https://ntrs.nasa.gov/search.jsp?R=19890008228 2020-03-20T03:27:49+00:00Z

NASH CR-182233

ADIABATIC WANKEL TYPE ROTARY ENGINE

PHASE II FINAL REPORT

BY

R. KAMO, P. BADGLEY, AND D. DOUP

ADIABATICS, INC. COLUMBUS, INDIANA

PREPARED FOR

NASA LEWIS RESEARCH CENTER

CONTRACT NAS3-24880

(NASA-CH-182233) ADIABATIC WARKEL TYPE N89-17599 ECLARY ENGINE (Adiatatics) 200 p CSCL 216

> Unclas G3/07 0189642

SEPTEMBER 1988

-

1

Adiabatic Yake Adiabatic Wankel Type Rotary Engine 7. Authorio R. Kamo, P. Badgley and D. Doup 9. Performing Organization Name and Address Adiabatics, Inc. 630 South Mapleton Street Columbus, Indiana 47201 12. Spontoring Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Attn: Mr. John McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cer 16. Abstract (Limit 200 word) This SBIR Phase program accomplished the objecti 16. Abstract (Limit 200 word) This SBIR Phase program accomplished the objecti 17. Decument Analysis of a diabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings to the rotor s successful and that it was unlikely that the rotor he successful yrun with thermal barrier coatings as the stresses were excessive. 17. Decument Analysis a. Descriptore Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifiers/OpenEnded Terms COSATI Field/Group 18. Avsilability Sisteneet:	3. Recipient	's Accession No.
Adiabatic Wankel Type Rotary Engine Authords R. Kamo, P. Badgley and D. Doup Ferformig Organization Name and Address Adiabatics, Inc. 630 South Mapleton Street Columbus, Indiana 47201 2. Spentoring Organization Name and Address National Aeronautics and Space Administration Levis Research Center Attn: Mr. John McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 5. Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cer 6. Abstract (Umit 200 words) This SBIR Phase program accomplished the objectif technology of the Wankel type rotary engine for aircr through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direc Stratified Charge (DISC) rotary engine was performed baccessful and that it was unlikely that the rotor ho successfully run with thermal barrier coatings as the stresses were excessive. 7. Decument Analysis & Descriptors Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifier/OgenEnded Terms e. COSATI Field/Group 8. Aveilability Statemen: 4. Aveilability Statemen: A detailed Statement A detailed Terms A detailed Terms	5. Report D	
Adiabatic Wankel Type Rotary Engine Author(s) R. Kamo, P. Badgley and D. Doup Patenning Organization Name and Address Adiabatics, Inc. 630 South Mapleton Street Columbus, Indiana 47201 2. Spennoning Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Attn: Mr. John McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 5. Supplementary Note Project Manager, J. McFadden, NASA-Lewis Research Cer 5. Abstrect (Unit: 200 words) This SBIR Phase program accomplished the objecti technology of the Wankel type rotary engine for aircr through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Dire Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings as the stresses were excessive. 7. Document Analysis + Descriptors Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifier/OpenEnded Terms	Sent	t. 1988
Author(s) R. Kamo, P. Badgley and D. Doup Performing Organization Name and Address Adiabatics, Inc. 630 South Mapleton Street Columbus, Indiana 47201 A Spontoring Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Attn: Mr. John McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 A Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cert Adstrect (Limit: 200 words) This SBIR Phase program accomplished the object; technology of the Wankel type rotary engine for aircr through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Dire Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings as the stresses were excessive. P. Document Analysis a Descriptors Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifier/OpenEnded Terms	6.	
R. Kamo, P. Badgley and D. Doup Performing Organization Name and Address Adiabatics, Inc. 530 South Mapleton Street Columbus, Indiana 47201 Spensoring Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Attn: Mr. John McFadden, Mail Stop 77-6 Dieveland, Ohio 44135 Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cer Abstract (Umit: 200 words) This SBIR Phase program accomplished the objection cechnology of the Wankel type rotary engine for aircre chrough the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direc Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings to the rotor is successful and that it was unlikely that the rotor ho successful and that it was unlikely that the rotor ho successful and that it was unlikely that the south of successful and that it was unlikely that the south of successful and that it was unlikely that the south of successful and that it was unlikely that the south of successful and that it was unlikely that the south of successful and that it was unlikely that the south of successful and that it was unlikely that the south of successful and that it was unlikely that the south of successful and that it was unlikely that the south of successful and that it was unlikely that the south of successful and that it was unlikely that the south of successful and that it was unlikely that the south of successful and that it was unlikely that the south of b. Identifiers/OpenEnded Terms a cosati Field/Group A detailed Statement:	8. Performie	ng Organization Rept. No.
Performing Organization Name and Address Adiabatics, Inc. 530 South Mapleton Street Columbus, Indiana 47201 	,	AT-120
Adiabatics, Inc. 630 South Mapleton Street Columbus, Indiana 47201 2. Spentoring Orgenization Name and Address National Aeronautics and Space Administration Lewis Research Center Attn: Mr. John McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 3. Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cer A Abtrect (Limit: 200 words) This SBIR Phase program accomplished the objection technology of the Wankel type rotary engine for aircr through the use of adiabatic engine technology. Base of this program, technology is in place to provide a Intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Stratified Charge (DISC) rotary engine was performed chat applying thermal barrier coatings to the rotor is successful and that it was unlikely that the rotor hese successfully run with thermal barrier coatings as the stresses were excessive. 7. Document Analysis a Descriptors Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifier/OpenEnded Terms a Avellability Statement: 10. Security Cleated Avellability Statement: 11. Security Cleated Avellability Statement: 12. Security Cleated Avellability Statement: 13. Security Cleated Cleated Cleated Cleated States A valiability Statement: A detailed States A detailed Terms A detailed	10. Project/	Task/Work Unit No.
 630 South Mapleton Street Columbus, Indiana 47201 2. Spentoring Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Attn: Mr. John McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 3. Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cert This SBIR Phase program accomplished the objection technology of the Wankel type rotary engine for aircr through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Dire Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings to the rotor is successful and that it was unlikely that the rotor ho successfully run with thermal barrier coatings as the stresses were excessive. 7. Document Analysis a. Descriptors Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifier/Open-Ended Terms c. COSATI Fletd/Group A valueBully Statement: 		
Columbus, Indiana 47201 2. Sponsoring Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Attn: Mr. John McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 3. Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cer Abstract (Limit 200 words) This SBIR Phase program accomplished the objecting technology of the Wankel type rotary engine for aircr through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direc Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings to the rotor s successful and that it was unlikely that the rotor ho successfully run with thermal barrier coatings as the stresses were excessive. 7. Document Analysis a Descriptore Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifiers/Open-Ended Terms 4. Aveluability Stelement: 4. Aveluability Stelement : 4. Aveluability Stelement : 5. Aveluabili	11. Contract	t(C) or Grant(G) No.
 2. Sponsoring Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Attn: Mr. John McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cer Abstract (Limit: 200 words)	(C) NAS	3-24880
 Spontoring Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Attn: Mr. John McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cer Attrict (Limit 200 words) This SBIR Phase program accomplished the objection technology of the Wankel type rotary engine for aircr through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Dire Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings to the rotor to successful and that it was unlikely that the rotor ho successfully run with thermal barrier coatings as the stresses were excessive. 	(G)	
National Aeronautics and Space Administration Lewis Research Center Attn: Mr. Johm McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 • Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cer • Abstract (Limit 200 words) This SBIR Phase program accomplished the objection technology of the Wankel type rotary engine for aircrest through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings to the rotor as successful and that it was unlikely that the rotor hose successfully run with thermal barrier coatings as the stresses were excessive. 7. Document Analysis • Descriptors Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. • Identifiers/Open-Ended Terms • Availability Statement: * Availability Statem	13. Type of	Report & Period Covered
Lewis Research Center Attn: Mr. Johm McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 5. Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cer 6. Abstract (Limit: 200 words) This SBTR Phase program accomplished the objecti technology of the Wankel type rotary engine for aircr through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direc Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings to the rotor s successful and that it was unlikely that the rotor hc successfully run with thermal barrier coatings as the stresses were excessive. 7. Decument Analysis a. Descriptors Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifiers/OpenEnded Terms c. COSATI Field/Group 8. Availability Statement: 19. Security Clease (Uncleased)		
Attn: Mr. John McFadden, Mail Stop 77-6 Cleveland, Ohio 44135 5. Supplementary Note Project Manager, J. McFadden, NASA-Lewis Research Cer 6. Abstract (Limit: 200 words) This SBIR Phase program accomplished the objecti technology of the Wankel type rotary engine for aircr through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direc Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings to the rotor s successful and that it was unlikely that the rotor ho successfully run with thermal barrier coatings as the stresses were excessive. 7. Document Analysis a. Descriptore Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifiers/Open-Ended Terms a. COSATI Field/Group 8. Availability Statemer: 19. Security Cless (United States) 19. Security Cless (United States)		
 Supplementary Notes Project Manager, J. McFadden, NASA-Lewis Research Cer This SBIR Phase program accomplished the objecti technology of the Wankel type rotary engine for aircr through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings.	14.	
Project Manager, J. McFadden, NASA-Lewis Research Cer A Abstract (Limit: 200 words) This SBIR Phase program accomplished the objective technology of the Wankel type rotary engine for aircrest through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings to the rotor s successful and that it was unlikely that the rotor ho successfully run with thermal barrier coatings as the stresses were excessive. 7. Document Analysis a. Descriptors Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifiers/Open-Ended Terms 8. Avsilebility Sistemen: 19. Security Cless (United Stresses) 19. Security Cless (19.		<u> </u>
 Abstract (Umit 200 words) This SBIR Phase program accomplished the objection objection of the Wankel type rotary engine for aircrest through the use of adiabatic engine technology. Base of this program, technology is in place to provide a intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Stratified Charge (DISC) rotary engine was performed that applying thermal barrier coatings to the rotor successful and that it was unlikely that the rotor hor successfully run with thermal barrier coatings as the stresses were excessive. Document Analysis • Descriptors Wankel rotary engine, Adiabatic engine, Wankel Sengines, Turbocharging, Turbocompound. b. identil/lers/Open-Ended Terms c. COSATI Field/Group A vesilebility Statemen:	nter, Cle	eveland, Ohio 44135
 17. Document Analysis a. Descriptors Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifiers/Open-Ended Terms c. COSATI Field/Group 18. Availability Statemen: 19. Security Class (19. Security Class (rotor an ect Injec which co should be ousing co e thermal	id side and tion oncluded ould be
Wankel rotary engine, Adiabatic engine, Wankel S engines, Turbocharging, Turbocompound. b. Identifiers/Open-Ended Terms c. COSATI Field/Group B. Aveilability Statemen:		
b. identifiers/Open-Ended Terms c. COSATI Field/Group 8. Availability Statemen:	Simulatio	n Model, Aircr
c. COSATI Field/Group 18. Availability Statement: 19. Security Class (Time 1 - continued)		
8. Availability Statement. 19. Security Class (
III a la cal	(This Report)	21. No. of Pages
	fied	215
JNCLASSIFIED 20. Security Class ((This Page)	22. Price
		OPTIONAL FORM 272 (4-

