocated by the subroutine SPKA from the one dimensional
floating-point array A(MXST0R). Note that in order to interact with SPARSPAK-
A, the user is required to pass a working array S to the package and the location
of S is the only parameter appearing in all of the SPARSPAK-A interface modules.
In our case, the array S must be allocated from the working array A(MXST0R).
We have thus divided A(MXST0R) into two segments. The top segment accom-
modates arrays to be passed to the CSM-interface modules and the entire bottom
segment is passed to SPARSPAK-A. If we let the variable MXUSED denote the size
of the top segment, the parameter to be passed to SPARSPAK-A is A(SPK), where
SPK = MXUSED+I.
A labeled common block CSMMAP is designated to keep the locations (origins in
A) of the various arrays. The variables in COMMON /CSMMAP/ and the relative
locations they represent are depicted in Figure 22. The type and size of the working
arrays are tabulated in Table 3. Note that the buffer space for reading integer and
floating-point records has been overlapped.

35

Table 3: The type and size of the SPK working arrays.
1 Actual Size

parame t er
A (D 0 F) NUMJNT+1
A (M A S K) NEQNS

A(ICLQ) MAXDOF
A(BUF) BUFMAX
A(BUF) BUFMAX
A (F C 0 N) CSIZE
A(SPK) MAXSTOR-SPK+1

A (K C) MAXDOF+1

Comments I
N U M J N T r total # of joints
NEQNS 3 total # of equations
MAXDOF 6

maximum buffer length
maximum buffer length
total # of nonzero constraints
the bottom segment of A

Type

INTEGER*4

DOUBLE PRECISION

Module/module communication The following labeled common blocks have been used
to organize the communication between the SPK modules and the CSM Testbed mod-
ules, between the SPK modules and the SPARSPAK-A modules, and among the mod-
ules within the interface.

1. COMMON/IANDO/ IIN, IOUTX. The two integer variables contain user input
and output unit numbers assigned by the Testbed subroutine INTRO when the
new processor begins execution.
The /IANDO/ common appears in the SPK initialization subroutine SPKCSM
and the SPARSPAK-A initialization subroutine SPRSPK.

2. COMMON /SPA USR/ MSGLVA, IERRA, MAXSA, NVARS. The /SPAUSR/
common allows user and/or processor SPK to communicate with SPARSPAK-A
or vice versa. The meaning of the four integer variables are explained in Section
4.3.2 and Section 4.3.3.
The /SPAUSR/ common appears in the SPK subroutine SPKA which serves as
the driver of SPARSPAK-A.

3. The following common blocks are for communication among the SPK modules.
COMMON /CSMSYS/ (6 variables)
COMMON /CSMSPK/ (6 variables)
COMMON /CSMUSR/ (11 variables)
COMMON /CSMMAP/ (7 variables)
COMMON /CSMCON/ (4 variables)
COMMON /CSMD TA/ (8 variables)
COMMON /PRBLEM/ (3 variables)

The collection of related variables into a labeled common block avoids passing
long parameter lists in the use of the subroutines and yet makes the coupling
between modules easy to identify. Comments on the variables contained in these
labeled commons are made at appropriate places throughout Sections 4.2.4,4.2.5
and 4.3.

Formal
parameter
DOF
MASK
K C
ICLQ
IB UF
FBUF
FCON
SPK

36

DOF -
BUF -

MASK -

K C -
ICLQ -
FCON -
SPK -

Figure 22: Storage allocation of the SPK working arrays.

37

labeled commons are made at appropriate places throughout Sections 4.2.4,4.2.5
and 4.3.

c 1

Global

4.2.4

There are eight modules in the interface which retrieve data from the global database and
process them. The names of these subroutines are “GETJDF”, “GETIJ”, “GTZERO”,
“GTCOND”,“GTFORC”,“GTMOTI”,“GTNUM5” and “GETSOL”.We shalluse “GXXXXX”
to represent an arbitrary one of them. All of these modules retrieve datasets from the
Testbed via two utility modules which are either “QKINFO and GTRECI” (for retrieving
integer records) or “QKINFO and GTRECF” (for retrieving records containing floating-
point numbers). Figure 23 depicts the coupling of the interface modules with the GAL-
processors. Readers are referred to reference [26] for a complete description of the calling
sequence and the operation of each GAL-processor employed.

Interfacing with the Global Database

database u Dataset name

Figure 23: The coupling of CSM-interface modules and GAL-processors.

For each designated dataset, the labeled common /CSMSPK/ is used to

38

,

1. provide the input arguments LDI and TRACE to the GAL-processors. (The meaning
of LDI and TRACE is given in Table 4.)

2. store the dataset attributes the interface module QKINFO acquires from the GAL-
processors LMFIND, GMEGKA and GMGECY.

3. communicate the dataset attributes to the interface modules Gxxxx, and the GAL-
processors GMCORN and GMGETN via the interfacemodule GTRECI or GTRECF.

The /CSMSPK/ common thus appears in QKINFO, GTRECI, GTRECI and each Gxxxx
module. The variables contained in /CSMSPK/ and their meaning are given in Table 4.

Table 4: The variables in COMMON /CSMSPK/.

COMMON /CSMSPK/
variable
IDSN
LDI
NLEN
NREC
RTYPE
TRACE

meaning
D at ase t sequence number.
Logical Device Index of library device.
The record length.
The number of records in the dataset.
The data type.
A positive integer used as identifying label
in error traceback prints.

Since the actual data contained in each dataset is unique, each subroutine Gxxxxx must
be specifically coded to interpret the data retrieved. The datasets to be accessed by the
eight interface modules are listed in Table 5. For each dataset, given in Table 5 are also
the name of its source processor and the name of the dedicated interface module. The
last column of Table 5 indicates the appropriate utility module which should be called to
retrieve the type of data provided by the specified dataset.

The data retrieved from each dataset and how they are handled by the interface routines
are described below. Readers are referred to reference [22] for a description of the format
of each dataset.

JDFI.BTAB.1.8 provides the total number of joints and the maximum number of active
(unconstrained) degrees of freedom a joint may have in the model.
The subroutine GETJDF retrieves the data and stores them in the variables NUMJNT
and MAXDOF in the labeled common

/PRBLEM/ MAXDOF, NEQNS, NUMJNT

In an attempt to be flexible in handling the more general case in the future, the sub-
routine GETDOF stores the active degrees of freedom for each individual joint in an

39

Table 5: Datasets accessed by Gxxxxx and GTRECx.

Source Processor
TAB
K

TAB
TOP0
AUS
AUS
K

SSOL

Dataset
JDFl.BTAB.l.8
K.SPAR.jdf2
CON..ncon
KMA P.. nsubs.ksize
APPL. FORC.iset. 1
A PPL. MO TI. iset. 1
K.SPAR.jdf2
STA T. D ISP. iset. ncon

G-
GETJDF
G TZER 0
GTCOND
GETIJ
GTFORC
G TMO T I
GTNUM5
GETSOL

GTRECx
GTRECI
GTRECF
GTRECF
GTRECI
GTRECF
GTRECF
GTRECF
GTRECF

accumulated form in an integer array DOF so that the number of degrees for joint
number I can be computed from DOF(I+l)- DOF(I), where DOF(l)=l, and that
DOF(NUMJNT+l)- DOF(1) gives the total number of equations of the assembled
system. The latter value is also stored in the variable NEQNS in the /PRBLEM/ com-
mon. Since the current version of the CSM Testbed assumes uniform degrees of free-
dom per joint in storing the system stiffness matrix, DOF(If1)- DOF(I)=MAXDOF
for 15 I SNUMJNT.

K.SPAR.jdf2 provides the assembled global stiffness matrix stored as an array of J D F x J D F
submatrices, where JDF is the maximum degrees of freedom in the model and its value
is available from the the variable MAXDOF in the /PRBLEM/ common block. Note
that the integer j d f 2 in the name of this dataset is the square of the value of JDF.
The subroutine GTZERO retrieves the system stiffness matrix and detects dummy
rows by examining its diagonal elements. For each zero diagonal coefficient detected,
a zero is entered into the integer array MASK at the location MASK(I), where I
is the equation number of the dummy row. The convention we have adopted is
that MASK(J)= -1 if the J t h equation is neither constrained nor a dummy row,
MASK(J)= 0 if it corresponds to a dummy row or a zero constraint, MASK(J)= 1 if
it corresponds to a nonzero constraint.

CON..ncon provides constraint information for each joint degree of freedom. The informa-
tion available indicates for each joint which component is free, which component is
constrained to be zero and which component has a non-zero constraint. Such informa-
tion is encoded so that one integer is stored for each joint in the model. The current
encoding mechanism assumes that the maximum number of degrees of freedom a joint
may have is “six”. The constraints corresponding to the six degrees of freedom are
encoded into the right most six bits of a seven-bit integer. The subroutine DECODE
accepts an integer as input and returns the status of each of the MAXDOF degrees

40

of freedom in the leading MAXDOF locations of a working array of length seven.
The subroutine GTCOND retrieves the encoded data from CON..ncon, calls DECODE
to obtain the constraint status for each joint in the model, and sets the corresponding
entries in the integer array MASK to be “0” or “1” as explained above. An inte-
ger output parameter CSIZE records the total number of nonzero constraints whose
numerical values are expected to be available in the dataset APPL.MOTI.iset.1.
Therefore, after both subroutines GTZERO and GTCOND are executed, all con-
straint information is available for other SPK modules in the integer array MASK.
Note that we have treated the dummy rows as if they correspond to zero constraints.

KMAP..nsubs.ksize provides the block nonzero structure of the system stiffness matrix.
Note that the value of nsubs in the name of the dataset represents the total number
of submatrices in the system stiffness matrix for the model, and that the integer ksize
is the maximum number of joints active at any time during the assembly of the system
matrix .
The subroutine GETIJ accesses KMAP..nsubs.ksize and the integer array MASK to
obtain the matrix structure for input to SPARSPAK-A. We explain how the con-
straints are handled in Section 4.2.5.

APPL.FORC.iset.1 provides applied forces and moments on each joint in each active direc-
tion. The integer iset in the dataset name identifies a unique load case.
The subroutine GTFORC retrieves the data but inputs a retrieved numerical value
as a component of the right-hand side vector to SPARSPAK-A only if it does not
correspond to a variable constrained to be zero (i.e., MASK(I)# 0 if I is the equation
number).
Since the right-hand side is initialized to be identically zero in SPARSPAK-A, and the
modifications to the right-hand side caused by nonzero constraints are to be “added”
to the appropriate components by subroutine GTNUM5, the input of right-hand side
to SPARSPAK-A is not completed before the subroutine GTNUM5 is executed.

APPL.MOTI.iset.1 provides applied motions on each joint in each active direction. As
mentioned earlier, the integer ncon in the name of this dataset identifies a particular
constraint case, and numerical values for the nonzero constraints detected by the
subroutine GTCOND are expected from this data set.
The subroutine GTMOTI retrieves the available applied motions and stores them
in a floating-point array FCON(I), where 1 5 I <CSIZE, and CSIZE is the total
number of nonzero constraints determined in the subroutine GTCOND. Therefore,
when CSIZE= 0, the subroutine GTMOTI will return without attempting to access
the dataset. However, when CSIZE> 0, it is a fatal error if the dataset is missing or
less than CSIZE values are available.

41

STAT. DISP.iset.ncon provides the computed static displacements for each joint in each
active direction. Unique solution is obtained by specifying the load set and constraint
case in the name of the dataset.
The subroutine GETSOL retrieves the Testbed solution from this dataset and verifies
the correctness of the SPARSPAK-A solution by computing its relative error with
respect to the Testbed solution. More details in this aspect are provided in Section 5
on numerical experiments.

-
Initialization of SPARSPAK-A
Structure input

Ordering

4.2.5 Interfacing with SPARSPAK-A

The processor SPK may interact with SPARSPAK-A via the interface modules given in
Table 6, which correspond to our choice of the minimum degree ordering (subroutine OR-
DRB5) for the new processor.

Table 6: SPARSPAK-A interface modules - a subset.

U n Factorization and/or Solution
Relative error estimation
Print statistics
Save and Restart the computation

SPRSPK
IJBEGIN
INIJ (I , J , S)
INROW (I , NIR, IR, S)
INIJIJ (NIJ, 11, J J , S)
INCLQ (NCLQ, CLQ, S)
IJEND(S)
ORDRB5 (S)
INAIJ5 (I , J , VAL UE, S)
INROW5 (I, NIR, IR, VALUES, S)
INMAT5 (NIJ, 11, J J , VALUES, S)
INBI(I, VALUE, S)
INBIBI (NI, 11, VALUES, S)
INRHS (RHS, S)
SOLVE5 (S)
EREST5 (RELERR, S)
STATSA
SAVEA (K, S)
RSTRTA (K, S)

42

The coupling of the SPK modules and SPARSPAK-A is depicted in Figure 24. The mod-
ules which interact with SPARSPAK-A are “SPKA”, “GETIJ”, “GTFORC” and “GT-
NUM5”. The module SPKA serves as the driver program of SPARSPAK-A. The module
GETIJ inputs the nonzero structure of the system stiffness matrix to SPARSPAK-A. The
modules GTFORC and GTNUM5 are involved in inputting nonzero coefficients and the
right-hand side to SPARSPAK-A. The particular SPARSPAK-A subroutines to be called
by each of these interface modules are explicitly given inside the dashed boxes.

43

SPRSPK ORDRB5 SOLVE5 EREST5 STATSA
L - - J L - - J L - - J L - - J L - - J

IJBEGN INIJ IJEND

INBI INAIJ5
L - - J L - - J

Figure 24: The coupling of the processor SPK and SPARSPAK-A.

44

Since SPARSPAK-A modules do not handle constraints, the retrieved system stiffness
matrix and the right-hand side must be adjusted before they can be input to SPARSPAK-A.
The necessary modifications to the structure and the numerical values are detailed below.

Input the structure of the system stiffness matrix to SPARSPAK-A - In this sec-
tion we describe how the subroutine GETIJ inputs the the structure of the system
stiffness matrix to SPARSPAK-A. The dataset KMAP..nsubs.ksize contains the sys-
tem topology map. From this map we can retrieve the following information for each
joint.

JNT - The number of the current joint.
CONRNG - The number of submatrices including the diagonal in the upper triangle

CONECT(CONRNG-1) - A list of joints connected to the current joint.

Let us consider the following finite-element model which is given as an example in
reference [23].

for the current joint.

5 6

1 2 3 4

Figure 25: A model.

Table 7: A model.
Element

1 BEAM
2
3
4
5
6 PLATE
7
8

type

n

n

n

n

n

n

Connected
Nodes
192
213
314
295
396
1,295
2,38615
3,4,6

For this model, the information expected to be available in KMAP..nsubs.ksize is
listed in Table 8.

45

Table 8: From dataset KMAP..nsvbs.ksize.
n JNT I CONRNG I CONECT(C0NRNG-1) fl

Given in Figure 26 is the upper triangular block structure of the system matrix (in-
cluding the diagonal blocks) described by Table 8.

Figure 26: Upper triangular block structure of the system matrix for the model problem.

46

If each joint has three degrees of freedom in the model, each block is a 3 x 3 submatrix
and the system stiffness matrix K has the nonzero entries as given in Figure 27.

f 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8

8 8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8

8 8 8
8 8 8

\ 8 8 8

Figure 27: Nonzero entries in the upper triangle of K (including diagonal submatrices.)

If every degree of freedom is active (unconstrained) on each joint, then the structure
input to SPARSPAK-A is as specified in Figure 27. It should be pointed out that
because SPARSPAK-A anticipates only “symmetric” nonzero structure, the struc-
ture input routine always records a logical nonzero in both (i, j) and (j , i) positions
regardless of which index pair is actually being entered. Furthermore, the package
automatically removes duplications so that it does not matter if both (i, j) and (j , i)
pairs are entered.
In order to demonstrate how we handle the constrained degrees of freedom, let us
assume that the second degree of freedom on joint number 5 is constrained. In this
case, the corresponding columns and rows of data in IC except for the diagonal elements
will be treated as zero entries. The nonzero positions SPARSPAK-A is informed of
consist of the remaining nonzeros as given in Figure 28.

47

(8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8

8 8 8 8 8
8

8 8 8 8 8
8 8 8
8 8 8
8 8 8

Figure 28: Remaining nonzero entries in the upper triangle of IC.

As seen from Figure 28, the equations corresponding to the constrained degree of freedom
is the fourteenth equation. We have thus ignored the nonzero entries in locations (i , 14)
and (14, i) for all i’s except for the diagonal entries. Accordingly, the numerical coefficients
corresponding to these ignored locations must not be input to SPARSPAK-A and the right-
hand side must be appropriately adjusted to reflect the change of the system matrix. We
next explain the internal working of our numerical input module.

Input the numerical values to SPARSPAK-A - The subroutine which inputs the nu-
merical values to SPARSPAK-A and modifies the right-hand side according to each
constrained degree of freedom is GTNUMi, where i = 1,3, and 5 distinguishes the
SPARSPAK input modules INAIJi called for each ordering.
To see how the right-hand side should be modified, we refer to Figure 29 for the same
example, where we label each ignored coefficient a ; j explicitly, and indicate that the
coefficient for the diagonal entry a14,14 is set to 1.
Let the nonzero constraint corresponding to the second degree of freedom on joint
number 5 be ~ 1 4 . Our change to the system matrix and right-hand side should reflect
the following.

1. The fourteenth equation is replaced by

48

‘ 8 8 8 8 8 8 8 a1,14 8
8 8 8 8 8 8 az,14 8

8 8 8 8 8 a3,14 8
8 8 8 8 8 8 8 %,I4 8 8 8 8

8 8 8 8 8 8 ‘%,I4 8 8 8 8
8 8 8 8 8 *,l4 8 8 8 8

8 8 8 8 8 8 8 a7,14 8 8 8 8
8 8 8 8 8 8 8 , l C 8 8 8 8

8 8 8 8 8 *,l4 8 8 8 8
8 8 8 8 8 8

8 8 8 8 8
8 8 8 8

8 a13,14 8 8 8 8

8 8 8 8
8 8 8

8 8

1 al4,15 al4,16 a14,17 al4,lB

\ 8

(b l \
b2

b3
b4

b5

b6

b7

b8

t-
b9

bl0

b l l
b12

b14

b13

b l 5

b16

b17

\ bl8 /

Figure 29: Nonzero entries in the upper triangle of IC.

/ b l) (a1,14)
b2 a 2 J 4

b3 a3,14

b4 a 4 J 4

b5 a5,14

b6 a 6 J 4

b7 a7,14

b8 a8 ,14

a9 ,14
c14 - - b9

b io
b l l 0
b12 0

b14 ’ 0
b13 a13,14

b15 a14,15

b16 a14,16

b l 7 a14,17

\ b18 1 \ a14,18 1

49

and the right-hand side element b j , j = 15,16,17,18 must be modified to be

To summarize, for each ai,; coefficient retrieved from the dataset K.SPAR..*, sub-
routine GTNUMi checks whether the corresponding degree of freedom is constrained.
If that is the case, the value of 1.0 will be input to SPARSPAK-A as ai,; and the
constraint value is input to SPARSPAK-A as b;.
For each off-diagonal element ui,j, GTNUMi checks the following four possible cases.

1. If both z; and z j are constrained, no action needs to be taken.

2. If z; is active and z j is constrained to be cj then

b; +- bi - a;j x cj .

3. If z; is constrained to be c; and z j is active then modify

b j +- b j - a i j x ci .

4. If neither z; nor zj is constrained, input the retrieved a; j value to SPARSPAK-A
and specify the location to be (j, i). (SPARSPAK-A requires the numerical value
to be input for the lower triangular part only.)

50

4.3

4.3.1 The Execution Path

The usage of the interface in solving a Testbed problem is reflected by the execution path of
the subroutine SPKA as sketched in Table 9. The execution sequence is enforced by checking
and updating the value of the variable STAGE in the common block /CSMCON/. The
values of STAGE for the successful completion of each corresponding step are listed in the
last column of Table 9.

The Usage of the Interface

Table 9: The execution path of the subroutine SPKA

51

4.3.2

In our current implementation of the processor SPK, the user-processor communication is
accomplished using an external text file. The input requirement and format are reflected
by the following code segment of the subroutine SPKA

User Input to the Processor SPK

C

C

C

C
C
C

C
C
C

C
C
C

1 2
C
C
C

22

32

C

S U B R O U T I B E S P K A (A, HXSTOR

READ (I B D A T A . 12) HSGLVA

SET HAXIHUM B U F F E R LENGTH

READ (I B D A T A , 1 2 BUFHAX
FORMAT(I4)

.........................

________________-________

I B P U T BAHE O F L I B R A R Y ABD D A T A S E T S F O R G I V E B P R O B L M

READ (I I IDATA, 22) L I B I I A H
FOBHAT(A 4 0)
READ (I B D A T A , 32 J D F S E T
READ (I B D A T A , 32) M A P
READ (I I D A T A , 32) K S P A R
READ (I B D A T A , 32) COI
READ (I B D A T A , 32 A P P L F
R E A D (I B D A T A . 32) A P P L H
READ (I B D A T A , 32) S T A T D
FORMAT(A S 1)

..

R E T U R B

E B D

The following comments are in order.

1. As shown in the above code segment, we have designated the logical unit number
41 to be used for the input data file. This choice is made under the restriction that
logical unit numbers 1 through 40 should not be used for files other than libraries to
avoid possible conflicts with CLIP and GAL [22].

