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Summary

This report describes the development of an interaction data base and a numerical solution
to the transport of baryons through an arbitrary shield material based on a straight ahead
approximation of the Boltzmann equation. The code is most accurate for continuous-energy
boundary values but gives reasonable results for discrete spectra at the boundary using even
a relatively coarse energy grid (30 points) and large spatial increments (1 cm in Hp0). The
resulting computer code is self-contained, efficient, and easy to use. The code requires only a
very small fraction of the computer resources required for Monte Carlo codes.

1. Introduction

As NASA continues to develop a vigorous space program, tools for the analysis of optimum
shielding against space radiation are a continuing requirement. The tools must ultimately
account for the very complex mixture of radiations in the space environment and be complete
in the physical description of the processes involved. An incomplete model must, by necessity,
have restricted capabilities that are not always appreciated at the engineering level and may
cause errors in vehicle design. Still, a complete model must be computationally efficient in order
to provide a useful tool for design work. In order for the model to be used with confidence,
some effort toward model validation must be made. . '

Space contains the most complicated mixture of diverse radiation components known. When
these components interact with materials, many new and varied radiations are produced. This
places enormous demands on tools for model development analysis. Furthermore, a common
basis for assessing risk from such an environment is in itself a challenge to model development.
The model must likewise allow for all potential elemental materials and allow inhomogeneous
configurations. The present work is the beginning of this task.

Monte Carlo computer codes have been written that meet many of the above requirements
(ref. 1). However, the enormous computational requirements have caused their use to be avoided
in the space program. In an earlier report (ref. 2}, we presented a relatively complete transport
code for high-energy nucleons. The data base for that code was complete but somewhat
inaccurate. The purpose of the present report is to describe both the improved computer
programs developed for the calculation of the transport and the interaction of high-energy
nucleons (baryons) with materials. The methods, based on the direct solution of the Boltzmann
equation, have been developed over the last several years (refs. 2 to 5). The present goal is
to document a relatively complete description of the basic physical processes and an improved
input data base. Future work will concentrate on improving the data base and validating the
computational procedures.

2. Theoretical Considerations—The Boltzmann Equation

In moving through bulk material, particles give up energy to the medium through
atomic/molecular and nuclear interaction. These processes are described by a Boltzmann-
like equation that we use in a time-independent form. The equations in the straight ahead
approximation to be solved (ref. 1) are

[(% ~ eS(E) + a,,<E>] op(z, E) = 2]: /, C f(BE) iz EVAE (21)
[a% + on(E)] $n(z,E) = ; /Eoo fnj(E, E') ¢;(z, E') dE' (2.2)
[3% _ 6%14 S(E)] b4(z, E) = ? /; " 1 (B E) ¢j(z, E') dE" (2.3)

where ¢;(z, E) is the differential flux density of type j particle at = with energy E; S(E) is
the proton stopping power; v¢ is the ion-range scaling parameter; o,(E) and o,(F) are proton



and neutron total cross sections, respectively; and fij(E,E') represents the differential cross
sections for elastic and nonelastic processes. It is convenient to define new field quantities as

I

"= / dE'/S(E") (2.4)

Yi(z,r) = S(E) ¢;(x, E) (2.5)

fij(r.v')y = S(E) fi;(E, E") ' (2.6)

so that

[5% —% + op(r)] Yp(z,r) = ZJ: /TOC fpj(r, T,),¢j (x,r’)dr’ 2.7

|52+ () nler) = 3 | Rty v, @rhar! (28)

0 ) - ' N,
|5 — vige| et = 3 [ Btravira (29)

which can be rewritten as integral equations with the boundary at £ = 0. The following results
are given:

y?,,(z,r) = exp [— /Oz op(r + z)dz] Yp(0,7 + z)
+ /: dz exp [_ /Oz op(r + w)dw] XJ: /:; /_‘pj(r + z,7) UHERS z,rYdr'  (2.10)

Yn(z,r) = exp [—on(r)z]y¥n(0,r)
+/0 dzexp[—an(r)z];/r fnj(r,r')wj(x—z,r') dr’ (2.11)

iz, T) /(; dzZ/ ftJ r+l/tz r)zpj( zZ,T ) | 7(2.12)

The functions and coefficients of equations (2.1) to (2.12) are presented in the next section.
3. Transport Coefficients

3.1. Stoppmg Power

In passing through a material, an ion loses the larger fraction of 1ts energy to electronic
excitation of the material. Although a satisfactory theory of high-energy, ion-electron inter-
action is available in the form of Bethe’s theory utilizing the Born approximation, an equally
satisfactory theory for low energies is not available. Bethe's high-energy approximation to the
energy loss per unit path (that is, stopping power) is given as

4TNZ2Z:e 2mu? C
- p A 2 _ 2
= L {]n [(1 T i (3.1.1)

where Z, is the projectile charge, N is the number of target molecules per unit volume, Z; is
the number of electrons per target molecule, m is the electron mass, v is the projectile velocity,
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8 = v/e, c is the velocity of light, C is the velocity-dependent shell correction term (ref. 6),
and I is the mean excitation energy given by

ZyIn(I) =Y fnIn(En) (3.1.2)

where f,, represents the electric dipole oscillator strengths of the target and E;, represents the
corresponding excitation energies. Note that the sum in equation (3.1.2) includes discrete and
continuum levels. Empirically, it has been observed that molecular stopping power is reasonably
approximated by the sum of the corresponding empirically derived “atomic” stopping powers
for which equations (3.1.1) and (3.1.2) imply that

ZIn(I) = n;Z;In(I)) (3.1.3)
j

where Z and I pertain to the molecule, Z; and I; are the corresponding atomic values, and
n; represents the stoichiometric coefficients. This additive rule (eq. (3.1.3)) is usually called
Bragg’s rule (ref. 7).

Sources of deviations from Bragg’s additive rule for molecules and for the condensed phase
are discussed by Platzman (ref. 8). Aside from shifts in excitation energies and adjustments
in line strengths as a result of molecular bonding, new terms in the stopping power appear to
be due to coupling between vibrational and rotational modes. Additionally, in the condensed
phase, some discrete transitions are moved into the continuum, and collective modes among
valence electrons in adjacent atoms produce new terms in the absorption spectrum that must
be considered. It is usually assumed that the experimentally observed additive rule shows that
molecular stopping power is the sum of atomic processes. In contrast, Platzman proposes that
molecular bond shifts for covalent bonded molecules are relatively independent of the molecular
combination, thus resulting in an additive rule. On the basis of such arguments, Platzman
suggested that ionic bonded substances should be studied as a rigid test of the additive rule
because of the radical difference in bonding type. He further estimated that ionic bond shifts
could change the stopping power by as much as 50 percent. Recent results of molecular bond
shifts on mean excitation energies are discussed in references 9 to 11. Effects of the physical
state have likewise been studied (ref. 12).

The electronic stopping power for protons is adequately described by equation (3.1.1)
for energies above 500 keV for which the shell or “tight binding” correction C' makes an
important contribution below 10 MeV (ref. 13). For proton energies below 500 keV, charge
exchange (electron transfer) reactions alter the proton charge over much of its path, so that
equation (3.1.1) is to be understood in terms of an average over the proton charge states.
Normally, an average over the charge states is introduced into equation (3.1.1) so that the
effective charge is the root-mean-square ion charge and not the average ion charge. At any ion
energy, charge equilibrium is established very quickly in all materials. Utilizing the effective
charge in equation (3.1.1) appears to make only a modest improvement below 500 keV, an
indication presumably of the failure of this theory based on an empirical basis (refs. 13 and
14). We have utilized empirical fits to the proton data; the resultant stopping power for protons
in water is shown in comparison with the evaluated data to Bichsel (ref. 15) in figure 1.

The electronic stopping power for alpha particles requires terms in equation (3.1.1) of higher
order in the projectile charge Z, resulting from corrections to the Born approximation. The
alpha stopping power cannot be related to the proton stopping power through the effective
charges. Parametric fits to experimental data are given by Ziegler in reference 16 for all elements
in both the gaseous and condensed phases.

The electronic stopping power for heavier ions is related to the alpha stopping power through
the corresponding effective charges. The effective charge suggested by Barkas (ref. 17) is used:



z* = 2, [1 - exp (-1258/2;")] (3.1.4)

where Z, in equation (3.1.4) is the atomic number of the ion.

At sufficiently low energies, the energy lost by an ion in a nuclear collision becomes
important. The nuclear stopping theory used in this paper is a modification of the theory
of Lindhard, Scharff, and Schiott (ref. 18). The reduced energy (dimensionless) is given as

32.53Ap A
€= Pt (3.1.5)

= 172
ZpZi(4p + A) (75" + 7]1°)

where E is in units of keV/nucleon and Ay, and A; are the atomic masses of the projectile and
target, respectively. The nuclear stopping power S, in reduced units (ref. 16) is

1.59¢1/2 (e < 0.01)
Sy ={ Lellere) 601 <€ < 10) (3.1.6)

14+6.8¢+3.4¢3/2
and the conversion factor f to units of eV/10!° atoms/cm? is

8.426Z, A1 Ap
172
(4p + 40) (25 + 2}%)

f= (3.1.7)

The total stopping power S; is obtained by summing the electronic and nuclear contribu-
tions. Other processes of energy transfer such as Bremsstrahlung and pair production are
unimportant.

For energies above a few MeV /nucleon, Bethe’s equation is adequate provided that appro-
priate corrections to Bragg’s rule (refs. 9 to 11), shell corrections (refs. 6, 13, and 14), and
an effective charge are included. Electronic stopping power for protons is calculated from the
parametric formulas of Andersen and Ziegler (ref. 13). The calculated stopping power for pro-
tons above a few MeV in water is shown in figure 1 in comparison with data given by Bichsel
(ref. 15).

Because alpha stopping power is not derivable from the proton stopping power formula using
the effective charge at low energy, the parametric fits to empirical alpha stopping powers given
by Ziegler (ref. 16) are used. Applying his results for condensed-phase water poorly represented
the data of references 19 and 20. Considering that physical state and molecular binding effects
are most important for hydrogen (ref. 9), the water stopping power was approximated by

using the condensed-phase parameters for hydrogen and the gas-phase parameters for oxygen

(which are known experimentally). These results are compared with experimental data for
condensed-phase water (refs. 19 and 20) in figure 1. It appears that Ziegler overestimated the
condensed-phase effects for oxygen, since the gas-phase oxygen data gave satisfactory results
as seen in figure 1. , ) o -
~ Electronic stopping powers for ions with a charge greater than 2 are related to the alpha
stopping power through the effective charge given by equation (3.1.4). For water, the condensed-
phase formula of Ziegler for algha particles gives probably the best stopping powers for heavier
ions. Calculated results for 10 and 56Fe ions in water are shown in figure 1 in comparison
with the Northcliffe and Schilling data (ref. 21). Good agreement with Northcliffe and Schilling
for 36Fe ions is especially important since their data seem to agree with the range experiments
of J. H. Chan in Lexan material, a polycarbonate resin developed by The General Electric
Company (ref. 22). The stopping powers in Lexan resin and tissue-equivalent material can be
calculated in a way similar to the procedure given above for calculating the stopping powers in
water.
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Although the above methods are the best yet available, they do not adequately represent
the data at all energies and elements. The energy loss per unit path length is given by

_AnNZlZe!

e =

B (3.1.8)

mv2

where an approximate representation of true stopping number B is given in the braces of
equation (3.1.1). The determination of S, then rests upon the accurate knowledge of the mean
excitation energy Iy and the shell corrections C. In practice, one invokes some sort of parameter
fitting involving the experimental data on stopping power and the quantities I; and C.