ł

ADIABATICS WANKEL TYPE ROTAY ENGINE PHASE II

Ξ.

TABLE OF CONTENTS

<u>Sections</u>	on <u>Title</u>	<u>Page</u>
1.0	Introduction	1
2.0	<u>Executive Summary</u>	1
3.0	Background-Phase I	2
4.0	Technical Approach	2
5.0	DiscussionTask I Engine Selection and Baseline Testin5.1.0Task I Engine Selection5.1.1Engine Test Plan5.1.2Engine Test Plan5.1.3Baseline Testing5.2Task II Thermal Analysis5.3Task III Adiabatic Component Design5.4Task IV High Temperature Apex/Side Seal Tribology5.5Task V Prototype Engine-Procurement/Assembly-Mazda5.5.1Side Housing5.5.2Rotor5.6Task VI Engine Testing5.6.0Intermediate Housing5.6.1Rotor	3 3 5 6 8 8 8 14 14 16 20 28 28 29 7
	 5.6.2 Rotor Housing	37 54 54 60 64 64 76
6.0	<u>Conclusions</u>	76
7.0	Recommendations	82
	Appendix A Appendix B 	A-1 B-1
	Appendix D D <thd< td=""><td>D-1</td></thd<>	D-1

ADIABATICS WANKEL TYPE ROTAY ENGINE PHASE II

5 5

TABLE OF CONTENTS

Se	еc	t	i	0	n
					_

1

<u>Title</u>

<u>Page</u>

Appendix	Е	•	•			•	•	•	•			•	·		•	•	•		•	·	•	E - 1
Appendix	F			•					•													F-1
Appendix	G-	I				•		•											•		. (G-I-1
Appendix	G -	II	•							•							•			•	G-	· I I - 1
Appendix	Н										•									•	•	H-1
Appendix	Ι					•				•	•	•		•				•		•	•	I - 1

ADIABATIC WANKEL TYPE ROTARY ENGINE PHASE II

LIST OF ILLUSTRATIONS

<u>Figure</u>	Title	<u>Page</u>
5.1.3-1 5.4-1	Mazda Engine Ready for Baseline Testing	7 11
5.4-2	Temperature Measurement	12
5.4-3 5.5.0-1	Drawing of Friction and Wear Test Rig Assembly Details of Zirconia Coating Applied to Mazda	13
	13B Rotors	15
5.5.0-2	Zirconia CoatedRotor After One Densification Cycle.	17
5.5.0-3	Combustion Chamber	18
5.5.0-4	Mazda Rotor After Adiabatics, Inc. Low Temperature Densification	19
5.5.1-1	Details of Zirconia Coating on Mazda 13B Intermiediat Housing	e 21
5.5.2-1	Stock Aluminum Mazda Rotor Housing After Zirconia (a)	0.2
0 0	and Tribaloy 800 (b) Application.	23
5.5.2-2	Rotor Housing	24
5.5.2-3	Cast Iron Rotor Housing After Initial Machining	25
5.5.2-4	Coated Cast Iron Rotor Housing Showing "Mud" Cracks	
1	After Zirconia Densification.	27
5.6.0-1	Zirconia Goated Intermediate Housign Densified by Kaman Science's Process After Completing 51 Hours	
	of Testing.	30
5.6.0-2	Change in Oil Temperature vs. Bmep Chart	31
5.6.0-3	Change in Oil Temperature vs. Bmep Chart	32
5.6.0-4	Change in Oil Temperature vs. Bmep Chart	33
5.6.0-5	Change in Oil Temperature vs. Bmep Chart	34
5.6.1-1	Rear Rotor Housing After 31 Hours of Testing Time	
	with Thermal-Barrier-Coated Rotor	35
5.6.1-2	Undensified Zirconia Coated Mazda Rotor After 100	26
	Hours of Testing.	20
5.6.1-3	Change in Oil Temperature vs. Bmep Chart	20
5.6.1-4	Change in Oil Temperature vs. Bmep Chart	29
5.6.1-5	Change in Oil Temperature vs. Bmep Chart.	40
5.6.1-6	Change in Oil Temperature vs. Bmep Chart.	41
5.6.1-7	Change in Oil Temperature vs. Bmep Chart.	42
5.6.1-8	Change in Oil Temperature vs. Bmep Chart.	43
5.6.1-9	Change in Oil Temperature vs. Bmep Chart	44
5.6.1-10	Change in Oil Temperature vs. Bmep Chart	45
5.6.1-11	Change in Oil Temperature vs. Bmep Chart	46
5.6.1-12	Change in Oil Temperature vs. Bmep Chart	47
5.61-13	Densified Zirconia Coated Mazda Rotor After 100	48
	$\mathbf{nours} \text{ or resulting}, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots$	

III

ADIABATIC WANKEL TYPE ROTARY ENGINE PHASE II

LIST OF ILLUSTRATIONS (Cont.)

<u>Figure</u>

1

<u>Title</u>

<u>Page</u>

5.6.1-14	Stock Mazda Rotor (a) Compared with Densified Coated	
	Rotor After 100 Hours Testing Together in One Build .	49
5.6.2-1	Failed Thermal Barrier Coating on Mazda Rotor Housing	
	After 14 Hours of Testing	51
5.6.2-2	Coated Cast Iron Rotor Housign After Testing	
	16.75 Hours	52
5.6.2-3	Warped M2 Tool Steel Apex Seals Tested with Coated	
	Cast Iron Rotor Housing	53
5.6.2-4	Warped Standard Cast Iron Apex Seals Tested with	
	Coated Iron Rotor Housing	55
5.6.2-5	Coated Cast Iron Rotor Housing After 32.3 Hous of	
	Testing	56
5.6.2-6	Adiabatics' Slurry Coating on a Mazda Side Seal (below)	
	Compared to a Stock Side Seal (top) After 32.5 Hours	
	of Testing	57
5.7.0-1	1007R Rotor After machining Process Showing the Lip of	5.0
	Untouched Material Around the Combustion Chamber	59
5.7.0-2	1007R Rotor Shown (a) After Zirconia Application and	<i>c</i> 1
	(b) After Zirconia Densification.	61
5.7.0-3	Details of the Thermal Barrier Coating on the 100/R	60
	Rotor	62
5.7.1-1	Details of Thermal Barrier Coating on the 100/R	()
	Aluminum Side Housing	63
5.7.1-2	1007R Side Housign After Machining (a) and Final	
	Lapping (b)	63
5.7.1-3	Cracking Around the Crankshaft Hole of 1007R Side	11
	Housing After Final Lapping	60
5.7.2-1	Details of Thermal Barrier Coating on the 1007R	67
	Aluminum Rotor Housing.	07
5.7.2-2	IUU/K Rotor Housign Shown After Zirconia (a) and	60
c o 1	Tribaloy 800 (b) Application.	70
5.8.1	rower Available in the Exhaust Chart	10

ADIABATIC WANKEL TYPE ROTARY ENGINE PHASE II

LIST OF TALBES

<u>Title</u>

<u>Page</u>

Table 1	Configuration of the Mazda 13B Engine	5
Table 2	Prototype Procurement - Mazda 13B	9
Table 3	Testing Results - procured Mazda 13B Components	58
Table 4	prototype Procurement - NASA 1007R	70
Table 5	1007R Baseline Engine Basic Engine Configuration	71
Table 6	Engine Operating Condisitons and Performance	72
Table 7	John Deere Test Data	73
Table 8	Energy Balance (simulation)	75
Table 9	Baseline	77
Table 10	Insulated, Cooled Engine	78
Table 11	Insulated, Uncooled Engine Input	79

1.0 Introduction

This final report is prepared by Adiabatics, Inc. for the National Aeronautics and Space Administrations' Lewis Research Center (NASA LeRC) per an SBIR contract No. NAS3-24880 as amended in Modification No. 2. This report documents the two-year SBIR Phase II program, from July 10, 1986 to September 10, 1988, to develop and test a prototype low-heat-rejection rotary engine.

This SBIR Phase II program was a result of the studies performed in the Phase I contract entitled "Adiabatic Wankel-Type Rotary Engine" completed in 1985. Under Phase I, an analytical study, significant results in areas such as decreased fuel consumption and increased power output were cited when thermal-barrier (insulative) coatings were applied to internal components of the rotary engine, and with the subsequent removal of the cooling system.

The work in this Phase II program was the first step in applying the ideas and theory elaborated in Phase I to an actual engine. The objective of this Phase II project was to design, fabricate, procure, assemble, and test a prototype low-heat-rejection rotary engine to see if the results of Phase I are actual and that this type of engine can run dependably.