52

2. The variable MSGLVA stands for “message level of SPARSPAK-A”. The user may
govern the amount of output from SPARSPAK-A by setting MSGLVA to the values
Table 10.

..
MSGLVA amount of output

0 no information is provided.
1
2
3
4

only warnings and errors are printed.
warnings, errors and summary are printed.
warnings, errors, summary and some statistics are printed.
detailed information for debugging purposes.

~

..
MSGLVL amount of output

0,l no information is provided.
2
3

warnings, errors and summary are printed.
detailed information for debugging purposes.

L

3. The variable MSGLVL allows user to control the amount of output from the interface
modules. Given in Table 11 are the input values acceptable for MSGLVL.

4. The value of BUFMAX should be set to the maximum record length of any dataset
the processor SPK ever needs to retrieve.

5. The variables initialized by user input are collected into the two labeled common
/SPA USR/ and /CSMUSR/.

A, edit a f le named “fort.41” to contain the following data:
6. An example - To solve the linear system of the test problem demo1 using SPARSPAK-

2

2240
/usr.MC68020/nlal/echu/ns/DEMO/demol.101
JDFI.BTAB.1.8
KMAP. .9.3
K.SPAR.36
CON. .I
APPL.FORC.l.1
APPL.MOT1. I. I
STAT.DISP.1.1

53

Note that the path name of the library file “demol.101” is installation dependent. The
dataset names listed above can be identified from the table of contents of the library
demol .lo1 givenin Figure 3. Note that the datasets APPL.FORC.iset.1 and APPL.MOTI.iset.1
may not both exist, and it is indeed the case for the problem demol - one cannot find the
name APPL.MOTI.l.1 listed in the table of contents of its data library. However, as noted
above, we have required the user to input both names in order to maintain a uniform format
for user input. In this case, the variable APPLM is simply a dummy variable, because the
subroutine GTMOTI will not attempt to access this dataset as explained in Section 4.2.4.

~ MSGLVL

0,1,2,3

4.3.3 Output from the Processor SPK

1. Output from SPARSPAK-A: Readers are referred to Section 7 of the SPARSPAK-A
User’s Guide [2] for a complete description of the statistics and error messages output.

2. Output from the interface modules:

(a) Statistics gathering (STATCS) - The information contained in Table 12 may be
printed by the following statement.

Information Variable
Total CSM-time required CSMTIM
Maximum CSM-storage reauired CSMSTR

CALL STATCS

2,3
2,3

Table 12: Information printed by the subroutine STATCS.

“ I

Size of storage array MAXCSM
Number of joints NUMJNT

3

Max degree of freedom per joint
Number of equations
Addresses of arrays

MAXDOF
NEQNS
DOF
B UF
MASK
KC
ICL Q
FCON
SPK

Common block
/CSMD TA/

/CSM USR/
/ P R B L EM/

/CSMMA P/

(b) Error messages (I E R R) - When fatal error is detected, so that the computation
cannot proceed, a positive code is assigned to the variable IERR in the common
block /CSMUSR/. The names of the modules in which the error occurs, the

54

Table 13: Error messages of the processor SPK.

M 0 DULE IER R
SPA CE 1001

LIB OPN 10 11
1012

GETJDF 1013
1014

GE TDOF 10 19
GTZERO 1021
GTCOND 1022
GE TIJ 1023
GTFORC 1024
G TMO TI 1025

1026
1027

GTNUMS 1028
QKINFO 2001

2002
2003
2004
2009

GTRECI 2005
2006

GTRECF 2007
2008

Error message
Insufficient storage. The last stage completed
and the required storage are printed
Cannot open dataset library
The maximum logical device index = 30. The LDI
returned exceeds this value.
Incorrect execution sequence.
Dataset does not have all expected items.
Incorrect execution sequence.
Incorrect execution sequence.
Incorrect execution sequence.
Incorrect execution sequence.
Incorrect execution sequence.
Incorrect execution sequence.
Unexpected nonzero constraint value.
Zero entry for a nonzero constraint occurs.
Incorrect execution sequence.
LMFIND: cannot find dataset.
GMGEKA: record does not exist.
GMGECY: record group key undefined.
GMGECY: segmented record group noted.
Insufficient buffer space. The required value
for the input variable B UFMAX is printed
record type mismatch -
GMGETN: error detected by LMERCD . .
record type mismatch .
GMGETN: error detected by LMERCD .

numerical error codes, and the corresponding error messages a s given in Table 13
m a y be printed by sett ing the variable MSGLVL to be “2” or a higher number.

55

ORIGlfl3L PAGE OS
OF POOR QUALITY

4.3.4

Input data:

An Example - Solving the Testbed problem demo1

2
2
2240
/usr .HC68020/nlal/echu/ns/DMO/dmol. 101
JDFl.BTAB.1.8
KHAP. .9.3
K. SPAR.36
COB. .l
APPL.FORC.l.1
APPL.HOTI.l.1
STAT.DISP.l.1

The following output is produced by the macroprocessor command [xqt SPK:

** BEGIU SPK ** DATA SPACE= 600000 WORDS
1

********** UUIVERSITY OF WATERLOO
********** SPARSE HATRIX PACKAGE
********** RELEASE 3
********** (S P A R S P A K)

+++*** (C) JANUARY 1984
********** ABS1 FORTRAB
********** DOUBLE PRECISIOU
*******+** LAST UPDATE JAUUARY 1984

OUTPUT UUIT FOR ERROR HESSAGES 6
OUTPUT UUIT FOR STATISTICS 6

LIBOPE- OPEE /usr.HC68020/nlal/achu/ns/DEMO/demol.lOl
<DM> OPEN, Ldi: 2, File: /usr.HC68020/nlal/echu/ns/DEMO/demol.10l ,

Attr: rold, Block 1/0

DATASETS TO BE ACCESSED:

JDFl.BTAB.l.8
MAP. .9.3
K.SPAR.36
con. .l
APPL.FORC.l.1
APPL.HOTI.l.1
STAT.DISP.l.1

GETJDF - GET UUPIBER F IUTS AUD . . .
GETDOF - GET DEGREES OF FREEDOH ...
GTZERO - DETECT DUHHY ROWS ...
GTCOlD - GET COBSTMINTED VARIABLES. ..
GTHOTI - GET BOBZERO COBSTRAIBTS...

56

GETIJ - IUPUT UOUZERO STRUCTURES. ..
IJBEGU - BEGIU STRUCTURE I8PUT ...
IUIJ - IUPUT OF ADJACENCY PAIRS ...
IJEUD - EUD OF STRUCTURE IUPUT ...
ORDRBS - H I I I H " DEGREE ORDERIUG ...
GTFORC - IBPUT RIGHT HAUD SIDE.. .

I U B I - IUPUT OF RIGHT HAUD SIDE ...
CTIUHS - GET nonzEm nunERIc . . .
I I IAIJS - INPUT OF HATRIX COHPOEEUTS ...
SOLVES - GEUERAL SPARSE SOLVE ...
ERESTS - ERROR ESTIHATOR . . .
GETSOL - COHPARE WITH TESTBED SOLI . .

HAX. REL ERR COHPARED TO STAT.DISP.1.1

I S 0.48247820-07 :[I COHPOIEIT 26
CSH SOL I 0.28S208672286080+00 WE HAVE 0.28620868604S780+00

STATCS - SYSTEH-CSH STATISTICS ...
S I Z E OF STORAGE ARRAY (HAXCSH)

8WBER OF JOIBTS
HAX DEGREES OF FREEDOH PER JOIUT
EWBER OF EQUATIONS
TOTAL CSH-TIHE REQUIRED
HAXIHUH CSH-STORAGE REQUIRED

STATSA - SYSTEH-A STATISTICS ...
SIZE OF STORAGE ARRAY (HAXSA)
IUHBER OF EQUATIOYS
IWBER OF OFF-DIAGOIAL IOUZEROS
TIHE FOR ORDERIlG
STORAGE FOR ORDERIUG
TIHE FOR ALLOCATIOU
STORAGE FOR ALLOCATIOI
STORAGE FOR SOLUTIOI
TIHE FOR FACTORIZATIOI
TIHE FOR SOLUTIO8
OPERATIOUS 11 FACTOR.IZATIOI
OPERATIOllS I8 SOLUTIO8
TIHE FOR ESTIHATIUG RELATIVE ERROR
OPERATIOUS II ESTIHATIIG REL ERROR
STORAGE FOR ESTIHATIUG REL ERROR
ESTIHATE OF RELlTIVE: ERROR

300000

S
6
30
3.740

2271.

297729
30

336
0.020

442.
0.000

308.
367.
0.040
0.020

966.
396.

1330.
397.

0.040

2.0880-08

57

0.120 TOTAL TIHE REQUIRED
H A X I I " STORAGE REQUIRED 442.

EXIT SPK CPUTIHE= 4 . 2 I/O(DIR.WF)= 0 0

58

5 Numerical Experiments

p648

In this section, we report experimental results of several matrix factorization processors we
have installed in the CSM Testbed.

CSM focus problem 1 - Buckling of a blade-stiffened
panel with a discontinuous stiffener

5.1

For all processors, the tests are performed on the NICE/SPAR demonstration problems
listed in Table 14. The finite element model of CSM focus problem 1 has been refined to
generate larger problems focusl, focus2, focus3 and focus4. The five different meshes we
have used are given in Table 15.

The Specifications of the Test Problems

Table 14: NICE/SPAR demonstration problems.

with finer mesh I
with finer mesh I1
with finer mesh I11
with finer mesh IV

Each problem is completely specified by the datasets in Table 16 except that the load
set APPL.FORC.iset.1 and the applied displacement dataset APPL.MOTI.iset.1 may not
both exist. For example, there is no applied force vector for the panel focus problem and
there is no applied displacements for the static analysis of the mast problem. The value of
ncon selects one of possibly more than one constraint cases and the value of iset specifies a
particular load case of applied force and moments, which is also the load case of the applied
motions if there exist nonzero constraints. Corresponding to each pair of (ncon, iset) there
is a unique solution which may be retrieved from the dataset STAT.DISP.iset.ncon to verify

59

Table 15: User-specified meshes for CSM focus problem 1.

User-specified meshes for CSM focus problem 1 U

the correctness of an experimental processor. The full names of the datasets can be found in
the table of contents of the data library which can be looked up during or after the execution
of a particular analysis in the Testbed. As shown in the example given in Table 16, a “0”
component in the dataset name can be represented by a null entry. A sample content list of
the data library demol . l o 1 is given in Section 2 of this report, which was produced by the
CLAMP directive *TOC during the execution of problem demol. For each test problem, the
path name of its data library and the names of the datasets in Table 16 consist of the user
input to an experimental processor. Note that the use of * as a component of the dataset
name implies a generic wild-card match, hence it should not be used unless the dataset with
its name matching the remaining components is unique in the data library.

Table 16: Data sets accessed by CSM-SPARSPAK interface modules.

The accessed CSM Testbed datasets n

The system Az = b presented to each experimental processor is the upper triangular
part of the system stiffness matrix retrieved from the dataset K.SPAR.jdj2 subject to the
changes necessitated by the way we handle constraints and dummy rows. The modified
system has the following characteristics.

1. The coefficient matrix and the right-hand side are modified so that each equation

60

corresponding to a constrained variable 2; can be replaced by

2.

3.

2; = c; ,
where c; 2 0 is the specified constraint.

The identically zero rows are detected before problem input and the corresponding
variables are treated as being constrained to zero.

The dimension of the modified coefficient matrix is equal to the product of the number
of joints and the degree of freedom per joint in the model. The number of equations of
each demonstration problem is given in Table 17 under the column heading “neqns”.

In Table 17, we summarize the characteristics of the linear systems retrieved for each
demonstration problem. Tlhe entries in the column labeled “# nonzeros in K.SPAR” are
computed from nsubs x jdf2, where we recall that nsubs is the total number of submatrices
in the block upper triangular part (including the diagonal blocks) of the system stiffness
matrix and that jdf2 = JD.F x JDF represents the number of elements in each submatrix.
Therefore, the nonzero count here includes the coefficients in the lower triangular part of the
diagonal blocks and the coefficients in the dummy rows as well as the rows corresponding
to the constrained variables. The actual off-diagonal nonzero elements input to an experi-
mental processor are listed in the last column under the heading of “# off-diag nonzeros in
A”.

6 1

5.2

5.2.1

In Table 18, we list the estimated condition number of the system stiffness matrix for each
test problem. The condition numbers are provided by SPARSPAK-A and their computation
is described in reference [l]. The order of magnitude of the condition numbers indicates
that the single-precision solution of these problems my not have significant digits in some
components. By comparing the single-precision static displacement solutions obtained from
the Testbed processors I N V and SSOL for the same problem using different joint orderings,
our numerical experiments confirm that the loss of all significant digits can indeed occur in
small components of the solution.

The Numerical Properties of the Test Problems

The Conditioning of the System Stiffness Matrix

r
Condition number of

the system stiffness matrix

5.2.2

The condition number estimates we presented in Table 18 indicate that in order to have sig-
nificant digits in all components of the solution to be stored in the dataset STAT.DISP.iset.ncon,
the system stiffness matrix should be stored in double-precision and processors INV and SSOL

The Accuracy of the Computed Solutions

62

should perform the numerical computation in double-precision. The following information
from reference [24] tells us how to ensure that the computations by each processor are
performed with the desired precision.

1. Processor K stores the system stiffness matrix in double precision if the user input
parameter SPDP is reset to 2 as shown in a sample script given later in this paragraph.

2. Processor INV calculates the triangular matrix using double precision if the input
system stiffness matrix dataset is stored in double precision. However, the factors
output by processor INV will be stored in the precision determined by resetting the
user-controlled argument SPDP: 1 (default) = single precision, 2 = double precision.

3. Processor SSOL computes the displacement solution vector in double-precision if the
factored matrix is stored in double-precision.

Therefore, each reset SPDP in the following script excerpt ensures that the output dataset
is in double precision, which in turn ensures that the computation by the next processor is
performed in double precision.

[xqt K

[xqt INV
r e s e t SPDP=2

r e s e t SPDP=2
[xqt SSOL

For each demonstration problem, the solution provided by an experimental processor is
not expected to be identical to the Testbed solutions due to potentially different amounts
of round-off error caused by the following factors.

1. The coefficient matrix of the linear system to be solved by an experimental processor
is ordered differently. That is, processors INV and SSOL solve (in double precision)

(P A P T) PZ = Pf ,
whereas our experimental processor solves (in double precision)

(P A P T) Pi = Pf .
Since the permutation matrix P is induced by resequencing the joints in the model,
it is not the same as the permutation matrix f' chosen by SPARSPAK-A for the
coefficient matrix in general.

63

2. Even for the same ordering of A, the factorization algorithms implemented by different

3. The system stiffness matrix is ill-conditioned.

However, with the condition number estimates available for each system stiffness matrix,
we can estimate the relative error in our solution 2 by the algorithm described in reference 111
and implemented in SPARSPAK-A. On the other hand, by assuming that the Testbed
solution Z is the correct solution we can compute the relative error in 2 by

processors employ a different computation sequence.

We can now verify the correctness of our experimental processors if the relative error com-
puted above is very close to the relative error estimated by SPARSPAK-A with respect to
the true (but unknown) solution. We have listed these two quantities in Table 19 for all test
problems and we see that they are essentially of the same magnitude or sufficiently close
for all problems.

Table 19: Comparing NICE/SPAR solutions Z with SPARSPAK-A solutions 2.

demo9 2.7 x 1.7 x 10-9
demo10 5.6 x 1.6 x 10-5
demo12 5.7 x 4.4 x
demo13 5.8 x 6.9 x

64

5.3 The Experimental Factorization Processors

In this section, we briefly describe the three sparse matrix factorization processors we have
installed in the CSM Testbed. The three processors employ different methods in solving a
sparse symmetric positive definite system

acronym
ND

MDG
RCM
GPS
SEQ

A z = b .

ordering algorithm
Nested dissection (fill minimizer) [12]
Minimum degree (fill minimizer) [12,17]
Reverse Cuthill-McKee (profile minimizer) [12]
Gibbs-Poole-Stockmeyer (bandwidth minimizer) [3]
Sequential joint elimination sequence (Le., no reordering of joints)

1. Processor SPK: The method employed by the processor SPK is the direct solver pro-
vided by SPARSPAKl-A corresponding to the minimum degree ordering algorithm in
reference [19].

2. Processor EXPl: The factorization method employed by the experimental processor
EXPl is the multifrontal method implemented by Liu as described in reference [16].

3. Processor EXP2: The factorization method employed by the experimental processor
EXPZ is the adaptive sparse out-of-core Cholesky scheme recently developed by Liu
~ 5 1 .

Since the factorization methods employed by the processors EXPl and EXPZ use the same
storage scheme as that used by the minimum degree ordering in SPARSPAK-A and they
were intended to be used in conjunction with SPARSPAK-A [15, 161, the same interface
modules for inputing the problem to SPARSPAK-A can be used.

5.4 Numerical Results

We first compare the factorization time of the three experimental processors with that of
the processor I N V . Since the joint ordering can affect the execution time of processor I N V
significantly, we have attempted to report the timing results for all available joint elimination
sequences. The ordering algorithms currently available in the CSM Testbed are listed in
Table 20.

Table 20: The joint ordering methods employed in the CSM Testbed.

Since the ordering algorithms used by processors EXPl and EXP2 are the topological
orderings of the elimination tree induced by the minimum degree ordering [15,18], we have

65

thus used “MDG”’ to represent any one of them. One consequence of the choice of ordering
algorithms by the experimental processors is that the amount of fill-in in the Cholesky factor
is the same for the three of them. From the factorization times reported in Table 21 we
see that the in-core factorization time of processors SPK and EXPl are significantly smaller
than the INV times in most cases as one would expect in view of the 1/0 conducted by
the latter. Except for problem demo7, the saving in execution time ranges from 30% to
58% compared to the fastest INV time. As we have pointed out earlier, the reordering of

demo6
demo7
demo 1 0
demo13

61 53 53 82 82 33 32 45
96 124 101 113 112 93 92 113
60 304 62 203 166 41 40 72

406 283 337

the joint sequence in the model produces a different permutation matrix from that induced
by applying the same ordering algorithm to the coefficient matrix itself. In Table 22, we
compare the quality of the minimum degree algorithm when applying to each case, where
we give the nonzero counts in the system stiffness matrix A and the computed factors. Due
to the different storage schemes employed by the processor INV and SPARSPAK-A, the
fill-in is not measured in exactly the same manner as Table 22 indicates.

Table 22: Comparing the fill-in of different processors.

66

The performance of processors SPK and EXPl are essentially the same in terms of ex-
ecution time. In terms of storage, the in-core multifrontal Cholesky factorization scheme
of processor EXPl requires additional working storage compared with the in-place Cholesky
method provided by processor SPK. However, it should be pointed out that the multiflontal
method lends itself readily to out-of-core implementation [20], in which case the amount
of in-core storage required to perform the entire factorization turns out to be precisely the
same as the required working storage for the in-core version. Readers are referred to ref-
erence [20] for various strategies in minimizing the working storage. In reference [18] the
behaviour of the multifrontal method in a paging environment is studied.

In order to compare the out-of-core performance of processor EXPZ with that of processor
I N V , we should note the following.

1. The number of in-core data reorganizations of the adaptive sparse out-of-core Cholesky
scheme 1151 is dynamically adjusted to the available memory. In particular, if the de-
clared working space is sufficiently large for the given problem, the entire factorization
process will be carried out in-core without reorganizing the data structures. In order
to provide a meaningful comparison of the performance of processor EXP2 in execution
time as well as storage requirement with that of processor I N V , we have run the proces-
sor EXP2 with the minimum amount of in-core storage that will allow EXPZ to execute.
This number can be determined in advance of the actual numerical factorization.

2. The processor EXPZ does 1/0 using ordinary text files. In particular, the sparse
coefficient matrix is saved in a text file and read into memory one column at a time,
and the computed Cholesky factor is written to a text file one column at a time. In the
current implementation, auxiliary storage is not used to reduce the in-core overhead
storage, although it is possible to do so as suggested in reference [15].

3. We have explained in detail how the processor I N V carries out the out-of-core block
LDLT factorization process in Section 3.2 of this report. The 1/0 traffic involved
amounts to retrieving the system stiffness matrix from the dataset K.SPAR.* as well
as the indexing information from the dataset AMAP..i&isize, and outputting the
computed factors to the dataset INV.K.ncon. Because the data are read from or
written to the database one record at a time, the number of disk 1/0 operations is
determined by the record length of each dataset. The default record length of these
three datasets are listed below in Table 23.
Recall that one record has to accommodate at least the amount of data needed to pro-
cess one block row of the coefficient matrix. Hence the default record length may not
be big enough for larger or denser problems and they can again be changed by reset-
ting the designated argument when executing the source processor of each respective
dataset. In particular, if necessary, processor TOP0 will automatically increase the
AMAP record length twice up to a maximum size of 2.25xLRAMAP words. The
number of records contained in each dataset are given under the column heading

67

1
Database interface of processor I N V

Source processor Reset argument Dataset name Default record length
K LREC K. SPA R.* 2240 words

TOP0 LRAMAP AMAP..ic2.isize 1792 words
I N V LRA INV. K.ncon 3584 words

“Records” in the table of contents of the data library created for each particular
analysis.
In summary, the volume of 1/0 involving each individual dataset is roughly the prod-
uct of the number of records and the record length (strictly speaking, the last record
may contain fewer items than are permitted by the specified record length), whereas
the number of disk read/write operations is determined by the number of records.