We have recently initiated a different approach of calculating the stopping power of
atoms. The main thrust of this approach is to calculate exactly, in the context of the Born
approximation and nonrelativistic wave functions, the stopping number B with no assumptions
such as those underlying the Bethe theory leading to equation (3.1.1). Thus, the knowledge of
B would rest on knowing the radial integrals for the process of excitation as well as ionization
when a projectile passes through matter. To the best of our knowledge, this approach seems not
to have been tried even for the helium atom. We have recently calculated the radial integral
for the optically allowed transitions in the He atom and helium-like ions using the screened
hydrogenic model. The model describes the atom by single-particle hydrogenic wave functions
and treats the initial state and the final state by two different, effective charge parameters Z;
and Zj;, respectively. The model is able to reasonably reproduce the existing dipole oscillator
strength values with little effort, and nonrelativistic numerical values for bound-bound and for
bound-continuum transitions are available for many target helium-like ions. The model has
also been successful in reproducing the known dipole polarizability values and in predicting
the other unknown values. Once the radial integral is evaluated for all momentum transfers,
it is an easy matter to obtain the stopping power of the helium atom for a projectile such as a
proton or a heavy ion. The same approach then could be extended to include other atoms.

This approach is an ambitious undertaking but is more satisfying in that the calculations
are made directly for each atom, thereby avoiding the inherent approximations underlying the
Bethe equation (3.1.1). Thus, the calculations do not involve the apparent fittings involving
parameters such as Iy and C. Furthermore, the ejected electron distribution in energy and
angle as well as the atom excitation spectrum should also be available through this approach.

3.2. Total Nuclear Cross Sections

After many decades of experimental activity at various accelerators with ever-increasing
energies, the cross sections for two-nucleon interactions are reasonably well-defined. Although
recent advances in the theory of the two-nucleon interaction in terms of phenomenological
meson exchange models (ref. 23) show considerable success, a simple parameterization of the
experimental data is sufficient for our purposes. For E > 25 MeV, the proton-proton (pp) total
cross section (mb) is found to be reasonably approximated by

opp(E) = (1 + %) {40 + 109 c0s(0.199VE) exp [—0.451(E - 25)0-258]} (3.2.1)

and for lower energies, by
_ 0.7
opp(E) = 0317 (3.2.2)

These forms are compared with experiments (ref. 24) in figure 2. For E 2 0.1 MeV, the
neutron-proton (np) cross section is taken as

onp(E) = 38 + 12500 exp [—1.187(E - 0.1)0-35] (3.2.3)

and at lower energies, by
onp(E) = 26 000~ (E/0-282)" (3.2.4)
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These forms are compared with experiments (ref. 24) in figure 3.

The low-energy, neutron-nucleus total cross sections exhibit a complicated fine-resonance
structure over a broad, slowly varying background. This background is marked by very broad
Ramsauer resonances that persist even to neutron energies of 100 MeV. Although a simple
fundamental theory for the Ramsauer resonances is not available, a semiempirical formalism is
given by Angeli and Csikai (refs. 25 and 26). Their formalism starts with the usual partial-wave
expansion as

oy = 2122y (20 + 1)[1 — Re(ny)] (3.2.5)
)

with '
e = eide (3.2.6)

where 6, is the complex phase shift for the ¢th partial wave and Re(Z) denotes the real part of
Z. In the opaque nucleus model, the fact that ny, = 1 for all values of £ > R/A, where R is the
nuclear radius, leads Angeli and Csikai to assume that

ot = 21 (R + M)?[1 — Re(n)] (3.2.7)
where n = 0 gives the usual, opaque nucleus result such that

Re(n) = e_Im(é) cos[Re(6)]

= pcos (thl/3 — r) (3.2.8)

is a reasonable starting point to parameterize the total cross sections, where Im(é) denotes the
imaginary part of 6. Their complete parameterization is

ot = 27r(r0At1/3 +2)?a - pcos(thl/3 —7)] (3.2.9)

where 7y = 1.4 fm, and the neutron wavelength is

455 A+1

JE A (3.2.10)
The parameters of Angeli and Csikai are adequately approximated by
1
® T 1+ [2/(38E + 0.1EVE + 0.1E3VE)] (3.21D)
p =0.15 — 0.0066 VE (3.2.12)
q=272-0.203VE (3.2.13)
r = min{-5.3 + 1.66VE; 1.3} (3.2.14)

Strictly speaking, equations (3.2.9) to (3.2.14) apply only to A; > 40and 0.5 < E < 40 MeV. A
simple extension to all values of 4; and 0.1 < E < 100 MeV gives qualitatively similar results
to the experimental data and provides a starting point to representing the total cross section.
The cross sections given by equations (3.2.9) to (3.2.14) are shown in figure 4. This should be
compared with the experimental data (ref. 27) shown in figure 5. Note that the data in figure 5
have only the broad resonances shown. The very narrow resonances have been averaged. We
now seek some modification to the Angeli-Csikai cross sections to better approximate the total
cross sections.
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Our modifications to the Angeli-Csikai formalism are as follows:

1. If A; > 75, then a is taken as 0.18 for values of equation (3.2.11) less than 0.18.

2. The value of p is taken to be greater than 0.4a unless A; > 76 for which p can be as
small as 0.3a.

3. A modifying factor of 1 + De~?F is used with

Do {05 (145 < A; < 235)
7 11.0 (Otherwise)

and
o= 1.0 (205 < At < 235)
~12.0 (Otherwise)

4. An additional modifying factor is applied as
Fi{1-05exp [~(4; - 63.54)2/20]
— 0.45exp [—(At - 58.71)2/4] exp(—2E) + F2}

where
F o= 0.7 (A; €63;FE <0.8)
1=11.0 (Otherwise)

0 (E >0.5)
Fy={ —4.95¢7188 (40 < 4; < 42)
-1.79¢"15E (32 < A; < 34)
5. If A; < 30, then numerical interpolation between experimental values is used.
The final cross sections as modified above are shown in figure 6 and should be compared with
figure 5.
The total cross sections above 100 MeV have been taken from reference 28. The high-energy
cross sections of reference 28 have been approximated by

otot(As, E) = 52.54)758 [1 + (0.8 + 2.4¢=4:/30)e~E/135 5in g E] (3.2.15)

where the phase angle is given by

{ 14.41 (E < 40 MeV) }
Op =

1.291n -7 > e
In?(E E > 40 MeV (3.2.16)

The expressions (3.2.15) and (3.2.16) are shown in comparison with the theory of Townsend,
Wilson, et al. (ref. 28) and a compilation of experiments in figures 7 to 10. Equations (3.2.9) to
(3.2.14) are connected smoothly at 70 MeV to the results of equations (3.2.15) and (3.2.16) at
130 MeV with an assumed exponential dependence on energy. The total cross section is used
to calculate the scattering cross section as

O's(E) = Utot(E) - Jabs(E) (3217)

The total (tot) neutron-nucleus cross section is shown in comparison with experimental data
(ref. 27) in figures 11 to 14. (Experimental data are shown as the dashed curve.) Also shown
are the cross sections (listed as “prior”) used in reference 2. Clearly, the present result is a
great improvement.

3.3. Nuclear-Absorption Cross Sections

Qualitatively, the nuclear-absorption cross sections show an energy dependence similar to
that observed for the total nuclear cross sections. An analytic formula for protons was derived

7



by Letaw et al. (ref. 29) by first fitting the cross sections of Bobchenko et al. (ref. 30) with the

formula
o4 =45A%7{1 4+ 0.0165in[5.3 — 2.63In(4;)]} (3.3.1)

where A; is the mass number of the target nucleus. Equation (3.3.1) reproduces the Bobchenko
data to within £2 percent (ref. 29). A somewhat better fit to the Bobchenko data is given by

o4 = 45A%7(1 - 0.0185in O 4) (3.3.2)

where the angle © 4 is
©4 = 2.94In(A;) + 0.635in[3.92 In(A4¢) — 2.329] — 0.176 (3.3.3)

Equation (3.3.2) fits the Bobchenko data to within the 1.2-percent difference, which is on the
order of the quoted experimental uncertainty (ref. 30). Although the Bobchenko data represent
a consistent set of measurements for many different targets and probably define well the
A-dependence of the high-energy cross sections, they may nonetheless be in error in absolute
value as suggested by many other independent experiments (refs. 31 and 32).
Letaw et al. (ref. 29) assume the energy dependence for all nuclei to be the same and to be
approximated by
F(E) =1—0.62¢"F/?0 gin(10.9E0-28) (3.3.4)

where the nucleon kinetic energy is in units of MeV. We observe oscillations according to the
quantum-mechanical calculations of Townsend and Wilson (ref. 31) with phase angle

- 1.44 (E < 25 MeV)
OF = {1.33 In(E) —2.84  (Otherwise) } (3.3.5)

but with an A-dependent amplitude given by
F(E) = 1(0.3E7%22 4 0.76e"E/135)(0.4 + 0.9¢ 4/30)sinOp (3.3.6)

The absorption cross section as given by equations (3.3.3), (3.3.5), and (3.3.6) is shown in
comparison with the fit of Letaw et al. and experimental results in figures 15 to 19. As one can
see from the figures, it is difficult to assign a figure of merit to the fit, since great scatter in the
data obscures the result. Generally, above 20 MeV the results are on the order of 10 percent
accurate as estimated from the scatter in the experiments.

Below 20 MeV, the neutron cross sections are represented by numerical data sets at discrete
energies of 1, 3, 5, 10, 14, and 20 MeV as taken from references 27, 32, and 33. Interpolated
values between data points at the available target masses are shown in figures 20 to 25.
Intermediate energy values are found according to

o(Ay, E) = o(Ay, Ej)e oE-E) (3.3.7)

where F; and a are taken according to the appropriate subinterval. The cross sections are
assumed to be zero at energies below 0.5 MeV. The absorption cross sections for elements from
lithium to plutonium for energies between 1 and 100 MeV are displayed in figure 26.