2.0 EXECUTIVE SUMMARY

This SBIR Phase II program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Curtiss-Wright and John Deere as part of their "Technology Enablement" program for aircraft rotary engines have identified a need for reduced heat rejection as a key technology for a highly advanced aircraft engine [1].

Based upon the results of this program technology is in place to provide a rotor (using either the available 17-4PH stainless steel rotor or preferably a titanium alloy rotor) and side and intermediate housings (of preferably titanium alloy) with proven thermal barrier coatings. These components by themselves make a large improvement in the engine package by substantially reducing the net heat transfer and thus reducing the size and weight of the cooling systems (lube and coolant) and will also improve the efficiency of the engine by improving the combustion through increased cycle temperatures. To achieve the best overall powerplant package a single high temperature fluid combining lubrication and rotor housing cooling should be incorporated. Incorporation of a compounding cycle such as turbo-compounding or a bottoming cycle will be even more attractive and show larger benefits as more heat is diverted from coolant to the exhaust.

A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed by ADAPCO, Inc. utilizing the DISC cycle simulator developed by MIT under a program sponsored by NASA. The analysis was calibrated by matching measured performance data supplied by John Deere. The analysis was then conducted for two cases consisting of both an uncooled engine with thermal barrier coatings on cast iron engine housings and an intermediate case with thermal barrier coatings on water cooled aluminum housings with thermal barrier coatings on the rotor in both cases. A finite element model for the 1007R rotor and rotor housing was developed for each of the three cases (standard water cooled, thermal barrier coatings with water cooling, and thermal barrier coating with no cooling). Detailed thermal and stress analyses were then performed for these three cases utilizing boundary conditions as defined by the respective cycle simulations. This study concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were excessive.

Concurrently with the analytical study all of the major internal engine components including the rotors, rotor housings and side housings have been coated with thermal barrier coatings and the components durability tested in a racing Mazda engine for over 300 test hours. The Mazda engine was utilized for this design and durability screening effort rather than the 1007R engine for reasons of availability and cost effectiveness and because it runs hotter that the DISC engine which serves to accelerate the testing.

The results of the iterative design, fabrication and testing cycles are that successful designs for both the rotor and side housings with thermal barrier coatings are proven and that the use of thermal barrier coatings on the rotor housing appears to raise the inner surface temperature to the point where available liquid lubricants are inadequate to lubricate the apex seal interface.

Based upon the test results, components have been supplied to NASA for the NASA 1007R engine which have been modified with thermal barrier coatings. The plan is for NASA to have the components engine tested by John Deere's Rotary Engine Division to determine their performance in the DISC engine.

3.0 Background-Phase I

The SBIR phase I program was an analytical study of the potential benefits of the adiabatic Wankel-type engine and advanced heat engine concepts. Also, the design of adiabatic engine components, methods of applying ceramic (insulative) materials, and the technical feasibility of an adiabatic Wankel engine concepts were presented. The baseline engine selected for this study was the single rotor 1007R engine built by John Deere and owned by NASA. The 1007R is a highly advanced, stratified charge, 0.7 liter prototype engine. The results of the Phase I study confirmed a significant improvement in the

The featiles of the Phase I study confirmed a significant improvement in the performance of the Wankel engine when modified to be adiabatic. Also, advanced concepts like turbocompounding, advanced turbocharging, high compression ratios, faster combustion, and reduced leakage showed significant improvements in engine performance. An overall improvement of 25.5% in ISFC and 34.5% in power output was predicted for the 1007R engine when 100% adiabatic and turbocharged. The potential application and performance benefits of the low-heat-rejection Wankel engine are extremely attractive for future advanced power plants for aircraft, automotive, and industrial engines. These discoveries and potential benefits are what prompted the funding of Phase II.

4.0 <u>Technical Approach</u>

To meet the objectives of this Phase II project a management plan was developed whereby Phase II was broken into two separate parts. The first part to be performed by Adiabatics Inc. consists of development of insulated components. A Management Plan submitted by Adiabatics Inc. at the beginning of the program is found in Appendix A. The second part consists of testing the fully insulated engine which will be performed by John Deere at a later date. To meet the first contract objectives, a nine-task plan was developed is as follows:

<u>Tasks</u>

- 1. Engine Selection and Baseline Testing,
- 2. Thermal Analysis,
- 3. Adiabatic Component Design,
- 4. High Temperature Apex/Side Seal Tribology,
- 5. Prototype Engine-Procurement/Assembly-Mazda 13,B
- 6. Engine Testing,
- 7. Prototype Engine-Procurement/Assembly-NASA 1007R,
- 8. Exhaust Energy Utilization. and
- 9. Reporting.

5.0 <u>Discussion</u>

The following sections detail each of the tasks from start to finish.

5.1.0 Task 1 Engine Selection and Baseline Testing

An economic and feasibility study was to be made to select the best rotary engine available for modification to an adiabatic design. After selection of the engine, an engine test plan was to be conceived and baseline testing commenced. The candidate engine needed to be both easy and economical to modify while offering as much control of the hot combustion as possible and capable of producing enough power output to meet NASA's requirements for use in light aviation.

5.1.1 Engine selection

Engine selection was based on the following criteria:

- Ease of modification and compatibility with insulated coating,
- Lowest cost,
- Availability of spare parts,
- Fuel introduction (fuel injection into the combustion chamber being preferred), and

• Power output.

A survey of the available prototype and commercial Wankel rotary engines showed the following existing engines:

<u>Engine</u>

Comment

NASA 1007R Research Rig

- Only one available with John Deere
- Expensive
- Fuel injection system meets requirements

John Deere RC1-60 (Curtiss-Wright)	• Not Available
Wedtech 312 c.c.	 Small size Not stratified- charge Combustion chamber for natural gas fuel
OMC Rig Engine at NASA	 OMC not interested in supporting
Norton/Teledyne	 Not Stratified charge Small size Teledyne not interested
Mazda 13B (2 rotor)	 Low cost Parts easily available Not stratified charge
Mazda 13B (1 rotor) Research Rig	 Expensive to fabricate NASA research rig

Of the above engines, only the John Deere 1007R offered the desired power output and fuel introduction system. The other engines are either not available, too small, or not fuel injected. The problem with the 1007R is it is a prototype engine and only one existed which was being used by John Deere.

given to NSRDC

The other engine which held some promise, was the naturally aspirated two-rotor Mazda 13B. Though this engine is not fuel injected, parts are readily available at low cost. Also, the Mazda has a power range comparable to the 1007R meaning both engines meet the requirements set by NASA.

The conclusion of this survey was to use the two-rotor Mazda 13B engine for component screening (mechanical screening as opposed to performance development) because of its low cost, availability of parts, and the maturity of the engine. Once components were successfully tested for durability and integrity in the Mazda, the knowledge gained would be used to modify parts for a second engine - the NASA 1007R. Assembly and testing of the uncooled adiabatic NASA engine will be under a contract performed at John Deere (the 1007R will then be the advanced engine which strives for the goals outlined in this SBIR Phase I report).

This selected approach was reviewed with Mr. William Hady at NASA LeRC on November 12, 1986 which was followed by a Management Plan which detailed the program.

A two-rotor Mazda 13B engine was purchased from Racing Beat Inc. of Anaheim. California. The configuration of the engine is listed in the following table: Table 1. Configuration of the Mazda 13B Engine

Model	Mazda 13B						
Displacement	1.308L(80 Cu In)						
Rated Power	132KW (177 Horsepower)						
Intake Ports	6 Side Ports (2 Valved)						
Exhaust Ports	2 Peripheral						
Exhaust Manifold	Racing Type Header						
Corporation	Dellorto 48 DHLA (Dual side draft)						
Ignition	Mazda Breakerless distributor (Integral Electronics)						
Ignition Coils	Mazda Transistor Ignition Type						
Flywheel	Lightweight Steel Type						

5.1.2 Engine Test Plan

With the test engine selected, the next step was to develop an engine test plan (Appendix B) consisting of the following:

- Descriptions of configurations being tested,
- Test conditions,
- Parameters to be measured,
- Instrumentations, and
- Detailed location of the thermocouples in the rotor housing and intermediate housing.

5.1.3 Baseline Testing

The first test was to baseline the engine and refine the test facility. The data gathered from the baseline test (Appendix C) were used for comparison purposes in later tests to help evaluate changes brought about by testing different insulated components. The baseline test ran approximately 23 hours.

The baseline test consisted of six (6) basic operations. The first three operations were disassembly, inspection, and reassembly. The Mazda engine was disassembled as specified in the 1987 Mazda shop manual. While disassembled, the components were inspected as specified in the Mazda shop manual.

Before reassembly, the standard rotor housings and intermediate housing were replaced with new housings which had been machined for thermocouple installation. These were the only internal components changed for instrumentation and should not effect engine performance. Engine assembly was done as specified in the Mazda shop manual. The fourth step was to install the engine in test cell No. 2 and connect it to the Eaton eddy-current-type dynamometer. All instrumentation was installed in a standard manner and calibrated. Pictures of the Mazda engine mounted in the test cell can be seen in figure 5.1.3-1.

The fifth operation was the test itself. Engine testing started with a compression test. The compression tester takes six (6) measurements (one for each rotor face). Next, the engine was started and run through the break-in cycle which consisted of running at varying speeds with light to no-load. During this run all systems were checked to make sure they were functioning properly.

A test was to be run to develop the torque curve. From the torque curve 5 test speeds were to be selected. Each of the five speeds were then to be run at 25%, 50%, 65%, 75%, and 100% of full load. All the parameters listed in the engine test plan (found Appendix B) were to then be recorded at the various speeds and loads.

The last operation was to be disassembly and re-inspection once the engine completed testing.