4. The in-core storage required by the processor INV must accommodate one record
of each dataset in Table 23 in addition to accommodating the maximum number
of submatrices involved during the factorization process. Therefore, as suggested in
reference [24], the memory requirement for processor I N V may be estimated by the
following formula.

number of words = J + L3 + rn (L1 + L2 + n21,) ,

where

J = the number of joints in the structure.

L1 = record length of input dataset K.SPAR.jdf2.
Lz = record length of INV.K.ncon dataset.

L3 = record length of AMAP..ict.isize dataset.

m = 1 for single precision; 2 for double precision.

n = maximum number of degrees of freedom per joint (default 3, 4, 5, or 6).
I , = the maximum number of submatrices in use during any one stage of the fac-

torization process. Its value can be obtained from the processor TOP0 output
parameter SIZE I N D E X or from the value of isize from AMAP..icZ.isize.

It was suggested in reference [24] that this formula may be used to estimate the
amount of space in blank common required by processor I N V . If the number of words
required is larger than the dimension of blank common, the blank common dimension
must be increased and the Testbed must be recompiled.

68

In Table 24, we compiue the factorization time and the memory requirement of processor
I N V with that of the experimental processor EXP2. For each problem, we give the number
of nonzero elements in the Cholesky factor computed by SPARSPAK-A (recall that the
amount of fill-in is the same for all three experimental processors) under the column heading
“NOFNZ”. The ratio of :memory requirement to the size of the computed Cholesky factor
is computed for each problem and displayed for both processors. Note that the quantity of
n21s we use in measuring the memory requirement of processor I N V is an underestimate as
explained above. We use “LNZSZE” to indicate the maximum number of nonzeros which
have to be present in-core for the adaptive sparse Cholesky factorization process to be
successfully executed. The results in Table 24 indicate that the processor EXP2 can be quite
competitive in both time and space.

I I I 1 demo13 I 180315 I 6% I 406 I 25% I 337 H
Comparing the factorization algorithm of processor EXP2 (adaptive out-of-core Cholesky)

with that of processor SPK, we see that the difference in their execution time can be ac-
counted for in the following three aspects.

1. The time spent in data structure reorganization.

2. The time for reading in the coefficient matrix A column by column.

3. The time for writing out the computed Cholesky factor L column by column.
The timing results reported in Table 24 are those with the minimum amount of mem-

ory and maximum number of data structure reorganizations. Since the frequency of data
structure reorganizations can be reduced by providing more memory, there is a potential
tradeoff between time and space. However, the timing results in Table 25 indicate that the
time spent in this regard is too small to justify the more significant increase in storage. We

69

Table 25: Data structure reorganization and factorization time.

can thus conclude that the 1/0 time can be considered to be the sole factor in determining
the speed of processor EXPZ.

Since the multifrontal Cholesky method is also a good candidate for out-of-core imple-
mentation, and we pointed out earlier that the “working storage” required in its in-core ver-
sion is precisely what is needed as working storage in its out-of-core version, it makes sense
to evaluate its out-of-core potential by comparing its minimum working storage requirement
with the memory requirement of processor EXPZ. The results we present in Table 26 indicate
that the two are quite comparable as far as the test problems are concerned.

Table 26: Comparing processor EXPI with EXP2

For completeness, we provide in Table 27 the timing results of three other processors
which are also essential in solving the linear system arising from a Testbed problem, namely
TOPO, K and SSOL.

Finally, we provide in Table 28 the total time in executing the processor SPK in the
Testbed and indicate separately the time attributed to the numerical factorization phase
and the triangular solution phase. The SPK time thus includes the time for retrieving data
from the global database and setting up the problem for the SPARSPAK-A solver.

In summary, our preliminary findings indicate that there are alternative sparse matrix
techniques which are suitable for more general applications and appear to be also competi-

70

Table 27: Timing results of TOPO, K , I N V , SSOL.

-

problem fact soh SPK
focus1 44 sec 2 sec 65 sec
focus2 76 sec 4 sec 107 sec

I I H demo10 I 5 I 18 I 62 I 16 I 101 sec 1

focus3
focus4

I I I I

E m 0 1 3 i 11 I 47 I 406 I 48 1 512 sec

313 sec 9 sec 376 sec
148 sec 6 sec 194 sec

71

tive in execution time and storage usage compared to the techniques currently employed in
the CSM Testbed.

72

Appendix A Installing the Processor SPK

The processor SPK consists of a subset of SPARSPAK-A [2] modules and a set of subroutines
which provide an interface between SPARSPAK-A and the global database of the CSM
testbed. All of the subroutines are provided as a single directory SPARSE on a UNIX tar
tape. The Fortran source for the package is distributed among a number of subdirectories.
There are “make” files provided, so that the person installing the package needs only to
execute a few commands to compile the package and create the run-time library.

It is advisable to read “94 Developing New Matrix Factorization Processors” of this
report before beginning installation of the package. Since the SPARSE package is used in
conjunction with the CSh4 testbed, we assume in the sequel that the NICE/SPAR processors
have been properly installed in the directory /usr/ns/nice and /usr/ns/spar, and that
the SPARSE package is to be installed in the directory /usr/ns/sparse. The hierarchy
of the directory /usr/ns and the files relevant to the installation and use of the SPARSE
package are depicted in Figure 30.

The steps to install the SPARSE package are as follows.

1. Create a directory for SPARSE:

cd /usr/ns
mkdir sparse
cd sparse

2. Copy the files from tape to disk: Put the tape in the tape drive and “tar” the files to
the new disk directory:

tar xvf /dev/device

where device should be the appropriate name of the tape drive on your machine. Do
an “1s” to make sure that three directories (install, csm-intrface and spk-subset)
have been copied from the tape.

3. Edit the installation-dependent subroutines: The package has installation-dependent
subroutines SPK, CTIME, SPKCSM, DTIME and SPRSPK which provide timing
information to the package and set some installation-dependent parameters. In ap-
pendix §B, we provide a set of examples for these subroutines. The sample programs
are written for a SUN/3 workstation running the UNIX operating system at the Uni-
versity of Tennessee Knoxville. Comments in these listings indicate changes which may
be necessary. The subroutine SPK is contained in the directory csm-intrf addriver,
the subroutines CTIME and SPKCSM are contained in the directory csm-intrf ace/system,
and DTIME and SPRSPK are contained in the directory spk-subset/system. Sam-
ples of subroutines required by CTIME, DTIME and SPRSPK can be found in the

73

/usr/ns

install sparse1ib.a spk-subset cam-intrface

Makefile nicespar.ms makefile.nrr.spar driver

spk.f spka .f spkob j s .a

Figure 30: The file system of the directory /usr/ns.

74

directory spk-subset/local; these subroutines are appropriate for machines running
Berkeley 4.2 or 4.3 UNIX and their derivatives such as SUN 05.

4. Edit the make file /usr/ns/sparse/install/Makef ile : Compilation of the package
is performed using a collection of UNIX make files. The most important make file is
called Makef ile found in the directory install; it will invoke the other make files.
The distributed make files assume that the package is running on a SUN workstation.
There are comments in Makefile to help you make the appropriate changes to it
for your installation. There is no need to change the make files in any other sparse
directories.

5 . Create and install the compiled library: After making the required changes to Makef ile,
you are ready to create and install the compiled library. Execute the following com-
mands.

cd /usr/ns/sparse/insta1l
make install

A compiled library sparselib. a will be created in the directory sparse.

6 . Install a new processor in the testbed: Since the SPARSE package is installed as
a processor SPK in the testbed and a CSM processor is a subroutine called by the
NICE/SPAR main. program, it is necessary to compile the SPK driver routines in the
directory /usr/ns/sparse/csm-intrf ace/driver and edit the main program master
file nicespar. ams in the directory /usr/ns/spar. The object code of the SPK driver
routines spk .f and spka.f is contained in a separate library called spkobjs .a in
the driver directory so that it may be updated independent of sparse1ib.a. In
addition, the makefile in the directory /usr/ns/spar must be edited so that the two
libraries can be linked to the executable when it is created. A copy of the properly
edited nicespar. ams and a copy of the edited makefile can be found in the directory
install. The former has the file name nicespar. ams and the latter has the file name
makef ile .ns. spar. With these two files available, the following commands may be
executed to install the new processor SPK in the testbed. Note that you must have
write permission in the directory spar to do this.

cd /usr /ns /sparse/inst all
make spk
cd ../../spax
mv makefile makefile.old
mv nicespar.ams nicespar.ams.old
cp . . /sparse/install/makefile.ns.spar makefile

75

cp ../sparse/install/nicespar.ams nicespar.ams
make

7. When the f i e korcoma. inc is changed: Since the include file korcoma. inc in the
directory spar declares the size of the in-core storage available for every SPAR pro-
cessor, the driver source code spk . f of processor SPK must contain the line

include ’/usr /ns /sp ar / korcomahc’

and it must be recompiled each time the declared size is changed. Since the depen-
dence of spk. o on korcoma. inc is specified in the appropriate make file, the following
commands will not only detect whether the declaration file korcoma.inc has been
modified since spk.0 was last created but also recompile spk.f and update the li-
brary spkobjs .a if that is the case. Finally the executable in the directory spar is
recreated to link to the modified spkobj s .a after the “make” command in the last
line is executed.

cd /usr/ns/sparse/insta1l
make spk
cd ../../spar
make

8. Recover space used by intermediate p e s : If the system on which you are running
is short of disk space, a substantial amount of space used during the installation of
SPARSE can be recovered by deleting the “.o” files and other intermediate files gen-
erated during the creation of the library. To do this, execute the following commands.

cd /usr/ns/sparse/instaU
make clean

If for some reason you must later re-create some or all of the library sparselib. a,
these intermediate files will have to be regenerated, at considerable cost in computer
time. Thus, it is advisable to execute “make clean” only if you really need the space.

76

Appendix B Installation-dependent Subroutines
.
C + + * ' + * ~ * * * * * * m * * * * * * * " * * * * m ~

C SPK A NEW CSM PROCESSOR
C***********************~**~*******
C*************.**
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - THIS IS THE DRIVER F O R INSTALLING INTO NICE/SPAR
OUR INTERFACE MODULIDS AS A SINGLE PROCESSOR WHICH
SOLVES CSM TESTBED PFLOBLEMS USING SPARSPAK-A MODULES,

THE NEW PROCESSOR IS C'ODED AND INSTALLED INTO NICE/SPAR DIRECTLY
FOLLOWING THE GUIDELINES GIVEN IN NASA TECHNICAL MEMORANDOM
89096, NAMELY

(a) THE NAME O F THE PROCESSOR SHOULD BE NO LONGER THAN FOUR

(b) THE PROCESSOR SHOULD BE WRITTEN AS A FORTRAN 77 SUBROUTINE

(c) THE SUBROUTINE SHOULD HAVE NO ARGUMENTS.
(d) THE PROCESSOR SHOULD BEGIN EXECUTION WITH A CALL TO THE

CHARACTERS.

WHOSE NAME IS THE PROCESSOR NAME.

LIBRARY SUBROUTINE "INTRO" WITH THE PROCESSOR NAME
AS THE ONLY ARGUMENT. THE GIVEN NAME IS USED BY THE
"GAL" DATA MANAGER AS THE CREATING PROCESSOR FOR
NEW DATASETS INSERTIBD IN "GAL" LIBRARIES; I T ALSO
APPEARS IN THE INTERACTIVE PROMPT STRING I F THE
"SPAR READER" ROUTINE IS USED FOR INPUT COMMAND
PROCESSING.

(e) THE LABELED COMMON BLOCK /IANDO/ WITH 2 INTEGER VARIABLES
CONTAINING USER INPUT AND OUTPUT UNIT NUMBERS SHOULD B E
INCLUDED IN APPROPRIATE MODULES. THE UNIT NUMBERS ARE
ASSIGNED IN THE SUBROUTINE "INTRO".

(f) CALL LIBRARY SUBROUTINE "FIN" TO CLOSE "GAL" LIBRARIES.

.
W A R N I N G

.
THE PATH NAME O F THE INCLUDE FILE "korcomb.imc"
IS INSTALLATION DEPENDENT.

.
C

C
c
C INCLUDE DECLARATION CONTAINING BLANK COMMON VARIABLES AND
C DIMENSIONS:
C PARAMETER (KSZZZ= '200000)
C c
C

C

SUBROUTINE SPK

COMMON KORE, KEVEN, KORT, A(KSZZZ)

include ' I u ~ ~ . M C (1 0 0 ~ 0 1 u l r l l ~ ~ h ~ ~ u ~ ~ ~ ~ b ~ ~ k ~ ~ ~ o ~ r . i ~ ~ '

INTEGER MXSTORE

IDENTIFY PROCESSOR 7 ! 0 CSM ARCHITECTURE

CALL INTRO ('SPK')

WORKING STORAGE A IS DECLARED AS KSZZZ WORDS WHICH IS
EQUIVALENT TO HALF !CHAT MANY DOUBLE-PRECISION FLOATING
POINT NUMBERS.

MXSTOR = KSZZZl2
CALL SPKA (A, MXSTOR)
CALL FIN (0 , O)
CALL EXIT
END

77

AUGINAL PAGE IS
OF POOR QUALITY

C*+*****+***********'*t******ltlX*******************************a~******************a*
...

C CTIME ELAPSED PROCESSOR TIME
c**+*******************'*"*x'-'*****************"*************a**************~******
..

C
C PURPOSE - CTIME RETURNS THE ELAPSED PROCESSOR TIME SINCE
C I T WAS LAST CALLED. IT USES THE COMMON VARIABLE TIME
C TO REMEMBER THE TIME WHEN CTIME WAS LAST CALLED.
C
c .
C W A R N I N G
c .
C THIS IS AN INSTALLATION DEPENDENT ROUTINE. I T
C SHOULD BE SET UP BY THE INSTALLER OF THE PACKAGE.
C IN THIS EXAMPLE, ROUTINE GTIMER IS THE TIMER ROUTINE
C THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN13
C WORKSTATION RUNNING THE UNIX OPERATING SYSTEM AT THE
C UNIVERSITY OF TENNESSEE KNOXVILLE.
c *..*....****. ..

C
C INPUT PARAMETER -
C IDUMMY - A DUMMY INTEGER VARIABLE.
C
C PROGRAM SUBROUTINE -
C GTIMER.
C .
C

C .
C

REAL FUNCTION CTIME (IDUMMY)

INTEGER IDUMMY, IPRNTE, IPRNTS, MAXINT
REAL RATIOL, RATIOS, TIME , X

C .
C

COMMON ICSMSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
1 TIME

C
.

C
CALL QTIMER (X)
CTIME = X - TIME
TIME = X
RETURN

C
END

ORIGINAL PAGE IS
OF POOR QUALITY

.
C******************************** .
C SPKCSM INITIALIZE PARAMETERS
C********************************.***
.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - T O S E T SYSTEM PARAMETERS AND ASSIGN DEFAULT
VALUES T O SOME USER PA.RAMETERS. I T IS A MACHINE
DEPENDENT ROUTINE. THIS ROUTINE HAS T O B E CALLED
BEFORE ANY OTHER PACKAGE MODULE.

PARAMETERS INITIALIZED -
IPRNTE
IPRNTS

. THE - THE
OUTPUT
O U T P U T

UNIT
UNIT

NUMBER F O R ERROR MESSAGES.
NUMBER F O R STATISTICS.

RATIOL . T H E RATIO O F THE NUMBER O F BITS IN A FLOATING
P O I N T VARIABLE TO THAT IN A LONG INTEGER
VARIABLE. F O R EXAMPLE, I F FLOATING POINT
NUMBERS OCCUPY TWICE AS MANY BITS AS LONG
INTEGERS, RATIOL SHOULD B E SET T O 2.

POINT VARIABLE TO THAT IN A SHORT INTEGER
VARIABLE.

STORED IN A SHORT INTEGER VARIABLE.

RATIOS - THE RATIO O F THE NUMBER O F BITS IN A FLOATING

MAXINT - THE LARGEST POSITIVE INTEGER THAT CAN BE

TIME

STAGE . STARTING STAGE O F SYSTEM-CSM.

- VARIABLE USED BY THE TIMER ROUTINE CTIME.
SEE REMARK

REMARK - THIS INTERFACE PACKAGE ASSUMES THE EXISTENCE O F
A REAL TIME FUNCTION CTIME WHICH RETURNS THE ELAPSED
PROCESSOR TIME SINCE I T WAS LAST CALLED. WITH THE
COMMON VARIABLE TIME, THE INSTALLER O F THE PACKAGE
SHOULD B E ABLE T O WRITE SUCH A FUNCTION, USING THE
INSTALLATION TIMER.

C

C
C********************************.***

SUBROUTINE SPKCSM

C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

C

CHARACTER.40 LIBNAM
CHARACTER'S1 CDUMMY
INTEGER'I IIN, IOUTX
INTEGER.4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MSOLVL, IERR , MAXCSM
REAL RATIOS, RATIOL, !PIME

COMMON ICSMSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON ICSMCONl BUFMAX, MXUSED, MXREQD, STAGE
COMMON ICSMUSRI LIBNAM, MSGLVL, IERR
COMMON IIANDOI IIN, IOUTX

, MAXCSM, CDUMMY(7)

...

W A R N I N G .

T H E FOLLOWING 4 LINES O F CODE ARE INSTALLATION
DEPENDENT. THEY MAY HAVE TO BE MODIFIED BY THE
PERSON INSTALLINQ THIS PACKAGE.

OUR CURRENT ENVIRONMENT - - RATIOL AND RATIOS ARE B O T H 3 . - MAXINT = 2**16 - 1 = 32767

INSTALLATION DEPENDENT PARAMETERS -----------

TIME = 0.0

RATIOL = 2.0
RATIOS = 2.0

MAXINT = 32707

79

c ________________.
C IPRNTE AND IPRNTS ARE BOTH SET TO THE WRITER UNIT
C NUMBER ASSIGNED TO IOUTX WHEN THE NEW PROCESSOR
C IS IDENTIFIED TO THE CSM-ARCHITECTURE.
c

IPRNTE = IOUTX
IPRNTS = IOUTX

C
c ___--_____-_______
C INITIALIZING THE EXECUTION STAGE FOR THE INTERFACE ...
c _----___---___--__
C

C

STAGE = O

RETURN

END

80

ORIGINAL PAGE !.ti
OF POOR Q%ki*TY

C- SPARSPAK-A (ANSI FORTRAN) RELEASE I11 - NAME = DTIME
C (C) UNIVERSITY O F WATERLOO JANUARY 1984
C***~*****8************~***
C************.***
C DTIME DELTA TIME
C********.*********.***************~*************************~*****************
C*****************..**~******************
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - DTIME RETURNS THE ELAPSED PROCESSOR TIME SINCE
IT WAS LAST CALLED. IT USES THE COMMON VARIABLE TIME
TO REMEMBER THE TIME WHEN DTIME WAS LAST CALLED.

.
W A R N I N G .

THIS IS AN INSTALLATION DEPENDENT ROUTINE. IT
SHOULD BE SET UP BY THE INSTALLER OF THE PACKAGE.
IN THIS EXAMPLE, ROUTINE GTIMER IS THE TIMER ROUTINE
THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN13
WORKSTATION RUNNING THE UNIX OPERATING SYSTEM AT THE
UNIVERSITY OF TENNESSEE KNOXVILLE.

..

INPUT PARAMETER -
IDUMMY - A DUMMY INTEGER

PROGRAM SUBROUTINE.
GTIMER.

VARIABLE.

CL+L+L..*.**L*..********t-tl*I.*+...L**************************8************

C

C
.

C

REAL FUNCTION DTIME (IDUMMY)

INTEGER IDUMMY, IPRNTE, IPRNTS, MAXINT
REAL MCHEPS, RATIOL, RATIOS, TIME , X

C
C*******L*********.********~***~*********
C

COMMON lSPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
1 MCHEPS, TIME

C .
C

CALL QTIMER (X)
DTIME = X - TIME
TIME = X
RETURN

C
END

81

C- SPARSPAK-A (ANSI FORTRAN) RELEASE I11 - NAME = SPRSPK
C (C) UNIVERSITY OF WATERLOO JANUARY 1984 .
C***********************************~***************************************~**
C SPRSPK START SPARSPAK-A .
.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - TO SET SYSTEM PARAMETERS AND ASSIGN DEFAULT
VALUES TO SOME USER PARAMETERS. I T IS A MACHINE
DEPENDENT ROUTINE. THIS ROUTINE HAS TO BE CALLED
BEFORE ANY OTHER PACKAGE MODULE.

PARAMETERS INITIALIZED -
IPRNTE - THE OUTPUT UNIT NUMBER FOR ERROR MESSAGES.
IPRNTS - THE OUTPUT UNIT NUMBER FOR STATISTICS.
RATIOL - THE RATIO O F THE NUMBER O F BITS IN A FLOATING

POINT VARIABLE TO THAT IN A LONG INTEGER
VARIABLE. FOR EXAMPLE, IF FLOATING POINT
NUMBERS OCCUPY TWICE AS MANY BITS AS LONG
INTEGERS, RATIOL SHOULD BE SET TO 2.

RATIOS - THE RATIO O F THE NUMBER OF BITS IN A FLOATING
POINT VARIABLE TO THAT IN A SHORT INTEGER
VARIABLE.