3.4. Fragmentation Cross Sections

The local distribution of ions and radicals produced in ionizing radiation events is known to
be an indicator of biological response. The fact that such distributions for high-energy nuclear
radiation are vastly altered by local nuclear-reaction events has been studied in nuclear emulsion
(refs. 34 and 35) and is a regular component in risk assessments in high-energy neutron and
proton radiation fields (refs. 36 and 37). Risk assessments have generally depended on the
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results of calculational models of these reactions, since the detailed study of such reactions was
largely inaccessible to experimental study until the advent of high-energy, heavy ion beams.

The first detailed, relativistic, heavy ion beam experiments were performed by the Heckman
group at the Lawrence Berkeley Laboratory (LBL) (refs. 38, 39, and 40) in which beams of
carbon and oxygen were fragmented on a series of targets ranging from hydrogen to lead. The
momentum distribution of the projectile fragments relative to the projectile rest frame was
measured for all the isotopes produced. These results will be analyzed to ascertain relevant
biological factors with their corresponding implications on radiation-risk assessment in high-
energy, nucleonic radiation fields. An ion fragmentation model will be recommended for use in
radiological protection and studies.

Individual nuclear constituents are ejected in the collision of high-energy neutrons and
protons by direct collision (ref. 41). The remaining nuclear structure is left in an excited state
that seeks an equilibrium minimum-energy configuration through particle emission (ref. 42).
This is the basis of Rudstam’s study of the systematics of spallation products produced in
such collisions in which he assumes that the resultant isotopes are distributed in a bell-shaped
distribution near the nuclear stability line. The total change in nuclear mass and the dependence
on the incident projectile energy are treated empirically in Rudstam’s formalism.

The fragment charge distribution for a given fragment mass Ay is given as

F(Zg) = exp(pAg —7|Zs — sAg +vAY)) (3.4.1)

where the coefficients show a slight energy and fragment-mass dependence as

r= 1184704 (3.4.2)
s =0.486 (3.4.3)
v=38x10"* (3.4.4)
20E-077 (E < 2100 MeV)
p= (3.4.5)
0.056 (E > 2100 MeV)
where E is the nucleon energy. The complete Rudstam cross section is given by
o(Af, Zp) = [FngpAt_(m f(z,)] /D (3.4.6)
where
0.3 0.3 03
D = 1.79 |ePA (1 - —) -+ —} 3.4.7
| odr) " At oA (347
F) = 5.18exp(—0.25 + 0.0074 4;) (3.4.8)
exp(1.73 — 0.007LE) (E < 240 MeV)
Fp = (3.4.9)
1 (E > 240 MeV)

We have applied a simple mass-dependent correction factor to Rudstam’s formula as shown
in table 3.4.1 and renormalized his cross sections to the total absorption cross section. Many
corrective factors have been added to Rudstam’s formalism by Silberberg, Tsao, et al. (ref. 43).
Estimates have also been made by Guzik (ref. 44) for some of the isotopes produced in
connection with cosmic-ray propagation studies with some attempts at experimental verification
(ref. 45).

From a nuclear-model point of view, isotope production at low energy results from the
formation of a compound nuclear state that decays through particle emission. At higher
energies, the direct ejection of particles from the nucleus becomes important, and intranuclear
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cascades represented as sequences of two body scatterings within the nucleus with Pauli blocking
are the usual means of evaluation (refs. 46 and 47). Subsequent to the cascade, the residual
nucleus is assumed to be in thermal equilibrium and seeks to minimize its internal energy
through particle emission (ref. 46).

The measurement of isotope-production cross sections at proton accelerators does not allow
the direct observation of the fragment products. Customary measurements used ¥ or 3 counting
techniques to identify the isotopes produced. Stable and short-lived isotopes produced in the
reactions were either not observed or their number was greatly distorted by loss through decay.
This is particularly true for light-mass targets such as those that are important to biological
health considerations. Consequently, the fragmentation of carbon and oxygen nuclei by protons
remained shrouded in experimental obscurity until the advent of heavy ion accelerators.

One of the earliest experiments performed at the LBL Bevatron, when the ions of carbon and
oxygen could be accelerated to relativistic energies, used detectors able to measure the energy
and charge of an ion beam in conjunction with a bending magnet for momentum analysis
(ref. 38). In this way, the density in phase space was measured for each isotope produced in
collision with a fixed target. -

The isobar cross sections (op,gg,) measured by Lindstrom et al. (ref. 40) for 2.1A GeV oxygen
fragmentation on hydrogen targets are given in table 3.4.2 in comparison with the results of
Bertini (ref. 47), Rudstam (ref. 42), and Silberberg, Tsao, et al. (ref. 43). Note that the
Rudstam results contain the correction factors in table 3.4.1 and are renormalized as described
above.

The oxygen-fragmentation cross sections as represented by three parametric forms are
shown in figures 27 to 31 in comparison with the Bertini results and various experiments.
The baryon-15 isobaric cross sections in figure 27 show that experiments favor the curve
of Silberberg, Tsao, et al. Although the Bertini model provides an overestimate, the other
parametric curves provide improved estimates compared with the Bertini code. The baryon-14
isobaric experimental cross sections are in reasonable agreement with the three parametric
curves as well as with the Bertini model as seen in figure 28. Again, the experiments show no
clear advantage of one parametric curve over another for the baryon-13 cross section as seen in
figure 29, although the Bertini results appear somewhat low. We show experimental results for
baryon numbers between 9 and 13 of Lindstrom et al. in table 3.4.2. Clearly, the equally good
agreement for the Rudstam parameterization and the Silberberg, Tsao, et al. parameterization
is obtained by baryon numbers 12, 11, and 10. The Bertini cross section is far too low to
represent the cross section for baryon-11. The baryon-9 cross sections are shown in figure 30.
(The results of Yiou are reported in ref. 45.) The Silberberg, Tsao, et al. parameterization
is too high by a factor of 2 or more. The baryon-7 cross sections are shown in figure 31. At
energies below 300 MeV, the baryon-7 results of Silberberg, Tsao, et al. are favored.

The measurements of Lindstrom et al. (ref. 40) for relativistic carbon beams are shown
in comparison with the results from Rudstam (ref. 42) and Silberberg, Tsao, et al. (ref. 43)
in table 3.4.3 for two beam energies. The good agreement with the results of Silberberg,
Tsao, et al. is no surprise, since their parameterization was fit to these experimental data sets.
Note, however, that the Silberberg, Tsao, et al. cross section for mass 8 fragments needs to be
suppressed.

3.5. Differential Nuclear Cross Sections

3.5.1. Nucleon-nucleon spectrum. The nucleon-nucleon differential cross sections are
represented (ref. 48) by

f(E,E")=B [e—B(E"E) + e“BE] / (1 - e‘BE') (3.5.1)

where ,
B = 2mc?b/108 (3.5.2)
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In the above equation, mc? is the nucleon rest energy (938 MeV) and b is the usual slope
parameter, given by (in units of GeV~2)

_J 3+ 14¢~E'/200 (For pp) (3.5.3)
3.5 + 30e~E'/200 (For np) o

where E’ is the initial nucleon energy in the rest frame of the target. The differential
spectrum is defined (nonrelativistically) over the energy interval 0 < E < E’. Note that
the expression (3.5.1) reduces to the usual result for low-energy scattering:

f(E,E')~1/E (3.5.4)

The forward-to-backward scattering ratio is required for neutron scattering and is given by
(ref. 46)

Fp(E') = 0.12 - 0.015E' + 0.41/[1 + e4(E'-1~2)] (3.5.5)

where E’ in equation (3.5.5) is the laboratory energy (in GeV) before collision.
The differential cross sections are normalized such that

5—2 =o(E")f(E,E’) (3.5.6)

where o(E’) is the “appropriate” nucleon-nucleon total cross section. Obviously, we have
neglected the inelastic processes that must yet be included so that o(E’) in equation (3.5.6)
is set equal to the total cross section to ensure particle conservation. The center of the mass
angular distributions flor, is related to the energy change in the laboratory system by

do  E' do
= Ed—E— (3.5.7)

(where © denotes a solid angle) and is compared with the compilation of experimental data
(ref. 49) in figures 32 and 33. These comparisons indicate that the present functions are
reasonable.

3.5.2. Nucleon-nucleus spectrum. The nucleon-nucleus differential cross section in
Chew’s form of the impulse approximation (note that this is just the Born term of the optical
model in ref. 50) is given by

do.

g = T IFa))?

~ ce” M9 =20 /3 (3.5.8)

where b is the slope parameter of equation (3.5.2) averaged among nuclear constituents, qis
the magnitude of momentum transfer, and a is the nuclear root-mean-square (rms) radius. The
nuclear rms radius (ref. 50) in terms of the rms charge radius (in fermi) is given as

a= (\/ag - 0.64) v (3.5.9)
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where the rms charge radius (in fermi) is

(0.84 (A=1) )
2.17 (Ar = 2)
I R (A =3) \ (3.5.10)
1.63 (Ar = 4)
2.4 (6 < Ay < 14)
[ 0.8242% +0.58 (A4; > 16)

The nuclear form factor is the Fourier transform of the nuclear matter distribution. Note that
the above equation assumes that the nuclear-matter distribution is a Gaussian function. Such
an approximation is reasonable for the light-mass nuclei but is less valid for A¢ > 20.

The energy transferred to the nucleus Ey is restricted by kinematics to

0<E <(1-a)E (3.5.11)

where
a= (A —1)2 /(A +1)? - (3.5.12)

The energy-transfer spectrum is given as
4Amc (B + %) exp [—4Atmc2(B + %})Et]

J(E,E) = o (3.5.13)
1—exp [—4Atmc2(1 —a)(B+ %—)E’_ ,

Similarly, the nucleon energy after scattering E is restricted to

aE' <E<FE (3.5.14)
The nucleon spectrum is given by

4A;mct(B + % —4AmcX(B+ %) E - E
sy = B+ e [~44ime*(B + T )] 5515)
1 — exp [—4Atmcz(1 —a)(B+ %—)E’}

One should note that both equations (3.5.13) and (3.5.15) reduce to the usual isotropic
scattering result at low incident energy. The differential spectrum is normalized as

dog _ o Py ’
=2 = 0u(E) f(E.E) (3.5.16)

where o4(E’) is the total scattering cross section obtained from equation (3.2.16).

The results of equation (3.5.16) are compared with experiment (refs. 51 and 52) in figures 34
to 37 (where )5, is the scattering angle in the laboratory). The comparison is rather good
at the small angles when considering the simplicity of the present results. Also, shown in the
figures are prior results from reference 2 showing considerable improvement in representing
forward-scattered neutrons over the prior results. Much of the present discrepancy near
forward scattering is due to errors in o4(E) to which the present spectra are normalized in
equation (3.5.16). At broader angles, additional differences are due to the neglect of higher-
order corrections to the impulse term.