Although test conditions were ideal problems were encountered. The engine developed excessive vibration at high speeds and problems were encountered controlling the dynamometer. This reduced testing speeds and loads. Upon post-disassembly a source of this problem was found. A needle type thrust bearing on the crankshaft had become pinched which inhibited its "free" rotation. Another source of the problem was found part way through the second test (the coated intermediate housing test). A factory mislabeled distributor caused the leading and trailing spark plugs to be fired in a backwards order. In other words, the trailing spark plugs fired first. These problems were corrected but their effect on the data remains unknown. Therefore, all comparisons of data are made under like conditions. For example, the data gathered from testing the engine with insulated rotors is compared with data gathered from testing with the insulated intermediate housing (with correct ignition in both cases). The baseline test is compared with the insulated intermediate housing test when both had incorrect ignition.

5.2 Task II Thermal Analysis

On April 1, 1987 a subcontract was let to (Appendix D) ADAPCO, Inc. for the thermal analysis on the 1007R engine. The purpose of this analytical effort was to determine the structural implications of an "adiabatic" direct-injection stratified charge (DISC) rotary engine. The analysis was to predict a thermal history to provide the basis for calculating the distortion, allowable clearances, and thermal stresses. These calculated stresses were then to be combined with rotating stresses and pressure loading stresses to provide input for component design.

The method for conducting this analysis was to be as follows:

- A NASA to furnish 1007R drawings and test data to ADAPCO,
- B NASA to furnish MIT stratified charge combustion model (DISC),
- C ADAPCO to incorporate 1007R geometry and run the MIT Model to generate boundary conditions,

AI-C/111-2A

AI-C/111-6A

Figure 5.1.3-1. Mazda Engine Ready for Baseline Testing.

ORIGINAL PAGE IS OF POOR QUALITY

- D ADAPCO to use John Deere data to verify model,
- E ADAPCO to generate FE model of 1007R rotor and rotor housing,
- F ADAPCO to use boundary conditions from C and run FE model, and
- G ADAPCO to prepare report.

A copy of ADAPCO's final report number 44-01-001 dated March 4, 1988 entitled "Heat Transfer and Structural Analysis of a Thermal Barrier Coated Direct Injection Stratified Charge Rotary Engine" is hereby submitted to NASA as appendix to this report.

The conclusion of ADAPCO's report was that the insulated rotor was the most likely component to survive in the adiabatic engine (though it showed high levels of stress in the coating around the "lip" of the combustion bowl). The stock aluminum 1007R rotor housing (coated with a combination of insulation and wear surface coating) when run with coolant was predicted as having a likely chance of failure. Due to the difficulty of applying thermal barrier coatings on aluminum, a coated cast iron rotor housing was modeled as an alternative to aluminum. The simulation predicted that the only outcome of using a coated cast iron rotor housing in a uncooled engine was coating failure. This failure was chiefly predicted because of the thermal expansion mismatches between the insulative coating on the trochoid contour and the cast iron.

5.3 Task III Adiabatic Component Design

Adiabatic component design was included in the subcontract with ADAPCO. Once ADAPCO had completed a computer simulation run of the baseline 1007R engine, ADAPCO was to proceed and modify the models for combustion and the FE models for the rotor and rotor housing to include selected low-heat-rejection conditions. These results were then used in an interactive manner to design insulated 1007R components. These preliminary designs were then coupled with the knowledge gained from screening tests in the Mazda engine.

Drawings, completed by Adiabatics, of the final modifications to the 1007R parts are included (Section 5.7 Prototype Engine - Procurement/Assembly - NASA 1007R).

5.4 Task IV High Temperature Apex/Side Seal Tribology

This Task is to evaluate and procure candidate apex seals, side seals, and high-temperature lubricants to be tested in the Mazda engine for later inclusion in the 1007R engine. The procurement of the apex and side seals is summarized in Table 2. The initial work performed in this task was to find material combinations which would be most likely to survive the harsh conditions encountered in a high-temperature engine.

Based on past experience with high temperature reciprocating piston engines, chrome-oxide or chrome-carbide coated piston rings rubbing against zirconia thermal-barrier coated liners densified with chrome oxide are the prime candidate materials.

Efforts were then spent trying to procure side seals and apex seals micropocketed and coated with thin [(0.051 mm (0.002 inch) to 0.127 mm (0.005 inch)] layers of chrome oxide and or chrome carbide. Unfortunately, vendors could not be located to supply these components.

			1	1						
CONDITION	AFTER COATING	EXCELLENT EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT SCRAP	EXCELLENT	EXCELLENT EXCELLENT	EXCELLENT EXCELLENT	EXCELLENT 1 SCRAP	EXCELLENT EXCELLENT
	VENDOR	ADIABATICS Adiabatics	снемкоте	BOYER MACHINE	APS MATERIALS KAMAN SCIENCES	APS MATERIALS	APS MATERIALS ADIABATICS	APS MATERIALS KAMAN SCIENCES	APS MATERIALS STELLITE	APS MATERIALS ADIABATICS
TYPE OF	COATING APPLIED	0.05 1mm (0.002 INCH) THICK PROPRIETARY SLURRY COATING -SLURRY THEN DENSIFIED	0.051mm (0.002 INCH) THICK CHEMICALLY DEPOSITED LAYER OF NICKEL, CHROME, AND BORON	NONE	0.762mm (0.030 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA -ZIRCONIA THEN DENSIFIED	0.762mm (0.030 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA	0.762mm (0.030 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA -ZIRCONIA THEN DENSIFIED	0.762mm (0.030 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA -ZIRCONIA THEN DENSIFIED	0.508mm (0.020 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA -ZIRCONIA THEN COVERED WITH TRIBALOY 800	0.762mm (0.030 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA -ZIRCONIA THEN DENSIFIED
	MATERIAL	STOCK CAST IRON	STOCK CAST IRON	M2 TOOL STEEL	STOCK CAST IRON	STOCK CAST IRON	STOCK CAST IRON	STOCK CAST IRON	STOCK ALUMINUM	CAST DUCTILE IRON
	QUANTITY	m	۵	12	4	8	-	-	0	N
	COMPONENT	SIDE SEALS	SIDE SEALS	APEX SEALS	ROTORS	ROTORS	ROTOR	INTERMEDIATE HOUSING	ROTOR HOUSING	CAST ROTOR HOUSINGS
		5	2)	3)	4)	5)	6)	2	8	6

TABLE 2. PROTOTYPE PROCUREMENT - MAZDA 13B

At this point two new approaches were utilized; the first, was an electro chemical coating process, and secondly, a slurry sprayed coating process applied at room temperature and low pressure.

The electro chemically deposited coating chosen for the side seal application was supplied by Cemkote, Inc. of Indianapolis, Indiana. The coating is called "Chem 2" and consists of nickel, chrome, and boron. Since this coating is chemically deposited, its application is very uniform across the entire surface. Before the side seals were coated, the Chem 2 coating was applied to specimens which Adiabatics tested in a wear test rig.

The wear and friction test rig was designed and built as a relatively quick and inexpensive way of screening materials under controlled test conditions. It employs the principle of a roller rotated against an oscillating bar specimen as shown in figure 5.4-1. The flat bar specimen is clamped to a steel bar which is supported by linear/rotary bearings and arranged for linear oscillation of \pm 6.3 mm by a motor-driven cam at a fixed 4 rpm. The loading of the test specimen on the roller is provided by applying dead weights on the pivoting support structure. The roller is driven by a constant speed electric motor and any desired roller speed can be set by adjusting the variable diameter pulleys.

Test environment control is provided by encasing the roller and test specimen in an insulated enclosure. Electrical heaters built into the walls of the enclosure are thermostatically controlled and the heating of the enclosed air provides a means for test temperature variation of the roller and specimen, up to 538 C. In figure 5.4-1 the enclosure is shown operating open-ended with connections to a coal burner and a suction fan. This arrangement is used to test materials in the environment of coal combustion products. The test temperature is regulated by the use of the in-line damper to control the flow rate of the combustion air and the heating coils.

The coal burner can also be replaced by a gas burner or a feeder of other environment contaminants, like coal powder without combustion. The torque required to drive the roller is measured by an in-line torque meter and is continuously recorded on a chart recorder. The temperatures of the roller and the test specimen are monitored by thermocouples installed as shown in figure 5.4-2, and also recorded on the chart recorder. A drawing of the assembly of the major components of the friction and wear test rig is shown in figure 5.4-3.

The duration of a test or any event during the test is determined from the chart paper speed, selected as needed. From this recording and the load applied by weights, the force between the roller and the specimen is evaluated, the coefficient of friction can be calculated at any time during the test.

Wear values are obtained by measuring the weight loss during the test. This is done by weighing test parts before and after a test. A balance of 0.0001 gram resolution is used to weigh the specimens. The accuracy of the wear measurement is dependent on the amount of weight loss produced and the resolution of the scale. Hence, to ensure acceptable accuracy, the duration of tests was varied depending on the wear rate of the materials tested. Most of these tests were run for 18 hours while a few were as short as 15 minutes [2].

,

Figure 5.4-1. Schematic Drawing of Friction and Wear Test Rig.

Figure 5.4-2. Thermocouple Installation for Roller and Specimen Temperature Measurement.

Figure 5.4-3. Drawing of Friction and Wear Test Rig Assembly.

The test results revealed that the Chem 2 is not very wear resistant but offered a very low friction coefficient.

A second set of rotor side seals was coated with a slurry coating developed by Adiabatics, Inc. The chrome molly chemical slurry type coating was sprayed at low velocity and room temperature to approximately a 0.051 mm (.002 inch) thickness. This coating is proprietary; therefore, its constituents are not listed. The results of the wear test showed this coating to be very resistive to wear.

For apex seals M2 tool steel was selected based on many tests of material specimens on Adiabatics' wear test rig, M2 was selected based on its resistance to wear and its high temperature capability. Two sets of apex seals were made from M2 tool steel by Boyer Machining, Inc. of Columbus, Indiana.