STORED IN A SHORT INTEGER VARIABLE.
MAXINT - THE LARGEST POSITIVE INTEGER THAT CAN BE

MCHEPS - THE MACHINE EPSILON (UNIT ROUNDOFF ERROR).
TIME - VARIABLE USED BY THE TIMER ROUTINE DTIME.

STAGEA - STAGE VARIABLE FOR SYSTEM-A.
SEE REMARK.

REMARK - THIS PACKAQE ASSUMES THE EXISTENCE O F A REAL TIME
FUNCTION DTIME WHICH RETURNS THE ELAPSED PROCESSOR TIME
SINCE I T WAS LAST CALLED. WITH THE COMMON VARIABLE
TIME, THE INSTALLER OF THE PACKAGE SHOULD B E ABLE TO
WRITE SUCH A FUNCTION, USING THE INSTALLATION TIMER.

PROGRAM SUBROUTINES -
ALLOW, STIMER.

.
C

C
C**
C

ICPADA, ICPADB, IERRA , IERRB , IPRNTE,

SUBROUTINE SPRSPK

INTEGER
1
1
1

IPRNTS, MAXINT, MAXSA , MAXSB , MCOLS ,
MDCONS, MDEQNS, MSCONS, MSEQNS, MSGLVA,
MSGLVB, NVARS , STAGEA, STAGEB

INTEGER IIN, IOUTX
REAL MCHEPS, RATIOL, RATIOS, TIME
DOUBLE PRECISION EPS , E P S l

C
C********+.*********'*.LL".**LL'*'+'*-'****************n***~******************
c

COMMON lSPKSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
1 MCHEPS. TIME

COMMON ~ S P A U S R ~ MSGLVA, IERRA , MAXSA , NVARS
COMMON /SPACON/ STAGEA, ICPADA(40)
COMMON lSPBUSRl MSGLVB, IERRB , MAXSB , MCOLS , MSEQNS.

COMMON lSPBCONl STAGEB, ICPADB(49)
1 MDEQNS, MSCONS, MDCONS

c -
COMMON IIANDOl IIN, IOUTX

C

a2

.
C c .
C W A R N I N G c ...
C
C DEPENDENT. THEY MAY HAVE T O BE MODIFIED BY THE

T H E FOLLOWING 0 LINES O F CODE AXE INSTALLATION

C

C
C
C
C

100

C

PERSON INSTALLING THIS PACKAGE.

ON A SUN/3 WORKSTATION A T THE UNIVERSITY O F TENNESEE KNOXVILLE: - STIMER IS THE ROUTINE T O START THE TIMER, - ALLOW IS THE ROUTINE T O ALLOW F O R A NUMBER O F
ARITHMETIC UNDERFLOWS BEFORE SYSTEM ABORTS. - RATIOL AND RATIOS ARE 2 AND 4 RESPECTIVELY. - MAXINT = 2**15 - 1 = 31767

TIME = 0.0
CALL STIMER
CALL ALLOW (1154161)

RATIOL = 2.0
RATIOS = 2.0

MAXINT = 32101

IPRNTE AND IPRNTS ARE BOTH SET T O THE WRITER UNIT
NUMBER ASSIGNED T O IOUTX WHEN THE NEW PROCESSOR
IS IDENTIFIED TO THE CSM-ARCHITECTURE.

IPRNTE = IOUTX
IPRNTS = IOUTX

COMPUTE THE MACHINE EPSILON. _________.
E P S = 1.ODO

GO NTINUE
E P S = EFSl1.0DO
E P S l = 1.ODO + EPS
I F (E P S l .GT. 1.ODO) GO T O 100

MCHEPS = EPS*Z.ODO

WRITE (I P R N T S , l l)
11 F O R M A T (1H1

1
1
1

ISX, 4OH********** UNIVERSITY O F WATERLOO
ISX, 40H********** SPARSE MATRIX PACKAGE
/SX, 40H********** (!i P A R S P A K)

1 ISX, 40Hv********* RELEASE 3
1 ISX, 4OH********** (C) JANUARY 1984)

C
WRITE (IPRNTS,22)

22 FORMAT (KX, 40H********** ANSI FORTRAN) r! -
WRITE (IPRNTS.33)

53 FORMAT (SX, 4OH********** DOUBLE PRECISION)
C

WRITE (IP RNTS ,4 4)
44 FORMAT (0X, 4OH********** LAST UPDATE JANUARY 1984)

C
WRITE (IPRNTS,5K) IPRNTE, IPRNTS

5K FORMAT (/ / l o x , SKHOUTPUT UNIT F O R ERROR MESSAGES , I7
1 /lox, 35HOUTPUT UNIT F O R STATISTICS , I7)

C
c -_I_______--_--

C INITIALIZINQ USER VARIABLES F O R SYSTEM-A ... c
C

STAGEA = 0

RETURN
C

END

83

Appendix C Listing of Programs
.
C***~******
C SPK A NEW CSM PROCESSOR
.
.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - THIS IS THE DRIVER FOR INSTALLING INTO NICEISPAR
OUR INTERFACE MODULES AS A SINGLE PROCESSOR WHICH
SOLVES CSM TESTBED PROBLEMS USING SPARSPAK-A MODULES.

THE NEW PROCESSOR IS CODED AND INSTALLED INTO NICE/SPAR DIRECTLY
FOLLOWING THE GUIDELINES GIVEN IN NASA TECHNICAL MEMORANDOM
89096, NAMELY

(a) THE NAME O F THE PROCESSOR SHOULD BE NO LONGER THAN FOUR

(b) THE PROCESSOR SHOULD BE WRITTEN AS A FORTRAN 77 SUBROUTINE

(c) THE SUBROUTINE SHOULD HAVE NO ARGUMENTS.
(d) THE PROCESSOR SHOULD BEGIN EXECUTION WITH A CALL T O THE

CHARACTERS.

WHOSE NAME IS THE PROCESSOR NAME.

LIBRARY SUBROUTINE “INTRO” WITH THE PROCESSOR NAME
AS THE ONLY ARGUMENT. THE GIVEN NAME IS USED BY THE
“GAL” DATA MANAGER AS THE CREATING PROCESSOR FOR
NEW DATASETS INSERTED IN “GAL” LIBRARIES; I T ALSO
APPEARS IN THE INTERACTIVE PROMPT STRINQ I F THE
“SPAR READER” ROUTINE IS USED FOR INPUT COMMAND
PROCESSING.

(e) THE LABELED COMMON BLOCK IIANDOl WITH 2 INTEQER VARIABLES
CONTAINING USER INPUT AND OUTPUT UNIT NUMBERS SHOULD BE
INCLUDED IN APPROPRIATE MODULES. THE UNIT NUMBERS ARE
ASSIGNED IN THE SUBROUTINE “INTRO”.

(I) CALL LIBRARY SUBROUTINE “FIN” T O CLOSE “QAL” LIBRARIES.

. .
W A R N I N Q .

THE PATH NAME O F THE INCLUDE FILE “korcoma.inc”
IS INSTALLATION DEPENDENT.

.
C

C c
C INCLUDE DECLARATION CONTAINING BLANK COMMON VARIABLES AND
C DIMENSIONS:
C PARAMETER (KSZZZ= 200000)
C
c _______________________.
C

C

C
c _______________________.
C IDENTIFY PROCESSOR TO CSM ARCHITECTURE
c
c
C WORKING STORAQE A IS DECLARED AS KSZZZ WORDS WHICH IS
C
C POINT NUMBERS. c

SUBROUTINE SPK

COMMON KORE, KEVEN, KORT, A(KSZZZ)

include ‘ ~ n 1 r . M C 6 8 0 2 0 ~ n l b l ~ c c h u ~ ~ 1 ~ 1 ~ b r ~ k o r c o m ~ . i n c ’

INTEGER MXSTORE

CALL INTRO (’SPK’)

EQUIVALENT TO HALF THAT MANY DOUBLE-PRECISION FLOATING

MXSTOR = KSZZZl2
CALL SPKA (A, MXSTOR)
CALL FIN (0, 0)
CALL EXIT
END

a4

C**~~*********.**********
C*************************"".****a***.********************************a~**********
C SPKA A DRIVER F O R INTERFACE MODULES AND SPARSPAK-A
C*********************************~**"************.****~**********"~***********
.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - THIS IS THE DRIVER CALLING INTERFACE MODULES TO
SOLVE CSM TESTBED PROBLEMS USING SPARSPAK-A MODULES.

INPUT PARAMETERS -
A - AN ARRAY OF MXSTOR DOUBLE-PRECISION FLOATING POINT

MXSTOR - SIZE OF ARRAY A IN DOUBLE-PRECISION FLOATING-POINT
NUMBERS.

NUMBERS.

USER INPUT -
MSGLVL - MESSAGE LEVEL FOR INTERFACE MODULES.
MSGLVA - MESSAGE LEVEL FOR SPARSPAK-A MODULES.
BUFMAX - MAXIMUM BUFFER LENGTH ANTICIPATED.
LIBNAM - NAME OF THE DATA LIBRARY.
JDFSET - NAME OF DATASET JDFI.BTAB.1.8
KMAP - NAME O F DATASET KMAP.O.ninbs.ksisc
KSPAR - NAME OF DATASET K.SPAR.jdf2.0
CON. NAME OF DATASET CON.O.ncon.0
APPLF - NAME OF DATASET APPL.FORC.isel.1
APPLM - NAME OF DATASET APPL.MOTl.iset.1
STATD - NAME O F DATASET STAT.DISP.isei.ncon

INTERFACE MODULES -
SPKCSM, LIBOPN, CTIME. SPACE , GETJDF, GETDOF, GTZERO, GTCOND,
GTMOTI, GETIJ , GTFORC, GTNUM6, STATCS, GETSOL.

SPARSPAK-A INTERFACE MODULES -
SPRSPK, ORDRBS, SOLVES, EREST5, STATSA.

LOGICAL READER UNIT NUMBER FOR USER INPUT - 4 1

.
C

C
SUBROUTINE SPKA (A, MXSTOR)

DOUBLE PRECISION A(1)
INTEGER MXSTOR

C

C
CHARACTER.40 LIBNAM
CHARACTER'bl
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL , IERR , MAXCSM
INTEGER*I
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER"4 MAXDOF, NEQNS, NUMJNT
INTEGER*4
REAL

REAL RATIOS, RATIOL, TIME

INTEGER'I SPACE
REAL CTIME

COMMON ICSMSYSI IPRNTE. IPRNTS. MAXINT. RATIOS, RATIOL. TIME

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

DOF, BUF, MASK, KC, ICLQ, FCON, SPK

MSGLVA.IEIRRA , MAXSA , NVARS
QZTIME. QCTIME, GIJTIM, GFTIME. GMTIME,GNTIME.

1 CSMTIM, CSMSTR

C

C

COMMON)CSMUSR./ LIBNAM, MSGLVL, IERR , MAXCSM,
1 JDFSET. KMAP. KSPAR. CON. APPLF. APPLM. STATD

COMMON /CSMMAP/ DOF; IIUF, MASK, KC, ICLQ, FCON; SPK
COMMON /CSMCON/ BUPMAX. MXUSED, MXREQD. STAQE
COMMON ICSMDTAI GZTIME, GCTIME, GIJTIM, GFTIME, GMTIME,GNTIME,

COMMON IPRBLEMI MAXDOF, NEQNS , NUMJNT
1 CSMTIM, CSMSTR

r!
COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS

C .
C

INTEQER'I JLONG, NLONG, CSIZE
INTEGER-4 IDUMMY, INDATA
REAL RN, RNJNT, ROFFS, ROFFL, DUMMY

85

C
C
C
C

C
C
C

C
C
C

12
C
C
C

C
C
C

C
C
C

22

32
C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C
C

DOUBLE PRECISION RELERR, RELRES

INITIALIZE SPARSPAK-A AND SYSTEM TIMER

CALL SPRSPK _____----------
INITIALIZE THE CSM.SPARSPAK INTERFACE PACKAGE

CALL SPKCSM _------
S E T MSGLVL AS DESIRED _______

INDATA = 41
READ (INDATA, 11) MSGLVL
FORMAT (I4)

S E T MSGLVA AS DESIRED
---__--

READ (INDATA, 12) MSGLVA

SET MAXIMUM BUFFER LENGTH

READ (INDATA, 12) BUFMAX _________________.
INPUT NAME O F LIBRARY AND DATASETS F O R GIVEN PROBLEM

READ (INDATA, '22) LIBNAM

READ (INDATA, 31) JDFSET

READ (INDATA, 32) KSPAR
READ (INDATA, 32) CON
READ (INDATA, 32) A P P L F
READ (INDATA, 32) APPLM
READ (INDATA, 32) STATD

FORMAT(A40)

READ (INDATA, 3a) KMAP

FORMAT(A61)

O P E N T H E LIBRARY __---.
CALL LIB O P N

INITIALIZE T H E TIMER

DUMMY = CTIME(0)
MXREQD = BUFMAX --_____
SIZE O F STORAGE ARRAY __-----

MAXCSM = MXSTOR

CHECK MAXCSM AGAINST MXREQD

IF (SPACE (IDUMMY) .NE. 0) GO T O 9999

RETRIEVE TOTAL NUMBER O F JOINTS AND STORE IN NJMJNT _----------------
CALL G E T J D F (A)

COMPUTE FURTHER STORAGE REQUIREMENT

ROFFS = RATIOS - 0.01
R O F F L = RATIOL - 0.01
R N J N T = NUMJNT + 1
JLONG = IFIX((RNJNT+ROFFL)/RATIOL)
MXREQD = JLONG + BUFMAX
IF (SPACE (IDUMMY) .NE. 0) G O T O 9999

COMPUTE ADDRESSES

D O F = 1
B U F = D O F + JLONG

RETRIEVE DEGREES O F FREEDOM P E R JOINT,
AND INITIALIZE MAXDOF AND NEQNS

CALL GETDOF (A(DOF), A(BUF))

86

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

ADJUST BUFFER SPACE

MXREQD = MXREQD - BUFMAX
BUFMAX = MAX0 (BUFMAX, NEQNS)
MXREQD = MXREQD t BUFMAX
I F (SPACE (IDUMMY) .NE. 0) GO TO 9999
MXUSED = MXREQD

COMPUTE FURTHER STORAGE REQUIREMENT

RN = NEQNS
NLONG = IFIX ((RN+ROFFL)/RATIOL)
MXREQD = MXUSED + NLONG
IF (SPACE (IDUMMY) .NE. 0) GO T O 9999

COMPUTE ADDRESSES

MASK = BUF + BUFMAX

D E T E C T DUMMY ROWS

CALL GTZERO (A(DOF), A(BUP), *(MASK))
MXUSED = MXREQD

COMPUTE FURTHER STORAGE REQUIREMENT

MXREQD = MXUSED + 7
I F (SPACE (IDUMMY) .NE. 0) GO TO 9999

COMPUTE ADDRESSES

K C = MASK + NLONG _________.
DETECT CONSTRAINED VARIABLES

CALL GTCOND (A(DOF), A(BTJF), A(KC), A(MASK), CSIZE)
MXUSED = MXREQD

COMPUTE FURTHER STORAGE REQUIREMENT

MXREQD = MXUSED + MAXDOF + CSIZE
I F (SPACE (IDUMMY) .NE. 0) GO TO 9999 _-_-____
TOTAL STORAGE TO BE USED --------

MXUSED = MXREQD

COMPUTE ADDRESSES

ICLQ = KC t 7
FCON = ICLQ t MAXDOF

GATHER NONZERO CONSTR.AINTS

CALL GTMOTI (A(BUF), A(MASK), A(FCON), CSIZE)

INTERFACE WITH SPARSPAK-A ________.
SPK = MXUSED + 1
MAXSA = MAXCSM - MXUSED

INPUT NONZERO STRUCTURE TO SPARSPAK-A

CALL GETIJ(A(DOF), A(BUF), A(ICLQ), A(MASK), A(SPK))

DETERMINE SYMMETRIC ORDERING

CALL ORDRBS (A(SPK))

INPUT RIGHT HAND SIDE -----__
CALL GTFORC(A(BUF),A(MASK), A(SPK))

INPUT MATRIX COEFFICIENTS AND RIGHT HAND SIDE MODIFICATIONS

CALL GTNUMI(A(DOF), A(BUF), A(MASK), A(FCON), A(SPK))

a7

C
C
C

C
C
C

C
9999

C

PERFORM NUMERICAL FACTORIZATION AND SOLUTION

CALL SOLVES (A(SPK))
CSMTIM = CTIME(0)
CALL ERESTS (RELERR, A(SPK))

COMPARE WITH KNOWN NICESPAR SOLUTION

CALL QETSOL (A(BUF), A(SPK), RELRES)
CALL STATCS
CALL STATSA

CONTINUE
RETURN

END

88

C**L*********************-*****~***
.
C SPKCSM INITIALIZE PARAMETERS
C******************"*************~***
C********************************.***
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - TO SET SYSTEM PARAMETERS AND ASSIGN DEFAULT
VALUES TO SOME USER PARAMETERS. I T IS A MACHINE
DEPENDENT ROUTINE. THIS ROUTINE HAS TO BE CALLED
BEFORE ANY OTHER PACKAGE MODULE.

PARAMETERS INITIALIZED -
IPRNTE - THE OUTPUT UNI[T NUMBER FOR ERROR MESSAGES.
IPRNTS - THE OUTPUT UNIT NUMBER FOR STATISTICS.
RATIOL - THE RATIO OF THE NUMBER O F BITS IN A FLOATING

POINT VARIABLE TO THAT IN A LONG INTEGER
VARIABLE. FOR EXAMPLE, IF FLOATING POINT
NUMBERS OCCUPY TWICE AS MANY BITS AS LONG
INTEGERS, RATIOL SHOULD BE SET TO 2.

RATIOS - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
POINT VARIABLE TO THAT IN A SHORT INTEGER
VARIABLE.

STORED IN A SHORT INTEGER VARIABLE.
MAXINT - THE LARGEST POSITIVE INTEGER THAT CAN BE

TIME - VARIABLE USED BY THE TIMER ROUTINE CTIME.

STAGE - STARTING STAGE OF SYSTEM-CSM.
SEE REMARK

REMARK - THIS INTERFACE PACKAGE ASSUMES THE EXISTENCE O F
A REAL TIME FUNCTION CTIME WHICH RETURNS THE ELAPSED
PROCESSOR TIME SINCE I T WAS LAST CALLED. WITH THE
COMMON VARIABLE TIME, THE INSTALLER O F THE PACKAGE
SHOULD BE ABLE T O WRITE SUCH A FUNCTION, USING THE
INSTALLATION TIMER.

C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

C

CHARACTER'IO LIBNAM
CHARACTER*61 CDUMMY
INTEGER-4 IIN, IOUTX
INTEGER.4 IPRNTE. IPRNTS, MAXINT
INTEGER'I BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MSGLVL. IERR . MAXCSM
REAL RATIOS, RATIOL, 'rIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON ICSMCONI BUFMAX, MXUSED, MXREQD, STAGE
COMMON ICSMUSRI LIBNAIM, MSGLVL, IERR
COMMON l IANDOl IIN, IOUTX

, MAXCSM, CDUMMY(7)

.*..*.*....*.........****~..*..****.. ".******..~~*...*......**~~...
W A R N I N G

.

THE FOLLOWING 4 LINES OF CODE ARE INSTALLATION
DEPENDENT. THEY MAY HAVE TO BE MODIFIED BY THE
PERSON INSTALLING THIS PACKAGE.

OUR CURRENT ENVIRONMENT - - RATIOL AND RATIOS ARE BOTH 2. - MAXINT = 2**16 - 1 = 3:!767

INSTALLATION DEPENDENT PARAMETERS

TIME = 0.0

RATIOL = 2.0
RATIOS = 2.0

MAXINT = 32707

89

C
C
C
C
C

C
C
C
C

C

IPRNTE AND IPRNTS ARE BOTH SET TO THE WRITER UNIT
NUMBER ASSIGNED TO IOUTX WHEN THE NEW PROCESSOR
IS IDENTIFIED TO THE CSM-ARCHITECTURE.

IPRNTE = IOUTX
IPRNTS = IOUTX

INITIALIZING THE EXECUTION STAGE FOR THE INTERFACE ... ______-__________-
STAGE = O

RETURN

END

90

C**** *~~~***
.
C CTIME ELAPSED PROCESSOR TIME .
C**a**********

C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - CTIME RETURNS THE ELAPSED PROCESSOR TIME SINCE
I T WAS LAST CALLED. I T TJSES THE COMMON VARIABLE TIME
T O REMEMBER THE TIME WHEN CTIME WAS LAST CALLED.

.
W A R N I N G .

THIS IS AN INSTALLATION DEPENDENT ROUTINE. IT
SHOULD BE SET U P BY THE INSTALLER O F THE PACKAGE.
IN THIS EXAMPLE, ROUTINE GTIMER IS THE TIMER ROUTINE
THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN13

C
C UNIVERSITY O F TENNESSEE KNOXVILLE. c ..*...............*...l.L*II...~ ="...~~~*~....*-..**~.~~~~"*~-~.".~~~-.*..
C
C I N P U T PARAMETER -
C IDUMMY - A DUMMY INTEGER VARIABLE.
C
C PROGRAM SUBROUTINE -
C GTIMER.
C ~II..*.**I......I...*~*****.*............*.*.**~**.~~**~......*~...~.**........
C

C
C" *I.. *. I... I.. I... 11.1 1.1. ..I I *.......... ...*...
C

WORKSTATION RUNNING THE UNIX OPERATING SYSTEM A T THE

REAL FUNCTION CTIME (IDUMMY)

INTEGER IDUMMY, IPRNTE, IPRNTS, MAXINT
REAL RATIOL, RATIOS, TIME , X

C ~.~~...~.~.~....**~.******...*....."..............~..~~.~..*.*~...~~.......~
C

COMMON ICSMSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
1 TIME

C
.