3.5.3. Nucleon nonelastic spectrum. The nonelastic differential cross sections (the
inelastic process in which the nucleus is raised to an excited level that is ignored) use the results
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of Bertini’'s MECC-7 program (ref. 47). The nucleon multiplicities are given in tables 3.5.1 and
3.5.2. We have required the multiplicities to be monotonic in energy, and thus the values in
parentheses, which were obtained by scaling from lower and higher energies, are correct values
and are used in the calculations. The results below 400 MeV were taken from Alsmiller et al.
(ref. 53), and the results for carbon, calcium, bromine, cesium, and holmium above 400 MeV
are obtained by interpolation. The nonelastic spectra are represented as

3 . —Efa;

N;, e i N,

EE)=5 = L Q : 3.5.17
I )= a;1—eEleg g [1 + 6—20(1—E/E’)] ( )

Y

i=1

The first term of the summation represents the evaporation peak so that N} (the number of
evaporation nucleons) is taken from table 3.5.1 and the spectral parameter a; (in GeV) is taken
from Ranft (ref. 54) as

(0.019 + 0.0017E")(1 — 0.0014;) (E' < 5GeV)

ap = (3.5.18)
0.027(1 — 0.001 A4;) (E' >5GeV)
(0.017 + 0.0017E")(1 — 0.0014¢) (E' < 5GeV)

Q1n = (3.5.19)
0.023(1 — 0.001A;) (E" > 5GeV)

The second term is taken from Ranft (ref. 54) to represent the low-energy cascade particles as

0.0035+/A¢ (E' <0.1GeV)
ngp = 4 0.007y/A[0.5 + (1 + logyg EN? (0.1 < E' <5GeV) (3.5.20)
0.0245/A; (E' >5GeV)
0.0042/A; (E' <0.1GeV)
ngn = 4 0.007vAL[0.6 + 1.3(1 + logyg E")?] (0.1 < E' <5GeV) (3.5.21)
0.032v/A; (E' >5GeV)

with the corresponding spectral parameters

(0.11 + 0.01E")(1 — 0.0014;) (E' <5GeV)
agp = (3.5.22a)
0.16(1 — 0.0014;) (E' > 5GeV)
(0.1 +0.01E")(1 —0.0014;) (B’ <5GeV)
(gn = (3.5.22b)
0.15(1 — 0.0014;) (E' > 5GeV)

The third term in the summation is the balance of cascade particles after the inclusion of the
quasi-elastic contribution.

The quasi-elastic contribution is estimated by including the nuclear attenuation following
the quasi-elastic event. The proton quasi-elastic cross section is

oQpp = Ziopp + (A — Zt)o'np} (35.23)

aQpn = (At - Zt)onp

13



and similarly for neutrons,

TQnn = (At — Zt)onn + Ztonp

(3.5.24)
TQmp = ZtOnp
The correspdn&ing'multiplicities are taken as
Ng.jk = 6_0'05‘/;1?0@%/ Z 7Q.jt (3.5.25)
£

where the exponential factor accounts for the attenuation of the quasi-elastic particles before
they escape the nucleus. The balance of the cascade particles is contained in N3 as

N3 =N, — Ny — Ng (3.5.26)
with an assumed spectral coefficient given by
ag = a9/0.7 (3.5.27)

Results of the present formalism are shown in figures 38 to 51 in comparison with the
calculations of Bertini et al. (ref. 46). Some further improvements in this parameterization

" need to be made. :

3.5.4. Light-fragment spectrum. The light-fragment yields per event are given in
table 3.5.3 as obtained from Bertini’s MECC-7 calculations (ref. 47). These results are
extrapolated and interpolated in energy and mass number. The corresponding mean energies
are given in table 3.5.4. The mean energies are used in Ranft’s formula for nucleons and are
similarly used for the light ions.

3.5.5. Heavy-fragment spectrum. Following the direct ejection of nucleons in nuclear
collision, the nucleus is left in a highly excited state that decays through particle emission.
From a sudden approximation point of view, as proposed by Serber (ref. 41), the momentum
distribution of the decay particles is governed by the fermi distribution prior to collision. The
collective momentum of decay products and nuclear fragments is thus derived on the basis of
combinatorial rules on the random ways in which a given fragment mass can be formed from
the nucleon distributions prior to collision (refs. 55 and 56). The formulation of Goldhaber
(ref. 56) is physically meaningful and simplistic. The momentum distribution is Gaussian in

momentum space with a momentum width parameter given by

op = 00 [Af(Ar — Ap)/(Ag — 1)]? (3.5.28)

where gy is the usual mean fermi momentum of the struck nucleus. However, the og of nuclear

fragmentation is found to be about 25 percent smaller than that observed in electron scattering

~ experiments (ref. 39). The mean fermi momentum is a slowly varying function of nuclear mass.

A slight modification of Goldhaber’s result is found to adequately represent the experimental
“results of Greiner et al. (ref. 39) given by

op = 0.8b[46,4/20(A; — 1)]1/2 (3.5.29)
where the parameters b and § 4 are given, respectively, by
b= min (11242, 260) (3.5.30)
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and

o4 = {At — Ay (Otherwise) (3.5.31)

A comparison of formulas (3.5.29) to (3.5.31) with experiments and the parameterization of
Greiner et al. (ref. 39) is given in table 3.5.5. Clearly, the present formulas are quite accurate.

The spectral distributions of the nuclear fragments in the rest frame of the struck nucleus
prior to collision are given by

daf _ of

G 1/2 _ K
o (27rE8)1/2E exp(—E/2Ey) (3.5.32)

where o is the fragmentation cross section and the energy parameter is
Ey =305/24s (3.5.33)

The average energies E of various fragments obtained by equations (3.5.29) to (3.5.33) are
compared with results of the Bertini model in table 3.5.6. Generally, the average energies
predicted by the Bertini model are reasonably accurate, although some specific isotopes differ
by a factor of 2 or more.

3.5.6. Energy-transfer cross section. The energy-loss spectrum ¢;(x, 2, E) of an ion
fragment j (ref. 57) may be written as

E 3/2 /
V(% Q, E) = Aj Cj(X)/ 7 (2m2) 255" Iar (3.5.34)
E oS

where Aj; is the fragment mass number, (;(x) is the fragment source, and E, is related to the
distance to the boundary along the direction §2 as given elsewhere (ref. 57). For distances far
from the boundary, one may take Ey = co. The cumulative energy-loss spectrum far from the
boundary (Ey = oc) is

Dj(x,E) = 4r /EOC ¥;(x,Q, B') dE' (3.5.35)

from which the distribution in linear energy transfer (LET) of energy deposit can be found.
The total energy absorbed is given by

D(x) =) Dj(x,0)
j
~ Y Ejojpd (3.5.36)
j

where E; is the average energy of the fragment j, o; is the fragmentation cross section,
p is the target density, and ¢ is the effective nucleon flux initiating the fragmentation events.
The energy-transfer cross section of the various fragment components is Ejo; and is shown
in table 3.5.7 for the Rudstam parameterization (present results), Bertini data (ref. 46), and
experiments of the Heckman group (refs. 39 and 40) for comparison. Equations (3.5.34) to
(3.5.36) also provide a basis for resolving the energy-transfer cross section into its various LET
components. The LET components of equation (3.5.35) are shown in figure 52 for p = ¢ = 1
for all contributions with a fragment charge greater than 1. The two curves shown in the figure
are for the Bertini data and the experiments of the Heckman group. Results obtained using
our modified Rudstam formalism and the parameterized momentum distributions are virtually
indistinguishable from the curve based on the LBL experiments. It is clear from the results
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shown in figure 52 that estimates of exposure from heavy ion recoil nuclei in tissue based on
Bertini cross sections are generally low.

4. Methods of Solution

In an earlier paper (ref. 3), we proposed the use of a perturbation theory to develop
a numerical method for solving the one-dimensional charged-particle transport problem.
Although the resulting algorithm was greatly simplified compared with Monte Carlo algorithms,
it still suffered from the need to manipulate large amounts of numerical data. In the present
section, we show how the integral operators of that earlier work (ref. 3) may be numerically
evaluated to eliminate the need to store and manipulate large amounts of numerical data, and
at the same time we develop an algorithm that maintains a close relation to the physical field
quantities. The resultant numerical solutions are compared with results obtained by analytical
solutions for realistic interactions.

4.1. Energy-Independent Proton Model
The Boltzmann equation for proton transport in the straight ahead approximation is given
[3 =9 sm) +cr] é(z,E) = /Oof(E E')é(z, E')dE' (4.1.1)
Jr OF ’ E ’ ' o

where S(E) is the proton stopping power, ¢ is the macroscopic interaction cross section which
we presently take as energy independent, and f(E,E’) is the production secondary-particle
spectrum. Using the definitions

as

E
T = /0 dE'|S(E") (4.1.2)
and )
f(r,7y = S(E) f(E,E") (4.1.4)

allows equation (4.1.1) to be rewritten as
z o0 B
w(z,r) =e T Y(0,r + ) + / dz e_az/ dr’ f(r + z,7")(z — 2,7") (4.1.5)
0 r+z
where the boundary condition is
¥(0,r) = S(E) $(0, E) (4.1.6)
A numerical algorithm for equation (4.1.5) is found by noting that

h oc _
Pz + h,r) =e Pz, r + h) + / dze 9% / dr' fir + z,7'2) Yz + h— 2,7 +2) (4.1.7)
0 r
which can be simplified by using 7
Yx+h—27r)= e "= y(z, v + h — 2) + 0(h) (4.1.8)
which yields |
h 7 h oc ~ :
Wz + h,r) e P y(a,r + h) + ek / dz/ dr' f(r + z,7' 4+ 2) (z, 7’ + h) (4.1.9)
0 T
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with the order of h? where h is the step size. Equation (4.1.9) is accurate for distances such
that oh << 1 and may be used to relate the spectrum at some point = to the spectrum at
z + h. Therefore, one may begin at the boundary (z = 0) and propagate the solution to any
arbitrary interior point using equation (4.1.9).

In the event that the boundary has a discrete spectrum such as

$(0, E) = 6(E — E) (4.1.10)

then
P(0,7) = 6(r — o) (4.1.11)

When discrete spectra are present at the boundary, the solution contains both singular and
continuous components which we label ¥, and ., respectively. The corresponding singular
term in the solution is then

Ys(z, 7)) =€ " 6(r +x —1p) (4.1.12)

whereas the continuous term satisfies

be(z + h,r) = e e(z,m + h)
h 00 _
+ / dze_‘”/ dr' f(r + 2,7+ 2) [Ys(z + h — 2,7 + 2)
0 T
+ ez +h—2,7" +2)] (4.1.13)
The first term under the integral may be evaluated using equation (4.1.12) to obtain

h
Yelz + h,7) = e"oh Yelz, 7+ h) + e~ o(zth) / dz f(r+z,mg—x—h+2)
0

h 00 _
+ / dze_”/ dr' fir+ z,7' + 2) ¥z + h— 2,7 + 2) (4.1.14)
0 r
The solution over small values of (h — z) may be approximated as

Yele+h—z7)me P Dy (z,r+h—2)+0(h-2) (4.1.15)

for which (see the appendix)
—cah -0z 7 h
Yelz +h,r) e [z/)c(:c,r+h)+e F(r,h,ro—:r—§>]

oo
+ e_“h/ dr'F(r,h, 'y ez, v’ + R) (4.1.16)
r
where
- h o _
F(r,h,v") = / dz f(r + z,7")
0
= F.le(r + h),E')~ F,(E,E’) (4.1.17)
where €(r) is the energy for range r and
E
F.(E,E') = / f(E,E"\dE (4.1.18)
0
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which is the cumulative secondary-particle spectrum Note that equation (4.1.16) requires only
one numerical integration per step in z.