The last area of Task IV was selecting and procuring candidate high-temperature lubricants. A major portion of the Mazda testing was performed using a synthetic lubricant called SDL-1 which is sold through Bonneville Lubricants of Idaho Falls, Iowa.

This oil was chosen based on experience with reciprocating piston engine testing at Adiabatics.

Throughout all the coated component screening tests, oil temperatures varied between 93.33 C (200 F) and 126.67 C (260 F). No evidence of oil break down was noticed.

The stock John Deere 1007R apex seals and side seals will be suitable for running against the Tribaloy 800 coating on the aluminum side and rotor housing because Tribaloy 800 has excellent tribological characteristics and is compatible with the current John Deere seals. Therefore, no special side or apex seals were procured.

5.5 Task V Prototype Engine-Procurement/Assembly-Mazda 13B

The following is a listing of the low-heat-rejection components along with a description of how they were made.

5.5.0 Rotor

The rotor modification was application of thermal barrier coating to the combustion faces. The rotor combustion faces, with the exception of a 9.5 mm (0.375 inch) land at each apex (such that the apex seal was fully supported by the parent rotor material) and a 0.762 mm (0.030 inch) land along the side lands of the rotor, were machined to remove 0.762 mm (0.030 inch) of material. A 0.762 mm (0.030 inch) inlaid thermal barrier coating consisting of a 0.127 mm (0.005 inch) layer of plasma-sprayed NiCrAlY bond coat covered with a 0.635 mm (0.025 inch) layer of plasma-sprayed zirconia was then applied onto the machined inset on the faces of the rotor. With the coating applied, the high spots were removed and the coating then densified with the Kaman KaRamic Process. In doing this, an impenetrable barrier was formed which protects the bond coat. A drawing detailing this coating procedure is shown in figure 5.5.0-1.

Figure 5.5.0-1. Details of Zirconia Coating Applied to Mazda 13B Rotors.

Two (2) rotors were processed as described above. During the densification process the coating on both rotors failed. Kaman Sciences Corp., who densified the pieces, claimed coating failure was caused by a problem with their oven. Densification is a process of filling the zirconia porosity near its outer boundaries with chrome oxide, thereby forming a barrier which protects the bond coating. To do this, a liquid chemical is applied to the zirconia and allowed to penetrate. Next, the whole part is heated to 537.8 C (1000 F) at which time the liquid chemical is converted into chrome oxide. Kaman said that oven temperatures reached 792.2 C (1458 F) which not only caused the coating to "pop off" but as discovered later, caused the rotor gear to lose its hardness. Since the gear is not replaceable these rotors could not be re-coated, and were therefore scrapped.

Two more rotors were machined and coated with plasma-sprayed zirconia. They were sent to Kaman Sciences for densification where, after one temperature cycle, the coating popped off (shown in figure 5.5.0-2) in the identical locations as before. Kaman claimed the problem this time was caused by "bad coating" and not their processing.

These last 2 rotors were recycled. The damaged coatings were sandblasted off and a thermal barrier coating was reapplied. These rotors were later tested in the engine without receiving densification. Because zirconia is porous, the bond coat is susceptible to chemical attack in the engine which results in a shorter life. Therefore, one more attempt was made at densification. This time major changes were made in both the design of the rotor and the densification process itself. In every case the coatings failed in the same areas - along the lip of the combustion chamber (see figure 5.5.0-2). Therefore, a design change was made whereby a thin band of parent material was left untouched during machining around the lip of the combustion chamber (see figure 5.5.0-3). A new low-temperature process developed by Adiabatics which is not only better for the parts but it is non-toxic as well Through this combination of the lip design and the low was applied. temperature densification a first attempt provided one Mazda rotor successfully coated and densified. This rotor is shown in figure 5.5.0-4.

As a result, 2 different kinds of insulated rotors were successfully procured for testing in the 13B engine; firstly, 2 insulated rotors with undensified zirconia, and secondly, 1 insulated rotor densified by Adiabatics, Inc. incorporating a combustion chamber lip.

5.5.1 Side Housing

The initial approach to the side housing was to apply low-heat-rejection technology to only one side housing face in each combustion chamber by applying the insulation to both faces of the intermediate housing. To apply the thermal barrier coating, 0.762 mm thick (0.030 inch) of parent material was machined from both sides of the intermediate housing. A lip of parent material was left untouched during the machining operation around both the crankshaft hole and the intake port. This resulted in a coating which would be totally inlayed. Next, a 0.127 mm thick (0.005 inch) layer of NiCrAlY bond coat plus a 0.635 mm (0.025 inch) layer of plasma-sprayed zirconia was applied to the machined areas of the intermediate housing.

The coated housing was then machined back to maintain the original side housing thickness. The zirconia was then densified with chrome oxide by Kaman Sciences

AI-C/114-12

AI-C/114-13

Figure 5.5.0-2. Zirconia Coated Rotor After One Densification Cycle.

AI-C/128-8

Figure 5.5.0-3. Machined Mazda Rotor with Lip Design Around the Combustion Chamber.

÷.

MAZDA 13B ROTOR COATED 0.030 IN APS-PSZ AND LOW CYCLE LOW TEMPERATURE MODIFIED NC PROCESSING

AI-C/128-8

Figure 5.5.0-4. Mazda Rotor After Adiabatics, Inc. Low Temperature Densification.

- successfully. In this case the densification served 2 purposes: 1) as in the rotor application, densification acts to protect the bond coat, and 2) the very hard chrome oxide densification provides an excellent wear surface which is needed since the rotor side seals rub against the thermal barrier. All experience with reciprocating piston engines reveals that this densification process provides the best wear characteristics when applied on cylinder liners. After densification the housing was lapped to a surface roughness of 20 micro-inches. Ideally a surface roughness of less than 10 micro-inches was desired but could no be obtained. As a result of the difficulty during the lapping, the finished coating thickness was 0.508 mm (0.020 inch) instead of 0.762 mm (0.030 inch). A drawing detailing the coating process is shown in figure 5.5.1-1.

5.5.2 Rotor Housings

This component presented the greatest challenge to effectively reduce its heat rejection. The rotor housing material for both the Mazda and the 1007R engine is aluminum (the Mazda side housings are cast iron) which means that the existing technology for cast iron reciprocating engine parts can not be used because the temperatures to which the material is subject during processing is in excess of 537.8 C (1000 F). Therefore, either a different process was required or else the rotor housing must be made of material other than aluminum. Both approaches were followed.

The stock aluminum rotor housing was coated as follows:

- 1. The housing was sent to Eonic, Inc. where 0.508 mm (0.020 inch) of parent material was removed from the steel trochoid contour.
- 2. The housing was sent to APS Materials, Inc. where a 0.127 mm (0.005 inch) layer of plasma-sprayed NiCrAlY bond coat plus a 0.381 mm (0.015 inch) layer of plasma-sprayed zirconia was applied to the machined trochoid contour.
- 3. The coated housing was sent back to Eonic, Inc. where the 0.254 mm (0.010 inch) of zirconia was ground off each side of the trochoid contour. This step was performed to ensure dimensional correctness and provide room for the wear coating.
- 4. The housing was sent to Stellite, Inc. where the ground zirconia was coated with more than a 0.254 mm (0.010 inch) layer of Tribaloy 800 which would act as a wear surface.
- 5. The housing was sent back to Eonic, Inc. for final grinding and lapping to the stock Mazda trochoid contour dimension.

This coating process was selected based on result of friction and wear testing with specimens (rollers) on Adiabatics' wear testing rig. The plasma-sprayed zirconia/Tribaloy 800 combination showed less wear with lower friction than combinations like plasma-sprayed zirconia/chrome oxide or zirconia/chrome carbide. Also, the zirconia/Tribaloy 800 specimen showed excellent adhesion characteristics. Its entire manufacturing process remains cool enough that aluminum is not damaged.

Photographs in figure 5.5.2-1 show the rotor housing after zirconia and Tribaloy 800 application. Two problems were encountered during the coating applications. During step 3 of the above process, areas of zirconia chipped when Eonic ground the zirconia to make room for the wear coating application. These chipped areas were repaired during step 4, application of the wear coating, by filling the damaged areas with Tribaloy 800.

Shown in figure 5.5.2-2, during step 5 Tribaloy 800 on one rotor housing tore during the grinding operation at Eonic. Therefore, only one of two rotor housings survived the coating operation.

As an alternative approach, Mazda rotor housings cast from ductile iron were made and coated with a thermal barrier coating. The advantage of the cast iron is its ability to withstand high temperatures which means the zirconia can be densified with chrome oxide at 537.8 C (1000 F).

Essex Casting Company of Columbus, Indiana cast the rotor housings after which they were sent to Eonic to be machined. Eonic machined the oil pan and manifold flats and bolt holes plus exhaust port, tension bolt holes, water seal grooves, and dowel holes. Also, they ground the trochoid contour 0.762 mm (0.030 inch) oversize to allow room for applying a thermal barrier coating. No cooling water passages were machined at this time.

Once the rotor housings were machined, they were sent to APS Materials, Inc. where a 0.127 mm (0.005 inch) layer of plasma-sprayed NiCrAlY bond coat plus a minimum of 0.635 mm (0.025 inch) plasma-sprayed zirconia was applied to the trochoid contour.

Then, the coated housings were sent back to Eonic where the coated trochoid contour was ground and lapped back to stock Mazda dimensions.

The coated and lapped rotor housings, were then densified the with 10 cycles of a high-temperature chrome-oxide treatment. Figure 5.5.2-3 shows pictures of a cast iron rotor housing in the different steps of the coating process.