C
CALL GTIMER (X)
CTIME = X - TIME
TIME = X
RETURN

C
END

91

.

...
C
C***************l l***
.

GETJDF G E T NUMBER OF JOINTS ...

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - THIS ROUTINE RETRIEVES THE TOTAL NUMBER O F JOINTS
FOR THE PROBLEM TO BE SOLVED.

PARAMETERS INITIALIZED -
NUMJNT - THE TOTAL NUMBER OF JOINTS.

E R R O R C O D E S .
0 - ERROR CODES
1013 - INCORRECT EXECUTION SEQUENCE
1014 . THE NUMBER OF ITEMS AVAILABLE FROM THE RETRIEVED

DATASET IS LESS THAN TWO. SEE REMARK.

REMARK -
THE CURRENT VERSION OF TESTBED DATABASE ASSUMES THAT
ALL JOINTS HAVE THE MAXIMUM DEGREES O F FREEDOM, THE
NUMBER O F JOINTS AND THE MAXIMUM DEGREES P E R JOINT IS
FROM THE FIRST TWO ITEMS RETRIEVED. IN CASE OF
VARIABLE DEGREES O F FREEDOM P E R JOINT, DUMMY DATA IS
STORED.

PROGRAM SUBROUTINES .
QKINFO, GETRECI, EMSG

CSM TESTBED DATASETS ACCESSED -
J D F 1 .E TAB .*

C

C

C
C .
C

SUBROUTINE GETJDF (IBUF)

INTEGER*4 IBUF(1)

CHARACTER'IO LIBNAM
CHARACTER.51
INTEGER'4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL. IERR, MAXCSM
INTEGER.4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER.4 MAXDOF, NEQNS , NUMJNT
REAL RATIOS, RATIOL, TIME

COMMON lCSMSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON ICSMUSRl LIBNAM, MSGLVL, IERR, MAXCSM,

COMMON ICSMCONI BUFMAX, MXUSED, MXREQD, STAGE
COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

C

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

C .
C

C

11
C

C
C
C
C
C
C

C

C
C

INTEGER'I LEN

I F (MSGLVL .GE. 2) WRITE (IPRNTS, 11)
FORMAT (/5X, 'GETJDF. GET NUMBER O F JOINTS AND ... ')

I F ((STAGE .LT. 10) .OR. (IERR .NE. 0)) GO T O 100

EACH DATASET IS IDENTIFIED BY A STRING OF
'MAINKEY.EXTENSION.CYCLEl.CYCLE3'
MAXIMUM NUMBER OF CHARACTERS CONTAINED IS 51

CALL QKINFO (JDFSET)
I F (IERR .NE. 0) RETURN

STAGE = 15 ______________.
Q E T THE FIRST TWO ITEMS O F THE FIRST RECORD

92

C

C

C
C
C

C
C
C
C
100

C
200

LEN = 2
CALL GTRECI (1, IBUF, LEN)
IF (IERR .NE. 0) RETURN
IF (LEN .LT. 2) bo T O 200

NUMJNT = IBUF(1) ------ --- --.
READ IN MAX UNCONSTRAINED DEGREES OF FREEDOM O F THE MODEL

MAXDOF = IBUF(1)
STAGE = 20
RETURN

ERROR HANDLING

CONTINUE
IERR = 1013
IF (MSGLVL .GE. 2) CALL IPMSG
RETURN

IERR = 1014
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
END

93

C******************* ' f** .+**+***+****Lfl**
C***
C GETDOF GET DEGREES O F FREEDOM
.
.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - THIS ROUTINE RETRIEVES THE DEGREE O F FREEDOM
FOR EACH INDIVIDUAL JOINT FROM THE DATABASE.

PARAMETERS INITIALIZED -
IDOF - IDOF(K) STORES THE STARTING EQUATION NUMBER F O R

JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
GIVEN BY IDOFIK+l I - IDOFfKI. THE TOTAL NUMBER
O F EQUATIONS is EQUAL T O IDOF(NUMJNTt1) - 1.

INDIVIDUAL JOINT.
MAXDOF - THE MAXIMUM DEGREE OF FREEDOM RETRIEVED FOR AN

THIS SUBROUTINE MUST BE MODIFIED FOR PROBLEMS WITH
VARIABLE DEGREES O F FREEDOM P E R NODE

..

C

C

C .

SUBROUTINE GETDOF (IDOF. IBUF)

INTEGER'4 IDOF(1). IBUF(1)

C

C

1

C

CHARACTER'IO LIBNAM
CHARACTER*51
INTEGER'4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL, IERR, MAXCSM
INTEGER'4 BUFMAX, MXUSED, MXREQD. STAGE
INTEGER*4 MAXDOF, NEQNS , NUMJNT
REAL RATIOS, RATIOL, TIME

COMMON ICSMSYSI IPRNTE. IPRNTS. MAXINT, RATIOS. RATIOL. TIME

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

COMMON ~ C S M U S R ~ LIBNAM, MSGLVL, IERR, MAXCSM,'
JDFSET. KMAP. KSPAR. CON. APPLF. APPLM. STATD

COMMON ICSMCONI BUPMAX, MXUSED, MXREQD, STAGE
COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT

C

C

11
C

C
C
C
C
C

100

C
500

INTEGER'4 DEGREE, I

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 11)
FORMAT(ISX, 'GETDOF - G E T DEGREES OF FREEDOM ... ')

IF ((STAGE .LT. 20) .OR. (IERR .NE. 0)) GO TO LOO

_____________.
THE FOLLOWING LINES O F CODE IS TEMPORARY
F O R THE-FIXED DEGREE PROBLEMS __----____---

DEGREE = MAXDOF
IDOF(1) = 1
DO 100 I = 2. NUMJNT+l

IDOF(1) = IDOF(1-1)tDEGREE
IF (MAXDOF .LT. DEGREE) MAXDOF = DEGREE

CONTINUE
NEQNS = IDOF(NUMJNTt1) - 1
STAGE = 30
RETURN

CONTINUE
IERR = 1019
I F (MSGLVL .GE. 2) CALL EMSG
RETURN

94

C
END

95

ORlGlNAL PAGE BS
Of POOR QUALITY

.
C**** * * * * *" ."* *~**~"~"*** *"* * * * *
C GTZERO DETECT DUMMY ROWS .
.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - THIS ROUTINE IDENTIFIES DUMMY ROWS (ALL ZEROS) IN
THE DATA MATRIX.

INPUT PARAMETERS -
DOF - AN INTEGER ARRAY OF SIZE EQUAL T O THE TOTAL NUMBER OF

JOINTS PLUS ONE.
IDOF(K) STORES THE STARTING EQUATION NUMBER F O R
JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
GIVEN BY I D O F (K t 1) - IDOF(K).
OF EQUATIONS IS EQUAL TO IDOF(NUMJNTt1) ~ 1.

THE TOTAL NUMBER

OUTPUT PARAMETERS -
MASK - THE LINEAR ARRAY MASK STORES A 0 FOR EACH

ZERO DIAGONAL ELEMENT ENCOUNTERED AND A -1
F O R EACH NONZERO DIAGONAL ELEMENT.

WORKING PARAMETERS -
FBUF - A BUFFER OF MAXIMUM RECORD SIZE FOR RETRIEVING

REAL OR DOUBLE PRECISION DATA FORM THE TESTBED.

ERROR CODES -
1021 - INCORRECT EXECUTION SEQUENCE.

SUBPROGRAM MODULES -
QKINFO, GTRECF. EMSQ

CSM TESTBED DATASETS ACCESSED ~

K.SPAR.*

REMARK - THIS ROUTINE IS NEEDED F O R THE CURRENT RELEASE OF
TESTBED DATABASE BECAUSE THE CONSTRAINT DATASET DOES NOT
INCLUDE ZERO ROWS. IN ADDITION, NOTE THAT CURRENTLY
THE TESTBED STORES MAXDOF EQUATIONS P E R JOINT. THEREFORE,
DUMMY ROWS MUST BE INSERTED FOR THE JOINTS WITH DEGREES
LESS THAN MAXDOF.

C
C**~**************
C

C
SUBROUTINE GTZERO (DOF, FBUF, MASK)

DOUBLE PRECISION FBUF(1)
INTEGER*4 MASK(I), DOF(1)

C

C

C

1

1

C

CHARACTER'IO LIBNAM
CHARACTER'Kl
CHARACTER'I RTYPE
INTEGER'I IPRNTE, IPRNTS, MAXINT
INTEGER'4 IDSN , LDI , NLEN , NREC , TRACE
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER'I MSGLVL, IERR, MAXCSM
INTEGER.4
REAL RATIOS, RATIOL, TIME

COMMON ICSMSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON ICSMSPKl IDSN , LDI , NLEN , NREC , RTYPE I

COMMON ICSMCONI BUFMAX, MXUSED, MXREQD, STAGE
COMMON ICSMUSRl LIBNAM, MSGLVL, IERR, MAXCSM,

COMMON IPRBLEMI MAXDOF , NEQNS , NUMJNT

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

MAXDOF , NEQNS , NUMJNT

TRACE

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

96

11
C

C
C
C
C

100
C
C
C
C
C

C

C
C
C

C
C
C
C

550

C
C
C

C
C
C

400

500
200

C
C
C

1

1
22

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 11)
FORMAT(/5X, 'GTZERO - DETECT DUMMY ROWS ... ')

IF ((STAGE .LT. 30) .OR. (IERR .NE. 0)) GO TO 500

INITIALIZE MASK T O BE -1

D O 100 I = 1, NEQNS
MASK(1) = -1

CONTINUE

EACH DATASET IS IDENTIFIED BY A STRING OF
'MAINKEY.EXTENSION.CYCLEl.CYCLE2.CYCLE5'
MAXIMUM NUMBER OF CHARACTERS CONTAINED IS 51

CALL QKINFO (KSPAR)
IF (IERR .NE. 0) RETURN

OVERHD = 0
KOUNT = 0
NZEROS = 0
TRACE = TRACE + 10
DO 200 I = 1, NREC

LEN = NLEN
CALL GTRECF (I, FBUF, LEN)
IF (IERR .NE. 0) RETURN ____----____-
DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD ---_----_--- -----

JGRPS = PBUF(1)
ITEMS = 1
OVERHD = OVERHD + 1
DO 500 I1 = 1, JGRPS

CONRNG = FBUF(ITEMS+l)
JOINT = FBUF(ITEMS+Z)
NROWS = DOF(JOINT+l) - DOP(JO1NT) ____--____
COMPUTE THE SIZE OF DATA ITEMS. IN TOTAL
CONRNG SUBMATRICES INCLUDING DIAGONAL SUBMATICES ___----___

ISIZE = 0
DO 550 IS = 1, CONRNG

CJNT = FBUF(ITEMSS1t IS)
NCOLS = D O F (C J N T t 1) - DOP(CJNT)
ISIZE = ISIZE + NROWS*NCOLS

CONTINUE
ITEMS = ITEMS + 1 + CONRNG
OVERHD = OVERHD + 1 + CONRNG

ACCESS THE DIAGONAL ELEMENTS ON THE DIAGONAL MATRIX

IROW = DOF(JO1NT). 1
NCOLS = NROWS
DO 4 0 0 IS = 1, NCOLS

COEF = PBUP(ITEMS+l:IS-l)*NROWS+IS)

A DUMMY ROW IS DETECTED

I F (COEF .EQ. O.ODO) THEN
MASK (I R O W + IS) := 0
KOUNT = KOUNT + :L

ENDIF
CONTINUE

ITEMS = ITEMS + ISIZE
NZEROS = NZEROS + ISIZE

CONTINUE
CONTINUE

STAGE = 40

PRINT DEBUGGIN DATA ...
I F (MSGLVL .GE. 5) WRITE (IPRNTS, 22) KOUNT,

OVERHD, NZEROS
FORMAT (lSX, 'NUMBER OF DUMMY ROWS: ' , I8

115X. 'K.SPAR.* INDEX OVERHEAD:'. I8
1 j15X; 'K.SPAR.* NONZEROS : ' , IB j

97

RETURN

SO0 CONTINUE
c
C ERRORHANDLING ...
c

IERR = 1021
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
END

98

ORIGINAL PAGE ES
OF POOR QUALITY

.
C**********L***************~******************************~**********************
C GTCOND RETRIEVE CONSTRAINT INFO .
.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - THIS ROUTINE RETRIEVES THE CONSTRAINED COMPONENTS
OF EACH JOINT AND TREATS THE DUMMY ROWS AS CONSTRAINED
TO BE ZERO.

INPUT PARAMETERS -
D O F - AN INTEGER ARRAY OF SIZE EQUAL TO THE TOTAL NUMBER OF

JOINTS PLUS ONE,
IDOF(K) STORES THE STARTING EQUATION NUMBER FOR
JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
GIVEN BY IDOF(K+I) - IDOF(K). THE TOTAL NUMBER
OF EQUATIONS IS EQUAL TO IDOF(NUMJNTt1) - 1.

MASK - RECORD OF DUMMY ROWS.

OUTPUT PARAMETERS -
MASK - RECORD OF CONSTRAINED VARIABLES IN ADDITION TO

DUMMY ONES.
CSIZE - TOTAL NUMBER 01' NONZERO CONSTRAINTS.

WORKING PARAMETERS -
IBUF - A BUFFER OF MAXIMUM RECORD SIZE FOR RETRIEVING

KC
INTEGER DATA FORM THE TESTBED. - AN TEMPORARY INTEGER ARRAY OF SIZE (M A X D O F t I)
NEEDED IN DECODING THE CONSTRAINT DATA.

E R R O R C O D E S -
1022 - INCORRECT EXECUTION SEQUENCE.

SUBPROGRAM MODULES -
QKINFO, GTRECI, DECODE, EMSG

CSM TESTBED DATASETS AClCESSED -
CON..* OR CON..i (IF MULTIPLES EXISTS IN DATA LIBRARY)

REMARKS -
IT IS ASSUMED THAT THE CONSTRAINED DATA IS STORED
IN THE DATASET IN THE ORDER OF JOINT NUMBERS.

C**'
C

CHARACTER.40 LIBNAM
CHARACTER*Il
CHARACTER*I RTYPE
INTEGER'I IPRNTE, IPRNTS, MAXINT
INTEGER'I IDSN , L D I , N L E N , N R E C , T R A C E
INTEGER'I BUFMAX, MXUSED, MXREQD, STAGE
INTEGER'I MSGLVL, IERR, MAXCSM
INTEGER*I
REAL RATIOS, RATl:OL, TIME

COMMON ICSMSYSI IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON ICSMSPKl IDSN , LDI , NLEN , NREC , RTYPE .
COMMON ICSMCONl BUFMAX, MXUSED, MXREQD, STAGE
COMMON ICSMUSRI L1BNA.M. MSGLVL. IERR. MAXCSM.

JDFSET, KMAP, KSPAR, CON. APPLF. APPLM, STATD

MAXDOP , NEQNS , NUMJNT

C

1 TRACE

1 ' JDFSET,'KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON IPRBLEMI MAXDOF , NEQNS , NUMJNT

C
INTEGER'I I, 11, IRO W, JOINT, K, LEN, DEGREE, ZKOUNT,FKOUNT,

1 ZDUMMY
C

99

11
C

C
C
C
C
C
C

C
C
C
C
C

C
C
C

C
C
C

500

200
100

C
C
C
C

400

C
C
C

1

1
1
1

22

C
300

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 11)
FORMAT(ISX, 'GTCOND - G E T CONSTRAINTED VARIABLES... '

I F ((STAGE .LT. 40) .OR. (IERR .NE. 0)) GO TO 500

EACH DATASET IS IDENTIFIED BY A STRING OF
'MAINKEY.EXTENSION.CYCLEl.CYCLE2.CYCLE3~
MAXIMUM NUMBER OF CHARACTERS CONTAINED IS 51

CALL QKINFO (CON)
I F (IERR .NE. 0) RETURN
TRACE = TRACE + 10

KOUNTING NONZERO CONSTRAINTS

CSIZE = 0

KOUNTING ZERO CONSTRAINTS _________
ZKOUNT = 0
JOINT = 1
DO 100 I = 1, NREC

LEN = NLEN
CALL GTRECI (I, IBUF, LEN)
IF (IERR .NE. 0) RETURN
DO 200 I1 = 1, LEN

I F (JOINT .GT. NUMJNT) G O TO '200

CONSTRAINTS ARE ENCODED INTO 7 BITS
WHICH ARE DECODED INTO AN INTEGER
ARRAY KC OF SIZE 7 !

CALL DECODE (IBUF(II), KC)
DEGREE = D O F (J O I N T t 1) - DOF(JO1NT)
IROW = D O F (J 0 I N T) - 1
DO 500 K = 1, DEGREE

IF (KC(K) .EQ. 1) THEN

ZERO CONSTRAINTS

MASK(IROW+K) = 0
ZKOUNT = ZKOUNT + 1

ELSE I F (KC(K) .EQ. '2) THEN

NONZERO CONSTRAINTS

MASK(IROW+K) = 1
CSIZE = CSIZE + 1

ENDIF
CONTINUE

JOINT = JOINT + 1
CONTINUE

CONTINUE

KOUNTING UNCONSTRAINED DEGREES OF FREEDOM AND
THE N E T ZERO CONSTRAINTS INCLUDING DUMMY ROWS

--__---------__

---_-___---____
FKOUNT = 0
ZDUMMY = 0
DO 400 I = 1, NEQNS

IF (MASK(1) .EQ. -1) FKOUNT = FKOUNT + 1
IF (MASK(1) .EQ. 0) ZDUMMY = ZDUMMY + 1

CONTINUE
STAGE = 60

PRINT DEBUGGING DATA ...
IF (MSGLVL .GE. 3) WRITE (IPRNTS, 22) ZKOUNT, CSIZE,
FKOUNT, ZDUMMY
FORMAT(13X, 26H ZERO CONSTRAINTS ARE , I8

/ lSX, ZBHNONZERO CONSTRAINTS ARE
I l S X , 26HFREE VARIABLES ARE
/ lSX, 26HDUMMY ROWS + 0 CONSTRAINTS, I8)

, I8
, I8

RETURN

CONTINUE

100

c -_--_
C ERROR HANDLING
c

IERR = 1022
IF (MSGLVL .DE. 2) CALL EMSG
RETURN

C
END

101

...

.
C GTMOTI GET NONZERO CONSTRAINTS
...
.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - TO RETRIEVE NUMERIC F O R NONZERO CONSTRAINTS.

INPUT PARAMETERS
MASK - CONSTRAINT INFORMATION FOR EACH VARIABLE.

OUTPUT PARAMETERS
MASK - THE LOCATIONS CORRESPONDING TO NONZEROR CONSTRAINTS

CONTAIN A POINTER TO THE NUMERIC VALUE IN FCON.
FCON - AN ARRAY O F CSIZE FLOATING-POINT CONSTRAINTS.

WORKING PARAMETERS
FBUF - A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX.

THE ACTUAL T Y P E IS AS DECLARED.

ERROR CODES -
1026 - INCORRECT EXECUTION SEQUENCE.
1026 - UNEXPECTED NONZERO CONSTRAINT VALUE.
lO2P - ZERO ENTRY FOR A NONZERO CONSTRAINT OCCURS.

SUBROUTINE PROGRAMS -
QKINFO. GTRECF, EMSG.

CSM TESTBED DATASETS ACCESSES.
APPL.MO T1.i.j.

REMARKS -
IT IS ASSUMED THAT THE CONSTRAINT VALUES ARE STORED
IN SEQUENCE FROM 1 TO NEQNS. -__----__-----____

C**
C

C
SUBROUTINE GTMOTI (FBUF, MASK, FCON, CSIZE)

INTEGER'4 MASK(I), CSIZE
DOUBLE PRECISION FBUF(I) , FCON(1)

C .
C

CHARACTER'IO LIBNAM
CHARACTER*61
CHARACTER*4 RTYPE
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER.4 IDSN , L D I , N L E N , N R E C , T R A C E
INTEGER'4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER.4 MSGLVL, IERR, MAXCSM
INTEGER*4
REAL RATIOS, RATIOL, TIME

COMMON ICSMSYSI IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON ICSMSPKI IDSN , LDI , NLEN , NREC , RTYPE ,
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON ICSMUSRI LIBNAM, MSGLVL, IERR, MAXCSM,

COMMON IPRBLEMI MAXDOF , NEQNS , NUMJNT

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

MAXDOP , NEQNS , NUMJNT

C

1 TRACE

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

C
C*****************. .***
C

C
INTEGER'4 NITEMS, K P T R , LEN, I, J

I F (MSGLVL .DE. 3) WRITE (IPRNTS, 11)
11 FORMAT(I S X , 'GTMOTI . G E T NONZERO CONSTRAINTS... ')

C

C

C
C NONZERO CONSTRAINTS ARE NOT EXPECTED

IF ((STAGE .LT. 60) .OR. (IERR .NE. 0)) GO T O 1000

IF (CSIZE .EQ. 0) THEN -----__----_

102

C
IF (MSGLVL .GE. 5) WRITE (IPRNTS, 21)
FORMAT(/lox, 'APPLIED DISPLACEMENTS ARE NOT EXPECTED.')