4.1.1. Discrete spectrum. Nucleon-nucleon scattering can be well-approximated (see
section 3.5) by o

F(E,E") = ce*E'~E) (4.1.19)

where ¢/a = o. This spectrum is related to the quasi-elastic spectrum of nucleon-nucleus
reactions. Similar to this spectrum is

flr,r) = ce~a(r'=7) (4.1.20)

As a model problem, the spectrum of equation (4.1.20) is realistic and can be solved using
perturbation theory. The first term is the uncollided beam term

Yolz,r) =€ 7%8(rg —r — ) (4.1.21)
The first-generation term is
Y1(z,r) = g~ % =00 —T~2) (4.1.22)
and the higher-order terms are
Ynlz,r) = %z"e_”(—nc_n—l),(rg —r —g)? lgmalro—r-2) (4.1.23)

This problem is solved numerically using equation (4.1.16) and is compared with the analytic
solution in table 4.1.1. The incident beam is for 500 MeV protons on a water shield with
o =0.01 em?/g and o = 0.0123cm?/g.

As seen from the table, solutions with discrete spectra are limited in accuracy to 5 percent,
independent of the depth of penetration. This error arises from the energy interpolation formula
as the spectrum is highly discontinuous. Special interpolation methods could be developed to
reduce this error greatly.

4.1.2. Continuous spectrum. For this test, a spectrum similar to a solar proton event

is taken as
P(0,r) = e P (4.1.24)

The leading term in the perturbation theory is
Yo(x,r) = e % AHa) (4.1.25)

with successive collision terms given by

Yn(z,7) = = n— 1(36 T) (4.1.26)

(a+ﬂ)

This problem is solved numerically and Compared with the analytic result in table 4.1.2. Tt
is seen from the table that the agreement for the two solutions in this case is generally within
+1 percent. Clearly, high-quality numerical solutions are available for continuous spectra at
the boundary. — - :

The algorithm developed herein prov1des adequate solutions to proton beam problems
with discrete spectral components and highly accurate solutions for typical space applications
involving continuous spectra. The computation times for each of these test problems were less
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than several minutes on a CYBER mainframe, thus offering a very favorable comparison with
Monte Carlo or previous methods based on the perturbation theory (ref. 3).

4.2. Coupled Baryon Transport Methods

The coupled baryon transport equations are of the form

0 0

o o]
— ! N
D i S(B) + 05(E) | ¢3(2, E) = ) 7 1B B tuta B aE (4.2.1)
where v; is the range scaling parameter, S(E) is the proton stopping power, o(E) is the total
cross section, ¢;(z, E) is the differential flux spectrum of type j baryons, and f;(E, E' is
a differential energy cross section for redistribution of particle type and energy. Utilizing the
definitions

r= /OE dE' /S(E') (4.2.2)
¥;(z,7) = S(E) 6(z, E) (4.2.3)

and
Fik(r,v") = S(E) fjx(E, E") (4.2.4)

allows equation {4.2.1) to be rewritten as

(9 8 R / ! 4
(2 - vigr + i) wsta) = ) |7 Bty wntaryar (4.2:5)

which may be rewritten (refs. 3 and 4) as
Yi(z,r) = e~ (r’x)d)j(o, T+ v;T)

T pOC _
+ Z/O /0 e % (r’z)fjk(r + vz, ) Pz — 1) dr'dz (4.2.6)
k
where the exponential is the integrating factor

t
Cj(T, t) = / Uj(?‘ + l/jt’) dt’
0
If the interactions are such that

Fir(rr’) =6jxg(r —1") (4.2.7)

where g denotes the appropriate spectral function, then the solutions to equation (4.2.5) are of
the form
Yz, r) = x(z,7 + vjz) (4.2.8)

To demonstrate how remarkable equation (4.2.8) is, we note that if x(z,7) is the solution to the
neutron transport equation (v, = 0), then x(z,r + vpz) is the solution to the proton transport
problem independent of the functional form chosen for the stopping power.

Rather simple numerical procedures follow from equation (4.2.6). Noting that the first-order
nature of equation (4.2.1) allows #;(z,r) to be taken as a boundary condition for propagation
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to larger r, one may approximate equation (4.2.6) as

Yi(x + h,r) = e S (T’h)zpj(x, T+ vjih)
h poo
+ Z / / e™% (T’Z)]’jk(r +vjz, )l +h—2z,rydedr  (4.2.9)
& 0 JO .

which may be used to develop a numerical stepping procedure. Equation (4.2.9) has provided
the basis for a number of new transport codes for baryons of mass number greater than or
equal to 1 (refs. 2, 4, and 5). These codes are now being extended to couple with the meson
fields and to the negative baryon number fields.

If h is sufficiently small such that

oi(r'Yh << 1 (4.2.10)
then, according to perturbation theory (ref. 3),
Pr(x +h— 2,7y m e %Ry 1e o 4ou (B — 2)] (4.2.11)
which may be used to approximate the above integral of equation (4.2.9).

For many cases of practical interest (e.g., accelerator studies), monoenergetic particle beams
are used, and separation of the singular terms from the solution becomes convenient. The initial
beam of type J particles of energy Fy (where rq = R(Ey)) is taken as

7,0]-(0, 7’) = jJ(S(’I‘O — r) (4.2.12)
and the solution is written as
Yi(z, 1) = Yjolx, ) + ¢;(z,7) (4.2.13)
The corresponding singular terms are
Wro(z,7) = e~% (T’I)é(ro =T — V) 8 (4.2.14)

The regular terms of equation (4.2.9) for ¥ = p may be written as

Ypl(z + 1) = e (r.h),/,p(l;,r +h)
h 0 _
+ [Cdee S [ fitr 42 oo + - 2,7
0 - r+2
J

+v¥j(z+h—zr)]ar (4.2.15)
and the regular terms for & = n are

Tl’n(x + h,,T') = e—an (T)h d’n(‘ra T)
h oc
+ /0 dz e~ (1)z Z/ J_"nj(r, ) [Yjolz +h — 2, )
, , T ,

+yi(z+h—z,7")|dr' (4.2.16)

The singular contributions under the integrals of equations (4.2.15) and (4.2.16) can be
evaluated with equation (4.2.14), and the approximations in equations (4.2.10) and (4.2.11)
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can be applied to find
Pp(x + h,7) = exp[—ap(r)h]¥p(z,r + h)

+ exp {—[ap(r) +0p(rg)] = ¢ Fpp(h,7,10) 6 i €xp[—Cp(rg, 7))

}
} (7, 70) 8 exp[—0n(ro) z]

m|;~ MI;—

+ exp { [op(r) + on(ro)]

+/rooeXp{_[‘7P(7')+‘7p(T )} } (hrr+ )U)p(:zr+h)d
+/rooexp{—[0p(7‘)+an(r'+ )] }Fpn<hrr +})¢n(zr+h)dr

(4.2.17)
and

Yn(z + h,r) = exp[—on(r)h] Yn(z,r)

- h
+ b Fuplru ) exp { ~lou(r) + 0p(ro)]; | s explGy(r )]
_ h
+ hFanr, o) exp { 1) + on(ro))5 } 80 expl=ra(ro)a]
o / h 7 ! ! h 7
+ h/ exp 4 —[on(r) + ap(r )]—2- fp(r,m Y p [ 2,7 +§ dr
T
o ! h 7 J ! ’
+ h/ exp {—[Un(’l') + on(r )}5} fan(r, ") Y (z,r") dr (4.2.18)
T
where r6 =790—T — g and F is related to the cumulative spectrum F as given by

o —
F;ij(hari T,) = / fij(T+Z,T’) dZ
0
= Fij(r + hyr') = Fy(r,7) (4.2.19)
with
€(r)
Fyn)= [ £,(B,B')dE (42:20)
0
€(r) is the energy associated with residual range r, and E’ = ¢(r’). Equations (4.2.17) and
(4.2.18) are evaluated by establishing an z-grid at which ¥;(z;,r) is evaluated where A is the

distance between each successive evaluation. The integral over 7’ is accomplished by establishing
an r-grid (and the corresponding E-grid) and using

o ~ N > Tesn /
|ttt bitem Vi’ = 3 gntrme) [ dy(emr e (4.2.21)
™ i—n 7,

where 7y = (ry + r941)/2 and the series terminates at the highest ¢-value in the 7-grid.
There is a spatially dependent discontinuity in the proton flux spectrum which requires right-
and left-hand interpolation and integration. These discontinuities have been treated in the
computational procedures.
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4.3. Neutron Source

The neutron transport equation in three dimensions is

Q- V+0on(E)] on(x, 2 E) = Z [; fnj(E,E”Q,Q’)d,j(x, Q' E')dQ dE’ (4.3.1)
j v

Although the straight ahead approximation is adequate for most proton calculations, the
neutron fields are more strongly affected by nonforward scattering components, particularly
the low-energy neutrons. The reason is that the lower-energy neutrons have a greater range
than the lower-encrgy protons because of the electric charge difference. Thus, a first-order
correction to the straight ahead approximation may be applied by substituting the proton
coupling in equation (4.3.1) by the straight ahead solution for ¢p(x,$2, E) so that

o0
n(x 0 E) = [ fulBL . 9) byl B aB (4.3.2)
The corresponding neutron transport equation is
xX0 .
[Q~V+an(E)]¢n(x,Q,E)=/E Fan(E E',Q, ) ¢n(x, ¥, E') d dE' +£,(x, Q, E) (4.3.3)

The neutron source integral is treated in a fashion similar to that of equation (4.2.21).