Once the rotor housings were successfully coated and densified 3 holes were drilled along the top and bottom of the housing which served the purpose of permitting cooling water flow to the standard side housings. These cooling passages (shown in figure 5.5.2-3) are 9.04 mm (0.356 inch) diameter and are smaller than the tension bolt holes. The outside diameter of the cooling passages are located 17.78 mm (0.7 inch) away from the trochoid contour and do very little to cool the rotor housings themselves.

There were 2 problems during the coating process. While Eonic was grinding and lapping the zirconia-coated trochoid contour, small areas of the coating chipped. Adiabatics, Inc. repaired the chipped areas by filling them with a proprietary slurry coating. The other problem with the coating was that cracking occurred throughout the surface area. This was especially apparent after densification. Figure 5.5.2-4 shows the extent of the cracking when checked with dye penetrant. Although it is not an ideal coating, this type of cracking has been seen before and does not mean the parts cannot be used.

A summary of all the components procured for the Mazda 13B engine are listed in Table 2.

AI-C/131-6A

AI-C/142-23A

Figure 5.5.2-1. Stock Aluminum Mazda Rotor Housing After Zirconia (a) and Tribaloy 800 (b) Application.

AI-C/155-15A

Figure 5.5.2-2. Failed Tribaloy 800 Coating on Mazda Stock Aluminum Rotor Housing.

AI-C/131-15A

Figure 5.5.2-3 Cast Iron Rotor Housing After Initial Machining.

OPICIMEL FACT IS OF POOR QUALITY

(a)

AI-C/134-13

AI-C/131-8A

Figure 5.5.2-3 Cont. Cast Iron Rotor Housing After Zirconia Application (a) and After Zirconia Densification.

1

AI-C/149-23

Figure 5.5.2-4. Coated Cast Iron Rotor Housing Showing "Mud" Cracks After Zirconia Densification.

5.6 Task VI Engine Testing

Engine testing was to consist of separate engine builds and tests for thermal-barrier-coated rotors, rotor housings, and side housings along with a final test of the combination of all low-heat-rejection components assembled together. A minimum of 4 separate engine builds and test cycles were required. The actual number of engine builds was 10 which encompassed 8 different engine configurations. The sections that follow details the events of all the configurations tested with the exception of the baseline test. These tests serve the purpose of testing the individual coated components for integrity and durability.

After the baseline test, the engine test plan described the first thermal barrier component screening as being a test with coated rotors. However, at this time in the program procurement of the thermal barrier coated rotors was meeting difficulties which were discussed in Task V. Therefore, the first thermal-barrier-coated component tested was an insulated intermediate housing.

5.6.0 Intermediate Housing

After the baseline test, the Mazda engine was disassembled as specified in the Mazda shop manual. While disassembled, all the components were inspected as specified in the Mazda shop manual. A list of the measurements taken can be seen in Appendix E. Before reassembly, the standard intermediate housing was replaced with the coated housing. New stock side seals and button seals were installed against the coated housing. The rest of the engine used the seals and housings which were run during the baseline test. The engine was then reassembled as specified in the Mazda shop manual. The same engine parameters were measured as outlined for the baseline test plus the engine was run for endurance.

The assembled engine was mounted into test cell No. 2 and connected to an Eaton dynamometer via a driveshaft with a one degree offset. Once the engine was mounted the Digalog dynamometer controller was calibrated as specified in the Digalog manual. All other instruments were checked and calibrated to ensure correct readouts.

The engine was then filled with standard coolant and SDL-1 synthetic lubricant. The engine was tested for compression (results shown in Appendix E). After compression testing the engine was started and run through the break-in cycle. Engine break-in consisted of running the engine at varying speeds with light to no-loads. During this run all systems were checked for proper functioning and the timing set.

The different test loads and speeds are detailed in the data found in Appendix F. These speed and loads were the same points used during the baseline test. The only noteworthy difference between the baseline test and this insulated housing test was that oil temperatures were increased to 101.7 C (215 F) plus or minus a few degrees going into the engine.

Thirty hours into the endurance test a problem with the spark plug firing order was found. Due to a factory mislabeling of the distributor cap the leading and trailing spark plugs were firing in a backwards order. In other words the trailing plugs were firing first. This problem affected the performance of the engine and unfortunately had occurred throughout the baseline test as well. The wiring problem was corrected and 51 total hours of endurance testing was completed without further incident. After completion of the 51 hour test the engine was disassembled and inspected. Wear was detected on the rotor side seals and rotor oil seals which were rubbing against the thermal barrier coating. Similarly, the zirconia-coated intermediate housing experienced minor wear where it was rubbed by the seals. The intermediate housing, seen in figure 5.6.0-1 was still reusable despite the wear, and the coating itself were in excellent condition. No damage to other parts were found during post inspection. One of the most likely reasons for the excessive seal wear was the rough surface of the coating after lapping. The seals appeared to have lapped the coating because after testing the coating was smoother (down to 2 micro-inches from 20 micro-inches of roughness in some areas). At the time the coated intermediate housing was tested no candidate side seals had been procured.

As was already mentioned, an ignition problem was found part way through the coated intermediate housing test. In an effort to make fair comparisons to the baseline test all data comparisons are made under like-conditions. For example, the baseline test data are compared to only that first portion of the coated intermediate housing test data when the ignition was incorrect. The rest of the data taken during the test with the coated intermediate housing can only be compared with that data taken during the test with coated rotors and coated rotor housings (ignition correct in these cases).

Figures 5.6.0-2 through 5.6.0-5 show the dramatic decrease in the amount of heat transferring into the oil system while testing the insulated intermediate housing as compared to the baseline test. These figures represent the oil temperature out of the engine subtracted by the oil temperature into the engine. Other areas such as power output and fuel consumption were basically unchanged by using the insulated housing.

5.6.1 Rotor

The second thermal-barrier-coated component screening test was with 2 undensified zirconia-coated rotors. The coated rotors were installed in the engine via the same disassembly, inspection, and reassembly procedures used in previous builds. The same testing parameters were measured as in previous tests. Likewise, the same speeds, loads, ignition timing, break-in cycle, oil type and temperature, and coolant were used.

During the first part of the test the engine ran quite well; but, as the test time was lengthened, carbon deposits built up on the rotors and rotor housings. These deposits were observed through exhaust port inspection (by removing the exhaust header and visually looking inside the engine through the exhaust ports). Thirty-one hours into the test a major problem developed. While running a point at 5000 rpm and 120 ft-lbs of torque the rear rotor housing began to experience scuffing. The extent of the scuffing is shown in figure 5.6.1-1. Although the front rotor housing did not have this problem, it probably would have given more time.

The scuffing appeared to be caused from overheating the rotor housing plus oil deposit build up on the rotor housing. Fortunately, the engine was shut down before major damage occurred. Upon post-inspection, the only parts found unusable were the apex seals which had uneven wear. The rotor housings were cleaned up and the engine reassembled with new apex seals. The engine then completed 100 hours of endurance tests successfully. A photograph of the coated rotors is seen after testing seen in figure 5.6.1-2. It should be noted that after scuffing had occurred the fifth and sixth auxiliary intake ports

AI-C/122-4

Figure 5.6.0-1. Zirconia Coated Intermediate Housing Densified by Kaman Science's Process After Completing 51 Hours of Testing.

1

Change In Oil Temp. (deg. C)

900 Change In Oil Temp. vs Bmep Figure 5.6.0-3. Change in Oil Temperature vs. Bmep Chart. 700 Bmep (kPa) Coated Intermediate Π ╉ @ 3500 RPM Ľ + 500 þ ++300 Baseline 0 100 28 10 10 33 ۲-۱۹ 4 53 01 [] 5 20 19 13 7-1-16n U 4 13 13 03 1 1 10 ŋ

Change In Oil Temp. (deg. C)

Chenge In Oil Temp. (deg. C)

AI-C/126-4A

AI-C/126-3A

Figure 5.6.1-1. Rear Rotor Housing After 31 Hours of Testing Time with Thermal-Barrier-Coated Rotor.

AI-C/130-1

Figure 5.6.1-2. Undensified Zirconia Coated Mazda Rotor After 100 Hours of Testing.

1

were manually opened in an effort to introduce a cool combustion charge later in the combustion cycle. These ports were left open for the remainder of the testing. By opening these 2 ports, both the fuel consumption and the power output did increase by a small amount. Data gathered from testing these undensified rotors is found in Appendix G-I.

There was a dramatic decrease in the amount of heat transferring into the oil system. Figures 5.6.1-3 through 5.6.1-7 show the data comparisons between the coated intermediate housing and the undensified coated rotors. Here, ignition timing was correct in both cases and though the 2 data plots are similar for every speed and load, both cases are much lower than that of the baseline test. The 2 coated rotors (combined in one assembly) are capable of reducing heat transfer into the oil system more than when using the one coated intermediate housing.

A second change in the data between the coated intermediate housing and the coated rotors was a dramatic increase in exhaust temperatures in the case of the coated rotors. Figures 5.6.1-8 through 5.6.1-12 show the comparison between the coated intermediate housing and the undensified coated rotors. Again, only data taken with correct ignition are compared.

One more candidate thermal-barrier-coated rotor was tested after completing the 100 hours of testing with the undensified zirconia-coated rotor. This test was with 1 zirconia-coated rotor densified by Adiabatics. This coated rotor was run in the engine along with 1 stock rotor. All conditions of the test were identical to the previous test including the open fifth and sixth intake This test used stock seals and housings. This endurance test ran 100 ports. A photograph in figure 5.6.1-13 show the rotor after hours without incident. Everything passed inspection at the end of the test. It was noticed, testing. however, more carbon deposits had developed in the rotor housing run with the stock rotor than in the rotor housing run with the coated rotor (seen in figure 5.6.1-14). The data gathered from the densified rotor test is found in Appendix G-II.

In both densified and undensified coated rotor durability tests the coating was in excellent condition after testing.