STAGE = 60
RETURN

21

ENDIF
C c _-I---------_

C
c

RETRIEVE NEQNS ITEMS FORM 'APPL.MOTI.* '

CALL QKINFO (APPLM)
I F (IERR .NE. 0) RETURN
TRACE = TRACE + 10
NITEMS = 0
K P T R = 0
DO 100 I = 1, NREC

LEN = MINO (NEQNS - NITEMS, NLEN)
I F (LEN .GT. 0) THEN

CALL GTRECF (I, FBUF, LEN)
I F (IERR .NE. 0) RETURN
DO 200 J = 1, LEN

NITEMS = NITEMS 4- 1
C
C
C

C
C
C

C
C
C

CHECK ERROR DUE T O INCONSISTENT CONSTRAINT VALUES

1

1

IF ((MASK(N1TEMS) .NE. 1) .AND.

I F ((MASK(N1TEMS) .EQ. 1) .AND.

IF (MASK(N1TEMS) .EQ. 1) THEN

(FBUF(J) .NE. O.ODO)) GO TO 1100

(FBUP(J) .EQ. O.OD0)) GO TO 1200

ENTER NUMERIC FOR NONZERO CONSTRAINT

200

100

C
C
C
C
1000

C
1100

K P T R = K P T R + 1
FCON(KPTR) = FBUP(J)

STORE THE ADDRESS POINTER IN MASK

MASK(N1TEMS) = KlPTR
ENDIF

CONTINUE
ENDIF

CONTINUE
STAQE = 60
RETURN

ERROR HANDLING

CONTINUE
IERR = 1025
IF (MSGLVL .GE. 2) CALL EIMSG
RETURN

CONTINUE
IERR = 1026
I F (MSGLVL .GE. 2) CALL EMSG
RETURN

C
1200 CONTINUE

IERR = 1027
IF (MSGLVL .DE. 2) CALL BMSG
RETURN

C
END

103

.

..
C GETIJ INPUT NONZERO STRUCTURES .
C************L*******~******lf++++*+LL************************~***************
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - TO RETRIEVE NONZERO STRUCTURES FROM DATASET KMAP..*
AND INPUT THE SAME TO SPARSPAK-A.

INPUT PARAMETERS
D O F - AN INTEGER ARRAY OF SIZE EQUAL TO THE TOTAL NUMBER OF

JOINTS PLUS ONE.
IDOF(K) STORES THE STARTING EQUATION NUMBER F O R
JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
GIVEN BY I D O F (K t 1) - IDOF(K). THE TOTAL NUMBER
OF EQUATIONS IS EQUAL T O IDOF(NUMJNTt1) - 1.

MASK ~ CONSTRAINT INFORMATION FOR EACH VARIABLE.

OUTPUT PARAMETERS
S - NONZERO STRUCTURES SET UP BY SPARSPAK-A.

WORKING PARAMETERS
IBUF - AN INTEGER BUFFER O F SIZE BUFMAX.
ICLQ - A TEMPORARY ARRAY OF SIZE MAXDOF.

ERROR CODES -
1025 - INCORRECT EXECUTION SEQUENCE.

SUBROUTINE PROGRAMS -
QKINFO, GTRECI, EMSG

SPRSPAK-A SUBROUTINES -
IJBEGN, INCLQ. INIJ, IJEND.

CSM TESTBED DATASETS ACCESSES.
KMAP..*

C
C*** .*** . ****~.*** . **********************~******** . **** . *******~*****~***********
C

C

C

SUBROUTINE GETIJ (DOF, IBUF, ICLQ, MASK, S)

INTEGER'I D O F (I) , IBUF(l) , ICLQ(1). MASK(1). S (l)

C

C

1

1

c:

CHARACTER*40 LIBNAM
CHARACTER'S1
CHARACTER*I RTYPE
INTEGER'I IPRNTE, IPRNTS, MAXINT
INTEGER*4 IDSN , L D I ,NLEN , N R E C , T R A C E
INTEGER'I BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MSGLVL, IERR, MAXCSM
INTEGER'I
REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,

COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM. STATD

MAXDOF , NEQNS , NUMJNT

TRACE

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

C

1
1

C

11
C

C

C
C

INTEGER*(CONRNG, I , 11, ICOL, IROW, ITEMS, J, JGRPS, JOINT,
K, NCLQ, LEN, IX, JX, LRNG, NODES, J J , N R O W S ,
NCOLS

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 11)
FORMAT(/SX, 'GETIJ - INPUT NONZERO STRUCTURES ... ')
IF ((STAGE .LT, 60) .OR. (IERR .NE. 0)) GO TO 1000

CALL IJBEGN ____-_---__-_-__
INIJ INSURES NONZERO FOR ALL DIAGONAL ELEMENTS

104

C
C
C

C
C
C

C
C
C

C
C
C
C

C
C
C

IF POSITION (NEQNS, NEQNS) IS ENTERED

CALL INIJ (NEQNS, NEQNS , S)

ACCESS EACH RECORD IN DATA SET 'KMAP..* '
CALL QKINFO (KMAP)
IF (IERR .NE. 0) RETURN
TRACE = TRACE + 10
DO 100 I = 1, NREC

LEN = NLEN
CALL GTRECI (I, IBUF, LEN)
IF (IERR .NE. 0) RETURN

DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD

JGRPS = IBUF(1)
ITEMS = 1
DO 200 I1 = I , JGRPS

G E T THE CURRENT JOINT AND COMPUTE THE ROW NUMBER

JOINT = IBUF(ITEMSt1)

NUMBER O F DEGREES F O R CURRENT JOINT

NROWS = DOF(JOINT+I) - DOF(JO1NT)

COMPUTE THE THE ROW NUMBER BY IROW + K,
WHERE IROW IS GREATER THAN OR EQUAL T O 0

IROW = DOF(JO1NT) - f
NCLQ = 0
DO 300 K = 1, NROWS

I F (MASK (IROW + :K) .EQ. -1) THEN

THIS ROW IS NOT CONSTRAINED _________
NCLQ = NCLQ + 1
ICLQ(NCLQ) = IROW + K

ENDIF
300 CONTINUE

C
C INPUT DIAGONAL BLOCK TO SPARSPAK
C

C
C SKIP UNRELATED ITEMS IN CURRENT JOINT GROUP
C

IF (NCLQ .GT. 0) CALL INCLQ(NCLQ, ICLQ, S)

LRNG = IBUF(ITEMSt2)
ITEMS = ITEMS + 1
D O azo JJ = 1, LRNG

NODES = IBUF(1TEMS + 1)
ITEMS = ITEMS + 6 + (NODES"(NODES+I))/Z

220 CONTINUE
C
C
C

C
C
C
C

_--.
NUMBER OF SUBMATRICES FOR THE CURRENT JOINT

CONRNG = IBUF(ITEMS+I)
ITEMS = ITEMS + 1

ENTER NONZERO IN 'THE CONNECTED SUBMATRIX
IN ADDITION TO THE DIAGONAL SUBMATRIX

DO 400 J = 1, CONRNG-1
JOINT = IBUF(1TEMS + J)

DEGREE OF FREEDOM OF THE CONNECTED JOINT

NCOLS = DOF(JOINT+l) - DOF(JO1NT)

COMPUTE STARTING COLUMN NUMBER

ICOL = DOF(JO1NT) - 1

COMPUTE NONZERO POSITION COLUMN BY COLUMN

105

1
C
C
C
C

550
500
400

C
C
C
200

C
C
C

C
100

C
1000
C
C
C

D O 500 J X = 1, NCOLS
DO 660 IX = 1, NROWS

IF ((M A S K (I C 0 L t J X) .EQ. - 1) .AND.
(M A S K (I R 0 W t I X) .EQ. -1)) THEN

T H E CORRESPONDING VARIABLES
ARE N O T CONSTRAINED

-----____

CALL INIJ (IROWSIX, I C O L t J X , S)
ENDIF

CONTINUE
CONTINUE

CONTINUE
ITEMS = ITEMS t Z'CONRNG - 1

END O F CURRENT JOINT GROUP

CONTINUE

END O F C U R R E N T R E C O R D _______
CONTINUE

CALL IJEND (S)
STAGE = 70
RETURN

CONTINUE

ERROR HANDLING

IERR = 1023
IF (MSGLVL .DE. 2) CALL EMSG
RETURN

C
E N D

106

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - TO RETIEVE RIGHT HAND SIDE FROM DATASET APPL.PORC.i.j
AND INPUT THOSE COMPONENTS CORRESPONDING TO UNCONSTRAINED
VARIABLES T O SPARSPAK-A,.

INPUT PARAMETERS
MASK - CONSTRAINT INFOELMATION FOR EACH VARIABLE.
S - INPUT TO SPARSPAK-A ROUTINES.

OUTPUT PARAMETER
S - SPARSPAK-A OUPUT.

WORKING PARAMETERS
FBUF - A REAL OR DOUBLE, PRECISION BUFFER O F SIZE BUFMAX.

THE ACTUAL T Y P E IS AS DECLARED.

ERROR CODES -
1024 - INCORRECT EXECUTION SEQUENCE.

SUBROUTINE PROGRAMS -
QKINFO, GTRECF, EMSG.

SPRSPAK-A SUBROUTINES -
INBI.

CSM TESTBED DATASETS ACCESSES -
APPL.FORC.i.j.

~

REMARKS -
I T IS ASSUMED THAT THE ROWS CORRESPONDING TO DUMMY AND
CONSTRAINED VARAIBLES ARE INCLUDED IN THE DATA MATRIX.

C

C

1

1

C

CHARACTER*40 LIBNAM
CHARACTER.51
CHARACTER*4 RTYPE
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER'4 IDSN . L D I .NLEN . N R E C . T R A C E

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

~~ ~~ ~ ~

INTEQER'4
INTEGER'I

BUFMAX. MXUSED, MXREQD; STAGE
MSGLVL. IERR. MAXCSM

INTEGER'I MAXDOF , NEQNS , NUMJNT
REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,
COMMON ICSMCONI BUFMAX. MXUSED. MXREQD. STAGE

TRACE

COMMON ~ C S M U S R ~ LIBNAM, MSGLVL, IERR, MAXCSM,
JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

I F ((STAGE .LT. 70) .OR. (IERR .NE. 0)) GO T O 1000
C c
C RETRIEVE RIGHT HAND SIDE FORM 'APPL.FORC.* '

107

C

C
C
C

C
C
C

C
C
C

C
C
C

200

100

C
900

C
C
C

11

C
1000
C
C
C

C

CALL QKINFO (APPLF)

NOTE APPLYPORC.. DOES NOT NECESSARILY EXIST -___-__________
IF (IERR .NE. 0) GO T O 900
TRACE = TRACE + 10
IROWS = 0
DO 100 I = 1, NREC

LEN = MINO (NEQNS - IROWS, NLEN)
IF (LEN .GT. 0) THEN _-___.

READ NEXT RECORD

CALL GTRECF (I, FBUF, LEN)
IF (IERR .NE. 0) RETURN

RETRIEVE EACH ITEM IN CURRENT RECORD

DO 200 J = 1, LEN
IROWS = IROWS + 1
I F (MASK (IROWS) .EQ. -1) THEN

THE VARIABLE IS NOT CONSTRAINED __________.
CALL INBI (IROWS, PBUF(J), S)

ENDIF
CONTINUE

ENDIF
CONTINUE

STAGE = 80
RETURN

CONTINUE

RIGHTHAND SIDE DOES NOT EXIST

IF (MSGLVL .GE. 3) WRITE (IPRNTS, 21)

IERR = 0
STAGE = 80
RETURN

FORMAT(/lox, 'THERE IS NO APPLIED FORCE VECTOR')

CONTINUE

ERROR HANDLING

IERR = 1024
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

END

108

..
C**~
C
..
.

GTNUMS ... INPUT NONZERO NUMERICS

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - T O RETRIEVE AND INPUT NUMERICAL NONZEROS OF THE
SYSTEM MATRIX. IN ADDITION, RIGHT HAND SIDE IS APPROP-
RIATELY ADJUSTED USING CONSTRAINTS AVAILABLE.

INPUT PARAMETERS
DOF - AN INTEGER ARRAY OF SIZE EQUAL T O THE TOTAL NUMBER OF

JOINTS PLUS ONE.
IDOF(K) STORES THE STARTING EQUATION NUMBER FOR
JOINT K, THE DEGREIES OF FREEDOM FOR JOINT K IS
GIVEN BY IDOF(K+I) - IDOF(K). THE TOTAL NUMBER
OF EQUATIONS IS EQUAL T O IDOF(NUMJNT+l) - 1.

CONTAIN A POINTER TO THE NUMERIC VALUE IN FCON.
THE OTHER LOCATIONS INDICATE FREE OR CONSTRAINED
TO ZERO VARIABLES.

FCON - AN ARRAY OF CSIXE FLOATING-POINT CONSTRAINTS.
S - STORAGE ARRAY F O R SPARSPAK-A.

MASK - THE LOCATIONS CORRESPONDING TO NONZEROR CONSTRAINTS

WORKING PARAMETERS
FBUF - A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX.

THE ACTUAL T Y P E IS AS DECLARED.

ERROR CODES.
1028 - INCORRECT EXECUTION SEQUENCE,

SUBROUTINE PROGRAMS -
QKINFO, GTRECF, EMSG.

SPARSPAK-A ROUTINES -
INAIJII, INBI.

CSM TESTBED DATASETS ACCESSES -
K.SPAR.*.

REMARKS -
IT IS ASSUMED THAT THE VARIABLES ARE ORDERED IN THE
GIVEN ORDER OF THE JOINTS AND DEGREES.

"
C

C
SUBROUTINE GTNUMS (DOF, FBUF, MASK, FCON, S)

INTEGER'I DOF(I) , MASK(1)
DOUBLE PRECISION P B U F (l) , FCON(l) , S (1)

C .
C

C

1

1

C

CHARACTER'IO LIBNAM
CHARACTER.51
CHARACTER'I RTYPE
INTEGER'I IPRNTE, IPRNTS, MAXINT
INTEGER'4 IDSN , L D I , N L E N , N R E C , T R A C E
INTEGER.4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER"4 MSGLVL, IEIRR, MAXCSM
INTEGER*I
REAL RATIOS, RATIOL, TIME

COMMON lCSMSYSl IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON ICSMSPKl IDSN , LDI , NLEN , NREC , RTYPE ,
COMMON {CSMCONl BUFMAX, MXUSED, MXREQD, STAGE
COMMON ICSMUSRI LIBNAM, MSGLVL, IERR, MAXCSM,

COMMON IPRBLEMl MAXUOF . NEQNS , NUMJNT

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM. STATD

MAXDOF , NEQNS , NUMJNT

TRACE

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

.
C

INTEGER'I CONRNG, I, 11, ICOL, IROW, ISTRT, ITEMS,
1 JGRPS, JOINT, M, MTXKNT, MYI, MYJ, NCOL,

109

1

11
C

C
C
C
C

C
C
C

C
C
C

C
C
C

1

C
C
C

1

1

1
C

NROW, LEN , NCOLS, NROWS
DOUBLE PRECISION COEF, BIX. BJX

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 11)
FORMAT(/SX, 'GTNUM5 . G E T NONZERO NUMERIC ... ')
IF ((STAGE .LT. 80) .OR. (IERR .NE. 0)) GO T O 1000

_____---------
ACCESS EACH RECORD IN DATA SET 'K.SPAR.* '

CALL QKINFO (KSPAR)
IF (IERR .NE. 0) RETURN
TRACE = TRACE + 10
DO 100 I = 1, NREC

LEN = NLEN
CALL GTRECF (I , FBUF, LEN)
IF (IERR .NE. 0) RETURN

DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD

JGRPS = PBUF(1)
ITEMS = 1
DO 200 I1 = 1, JGRPS

G E T NUMBER OF SUBMATRICES ________.
CONRNG = FBUF(ITEMS+l)

G E T THE CURRENT JOINT
__-----
--_----

JOINT = FBUF(ITEMS+I))
IROW = DOF(JO1NT) ~ 1
NROWS = D O F / J O I N T + l) - D O F (J 0 I N T)
ISTRT = ITEMS -t i + CONRNG .
RETRIEVE U P P E R TRIANGULAR PART OF DIAGONAL SUBMATRIX

NCOLS = NROWS
DO 400 NCOL = 1, NCOLS

MYJ = IROW + NCOL
DO 500 NROW = 1, NROWS

ISTRT = ISTRT -+ 1
I F (NROW .GT. NCOL) GO T O 500
COEF = FBUF(1STRT)
MY1 = IROW + NROW -----------
RETRIEVE THE NONZERO CONSTRAINTS

I F (MASK(MY1) .GT. 0) BIX = FCON(MASK(MY1))
I F (MASK(MYJ) .GT. 0) BJX = FCON(MASK(MYJ))
I F (MY1 .EQ. MYJ) THEN

I F (MASK(MY1) .NE. -1) THEN

CHANGE DIAGONAL ELEMENT T O B E 1.ODO
F O R CONSTRAINED R O W

COEF = 1.ODO

ENTER NONZERO CONSTRAINT VALUE AS RHS -----------
I F (MASK(MY1) .GT. 0)

CALL INBI (MYI, BIX, S)
ENDIF _________
INPUT DIAQONAL ELEMENT COEF -________

CALL INAIJS (MYI, MYI, COEF, S)
ELSE IF ((MASK(MYJ) .GT. 0) .AND.

(MASK(MY1) .EQ. -1)) THEN
CALL INBI (MYI, -COEF*BJX, S)

(MASK(MYJ) .EQ. -1)) THEN
CALL INBI (MYJ, -COEF*BIX, S)

ELSE IF ((MASK(MY1) .GT. 0) .AND.

ELSE I F ((MASK(MY1) .EQ. -1) .AND.
(MASK(MYJ) .EQ. -1)) THEN

110

C
C

500
C
C
C
400

C
C
C
C

C
C
C

C
C
C

1
C
C
C
C

1

1

1

1

900
C
C
C

C
C
C

C
C
C

800

600

199
200

C
C
C

I N P U T C O E F IN LOWER TRIANGULAR MATRIX

CALL INAIJ5 (MYJ, MYI, COEF, S)
ENDIF

CONTINUE

NEXT COLUMN IN DIAGONAL SUBMATRIX

CONTINUE

RETRIEVE OFF-DIAGONAL SUBMATRICES IN THE UPPER
TRIANGULAR P A R T OF THE SYSTEM STIFFNESS MATRIX

MTXKNT = CONRNG - 1
I F (MTXKNT .EQ. 0) G O T O 199
ITEMS = ITEMS + 2
DO 6 0 0 M = 1, MTXKNT

JOINT = FBUF(1TEMS + M)
ICOL = DOF(JO1NT) . 1
NCOLS = D O F (J O I N T t 1) . DOF(JO1NT)
DO 800 NCOL = 1, NCOLS

MYJ = ICOL + NCOL
DO BOO NROW = 1, NROWS

ISTRT = ISTRT -I 1
C O E F = FBUF(ISTR1P)
MY1 = IROW + NROW

RETRIEVE NONZERLO CONSTRAINTS

IF (MASK(MY1) .GT. 0) BIX = FCON(MASK(MY1))
IF (MASK(MYJ) .GT. 0) BJX = FCON(MASK(MYJ))

I N P U T COEF O R MODIFY RIGHT HAND SIDE

IF ((MASK(MY1) .EQ. -1) .AND.
(MASK(MYJ) .EQ. -1)) THEN

ENTER COEF WITH SYMMETRIC POSITION
IN LOWER TRIANGULAR T O SPARSPAK-A

IF (MY1 .LT. MYJ)

IF (MY1 .GT. MYJ 1
CALL INAIJli (MYJ, MYI, COEF, S)

CALL INAIJ5 (MYI, MYJ, COEF, S)
ELSE IF ((MASK(MY1) .GT. 0) .AND.

CALL INBI (MYJ, -COEF*BIX, S)
ELSE I F ((MASK(MYJ) .GT. 0) .AND.

(MASK(MY1) .EQ. -1)) THEN
CALL INBI (MYI, -COEF*BJX, S)

(MASK(MYJ) .EQ. -1)) THEN

ENDIF
CONTINUE

NEXT COLUMN

CONTINUB

NEXT SUBMATRIX

CONTINUE

PROCESS THE NEXT JOINT GROUP I N THE CURRENT RECORD

ITEMS = ISTRT
CONTINUE

N E X T R E C O R D

100 CONTINUE
STAQE = 90
RETURN

C
1000 CONTINUE
c
C ERROR HANDLING
c

IERR = 1028

111

IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
END

112

C.********************************. .*************~******************~*************
Ca**** * * * * * * * * * * * * * * ' t *L** . * * * . l . I . . l t t * * * * * * * *v** * *~*~*** * * * * * * * * *a** * * * * * * * * *~**

C
.
.
C
C
C
C SUBROUTINE PROGRAMS.
C EMSG.
C .
C

C

C

SPACE CHECK AVAILABLE STORAGE

PURPOSE - CHECK STORAGE REQUIRED AGAINST STORAGE AVAILABLE.