4.4. Target-Fragment Secondary Flux

The target fragmentations produced in nuclear collision with the nucleon field must now be
treated. The spectral parameters of the composite fragments are relatively independent of the
projectile charge, energy, or direction. This leads to some simplifying assumptions so that

T __1 . Ev. ! /
¢j(x,Q,E)—Sj(E)§,(x)/E f;(E'")dE (4.4.1)

Ey = R;'[Rj(E) + ()] | (4.4.2)

where d(€2) is the distance from the boundary (ref. 57). The source of ions of type j is evaluated
as

JCEDY /0 " (B du(x, 2, E') dSY dE' (4.4.3)

where aj,-(E’ ) represents the fragmentation cross sections. The fj(E') represents the spectral
contributions averaged over all the target atomic constituents. In the present code, the distance
to the boundary is assumed to be large. One could treat not only the boundary effects but the
interface effects as well.
5. Results

As an initial validation of the present code, comparisons are made both with prior
calculations using Monte Carlo methods and with experimental data. Fully three-dimensional
Monte Carlo calculations have been made with the Bertini code as the nuclear cross section set
augmented with low-energy neutron data. (See refs. 58 and 59 for a detailed discussion.) Energy
absorption in a tissue slab for normally incident neutrons of energies 0.5, 2, and 10 MeV is shown
in table 5.1. Also shown are the results of the present code. The results appear remarkably good
when considering the crudeness of the straight ahead approximation for low-energy neutrons

and the limitations on the present data base. Results for higher-energy neutrons are shown
in figures 53 to 57. In each case, reasonable agreement with the results of Zerby and Kinney
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(ref. 59) are obtained. Similar results are found for energetic protons as shown in figures 58
to 61. The present data base changes the results in figures 53 to 61 by only a few percent
when compared with the results in reference 2. In the present calculation, the first-generation
proton spectrum is discontinuous for monoenergetic beams and is best handled by taking many
energy points in the spectrum. However, the calculation time then becomes excessive. The
present results were calculated using only 30 energy points. This process is adequate for space
radiation, as shown in reference 60, but it is marginal for the present monoenergetic results.
The use of numerical benchmark problems will allow us to understand the numerical procedures
better. Such a benchmark has already provided some insight (refs. 60 to 62).

The code has been used to calculate the dose behind various shields for typical space
radiation. Three major solar-particle events of solar cycles 19 and 20 are represented in
figure 62. The spectra as given in reference 63 have been used. The modification of the
solar-event spectra at various depths in a lunar soil model is shown in figures 63 to 65. The
importance of the buildup of secondary neutrons is clearly apparent in the February 1956 and
November 1960 events and does not appear at all in the August 1972 event. The neutrons of the
February 1956 event reach a stationary value between 25 and 100 g/cm2, as has been observed
in our earlier calculations (ref. 37). The resulting dose within a 5-cm sphere of tissue-equivalent
material is shown as a function of soil thickness in figure 66. The dose reduces only slowly for
increasing the thickness beyond 20 cm.

Galactic protons and their secondary neutron spectra behind varying thicknesses of alu-
minum are shown in figures 67 and 68. The incident proton spectrum is that for a solar
maximum according to the model of Adams et al. (ref. 64). It is clear that the neutron flux
approaches a maximum near 50 g/ cm? which is similar to the lunar soil results. Results for pen-
etration of the martian atmosphere are indicated in figure 69. The potential use of polyethylene
for controlling the neutron flux levels is indicated in figure 70. There are important geometric
factors to be applied to all these results for which some detail is given elsewhere (ref. 65).

6. Concluding Remarks

The emphasis of the present code is on high-energy baryon transport, but such a code must
adequately represent the low-energy neutrons in a reasonable way. It is seen from the present
results that this representation has been accomplished in the present code. The calculation of
100 to 400 MeV neutrons and protons on tissue is in reasonable agreement with a more complete
Monte Carlo code. The primary advantage of the present code is computer efficiency while
maintaining adequate accuracy. Future work will concentrate on improving the representation
of the quasi-elastic peak, the low-energy neutron transport algorithm, and adding the effects
of meson production to improve the comparisons further.

NASA Langley Research Center
Hampton, VA 23665-5225
December 21, 1988
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7. Appendix

Numerical Procedures

In this appendix we consider the question of the approprlate numerical procedure for
evaluating equation (4.1.5). The equation being solved is

Ylz,r) =e %0, 7 +x) + /: dze % :o dr’ f(r + z, 7Y ¥z — 2,7") (A1)

which may be solved using perturbation theory for a monoenergetic beam as

Yolz,7) = e 7 8(r +  — 1p) (A2)
Yi(z, ) =e"%% /z dz f(r+z,rg ~ T+ 2) (A3)
0

with higher-order terms being obtained by repeated substitution into equation (A1). Note that
if f(r,r') is a function only of (r — 7'}, then

Yi(z,r) =z f(r,r0 — 2) (A4)

Equation (A4) would hold for the quasi-elastic peak distribution for which
Fir,r') = cemo"=0) (A5)
where a and ¢ are constants. Equation (A4) does not follow for the quasi-elastic recoil particles

for which

fr, 7y = ce " (A6)

It follows that equation (A3) can be written as
Vi(z.r) = e [F(r+ 2,70 — 2~ Q) = F(r,ro — 2 — Q)] (A7)
where the choice for @ is not entirely clear but in some way represents the average z dependence
of equation (A3) on the interval 0 to z. If ¢’ and a are strictly constants, then equation (A7)
is independent of the choice of Q. In general, the spectral function f(r,r') contains terms
like those in equations (A3) and (A6) simultaneously so that whatever numerical solution is

implemented, the character of both solutions (A4) and (A7) must be retained.
The numerical solution to equation (A1) is rendered as

Ys(z + h,r) = e "R yy(z, 7+ h) (A8)

for the singular part and as
h b
Yelz + hyr)=e"° [1/)C($,r+h) +/ dzF(r+z,rg—z—Q)e ’°
0

h 20
Fal / ’ / 3
+/0 dz/r. F(r+z,7 4+ 2)¢Ys(z, 7 +h)dr] (A9)

for the continuous spectral components. The first two terms of equation (A9) correspond to
y¥(z,7) of the perturbation theory, and the requirement

h p—
$1(z + h,r) = ek [ws(x, r+h)+ /0 dzF(r—z,rg—z - Q) e_”] (A10)
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must be met by any numerical procedure. One may show equation (A10) to be an identity for
Q = h — 2. We now inquire as to a suitable choice for @. Clearly, computational accuracy of
equation (A10) depends entirely on exactness to which the integral in (A10) is evaluated.

We first note that the integral in equation (A10) for the quasi-elastic peak has the value

h
/ F(r+zr0—2—h—2)dz = hcexp[-a(rg —z — h — )] (A11)
0
for the exact value of Q. Assuming Q to be some fixed value results in
h__ 7 ¢ b
/ Flr+z,rp—z—-Q)dz = =~ exp[—a(rg — z — h — r)][e®? — £2(@—H))
0
1
= hcexp[—a(rg —z — h —r)] [l +a@ - Eah +0(h?)| (A12)

Clearly, the error of equation (A12) is minimized by taking @ = h/2. Note that this value of Q
would also be chosen on intuition, since it represents the values at the midpoint of the interval.

The above question was investigated using the numerical calculations and an analytic
solution for the quasi-elastic peak form of the secondary spectrum. The analytic solution
is graphically presented in figure Al. The numerical solutions for @ = 0 and Q = h are shown,
respectively, in figures A2 and A3. The corresponding errors are shown in figures A4 and A5.
In each case, the errors mainly occur near the upper energy limit of the spectrum at each
depth z. The @ = 0 solution is a slight overestimate of the flux at the highest energies and
Q = h is a slight underestimate. In accordance with the result of equation (A12), we expect
the errors of figures A4 and A5 to nearly cancel if the value @ = h/2 is used. The solution for
Q = h/2 is shown in figure A6 with the corresponding errors in figures A7 and A8. Clearly,
an adequate approximation is obtained using Q = h/2, although it is clear from the present
analysis that even greater improvements can be made.
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Table 3.4.1. Present Correction Factors for Rudstam’s Formula

Correction factor for—
AA IQC 160
1 1.3 1.5
2 .5 1.0
3 .3 1.0
4 1 1.0
5 1.0 1.5
6 .35 .5
7 .5
8 .1
9 2.5
10 1.0

Table 3.4.2. Comparison of Oxygen Fragmentation Cross Sections o of Reference 46
With Experiments of Reference 40 and Parametric Results of References 42 and 43

Fragmentation cross sections, ¢, mb, from—

Bertini LBL Rudstam NRL

Ap (ref. 46) (ref. 40) (ref. 42) (ref. 43)

16 7.0 0.02 8.7

15 85.1 61.5 61.0 59.4
14 39.0 35.4 32.6 32.2
13 13.9 22.8 29.7 17.7
12 28.1 34.1 27.9 36.0
11 5.0 26.4 314 19.9
10 9.1 12.7 12.0 11.0
9 1.0 5.2 7.1 12.1
8 2 1.23 2.1 14.7
7 1.1 22.2 27.8 19.4
6 3.8 13.9 18.0 16.7
Total 193.3 235.5 258.3 239.1
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Table 3.4.3. Comparison of Carbon Fragmentation Cross Sections ¢ Measured in Experiments of
Reference 40 With Two Simple Parameterizations

(a) 12C at 1000A MeV

Fragmentation cross sections, o, mb, from—
LBL Rudstam NRL
Ap (ref. 40) (ref. 42) (ref. 43)
12 0.1 6.7 0
11 55.3 63.2 69.0
10 22.7 28.0 22.0
9 5.8 10.0 15.2
8 14 4.8 26.0
7 18.9 21.7 20.7
6 12.4 14.7 16.9
Total 116.6 149.1 169.8
(b) 12C at 2000A MeV
Fragmentation cross sections, o, mb, from—
LBL Rudstam NRL
Afp (ref. 40) (ref. 42) (ref. 43)
12 0.09 6.2 0
11 57.0 60.4 58.5
10 22.7 27.8 20.5
9 6.20 104 14.2
8 1.6 5.2 24.1
7 20.49 24.4 19.9
6 14.8 17.2 16.7
Total 122.9 151.6 153.9
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Table 3.5.1. Number of Evaporation Nucleons Produced in Nuclear Collisions

[Values in parentheses are modified and used in the code]