5.6.2 Rotor Housing

With the screening test successfully completed for thermal-barrier coated rotors and intermediate housing, testing proceeded to the rotor housings. The first rotor housing tested was the thermal-barrier coated stock aluminum rotor housing. As described in Task V, only 1 of 2 rotor housings survived the coating process. Therefore, this test consisted of only 1 coated rotor housing located in the front of the engine. High temperature apex seals made from M2 tool steel were used in the rotor placed in the coated rotor housing. The rest of the engine was built using stock components. The engine was built and tested in the same manner as in the previous tests including using the same high-temperature lubricant SDL-1.

During the break-in cycle the engine ran well. Visual inspection through the exhaust ports showed that the coating was holding up. As more testing time elapsed it was noticed that blow-by was creeping up to 12.7 mm (one half inch) of water whenever loads and or speeds were being changed. As the engine remained at a new load and or speed, blow-by would slowly go back to zero. Several low speed and low torque data points were run, but after 14.7 hours of

Change In Oil Temp. (deg. C)

900 Change In Oil Temp. vs Bmep Coated Rotor 700 Q Þ ł Bmep (kPa) + E 500 D) Æ Coated Intermediate 300 团 1 0 0 1 22 [`-← 1 1 0 16 5 L ÷ † 13 <u>[]</u> 10 11 o, 07 l~

Figure 5.6.1-4. Change in Oil Temperature vs. Bmep Chart.

Change In Oil Temp. (deg. C)

Chenge In Oil Temp. (deg. C)

Change In Oil Temp. (deg. C)

Change In Oil Temp. vs Bmep

4

Figure 5.6.1-7. Change in Oil Temperature vs. Bmep Chart.

700 C **Coated Rotor** Exhaust Temp. vs Bmep C ł םם +500 + Bmep (kPa) + 由 b a 300 Coated Intermediate 7 Ŧ 1 100 800 790 770 760 760 750 750 710 720 720 720 630 630 660 830 820 810 610 -650 640 630 620

Figure 5.6.1-8. Change in Exhaust Temperature vs. Bmep Chart,

Exhenst Temp. (deg. C)

Exhaust Temp. vs Bmep

1

Figure 5.6.1-9. Change in Exhaust Temperature vs. Bmep Chart.

Exhaust Temp. (deg. C)

Exhenst Temp. (deg. C)

Exhaust Temp. (deg. C)

.

1

AI-C/137-22A

Figure 5.6.1-13. Densified Zirconia Coated Mazda Rotor After 100 Hours of Testing.

AI-C/137-19A

AI-C/137-15A

Figure 5.6.1-14. Stock Mazda Rotor (a) Compared with Densified Coated Mazda Rotor After 100 Hours Testing Together in One Build.

engine testing visual inspection through the exhaust ports revealed coating failure. Data gathered from the housing test is found in Appendix H. Photos of the failed rotor housing are shown in figure 5.6.2-1. When the coated stock aluminum rotor housings failed the apex seals which were made form M2 tool steel were also destroyed.

A request was then made by Adiabatics to NASA for an additional one month extension for testing coated cast iron rotor housings. This request was granted at a meeting at NASA LeRC with the Project Manager on June 17, 1988. This one month extension was later increased one additional month.

The screening test of the cast iron rotor housings consisted of an engine configuration with 2 thermal-barrier-coated cast iron rotor housing (detailed in Task V). The front rotor housing had a stock rotor and stock apex seals plus 3 candidate side seals coated with Chem 2 (details in Task IV) which were placed against a stock intermediate housing. The rear rotor housing had a stock rotor and apex seals made of M2 tool steel plus 3 candidate side seals coated by Adiabatics (detailed in Task IV) which were placed against the stock intermediate housing. The engine was assembled and tested in the same manner as in all the previous tests.

As soon as the engine was started, blow-by was noticed. The engine was given a lengthy slow break-in but blow-by never returned to zero. Visual inspections through the exhaust ports showed the coating on the rotor housings to be in excellent condition After the break-in cycle the first 2 data points at 3000 rpm were run. At this point blow-by reached 3 inches of water and the engine was shut down.

The engine was removed from the test cell, disassembled, and inspected. The coating on both front and rear rotor housing was in excellent condition (see figure 5.6.2-2). Likewise, the side seals coated by Adiabatics and the apex seals made from M2 tool steel were in excellent condition. However, the Chem 2 coating on all 3 side seals located in the front rotor housing had worn off. Also, after 16.75 hours into tests the stock apex seals in the front rotor housing had become stuck. These were the only 2 major problems found. The rest of the engine passed inspection.

Since the coating on the rotor housings was still in good condition, further testing was performed. The engine was reassembled using the 2 coated cast iron rotor housings with a complete set of new apex seals made from M2 tool steel. The apex seals had not stuck previously. The same side seals were placed back in the engine. At this point a lubricant change was made to 10W40 AMS-oil instead of SDL-1. The engine was assembled and tested in the same manner as before.

This build ran over 9 hours before the engine had to be disassembled again. During this run blow-by remained zero and the engine ran quite well. Then, when trying to run a point at 3500 rpm a problem developed. A safety device malfunctioned shutting the engine ignition off. This problem was quickly corrected but the engine would not restart. A compression test on each rotor housing showed the compression to be essentially zero. Upon post-disassembly the reason for low compression was found. The seals which were made from M2 tool steel had warped (figure 5.6.2-3). The warpage occurred along the edge of the apex seal which contacts the trochoid contour of the rotor housing.

AI-C/137-14

AI-C/145-15

Figure 5.6.2-1. Failed Thermal Barrier Coating on Mazda Rotor Housing After 14 Hours of Testing.

AI-C/150-22A

Figure 5.6.2-2. Coated Cast Iron Rotor Housing After Testing 16.75 Hours.

AI-C/150-25A

Figure 5.6.2-3. Warped M2 Tool Steel Apex Seals Tested with Coated Cast Iron Rotor Housing.

At this point the coating on the rotor housings was still in good condition so the engine was reassembled for further testing. This build consisted of all the previous components with the exception of the warped M2 apex seals which were replaced with stock apex seals. It was hoped that the change in lubricant to AMS-oil would be sufficient to keep the apex seals from sticking. Other components like the side seals which were coated by Adiabatics, Inc. and the coated cast iron rotor housings were in good condition and therefore placed back in the engine in their original locations.

The engine was reassembled and tested in the same manner as in the previous tests. Again, while the engine was running a point at 3500 rpm the compression was lost. The engine was disassembled and warped apex seals were again found Unfortunately, the coating on the rotor housings was also found to (5.6.2-4).be in bad condition. Small areas of coating had chipped at various areas around the trochoid contour. In 1 area of the compression zones of the front rotor housing the coating had separated from the parent material at the bond Between the problem with the apex seals and the coating failure on the coat. rotor housings, the testing was stopped at this point. The total testing time for the cast iron rotor housings was 32.5 hours and the final condition of the rotor housings can be seen in figure 5.6.2-5. A comparison between a stock side seal and one of the slurry coated side seals (after testing) is shown in figure 5.6.2-6. The data gathered from the testing of the cast iron rotor housings is found in appendix I.

During the testing with coated cast iron rotor housings, housing temperatures were observed as being twice as high as was observed during other testing.

Table 3 summarizes the results of the testing performed with the components procured for the Mazda engine.

5.7 <u>Task VII Prototype Engine - Procurement/Assembly</u> - <u>NASA 1007R</u>

The engine which will ultimately pursue the goals of the better efficiencies discovered in Phase I is the NASA-owned 1007R engine built by John Deere. Completion of this contract entails modifying four different components of a 1007R engine with thermal-barrier coatings. Actual 1007R engine assembly and testing will be performed by John Deere and is not included in this project. The following is a description of the modifications of the 1007R components.

5.7.0 Rotor

One 1007R rotor was machined to remove 0.762 mm(0.030 inch) of material on the rotor combustion faces with the exception of a 9.5 mm (0.375 inch) land at each apex (such that the apex seals are fully supported by the parent rotor material) and a 0.762 mm(0.030 inch) land along the side lands. A thin band of parent material was left untouched during machining around the lip of the combustion chamber (figure 5.7.0-1). A 0.762 mm(0.030 inch) layer of plasma-sprayed zirconia [including a 0.127 mm(0.005 inch) layer of NiCrAlY bond coat] was then sprayed onto the resultant pocket in the faces of the rotor and the high spots removed. The surface was then densified. The coating densification process was the non-toxic, low-temperature process developed by Adiabatics, Inc.

AI-C/152-2A

Figure 5.6.2-4. Warped Standard Cast Iron Apex Seals Tested with Coated Cast Iron Rotor Housing.

AI-C/152-5A

AI-C/152-6A

Figure 5.6.2-5. Coated Cast Iron Rotor Housing After 32.3 Hours of Testing.

1

÷

AI-C/152-3A

Figure 5.6.2-6. Adiabatics' Slurry Coating on a Mazda Side Seal (below) Compared to a Stock Side Seal (top) After 32.5 Hours of Engine Testing.

			TYPE COATING	TOTAL HOURS	CONDITION AFTER
OMPONENTS	QUANTITY	MATERIAL	APPLIED	TESTED	TESTING
SIDE SEALS	က	STOCK CAST IRON	SLURRY	31	EXCELLENT
SIDE SEALS	9	STOCK CAST IRON	CHEM 2	10	SCRAP
APEX SEALS	12	M2 TOOL STEEL	NONE	14 MAX	SCRAP
ROTORS	N	STOCK CAST IRON	PLASMA- SPRAYED ZIRCONIA	100	EXCELLENT
ROTOR	┯-	STOCK CAST IRON	PLASMA- SPRAYED ZIRCONIA DENSIFIED	100	EXCELLENT
INTERMEDIATE	┯-	STOCK CAST IRON	PLASMA- SPRAYED ZIRCONIA DENSIFIED	51	GOOD- (SLIGHT WEAR)
ROTOR HOUSING	┲-	STOCK ALUMINUM	PLASMA- SPRAYED ZIRCONIA TRIBALOY	14	SCRAP
CAST ROTOR HOUSINGS	0	CAST DUCTILE IRON	PLASMA- SPRAYED ZIRCONIA DENSIFIED	31	SCRAP

TABLE 3. TESTING RESULTS - PROCURED MAZDA 13B COMPONENTS

1

AI-C/144-6

Figure 5.7.0-1. 1007R Rotor After Machining Process Showing the Lip of Untouched Material Around the Combustion Chamber. Photographs in figures 5.7.0-1 and 5.7.0-2 show the rotor in the different phases of coating application. Figure 5.7.0-3 is a drawing which details the coating on the rotor.