INTEGER FUNCTION SPACE (IDUMMY)

INTEGER*4 IDUMMY

CHARACTER*4O LIBNAM
CHARACTER'S1 CDUMMY
INTEGER*4 MSGLVL , IERR , MAXCSM
INTEGER'I BUFMAX, MXlJSED, MXREQD, STAGE

COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(7)
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE

C

C
.
C

IF (MXREQD .LE. MAXCSM) THEN
SPACE = 0
RETURN

SPACE = 1
GO TO 100

ELSE

ENDIF
C c
C ERROR HANDLINQ c
100 CONTINUE

IERR = 1001
I F (MSGLVL .GE. 2) CALL EMSG
RETURN

C
END

113

C**.*********************************
C***LLLLL.*+*********** t t l t l *** I l ***** t f**a

C LIBOPN OPEN DATA LIBRARY ...
~ X L * * * * * * * * * * L * ~ *

C
C PURPOSE - THIS ROUTINE OPENS AN EXISTING LIBRARY RESIDENT
C ON A DISKFILE OR MAIN STORAGE, AND CONNECTS I T T O A
C LOGICAL DEVICE INDEX (LDI). THE NAME O F THE LIBRARY
C IS SPECIFIED BY PARAMETER LIBNAM.
C
C
C
C
C
C
C
C
C
C

PARAMETERS INITIALIZED -
LDI - LOGICAL DEVICE INDEX ASSIGNED TO THE EXTERNAL

DEVICE SPECIFIED BY LIBNAM.

E R R O R C O D E S -
0 - N O E R R O R .
1011 - UNSUCCESSFUL OPEN.
1012 - THE LOGICAL DEVICE NUMBER EXCEEDS THE MAXIMUM VALUE

O F 30.
C
C GAL-PROCESSOR ENTRY POINTS -
C LMOPEN, EMSG.
C
.

C

C .
C

SUBROUTINE LIBOPN

CHARACTER'IO LIBNAM
CHARACTER'LI
CHARACTER'I RTYPE
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGERl4 MSGLVL, IERR , MAXCSM
INTEGER'4 IDSN , L D I , N L E N , N R E C , T R A C E
INTEGER*4 ICPAD , STAGE
REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON ICSMUSRl LIBNAM, MSGLVL, IERR , MAXCSM,

COMMON ICSMSPKl IDSN , LDI , NLEN NREC , RTYPE ,

COMMON ICSMCONl ICPAD(3), STAGE

INTEGER'I LMOPEN

JDFSET. KMAP. KSPAR, CON, APPLF, APPLM. STATD

C

1

1 TRACE

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

C

C
C**** *~*** * * * * * * * * * * *~*** * * * * * * * * * * *
C

C

11
C

C
C
C
C

C
C
C

1
21

1
1
1
1

CHARACTER* 10 LIBKEY
INTEGER*4 LIMIT

I F (MSGLVL .GE. 2) WRITE (IPRNTS, 11) LIBNAM
FORMAT (ISX, 'LIBOPN- OPEN I , A40)

IERR = 0
~~

LIBKEY IS A STRING OF FORM 'MAINKEYIQUALIFIER'
MAXIMUM NUMBER OF CHARACTERS IS 10

LIBKEY = 'ROLD '
LIMIT = 0
TRACE = 1000
LDI = LMOPEN (LIBKEY, 0 , LIBNAM, LIMIT, TRACE)

LDI RANGES FROM 1 THROUGH 30 FOR SUCCESSUL OPEN

IF ((LDI .LT. 1) .OR. (LDI .GT. 30)) GO TO 100
STAGE = 10
IF (MSGLVL .GE. 2) WRITE (IPRNTS, 21) JDFSET, KMAP,

KSPAR, CON, APPLF, APPLM, STATD
FORMAT(/bX, SIHDATASETS TO BE ACCESSED:

ISX, 3 l H
/lox, A l l ,
/lox, A l l ,
/lox, A61,

114

1 /lox, A51,
1 /lox, A51,
1 /lox, A51,
1 /lox, A51)

RETURN
C

c
C ERROR HANDLING
c

100 CONTINUE

IF (LDI .LE. 0) IERR = I011
IF (LDI .GT. 30) IERR = 1012
IF (MSQLVL .GE. 2) CALL EMSG
RETURN

C
END

115

.

.

C
...
G********** ' ****=**************************=************=******=***********~***~*

QKINFO ... ANQUIRE DATASET ATTRIBUTES

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - ACQUIRE THE ATTRIBUTES OF A NAMED DATA SET.

INPUT PARAMETER -
DSNAME - NAME O F THE DATASET.

PARAMETERS UPDATED -
IDNS - UNIQUE SEQUENCE NUMBER O F NAMED DATASET.
NLEN - LOGICAL LENGTH (ITEMS) O F A RECORD.
RTYPE - RECORD TYPE.
NREC - TOTAL NUMBER OF RECORDS IN THE DATASET.

E R R O R C O D E S .
0 . N O E R R O R .
2001 - DATASET DOES NOT EXIST.
2002 - NO RECORD EXISTS IN DATASET.
2005 - RECORD GROUP KEY IS UNDEFINED.
2004 - SEGMENTED RECORD GROUP NOTED.
2009 - RECORD LENGTH GREATER THAN BUFFER LENGTH

GAL-PROCESSOR ENTRY POINTS -
LMFIND, GMGEKA, GMGECY, EMSG.

m*** lll*I**If.I.... I.... *.I.. I..* I*.LL*I.I*I*.. ...* ...***I* I***.. **.. .*..**l* u
C

C

C
..
C

SUBROUTINE QKINFO (DSNAME)

CHARACTER"b1 DSNAME

CHARACTER*40 LIBNAM
CHARACTER.51 CDUMMY
CHARACTER-4 RTYPE
INTEGER'I MSGLVL, IERR, MAXCSM
INTEGER.4 IDSN , L D I , N L E N , N R E C , T R A C E
INTEGER.4 BUFMAX, MXUSED, MXREQD, STAGE

COMMON lCSMUSRl LIBNAM, MSGLVL, IERR, MAXCSM, CDUMMY(7)
COMMON ICSMSPKl IDSN , LDI , NLEN , NREC , RTYPE ,
COMMON l C S M C 0 N l BUFMAX, MXUSED, MXREQD, STAGE

INTEGER*I LMFIND

C

1 TRACE

C

C .
C

C

C
C
C
C
C

c
C
C
C
C

C
C
C
C

C

CHARACTER*l OP
CHARACTER. 12 RKEY

INTEGER*4 IHI , I L O , M D I M

OBTAIN THE SEQUENCE NUMBER OF DATASET DSNAME
MAXIMUM LENGTH OF DSNAME IS 61 CHARACTERS

TRACE = TRACE + 10
IDSN = LMFIND (LDI. DSNAME, TRACE)
I F (IDSN .EQ. 0) GO TO 100

~

OP IS PRESENTLY A DUMMY ARGUMENT FOR BOTH
GMGEKA AND GMGECY.

OP = "

RKEY CONTAINS THE RECORD KEY LIFTJUSTIFIED.
MAXIMUM LENGTH IS 12 CHARACTERS.

RKEY = 'DATA '
TRACB = TRACE + 10

116

C
C

C
C
C
C

c
C
C
C

C
C
C
C
100

C
200

C
300

C
400

C
bo0

C

RETRIEVE ATTRIBUTES RTYPE AND NLEN F O R RECORDS OF GIVEN KEY

CALL GMQEKA (OP, LDI, IDSN, R.KEY, RTYPE, NLEN, MDIM, TRACE)
IF (NLEN .EQ. 0) 00 T O 200
IF (NLEN .GT. BUFMAX) GO T O LOO

--- ------ ----
NUMBER O F RECORDS FOUND WITH GIVEN KEY

TRACE = TRACE + 10
CALL GMGECY (OP, LDI, IDSN, RKEY, NREC, ILO, IHI, TRACE)
IF (NREC .EQ. 0) GO T O 300

NREC E IHI-ILO+l F O R AN UNSEGMENTED RECORD GROUP

I F (NREC .NE. (IHI-ILO+1)) GO T O 400
RETURN

ERROR HANDLING

CONTINUE
----_

IERR = 2001
I F (MSGLVL .GE. 3) CALL EMSC:
RETURN

CONTINUE
IERR = 2002
IF (MSGLVL .GE. 3) CALL EMSO
RETURN

CONTINUE
IERR = 2003
I F (MSGLVL .GE. 3) CALL EMSG
RETURN

CONTINUE
IERR = 2004
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

C 0 NTINUE
IERR = 2009
BUFMAX = NLEN
IF (MSGLVL .DE. 3) CALL EMSG
RETURN

END

117

C.ftt~l*.*******l'**fl*I.ll+fLLLL1--I*fX******~-~~".*****-~~~~~~.*********-***~*

.

C GTRECI ... READ A RECORD FROM A DATASET
C***********"***************~*********~*****~*********************~************
.
C
C PURPOSE - THIS ROUTINE READS A RECORD FROM A NAMED DATASET.
C THE DATASET MUST BE OF TYPE INTEGER.
C
C INPUT PARAMETERS -
C RECNUM - RECORD CYCLE OF AN INDIVIDUAL RECORD.
C
C OUTPUT PARAMETERS-
C LEN . THE NUMBER OF ITEMS CONTAINED IN THE RECORD.
C
C WORKING PARAMETERS -
C IBUF . A BUFFER O F MAXIMUM RECORD SIZE FOR READIN DATASETS
C OF TYPE INTEGER.
C
C ERROR CODES.
C 0 - N O E R R O R .
C 2008 - RECORD TYPE IN THE DATASET IS NOT INTEGER.
C 2 0 0 6 . ERROR IN GMGETN DETECTED BY LMERCD.
C
C GAL-PROCESSOR ENTRY POINTS -
C GMCORN, GMGETN, LMERCD, EMSG.
C
.

C

C

C .
C

SUBROUTINE GTRECI (RECNUM, IBUF, LEN)

INTEGER'I RECNUM, IBUF(l) , LEN

CHARACTER*40 DUMMY1
CHARACTERv51 CDUMMY
CHARACTER*4 RTYPE
INTEGER'I IDSN , L D I , N L E N , N R E C , T R A C E
INTEGER*4 MSGLVL, IERR, DUMMY2

COMMON ICSMSPKI IDSN . LDI . NLEN . NREC . RTYPE . C

1 TRACE
COMMON /CSMUSR/ DUMMY1, MSGLVL, IERR, DUMMYZ, CDUMMY(7)

C
INTEGER*4 LMERCD

C .
C

C
C
C
C

C
C
C
C
C

C
C
C
C
C

CHARACTER'I BUFTYP
CHARACTER*12 OP, RKEY
CHARACTER*24 RNAME
INTEGER*4 IERROR, IGAP , IHI , ILO , IOFF , MDIM

DETECT T Y P E MISMATCH --__---
IF (RTYPE .NE. 'I ') GO T O 500 .

CONSTRUCT NAME 'RKEY.RECNUM:RECNUM' FOR AN INDIVIDUAL RECORD
MAXIMUM LENGTH IS 24 CHARACTERS: 12 FOR RKEY, 5 FOR EACH
RECNUM REPRESENTING HIGH AND LOW CYCLES.

RKEY = 'DATA '
ILO = RECNUM
IHI = RECNUM
CALL QMCORN (RNAME, RKEY, ILO, IHI)

_____--___--____-
OP ARGUMENT FOR GMGETx: 'MAINKEY/QUALIFIER'
MAXIMUM LENGTH IS 11: 4 FOR KEY AND 6 FOR QUALIFIER

OP = 'READILENGTH '
BUFTYP = 'I '
IGAP = 0
I O F F = 0
CALL GMGETN (OP, LDI, IDSN, RNAME, BUFTYF, IBUF, LEN, MDIM,

118

1
C
C
C
C

C
500

C
600

C

IGAP, IOFF, TRACE)

TEST ERROR CONDITION AFTER AN ERROR-SENSITIVE REFERENCE
TO THE 1 1 0 MANAGER

IERROR = LMERCD (IERROR)
IF (IERROR .NE. 0) GO TO 600
RETURN

CONTINUE
IERR = 2005
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

CONTINUE
IERR = 2006
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

END

119

.

.
C GTRECF ... READ A RECORD O F TYPE REAL ...
.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE - THIS ROUTINE READS A RECORD FROM A NAMED DATASET.
THE DATASET MUST BE O F TYPE REAL OR DOUBLE PRECISION.

INPUT PARAMETERS -
RECNUM - RECORD CYCLE OF

OUTPUT PARAMETERS-
LEN - THE NUMBER O F ITEMS

AN INDIVIDUAL

CONTAINED IN

RECORD.

THE RECORD.

WORKING PARAMETERS -
FBUF - A BUFFER O F MAXIMUM RECORD SIZE FOR READIN DATASETS

OF TYPE REAL OR DOUBLE PRECISION. THE ACTUAL TYPE
IS AS DECLARED.

E R R O R C O D E S -
0 - N O E R R O R .
2007 - RECORD TYPE IN THE DATASET IS NOT REAL.
2008 - ERROR IN GMGETN DETECTED BY LMERCD.

GAL-PROCESSOR ENTRY POINTS -
GMCORN, GMGETN, LMERCD, EMSG.

C

C
SUBROUTINE GTRECF (RECNUM. FBUF. LEN)

INTEGER.4 RECNUM, LEN
DOUBLE PRECISION FBUF(1)

C
C******.**~***..**

CHARACTER.40 DUMMY1
CHARACTER't.1 CDUMMY
CHARACTER*4 RTYPE
INTEGER'4 IDSN , L D I , N L E N , N R E C , T R A C E
INTEGER.4 MSGLVL, IERR, DUMMY2

COMMON ICSMSPKl IDSN , LDI , NLEN , NREC , RTYPE,

COMMON lCSMUSRl DUMMY1 , MSGLVL, IERR, DUMMY2 , CDUMMY(7)

INTEGER.4 LMERCD

TRACE

C

C

1

C

C
C***
C

CHARACTER.4 BUFTYP
CHARACTER'12 OP, RKEY
CHARACTER'24 RNAME
INTEGER.4 IERROR, IGAP , IHI , ILO , I O F F , MDIM

C c
C DETECT T Y P E MISMATCH c
c .
C CONSTRUCT NAME 'RKEY.RECNUM:RECNUM' FOR AN INDIVIDUAL RECORD
C
C RECNUM REPRESENTING HIGH AND LOW CYCLES.
c .

IF ((RTYPE .NE. 'D ') .AND. (RTYPE .NE. 'S I)) GO TO 600

MAXIMUM LENGTH IS 24 CHARACTERS: 12 F O R RKEY, 6 FOR EACH

RKEY = 'DATA '
ILO = RECNUM
IHI = RECNUM
CALL GMCORN (RNAME, RKEY, ILO, IHI)

C c -----------------
C
C c _-__-------------

OP ARGUMENT FOR GMGETx: 'MAINKEY/QUALIFIER'
MAXIMUM LENGTH IS 11: 4 F O R KEY AND 6 FOR QUALIFIER

OP = 'READ/LENGTH '
BUFTYP = 'D '
IGAP = 0

120

1
C
C
C
C

C
so0

C
600

c

IOFF = 0
CALL GMGETN (OP, LDI, IIISN, RNAME, BUFTYP, FBUF, LEN, MDIM,

IGAP, IOFF, TRACE) --_ _--_-_.
TEST ERROR CONDITION AFTER AN ERROR-SENSITIVE REFERENCE
T O THE 110 MANAGER ----------.

IERROR = LMERCD (IERROR)
IF (IERROR .NE. 0) GO TO 600
RETURN

CONTINUE
IERR = 2007
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

CONTINUE
IERR = 2008
IF (MSGLVL .GE. 5) CALL EMSQ
RETURN

END

121

"
C EMSG ... ERROR MESSAGE HANDLINE ROUTINE
...

.
C
C
C SYSTEM-CSM WHICH INTERFACES SPARSPAK-A WITH CSM TESTBED
C DATABASE.
C
C PROGRAM SUBROUTINES -
C EMSGO, EMSGI, DEMSGO
C
C+LL*************+****l*I*ttt*t*ttt*t.tt**~**************************~*~***~*****

C

C
C***.*************L***~**

C

PURPOSE - THIS ROUTINE IS USED TO HANDLE ERROR MESSAGES IN

SUBROUTINE EMSG

CHARACTER'IO LIBNAM
CHARACTER'51 CDUMMY
INTEGER'I IPRNTE, IPRNTS, MAXINT
INTEGER*I MSGLVL, IERR , MAXCSM
REAL RATIOS, RATIOL, TIME

C .
C

C

C

11
C
C
C
C
C
C
C

C

C

C
C
C

100

C
200

C
C
C

C

C
C
C

300

C
1000

C
1100
C
C
C

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR

INTEGER.4 LEVEL

, MAXCSM, CDUMMY(7)

WRITE (IPRNTE, 11)
FORMAT (/EX, 'EMSG - SYSTEM-CSM ERROR ... '

DETERMINE THE TYPE O F MODULE THAT CALLED EMSG,
AND CALL THE APPROPRIATE ERROR ROUTINE T O PRINT
THE ERROR MESSAGE

I F (IERR .GT. 2000) GO TO 1000

LEVEL = (IERR . lOOO)/lO -t 1
GO TO (100, 200, 300) , LEVEL

CONTINUE

IERR RANGES FROM 1001 TO 1009

CALL EMSGO
RETURN

CONTINUE

IERR RANGES FROM 1011 T O 1019

CALL EMSGI
RETURN

CONTINUE

IERR RANGES FROM 1021 T O 1029

CALL EMSG2
RETURN

CONTINUE
LEVEL = (IERR - 2000) /10 + 1
GO TO (1100, 1200) , LEVEL

CONTINUE

IERR RANGES FROM 2001 TO 2009

CALL DEMSGO
RETURN

122

C
1200 CONTINUE

C
RETURN

END

123

.
C***********.** .************************~****************************~**********
C EMSGO ERROR MESSAGES FOR ...
.

C***
C
C
C ROUTINE FOR THE MODULE SPACE.
C .
C

C
.

PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING

SUBROUTINE EMSGO

C

C

1

C

CHARACTER*40 LIBNAM
CHARACTER*51 CDUMMY
INTEGER*I IPRNTE, IPRNTS, MAXINT
INTEGER.4 MSGLVL , IERR , MAXCSM
INTEGER'4 BUFMAX, MXUSED, MXREQD, STAGE
REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR ,MAXCSM,CDUMMY(7)
COMMON ICSMCONI BUFMAX, MXUSED, MXREQD, STAGE

TIME

.
C

C
INTEGER*I IERROR

IERROR = IERR - 1000
GO T O (100. 2 0 0) , IERROR

C
100 CONTINUE

WRITE (IPRNTE, 11) IERR, STAGE, MXREQD
11 FORMAT (/ l o x , 35HSPACE - ERROR NUMBER ,17

1 /lox, 35HINSUFFICIENT STORAGE .
1 /lox, 35HTHE LAST STAGE COMPLETED IS , I7
1 /lox, 3bHTO CONTINUE MAXCSM IS AT LEAST , IT)

RETURN
C
200 CONTINUE

C
RETURN

END

124

C***
C**********************************,**
C EMSGl ERROR M!ESSAGES FOR ...
C***
C*********************~***
C
C PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING
C
C

C

C .
C

ROUTINE F O R MODULES: LIBOPN, GETJDF, GETDOF

C***

SUBROUTINE EMSGl

CHARACTER'IO LIBNAM
CHARACTER'51 CDUMMY
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL , IERR , MAXCSM
REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR

C

, MAXCSM, CDUMMY(7)
C .
C

INTEGER-4 IERROR
C

C
C
C
C

C

C
C
C

100

11
1

C

C
C
C

200

22
1
1

C
260

C
C
C
C

C

C
C
C

300

33
1

C

C
C
C

400

I F (IERR .GT. 1012) GO TO 2 5 0

_________.
ERROR F O R SUBROUTINE I JBOPN ______---

IERROR = IERR - 1010
GO TO (100, 2 0 0) , IERROR

CONTINUE

IERR = 1011

WRITE (IPRNTE. 11) IERR
FORMA-T (/ l o x , SIHLIBOPN - ERROR NUMBER ,17

/lox, 35HCANNOT OPBN DATASET LIBRARY.)
RETURN

CONTINUE

IERR = 1012

WRITE (IPRNTE, 22) IERR
FORMAT Illox. 35HLIBOPN - ERROR NUMBER ,17

/lOX;'35HMAX LOG1Cd.L DEVICE INDEX = 30 ,
/lox, 35HLDI RETURNED EXCEEDS THIS VALUE.)

RETURN

CONTINUE
I F (IERR .GT. 1014) GO TO 450

____-----
ERROR FOR SUBROUTINE GETJDF

IERROR = I E R R . IO12
GO T O (300, 400) , IERROR

CONTINUE

IERR = 1013

WRITE (IPRNTE, 33) IERR
FORMAT (/ l o x , 35HGETJDF - ERROR NUMBER 117

/lox, 35HINCORRECT EXECUTION SEQUENCE. 1
RETURN

CONTINUE

IERR = 1014

125

WRITE (IPRNTE, 4 4) IERR
44 FORMAT (/lox, 35HGETJDF - ERROR NUMBER ,17

1 /lox, JSHDATASET DOES NOT HAVE ALL DATA.)
RETURN

C
450 CONTINUE

I F (IERR .EQ. 1019) G O TO 900
RETURN

C
900 CONTINUE

C
C IERR = 1019
C ----

WRITE (IPRNTE, 99) IERR
99 FORMAT (/lox, J IHGETDOF - ERROR NUMBER ,17

1 /lox, SIHINCORRECT EXECUTION SEQUENCE.)
RETURN

C
END

126

.