Number of nucleons produced at—
25 MeV 200 MeV | 400 MeV 1000 MeV 2000 MeV 3000 MeV
A =12
pP—Dp ... .. 0.51 0.54 0.50 0.72 0.75 0.84
p—n . .. .. 0.026 0.32 0.35 0.79 0.79 0.79
n—p .. ... 0.052 0.30 0.35 0.73 0.73 0.80
n—on ... .. 0.43 0.57 0.52 0.77 (0.71) 0.71 (0.71) 0.73
A =16
tp =P . .. .. 0.62 0.73 0.71 0.84 0.89 0.98 (0.93)
p—n ... .. 0.87 0.36 0.441 0.11 (0.87) 0.93 (0.87) 0.82 (0.87)
n—p .. ... 0.12 0.47 0.53 0.86 0.86 0.89
n—n ... .. 0.55 0.60 0.59 0.79 0.79 0.81
Ay =27
p—p ... . 0.54 0.99 1.03 1.36 1.49 1.86
p—n ... .. 0.37 0.61 0.62 1.29 2.03 (1.92) 1.52 (1.92)
n—p ... .. 0.14 0.78 0.82 1.29 1.60 1.74
n—-sn ... .. 0.75 0.76 0.71 1.34 1.51 1.60
Ay =40 o I
p—p 0.50 1.03 1.06 1.74 2.32 2.93
p—n ... .. 0.53 1.12 1.24 2.63 3.36 3.64
n—op . . ... 0.12 0.74 0.84 1.60 2.29 2.67
n—on ... .. 0.89 1.39 1.44 2.76 3.25 3.54
A =65 ' o
P—p . . ... 0.18 0.75 0.91 2.11 3.15 4.00
p—n ..., 1.04 2.33 2.65 3.97 4.79 5.37
n—p ... .. 0.03 0.49 0.66 1.90 2.98 3.61
n—n . .. .. 1.46 2.77 2.90 4.17 4.99 5.49
Ay =80
p—=p . . ... 0.10 0.60 1.07 2.2 3.18 4.89
p—n . . ... 1.29 2.20 3.18 3.72 5.07 6.77
n—p 0.02 0.53 0.79 1.87 2.91 4.53
n—on .. ... 1.58 3.19 3.43 4.07 5.35 6.91
Ay =100 Bl o
pP—p . . ... 0.03 0.46 1.28 2.96 4.56 5.78
p—n ... .. 1.53 1.97 3.72 5.46 7.04 8.17
n—p .. ... 0.004 0.59 0.96 2.71 4.27 5.44
n—n .. ... 1.67 3.60 3.97 5.63 7.31 8.33
A =132 o
pP—=p - . ... 0.01 0.61 1.03 2.68 4.51 6.32
p—on ... . 1.91 4.11 5.25 8.76 11.34 12.31
n—p .. ... 0.001 0.47 0.81 2.51 4.47 5.98
n—n . . ... 1.96 4.73 5.59 8.93 10.6 12.42
A; =164
P—p . . ... 0.003 0.42 0.76 2.38 4.68 6.86
p—n .. .., 2.17 5.79 7.07 12.09 15.7 16.45
n—p .. ... 0.003 0.28 0.58 2.30 4.68 6.52
n—n . .... 2.26 5.96 7.07 12.3 14.6 16.51
A =207
pP—p . ... 0.001 0.21 0.44 2.23 5.19 7.39
p—n . .. .. 2.29 7.22 9.24 15.3 17.81 20.6
n—p .. ... 0.00 0.10 0.30 2.10 4.88 7.05
n—n . .... 2.29 7.38 9.53 15.6 18.2 20.6
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Table 3.5.2. Number of Cascade Nucleons Produced in Nuclear Collisions

34 o

Number of nucleons produced at—
0.25 MeV | 200 MeV | 400 MeV | 1000 MeV | 2000 MeV | 3000 MeV
A =12 S R
BoDp . ... 0.58 1.43 1.63 1.95 2.15 2.48
pon . ... 0.41 0.86 0.93 1.42 1.66 2.08
nop ... .. 0.42 0.90 0.92 1.43 1.65 1.91
non .. ... 0.56 1.42 1.69 1.95 2.27 2.57
A =16 “ -
PP . .. .. 0.56 1.41 1.72 2.05 2.39 2.60
pon ... .. 0.38 0.90 0.98 1.47 1.86 2.19
nop ... .. 0.38 0.91 0.96 1.49 1.85 2.01
Rn—n .. ... 0.54 1.43 1.70 2.05 2.52 2.70
A =77
b p . 0.46 1.38 1.67 2.29 2.86 3.19
p—=n . . ... 0.34 0.97 1.16 1.86 2.54 3.25
nep . ... 0.32 0.93 1.01 1.69 2.28 2.71
nom ... . 0.49 1.48 1.81 2.42 3.22 3.71
A, =40
p—p . ... 0.40 1.33 1.69 2.32 3.01 3.53
Pop ... 0.30 1.04 1.24 2.46 3.52 4.48
nop ... .. 0.28 0.89 1.08 1.79 2.51 3.06
n—n . ... 0.45 1.49 1.88 2.99 413 4.83
A, = 65: ]
hep L 0.30 1.21 1.69 2.35 3.16 3.87
pom . ... 0.28 1.09 1.46 3.06 4.49 5.72
mop ... 0.21 0.86 1.08 1.88 2.75 3.41
n—n 0.40 1.53 2.00 3.55 5.03 5.95
A = 80
Pop . .. . 0.27 1.18 1.57 2.32 3.18 3.95
p—om . ... 0.25 1.08 1.45 3.27 4.92 6.35
nop . . 0.19 0.81 1.04 1.86 2.78 3.54
non ... .. 0.36 1.51 1.98 3.78 5.40 6.64
A, = 100 s S8
DD . .. . 0.25 1.15 1.55 2.29 3.20 4.04
pon . ... 0.22 1.06 1.52 3.47 5.35 6.98
nop . .. .. 0.17 0.78 1.08 1.84 2.44 3.67
non .. ... 0.31 1.47 2.03 3.96 5.76 7.33
4, = 132:
DD . 0.20 1.00 1.46 2.21 3.17 3.87
pon ... 0.20 1.11 1.57 3.31 5.20 7.91
n—p . ... 0.13 0.70 1.00 1.79 2.69 3.52
non ... 0.28 1.45 2.10 3.86 6.86 8.29
Ay = 164 .
PopD . . . .. 0.16 0.90 1.36 2.13 3.15 3.69
pon . ... 0.18 1.11 1.60 3.16 5.06 8.86
n—p ... 0.1 0.63 0.8 1.72 2.55 3.39
non . ... . 0.26 1.42 2.11 3.56 7.94 9.25
A, = 208: : T
p—p . ... 0.14 0.82 1.27 2.05 7.74 3.51
pon ... .. 0.16 1.03 1.71 2.97 7.23 9.77
nop ... .. 0.09 0.58 0.87 1.67 2.41 3.24
non . ... 0.23 1.36 2.10 3.36 7.63 10.21
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Table 3.5.3. Evaporated Ion Yields From Nucleon-Nucleus Collisions

[Values in parentheses are for proton reactions]

Ton yields at—

500 MeV 1000 MeV 2000 MeV 3000 MeV
A, =16
d . ... ... 0.111 (0.094) 0.199 (0.237) 0.257 (0.265) 0.304 (0.311)
o 0.022 (0.029) 0.024 (0.025) 0.033 (0.025) 0.029 (0.029)
he. . . . . ... 0.018 (0.034) 0.035 (0.043) 0.037 (0.052) 0.037 (0.048)
« . 0.664 (0.400) 0.720 (0.696) 0.664 (0.624) 0.640 (0.667)
A =77
d .. ... ... 0.126 (0.130) 0.245 (0.269) 0.380 (0.396) 0.442 (0.433)
o 0.028 (0.023) 0.048 (0.052) 0.063 (0.065) 0.072 (0.069)
he. . . ... .. 0.042 (0.035) 0.067 (0.074) 0.073 (0.091) 0.083 (0.092)
o L. 0.370 (0.400) 0.550 (0.566) 0.597 (0.582) 0.577 (0.577)
A =65 T
d .. ... ... 0.150 (0.171) 0.379 (0.390) 0.748 (0.766) 0.935 (0.987)
t o 0.031 (0.035) 0.075 (0.068) 0.145 (0.145) 0.177 (0.191)
he. . . ... .. 0.013 (0.014) 0.039 (0.056) 0.112 (0.124) 0.166 (0.177)
a .. 0.124 (0.137) 0.231 (0.231) 0.373 (0.377) 0.431 (0.441)
A; = 100
d .. .. ... 0.174 (0.183) 0.456 (0.475) 1.01 (1.02) 1.44 (1.48)
t o 0.028 (0.029) 0.080 (0.081) 0.207 (0.192) 0.269 (0.273)
he. . ... ... 0.012 (0.017) 0.055 (0.060) 0.162 (0.185) 0.249 (0.262)
a . 0.158 (0.156) 0.320 (0.339) 0.490 (0.467) 0.549 (0.540)
A =207 T
d . . ... ... 0.131 (0.152) 0.536 (0.565) 1.51 (1.57) 2.54 (2.54)
t o 0.038 (0.037) 0.152 (0.163) 0.415 (0.424) 0.641 (0.644)
he. . . . . ... 0.001 (0.002) 0.017 (0.017) 0.112 (0.106) 0.211 (0.239)
.. 0.053 (0.063) 0.195 (0.210) 0.527 (0.514) 0.751 (0.746)
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Table 3.5.4. Mean Energies of Light Nuclear Fragments Produced in Nucleon-Nucleus Collisions

[Values in parentheses are for proton reactions]

Mean energies at—

500 MeV 1000 MeV 2000 MeV 3000 MeV
1, =6
o 5.55 (6.19) 791 (7.80) 9.55 (9.81) 111 (9.80)
Do 6.10 (6.40) 8.33 (8.69) 9.71 (10.2) 10.3 (11.2)
d ... ... 8.53 (7.64) 122 (10.7) 14.9 (14.8) 16.3 (13.0)
b 6.40 (7.83) 10.6 (10.4) 125 (9.74) 13.7 (10.1)
he . . ... 121 (8.76) 118 (11.2) 11.1 (13.1) 12.9 (10.3)
a .. 9.36 (6.24) 126 (12.3) 13.1 (14.6) 13.6 (13.8)
Ay =27
o 5.08 (5.09) 7.34 (7.48) 9.91 (10.5) 11.6 (12.0)
P 6.87 (6.90) 8.61 (8.92) 11.1 (11.9) 135 (13.7)
d ... ... 9.57 (9.42) 108 (11.2) 14.3 (14.8) 17.2 (17.4)
£ 9.16 (9.54) 10.8 (11.1) 13.0 (13.9) 16.6 (13.7)
he . ... .. 10.5 (10.8) 12.5 (12.8) 13.4 (14.1) 14.4 (14.5)
a . 127 (13.4) 13.2 (13.6) 13.8 (13.8) 145 (14.6)
4; = 65:
o 424 (4.32) 5.67 (5.70) 7.92 (7.91) 9.67 (9.58)
P 8.25 (8.30) 9.66 (9.76) 12.1 (12.3) 144 (14.2)
d . ... 9.88 (10.1) 13.5 (11.8) 13.8 (14.2) 15.6 (15.9)
o 10.0 (10.0) 11.7 (11.6) 13.7 (13.8) 151 (15.9)
he . . .. .. 14.6 (14.1) 16.4 (16.2) 17.5 (19.3) 19.5 (19.2)
a .. 12.7 (134) 132 (13.6) 13.8 (13.8) 14.5 (14.6)
4, =100
o 3.90 (3.90) 513 (5.16) 711 (7.04) 8.61 (8.74)
o 9.63 (9.62) 1.0 (11.0) 12.9 (13.2) 146 (14.7)
d ... ... 110 (11.1) 12.5 (12.6) 144 (15.0) 16.1 (16.0)
to 11.3 (11.7) 12.6 (13.0) 147 (14.3) 15.5 (16.5)
he . o ... 17.8 (18.7) 18.6 (18.8) 20.9 (20.6) 21.8 (22.2)
a ... 16.5 (16.5) 16.8 (16.9) 17.5 (17.5) 17.6 (17.6)
A = 207
W 3.28 (3.27) 4.37 (4.33) 5.83 (5.78) 6.90 (6.95)
P oo 12.5 (12.5) 12.2 (13.4) 14.9 (14.9) 16.2 (16.3)
d . .. ... 13.2 (13.2) 14.4 (14.2) 16.0 (16.8) 174 (17.8)
P 13.6 (13.8) 5.0 (15.3) 16.6 (16.8) 174 (17.8)
he . ... .. 241 (27.0) 26.2 (26.5) 28.0 (27.8) 20.1 (28.5)
a . 25.3 (25.7) 26.0 (26.3) 26.4 (26.3) 25.9 (26.4)
36
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Table 3.5.5. o for 160 Fragments Produced by 2.1 GeV Protons