.
C
.
C***
C
C
C
C GTMOTI, GTNUM5.
C
C*****.*****************L*.+************************************~****************
C

C
C********************************~****"***
C

EMSGZ ERROR MESSAGES FOR ...

PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING
ROUTINE F O R MODULES: GTZERO, GTCOND, GETIJ, FTFORC.

SUBRO UTINE EMS 0 2

CHARACTER*40 LIBNAM
CHARACTER'Kl CDUMMY
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL , IERIL , MAXCSM
REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR ,MAXCSM, CDUMMY(7)
C
C**** *~~*** * * * * * * * * * * * *~*** * * * * * * * * * * * * * * * * *~*** * * *~

C

1 TIME

C

C

C

C
C
C

100

11
1

C

C
C
C

200

22
1

C

C
C
C

300

33
1

C

C
C
C

400

44
1

C

C
C
C

500

66
1

INTEGER'4 IERROR

IERROR = IERR - 1020
GO TO (100, 2 0 0 , 300, 400, 500., 600, 700, SOO), IERROR

CONTINUE

IERR = 1021

WRITE (IPRNTE, 11) IERR
FORMAT (/ l o x , 3KHGTZERO - ERROR NUMBER

RETURN
/lox, 'INCORRECT EXECUTION SEQUENCE 1

CONTINUE

IERR = 1022

WRITE (IPRNTE, 22) IERR
FORMAT (/ l o x , JKHGTCOND - ERROR NUMBER

/lox, 'INCORRECT EXECUTION SEQUENCE '
RETURN

CONTINUE

IERR = 1023 --__
WRITE (IPRNTE. 33) IERR
FORMAT (/ l o x , JLHGETIJ - ERROR NUMBER

/lox, 'INCORRECT EXECUTION SEQUENCE '
RETURN

CONTINUE

IERR = 1024

WRITE (IPRNTE, 44) IERR
FORMAT (/ l o x , 35HGTFORC - ERROR NUMBER

/lox, 'INCORRECT EXECUTION SEQUENCE 1

RETURN

CONTINUE

IERR = 1025

WRITE (IPRNTE, 55) IERR
FORMAT (/ l o x , 36HGTMOTI - ERROR NUMBER

/lox, 'INCORRECT EXEiCUTION SEQUENCE 1

RETURN

127

C

C
C
C

6 0 0

66
1

C

C
C
C

700

77
1

C

C
C
C

800

88
1

C

CONTINUE

IERR = 1026

WRITE (IPRNTE, 66) IERR
FORMAT (/ l o x , JSHGTMOTI - ERROR NUMBER ,17

/lox, 'UNEXPECTED NONZERO CONSTRAINT VALUE')
RETURN

CONTINUE

IERR = 1027

WRITE (IPRNTE, 77) IERR
FORMAT (/ l o x , JSHGTMOTI . ERROR NUMBER .17

/lox, "ZERO ENTRY FOR A NONZERO CONSTRAINT OCCURS')
RETURN

CONTINUE

IERR = 1028

WRITE (IPRNTE, 88
FORMAT (/ l o x , 3SHGTNUMi - ERROR NUMBER

) IERR

/lox, ' INCORRECT EXECUTION SEQUENCE '
RETURN

END

128

..

.
C DEMSGO ERROR MESSAGES FOR DATASET ACCESSES .
C************ . *************~******"***

C
C PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING
C F O R MODULES ACCESSING DATASETS.
C
C * ~ * * * * ~ ~ * * * * * ~ * * * * * * * * * * * ~ *

C

C
.
C

SUBROUTINE DEMSGO

CHARACTER'IO LIBNAM
CHARACTER*Sl CDUMMY
INTEGER'4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL , IERR , MAXCSM
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
REAL RATIOS, RATIOL, TIME

COMMON ICSMSYSI IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR
COMMON ICSMCONI BUFMAX, MXUSED, MXREQD, STAGE

C

, MAXCSM, CDUMMY(7)

c -
C**** * * * * * * * * * * * * * * . * * * * * * * * * * * * * *~*** *~*** * * * * * * * * * * * * * * * *
C

C
INTEGER*4 IERROR

C
C
C
C

C

C
C
C

100

11
1

C

C
C
C

zoo

22
1

C

C
C
C

300

33
1

C

C
C
C

400

44
1

C

C
C

450

I F (IERR .GT. 2004) GO T O 450

ERROR FROM SUBROUTINE QKINFO

IERROR = IERR - 2000
GO TO (100, 200, 500, 400) , IERROR

CONTINUE

IERR = 2001

WRITE (IPRNTE, 11) IERR
FORMAT (/ l o x , 35HQKINFO - ERROR NUMBER $17 /lox, JSHLMFIND: CANNOT FIND DATASET.)

RETURN

CONTINUE

IERR = 2002

WRITE (IPRNTE, 22) IERR
FORMAT (/ l o x , 55HQKINFO . ERROR NUMBER ,17

1 I lOX, 55HGMGEKA: RECORD DOES NOT EXIST.
RETURN

CONTINUE

IERR = ZOO5

WRITE (IPRNTE. 33) IERR
FORMAT (/ l o x , 35HQKINFO - ERROR NUMBER ,17 /lox, 35HGMGECY: RECORD GROUP KEY UNDEFINED.)

RETURN

CONTINUE

IERR = 2004

WRITE (IPRNTE, 44) IERR.
FORMAT(/lOX, 56HQKINFO . ERROR NUMBER ,17 /lox, 38HGMGECY: SEGMENTED RECORD GROUP NOTED.)

RETURN

CONTINUE

ERROR FROM SUBROUTINE GETRECI OR GTRECF

129

C

C
5 0 0

C
C
C

55
1

C

C
C
C

6 0 0

66
1

C

C
C
C

700

77
1

C

C
C
C

800

88
1

C

C
C
C

900

99
1

IERROR = IERR - 2004
GO TO (5 0 0 , 6 0 0 , 700, 800 , 900) IERROR

CONTINUE

IERR = 2005

WRITE (IPRNTE, 55) IERR
FORMAT(/lOX, 35HGETRECI . ERROR NUMBER ,17

/lox, 35HRECORD TYPE MISMATCH ...)
RETURN

CONTINUE

IERR = 2006

WRITE (IPRNTE, 66) IERR
FORMAT(/lOX, 35HGETRECI - ERROR NUMBER $17

/lox, 35HGMGETN: ERROR DETECTED BY LMERCD...)
RETURN

CONTINUE

IERR = 2007
____.

WRITE (IPRNTE, 77) IERR
FORMAT(/lOX, 35HGETRECF - ERROR NUMBER ,I 7

/lox, 35HRECORD TYPE MISMATCH ... 1
RETURN

CONTINUE

IERR = 2008

WRITE I IPRNTE. 88 1 IERR
FORMA’T(/lOX, 3bHGETRECP - ERROR NUMBER $1 7

llOX. 55HGMGETN: ERROR DETECTED BY LMERCD...
RETURN ’

CONTINUE

IERR = 2009

WRITE (IPRNTE, 99) IERR, BUFMAX
FORMAT(/lOX, 35HQKINFO - ERROR NUMBER ,17

/lox, 35HBUFMAX MUST BE AT LEAST $17)
RETURN

C
END

130

C GETSOL RETRIEVE TESTBED SOLUTION ...
C*+*************+**************X**"****************~~********m********************
C
C PURPOSE - RETRIEVE THE TESTBED SOLUTION. ASSUMING THAT THE TESTBED
C
C
C SOLVER "SOLVES".
C
C INPUT PARAMETERS -
C
C
C SOLVER.
C

SOLUTION IS CORRECT, THE MAXIMUM RELATIVE ERROR IS THEN
F O R EACH COMPOMENT IN THE SOLUTION VECTOR RETURNED BY SPARSPAK-A

COMPUTED

SOL - T H E LEADING NEQNS LOCATIONS O F THIS VECTOR CONTAIN
THE SOLUTION RETURNED BY SPARSPAK-A LINEAR SYSTEM

C WORKING PARAMETER -
C F B U F - A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX.
C
C

THE ACTUAL T Y P E IS AS DECLARED.

C OUTPUT PARAMETERS -
C
C

RATIO - THE MAXIMUM RELATIVE ERROR ENCOUNTERED.

.
C

C

C .
C

SUBROUTINE GETSOL (FBUF, SOL, RATIO)

DOUBLE PRECISION FBUF(l) , SOL(l), RATIO

CHARACTER*IO LIBNAM
CHARACTER*Sl
CHARACTER'I RTYPE
INTEGER'I IPRNTE, IPRNTS, MAXINT
INTEGER*4 IDSN , L D I ,NLEN , N R E C , T R A C E
INTEGER'4 MSGLVL, IERR , MAXCSM
INTEGER*4 MAXDOF , NEQNS , NIJMJNT
REAL RATIOS, RATIOL, TIME

COMMON ICSMSYSI IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON ICSMSPKI IDSN . LDI . NLEN . NREC . RTYPE .

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

C

1 TRACE
COMMON ICSMUSRI LIBNAM, MSGLVL, IERR , MAXCSM,

COMMON IPRBLEMI MAXDOF
1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

, NEQNS , NUMJNT
C .
C

INTEGER*I
DOUBLE PRECISION DELTAX, CSM, WEHAVE, CSMMAX

WRITE (IPRNTS, I 1)

I , 11, LEN, NITEMS, INDEX, MAXIND

C

11 FORMAT (ISX, 4OHGETSOL ~ COMPARE WITH TESTBED SOLN ...)
C

C
IF (IERR .NE. 0) GO T O 300

C
C
C

C
C

c
C
C TO RETRIEVE NEQNS SOLUTIONS
c

ACCESS RECORDS IN DATA SET 'STAT.DISP.* '

CALL QKINFO (STATD)
IF (IERR .NE. 0) GO TO 999
TRACE = TRACE + 10
RATIO = O.ODO
NITEMS = 0
CSMMAX = O.ODO
DO 100 I = 1, NREC

LEN = MINO (NEQNS - NITEMS, NLEN)
I F (LEN .GT. 0) THEN __--

READ NEXT RECORD

CALL GTRECF (I, FBUF, LEN)
IF (IERR .NE. 0) RETURN ____________
COMPUTE THE MAXIMUM RELATIVE ERROR

131

C
C

C
C
C

1

C
C
C

200

100
C
C

FBUF CONTAINS THE DATABASE SOLUTION

DO 2 0 0 I1 = 1, LEN
NITEMS = NITEMS + 1

G E T THE COMPONENT WITH MAXIMUM MAGNITUDE

IF (DABS (FBUF(I1)) .GT. CSMMAX) THEN
CSMMAX = DABS (FBUF(I1))
MAXIND = NITEMS

ENDIP
DELTAX = DABS (PBUF(I1) . SOL(N1TEMS))
IF (FBUF(I1) .NE. O.ODO)

I F (DELTAX .GT. RATIO) THEN
DELTAX = DELTAX/DABS(FBUF(II))

RATIO = DELTAX
INDEX = NITEMS

SAVE THE PAIR WHICH CAUSES MAX REL ERR

CSM = PBUF(I1)
WEHAVE = SOL(1NDEX)

ENDIF
CONTINUE

ENDIF
C 0 N TINUE

SUMMARY

c -----
IF (MSGLVL .DE. 2) WRITE (IPRNTS, 21) STATD,RATIO,
1 INDEX, CSM, WEHAVE

/lox, 'CSM SOL = I , E21.14, ' WE HAVE I , E21.14)

21 FORMAT(/lox, 'MAX. REL ERR COMPARED T O ', A51,
1 /lox, 'IS ', E14.7, ' IN COMPONENT', 15,
1

RETURN
C

c -----__----__-
C
c __--______-___

300 CONTINUE

ERROR HANDLING (NOT INCLUDED IN EMSG)

I F (MSGLVL .GE. 2) WRITE (IPRNTS, 31)

RETURN
31 FORMAT (/ l o x , 35HGETSOL.INCORRECT EXECUTION SEQUENCE)

C

c -----___---__-
C
c -----__----__-

999 CONTINUE

ERROR HANDLING (NOT INCLUDED IN EMSG)

I F (MSGLVL .GE. 'I) WRITE (IPRNTS, 91) STATD

RETURN
91 FORMAT(/lox, 'CANNOT FIND I, A61)

C
END

132

.

.
C STATCS PRINT STATISTICS .
CL**.**********.**********.********
C
C PURPOSE - THIS ROUTINE PRINTS TIME AND STORAGE REQUIREMENTS OF
C THE CURRENT RUN.
C
c++**x***+*++***a***'++*'.'*"*"""..L'***************~***********************~*

C
SUBROUTINE STAT C S

C

1

C

1

1

C

CHARACTER*IO LIBNAM
CHARACTER'S1
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER"4 MSGLVL , IERR , MAXCSM
INTEGER'I
INTEGER'4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MAXDOF, NEQNS , NUMJNT
REAL

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM,

COMMON /CSMMAP/ DOF, BUF, MASK, KC, ICLQ, FCON, SPK
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMDTA/ GZTIME. GCTIME, GIJTIM, GFTIME, GMTIME,GNTIME,

COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

DOF, BUF, MABK, KC, ICLQ, FCON, SPK

GZTIME, GCTIME, GIJTIM, GFTIME, GMTIME,GNTIME,
CSMTIM, CSMSTR

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD

CSMTIM, CSMSTR

...

C
WRITE (IPRNTS, 11)

11 FORMAT (/5X, 4OHSTATCS - SYSTEM.CSM STATISTICS ...)
C

IF (STAGE .GE. 20) GO TO 100
WRITE (IPRNTSJ2)

RETURN

100 CONTINUE

22 FORMAT (/ l o x , 35HNO STATISTICS AVAILABLE.)

C

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 33) MAXCSM

IF (MSGLVL .GE. 2) WRITE
33 FORMAT (/ l o x , 35HSIZE OF STORAGE ARRAY (MAXCSM) , I10)

IPRNTS, 44) NUMJNT.MAXDOF,NEQNS
4 4 FORMAT (/ l o x , 35HNUMBER OF JOINTS , 110

I /lox, 35HMAX DEGREE OF FREEDOME P E R JOINT , I10
1 /lox, 35HNUMBER OF EQUATIONS $110

IF (MSGLVL .GE. 3) THEN
WRITE (IPRNTS, 46)
WRITE (IPRNTS, 46) DOF,BUF,MASK,KC,ICLQ,FCON,SPK

45 FORMAT (/ l o x , 35HADDRESSES OF ARRARYS 1
46 FORMAT (/ l o x , lOHDOF , I10

1 /lox. lOHBUF , I10
1 /lox, lOHMASK , I10
1 /lox, IOHKC , I10
1 /lox, IOHICLQ , I10
1 /lox, 1OHFCON , I10
1 /lox, IOHSPK , I10)

ENDIF

CSMSTR = MXREQD
WRITE (IPRNTS, 133) CSMTIM, CSMSTR

C

133 FORMAT (IOX, 35HTOTAL CSM-TIME REQUIRED , F13.3
1 /lox, 35HMAXIMUM CSM-STORAGE REQUIRED , F1O.O)

RETURN
C

END

133

References

[l] E. C. H. Chu and J. A. George. A Note on Estimating the Error in Gaussian Elimi-
nation Without Pivoting. ACM SIGNUM Newsletter, 20:2-7, 1985.

[2] E. C. H. Chu, J. A. George, J. W-H. Liu, and E. G-Y. Ng. User’s Guide for
SPARSPAK-A: Waterloo Sparse Linear Equations Package. Technical Report CS-
84-36, University of Waterloo, Waterloo, Ontario, 1984.

[3] G. C. Everstine. The Bandit Computer Program for the Reduction of Matrix Bandwidth
for NASTRAN. Technical Report 3872, NSRDC, March 1972.

[4] C. A. Felippa. Architecture of a Distributed Analysis Network for Computational
Mechanics. Computers and Structures, 13:405-413, 1981.

[5] C. A. Felippa. The Computational Structural Mechanics Testbed Architecture: Volume
I - The Language. NASA CR-178384, 1988.

[6] C. A. Felippa. The Computational Structural Mechanics Testbed Architecture: Volume
II- Directives. NASA CR-178385, 1989.

[7] C. A. Felippa. The Computational Structural Mechanics Testbed Architecture: Volume
I I I - The Interface. NASA CR-178386, 1988.

[SI C. A. Felippa. The Computational Structural Mechanics Testbed Architecture: Volume
V - The Input-Output Manager DMGASP. NASA CR-178388, 1989.

[9] J. A. George. An Automatic One-way Dissection Algorithm for Irregular Finite Ele-
ment Problems. SIAM J. Numer. Anal., 17:740-751,1980.

[lo] J. A. George and J. W-H. Liu. Algorithms for Matrix Partitioning and the Numerical
Solution of Finite Element Systems. SIAM J. Numer. Anal., 15:297-327, 1978.

[ll] J. A. George and J. W-H. Liu. An Automatic Nested Dissection Algorithm for Irregular
Finite Element Problems. SIAM J. Numer. Anal., 15:1053-1069, 1978.

[12] J. A. George and J. W-H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

[13] J. A. George and J. W-H. Liu. The Design of a User Interface for a Sparse Matrix
Package. ACM Trans. on Math. Software, 5:134-162, 1979.

[14] J. A. George and E. G-Y. Ng. User’s Guide for SPARSPAK-B: Waterloo Sparse Con-
strained Linear Least Squares Package. Department of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1, 1984.

134

[15] J. W-H. Liu. An Adaptive General Sparse Out-of-Core Cholesky Factorization Scheme.
SIAM J. Sci. Stat. Com,put., 8:585-599, 1987.

[16] J. W-H. Liu. A Collection of Routines for an Implementation of the Multifiontal
Method. Technical Report CS-87-10, Dept. of Computer Science, York University,
1986.

[17] J. W-H. Liu. Modification of the Minimum Degree Algorithm by Multiple Elimination.
ACM Tmns. on Math. Software, 11:141-153,1985.

[18] J. W-H. Liu. The Multifiontal Method and Paging in Sparse Cholesky Factorization.
Technical Report CS-87-09, Dept of Computer Science, York University, 1987.

[19] J. W-H. Liu. Modification of the Minimum Degree Algorithm by Multiple Elimination.
ACM Tmns. on Math. Software, 11:141-153, 1985.

[20] J. W-H. Liu. On the Storage Requirement in the Out-of-Core Multi-Frontal Method
for Sparse Factorization. ACM Trans. on Math. Software, 12, 1986.

[21] J. W-H. Liu and A. H. Sherman. Comparative Analysis of the Cuthill-McKee and
Reverse Cuthill-McKee Ordering Algorithms for Sparse Matrices. SIAM J. Numer.
Anal., 13:198-213, 1976.

[22] C. G. Lotts, W. H. Greene, S. L. McCleary, N. F. Knight, Jr., S. S. Paulson, and
R. E. Gillian. Introduction to the Computational Structural Mechanics Testbed. NASA
TM-89096, September 1987.

[23] M. E. Regelbrugge and M. A. Wright. The CSM Testbed Matriz Processors - Internal
Logic and Dataflow Descriptions. NASA CR-181742, 1988.

[24] Caroline B. Stewart (compiler). The Computational Structural Mechanics Testbed
User’s Manual. N A S A TM-100644, 1989.

[25] W. D. Whetstone. SPAR Structural Analysis System Reference Manual (vols. 1 - 4).
Engineering Information Systems, Inc. NASA CR-158970, December 1978.

[26] M. A. Wright, M. E. Regelbrugge, and C. A. Felippa. The Computational Structural
Mechanics Testbed Amhitecture: Volume I V - The Global-Database Manager GAL-
DBM. NASA CR-178387, 1989.

135

Report Document at ion Page

. Report No. 2. Government Accession No.
NASA CR-4219
. Title and Subtitle

3. Recipient's Catalog No.

5. Report Date

Sparse Matrix Methods Research Using the CSM Testbed Software
6. Performing Organization Code System

-

'. Author(s)
Eleanor Chu and J. Alan George

I. Performing Organization Name and Address
University of Tennessee
Department of Computer Science
Knoxville] T N 37996-1301

L2. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

10. Work Unit No.

505-63-01-10

8. Perforrniiig Organization Report No.

17. Key Words (Suggested by Authors(8))
Finite element method
Numerical Analysis
Sparse Matrix Methods

18. Distribution Statement
Unclassified-Unlimited

Subject Category 64

11. Contract or Grant No.

NAG1-803
13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages
Unclassified Unclassified 140

I
15. Supplementary Notes

Eleanor Chu and J. Alan George are currently affiliated with the University of Waterloo, Waterloo, On-
tario, Canada NZL 3G1..

22. Price
A 0 7

Langley Technical Monitor: Norman F. Knight, Jr.

This report describes research on sparse matrix techniques for the Computational Structural Mechanics
(CSM) Testbed. The primary objective was to compare the performance of state-of-the-art techniques
for solving sparse systems with those that are currently available in the CSM Testbed. Thus, one of the
first tasks was to become familiar with the structure of the testbed, and to install some or all of the
SPARSPAK package in the testbed. A suite of subroutines to extract from the database the relevant
structural and numerical information about the matrix equations has been written. A driver program
(processor) that employs these routines along with the SPARSPAK library has been written, and we have
successfully solved all the demonstration problems distributed with the testbed. These codes have been
documented] and performance studies comparing the SPARSPAK technology to the methods currently
in the testbed have been completed. In addition, some preliminary studies have been done comparing
some recently developed out-of-core techniques with the performance of the testbed processor 1NV.

16. Abstract