- Value of 0, MeV/c, from—
Experiments Greiner
Fragment (ref. 39) Present work (ref. 39)
150 9443 80.0 83.8
- 149 99 + 6 109.5 113.1
130 143 + 14 129.2 133.5
16y 54 £ 11 55.0
15N 95+ 3 80.0 82.8
1N 112+3 109.5 113.0
BN 134 £ 2 129.2 133.5
12N 153 +11 143.4 148.1
15 125 £ 19 80.0 82.8
e 125+ 3 109.5 113.10
13¢ 130+ 3 129.2 133.5
12¢ 120+ 4 143.36 148.09
Hc 16245 153.45 158.5
) 10¢ 190+ 9 160.3 165.6
13 166 + 10 129.2 133.5
12 163+ 8 143.4 148.1
11y 160 £ 2 153.5 158.5
10 175+ 7 160.3 165.6
8B 175 + 22 165.5 171.0
11Be 197 £ 20 153.5 158.5
10, 159 + 6 160.0 165.0
9Be 166 £ 7 164.24 169.66
"Be 166 + 2 164.24 169.66
OLi 188 + 15 164.24 169.66
8L 170 £ 13 165.4 171.0
+ Li 163+ 4 164.24 169.66
611 14147 160.0 169.66
: SHe 167 + 20 160.0 165.0
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Table 3.5.6. Average Recoil Energy E of 180 Fragments Produced by 2.1 GeV Protons

Average energy value, E, MeV, from—

Bertini Present Experiments
Fragment (ref. 46) results (ref. 39)

Ief 2.65 1.01

g 4.19 .69

160 1.05 1.01 1.01
150 52 .69 .88
40 1.82 1.37 1.12
130 4.24 2.05 2.51
16y 1.11 1.01 .30
15N .63 .69 .96
1N 1.12 1.37 1.42
13N 1.84 2.05 2.20
12N 3.85 2.74 3.11
1N 5.95 3.42 3.64
He 1.62 1.34 1.78
13¢ 1.97 2.05 2.07
12¢ 2.64 2.74 1.91
¢ 4.70 3.42 3.81
10¢ 5.58 4.11 5.76
9c 4.41 4.79 5.10
13 2.35 2.05 3.38
128 3.43 2.74 3.53
11 4.33 3.71 3.42
10 4.79 4.11 4.89
B 1.19 4.79

108, 4.53 4.11 4.03
9Be 8.76 4.79 4.89
1074 4.61 4.11 '
9Li 2.26 4.79 6.27
8Li 4.41 5.48 5.76
Li 4.75 6.16 6.06
6L 5.76 6.85
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Table 3.5.7. Comparison of Fragment Energy-Transfer Cross Sections
Eo of Bertini With Experiments of Greiner/Lindstrom and Present Results

Energy transfer cross sections, Fo, MeV-mb, from—

Bertini Greiner/Lindstrom Present

Ap (ref. 46) (refs. 39 and 40) results

16 5.04 0.0006 0.26
15 60.6 56.9 56.4
14 48.8 51.7 47.6
13 37.6 48.3 62.9
12 85.8 68.2 55.8
11 37.9 99.1 117.9
10 52.8 62.0 58.6
9 6.5 25.7 35.1
8 2.5 7.1 12.1
7 6.11 121.7 1524
6 314 73.4 95.1
Total 375.1 614.1 694.2

Table 4.1.1. Ratio of Numerical Solution to Analytic Solution of Equation (4.1.23)
for 500-MeV Protons on a Water Shield

W

Ratio for shield thickness, x, g/cm?, of —
E, MeV 10 20 40 60 80
0.1 1.000 1.000 1.004 0.998 1.023
19.5 1.000 .999 1.004 997 1.024
120.9 1.000 .999 1.002 1.008 1.046
333.3 1.003 .994 1.037 963
454.1 1.031 )

Table 4.1.2. Ratio of Numerical Solution to Analytic Solution of Equation (4.1.26)

for Continuous “Space” Proton Spectral Input on a Water Shield

Ratio for shield thickness, z, g/ cm?, of—

E, MeV 10 20 40 60 80

0.1 0.994 0.995 0.998 0.999 - 0999
11.2 .994 .996 .999 1.001 1.000
36.3 .997 .998 1.002 1.003 1.005
118.1 1.001 1.003 1.005 1.006 1.004
383.9 .997 1.000 .991 1.000 .996

39



Table 5.1. Energy Deposition of 0.5-10 MeV Neutrons

[Values in parentheses are from present calculations] .

Energy deposition from Monte Carlo and present calculations, MeV
Incident
energy, MeV Depth, cm Heavy ion T2
0.5 01 0.1107 0.0073 .
- 1 0.0856 0.0076 -
1-2 (1) .0986 ( ) .0066 (0.0076)
4-5 0418 .0028
- 5 0135 .002
5-6 ) 0331 ( ) .0018 (:0026)
9-10 0074 .0003 =
1 .0018 . -=
10-11 (19) .0059 ( ) .0002 (.0006) -
14-15 .0006 -
15 0013 .0001
15-16 (15) .0007 ( ) (.0001) _
19-20 .0002
B (20) (.0002)
20-21 .0001
2 01 0.2138 0.0147 —-
1 0.1887 0.0135 ’
1-2 ) 1984 ( ) .0133 ( )
- 4-5 .1539 .0110
- 5 .0818 .0092
5-6 ®) 1349 ( ) .0105 ( )
9-10 .0770 .0054 :
10 .0298 .0050
10-11 (10) 0741 ( ) .0061 (-0050)
14-15 .0301 .0026
156 .0226 0024 =
15-16 (15) .0240 ( ) .0019 ( )
19-20 (20) .0091 (.0097) .0008 (.0011)
R 20-21 0114 ' .0009 '
10 0-1 0.3520 0.0339
- 1 0.3377 .
1-2 () 3284 ( ) .0342 (0.0358)
4-5 .3220 .0345
5 .2539 .0288
5-6 ®) .2977 ( ) .0266 ( )
910 2674 0257
10 1759 0214
10-11 (10) .2661 ( ) .0225 ( )
14-15 .2161 .0203
15 1411 .0156
15-16 (15) 2211 ( ) .0198 ( )
19-20 .1635 .0150
20 .1010 0111
20-21 (20) 1291 ( ) .0149 ( )
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Figure 2. The total proton-proton cross section of the present formalism compared with various experiments.
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Figure 3. The total neutron-proton cross section of the present formalism compared with various experiments.
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Figure 7. The total nucleon-carbon cross section according to the present formalism, the theory of Townsend,
Wilson, et al. (ref. 28), and various experiments.
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Figure 8. The total nucleon-aluminum cross section according to the present formalism, the theory of Townsend,
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Figure 10. The total nucleon-lead cross section according to the present formalism, the theory of Townsend,
Wilson, et al. (ref. 28), and various experiments.
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Figure 15. The neutron-carbon absorption cross section according to the present formalism compared with
Letaw et al. (ref. 29) and various experiments.
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Figure 16. The neutron-aluminum absorption cross section according to the present formalism compared with
Letaw et al. (ref. 29) and various experiments.
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Figure 17. The neutron-copper absorption cross section according to the present formalism compared with
Letaw et al. (ref. 29) and various experiments.
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Figure 18. The neutron-silver absorption cross section according to the present formalism compared with
Letaw et al. (ref. 29) and various experiments.
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Figure 19. The neutron-lead absorption cross section according to the present formalism compared with
Letaw et al. (ref. 29) and various experiments.
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Figure 21. The neutron-nucleus absorption cross sections at 3 MeV of the present formalism compared with
various experiments.
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Figure 22. The neutron-nucleus absorption cross sections at 5 MeV of the present formalism compared with
various experiments.
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Figure 23. The neutron-nucleus absorption cross sections at 10 MeV of the present formalism compared with
various experiments.
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Figure 24. The neutron-nucleus absorption cross sections at 14 MeV of the present formalism compared with
various experiments.
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Figure 25. The neutron-nucleus absorption cross sections at 20 MeV of the present formalism compared with
various experiments.
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Figure 33. Proton-proton elastic scattering differential cross sections of present model compared with
experiment.
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Figure 34. Neutron carbon scattering cross section according to present formalism, prior formalism (ref. 1),
and evaluated data (ref. 52).
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Figure 35. Neutron scattering cross section for several elements according to present formalism, prior formalism
(ref. 1), and calculations of Fernbach (ref. 51) for 7 MeV neutrons.
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Figure 38. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
protons produced by 100 MeV protons on oxygen.

1071

—I 1 Betini

Present

LI e

T

HEEg).
Mev !

1 1 1 L i ]
200 300 400 500
Secondary proton energy E, MeV

'4 1 i
1
0 0 100

Figure 39. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
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Figure 40. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
protons produced by 1000 MeV protons on oxygen. :
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Figure 41. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
protons produced by 3000 MeV protons on oxXygen.
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Figure 42. Nucleon cascade spectrum of Bertini compared with present work for neutrons produced by

1000 MeV protons on oxygen.
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Figure 43. Nucleon cascade spectrum of Bertini compared with present work for neutrons produced by

3000 MeV protons on oxygen.
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Figure 44. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
protons produced by 1000 MeV protons on aluminum.
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Figure 45. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
protons produced by 3000 MeV protons on aluminum.
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Figure 46. Nucleon cascade spectrum of Bertini compared with present work for neutrons produced by
1000 MeV protons on aluminum.
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Figure 47. Nucleon cascade spectrum of Bertini compared with present work for neutrons produced by
3000 MeV protons on aluminum.
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Figure 48. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
protons produced by 1000 MeV protons on lead.
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Figure 49. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
protons produced by 3000 MeV protons on lead.
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Figure 50. Nucleon cascade spectrum of Bertini compared with present work for neutrons produced by
1000 MeV protons on lead.
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Figure 51. Nucleon cascade spectrum of Bertini compared with present work for neutrons produced by
3000 MeV protons on lead.
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Figure 61. Dose in tissue to normal incident 400 MeV protons.
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Figure 62. Time-integrated proton flux spectra for three anomalously large solar proton events.
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