5.7.1 Side Housings

Both a front and a rear aluminum 1007R side housings were coated with thermal-barrier coatings. Since these pieces are made of aluminum they could not be densified with chrome oxide at 537.8 C (1000 F). Obviously, the aluminum will not withstand such an extreme densification temperature. Therefore an alternate wear coating was required.

The alternative was to spray the insulative coating first and then coat the insulation with a wear coating. More specifically, spray on the zirconia and then spray a wear surface directly on top the zirconia. The wear coating selected was Tribaloy 800 (the same type of coating combination used in modifying the aluminum Mazda rotor housing).

Two attempts were made to apply the zirconia/Tribaloy 800 combination onto the side housings. The first attempt was as follows:

1. 0.889 mm (0.035 inch) of parent material was machined from the face of each side housing in the area where the housing is exposed to the rotor.

2. The housing was sent to APS Material, Inc. where a 0.127 mm (0.005 inch) layer of plasma-sprayed NiCrAlY bond coat plus a 0.508 mm (0.020 inch) layer of plasma-sprayed zirconia was applied.

3. After the zirconia coating application the pieces were sent to a machine shop where zirconia was ground to ensure dimensional correctness.

4. After grinding, the housings were sent to Stellite, Inc. to have the wear coating applied. A jet coat process was used to apply more than a 0.254 mm (0.010 inch) layer of Tribaloy 800.

At this point the coating process was stopped because Stellite, Inc. could not get the T. Pictures of the Mazda engine mounted in the test cell can be seen in figure 5.1.3-1.

The fifth operation was the test itself. Engine testing started with a compression test. The compression tester takes six (6) measurements (one for each rotor face). Next, the engine was started and run through the break-in cycle which consisted of running at varying speeds with light to no-load. During this run all systems were checked to make sure they were functioning properly.

A test was to be run to develop inch) layer of plasma-sprayed zirconia and a layer exceeding 0.254 mm (0.010 inch) thick of plasma-sprayed Tribaloy 800 were applied. The drawing in figure 5.7.1-1 details the coating applied to the side housings.

2. After coating the side housings were ground and lapped.

One of the 2 side housing completed the grinding and lapping operation successfully. Unfortunately, the other side housing was under sprayed and

(a)

AI-C/145-14A

(b)

AI-C 145-19A

Figure 5.7.0-2. 1007R Rotor Shown (a) After Zirconia Application and (b) After Zirconia Densification.

Figure 5.7.1-1. Details of Thermal Barrier Coating on the 1007R Aluminum Side Housing.

therefore was shipped back to APS Material Inc. to have additional Tribaloy 800 applied. This housing was then reground and lapped. Pictures in figure 5.7.1-2 show the 1007R side housing after machining and after grinding and lapping. After lapping was completed Adiabatics Inc. noticed some cracking around the crankshaft hole in the area which had been built up (figure 5.7.1-3).

5.7.2 Rotor Housing

The aluminum 1007R rotor housing was coated with the same zirconia/Tribaloy 800 combination used on the aluminum side housing.

1. The rotor housing was sent to Eonic, Inc. where 0.889 mm (0.035 inch) of parent material was removed.

2. The housing was sent to APS Materials, Inc. where a 0.127 mm (0.005 inch) bond coat plus 0.508 mm (0.020 inch) of zirconia was applied to the trochoid contour and 0.635 mm (0.025 inch) of zirconia to the exhaust port.

3. With the zirconia applied the housing was then sent back to Eonic where the coating on the trochoid contour was ground. The trochoid was ground to 0.254 mm (0.010 inch) over size (per side) to ensure dimensional correctness and ensure room for the wear coating application.

4. After grinding, the rotor housing was sent back to APS Material, Inc. for the application of a wear coating. Tribaloy 800 was plasma-sprayed on top of the zirconia more than 0.254 mm (0.010 inch) thick.

5. After applying the Tribaloy, the housing was sent back to Eonic for final grinding and lapping of the Tribaloy coating back to original dimensions.

A drawing detailing this coating is shown in figure 5.7.2-1. Pictures in figure 5.7.2-2 show the rotor housing in different phases of coating application.

Table 4 summarizes the components procured for the assembly of the insulated 1007R engine.

5.8 Task VIII Exhaust Energy Utilization

As an internal combustion engine is made more adiabatic a greater amount of exhaust enthalpy will flow from the engine. That is, some of the energy which would have been lost to engine coolant, lubrication, radiation and convection will appear in the exhaust gas in the form of a higher exhaust temperature. This higher exhaust temperature represents a large energy flow which can be recovered.

An analytical assessment was made of compounding a turbocharged 1007R John Deere rotary engine. The engine specifications and data for 2 test conditions are tabulated in Tables 5, 6, and 7. These data were employed in a rotary engine simulation which works on an energy balance of the engine, and was used to determine additional energy which would become available as the engine was insulated and the coolant was removed. An energy balance of the baseline noninsulated, cooled engine appears in Table 8. Changes (percentages) in heat rejection to the oil, coolant, and radiation due to insulation and coolant ORIGINAL PACE IS OF POOR QUALITY

(a)

AI-C/141-19

AI-C/155-12A

Figure 5.7.1-2. 1007R Side Housing After Maching (a) and Final Lapping (b).

ORIGINAL SHOW MY

AI-C/155-17A

Figure 5.7.1-3. Cracking Around the Crankshaft Hole of 1007R Side Housing After Final Lapping.

K

ORIGINAL PAGE IS OF POOR QUALITY

(a)

AI-C/146-20

AI-C/152-17A

Figure 5.7.2-2. 1007R Rotor Housing Shown After Zirconia (a) and Tribaloy 800 (b) Application.

ORIGINAL CONTRACTOR

1

AI-C/155-15A

Figure 5.7.2-2 Cont. 1007R Rotor Housing After Final Lapping.

TABLE 4. PROTOTYPE PROCUREMENT - NASA 1007R

				-			
CONDITION	AFTER COATING	EXCELLENT	EXCELLENT	EXCELLENT	1 CRACKED	EXCELLENT	EXCELLENT
	VENDOR	APS MATERIALS	APS MATERIALS	APS MATERIALS	APS MATERIALS	APS MATERIALS	APS MATERIALS
TYPE OF	COATING APPLIED	0.762mm (0.030 INCH) THICK LAVER OF PLASMA-SPRAYED ZIRCONIA	-ZIRCONIA THEN DENSIFIED	0.889mm (0.035 INCH) THICK LAYER OF PLASMA-SPRAYED ZIRCONIA	-ZIRCONIA THEN COVERED WITH TRIBALOY 800	0.762mm (0.030 INCH) INLAYED LAYER OF PLASMA-SPRAYED ZIRCONIA	-ZIRCONIA THEN COVERED WITH TRIBALOY 800
	MATERIAL	STAINLESS STEEL		STOCK ALUNIMUN		STOCK ALUNIMUN	
	QUANTITY	-		5		-	
	COMPONENT	ROTOR		SIDE HOUSING		ROTOR HOUSING	
		2		5		3)	

Table 5. 1007R Baseline Engine Basic Engine Configuration

r

ENGINE TYPE	Rotary Turbocharged DISC
ECCENTRICITY (in)	0.607
TROCHOID GENERATING RADIUS (in)	4.221
CHAMBER DEPTH (in)	3.036
DISPLACEMENT (in ³)	40.42
COMPRESSION RATIO	7.500
PORT TIMING (deg. ATC):	
INTAKE PORT OPENS	-626.3
INTAKE PORT CLOSES	-229.5
EXHAUST PORT OPENS	208.7
EXHAUST PORT CLOSE	610.5

.

.

1

Od 10 De 10	perating Conditions	and Performance			
IAL PAG	BASELINE ENGINE JDTI		MIT-DISC SIMULATION		r
SE IS ALITY	TEST DATA (POINT 57)	BASELINE ENGINE	INSULATED Water cooled	INSULATED UNCOOLED	1
ENGINE SPEED (RPM)	8003	8000	8000	8000	
INTAKE PRESSURE (acm)	1.98	1.98	1.98	1.98	
INTAKE TEMPERATURE (F)	119	119	119	119	
EXHAUST PRESSURE (atm)	1.50	1.50	1.50	1.50	
EXHAUST TEMPERATURE (F)	1457	Time Average: 1463 Energy Basis: 2350	Time Average: 1494 Energy Basis: 2390	Time Average: 1494 Energy Basis: 2435	
PEAK PRESSURE (acm)	61.65	61.61	61.95	62.12	
FUEL TYPE	JetA	Light Diesel	Light Diesel	Light Diesel	
FUEL FLOW (1b/hr)	81.50	88.25	87.97	87.52	
AIR FLOW (1b/hr)	1950	1946	1939	1929	
FUEL-AIR RATIO	0.0418	0.0453	0.0454	0.0454	
INDICATED POWER (HP)	195	211.8	213.0	213.5	
BRAKE POWER (HP)	160.9	ł		1	
NET INDICATED MEP (psi)	238.8	259.4	260.8	261.5	
BRAKE MEP (psi)	197.0	1	8		
HEAT LOSS (Btu/cycle) ROTOR. SIDE HOUSING TROCHOID HOUSING TOTAL	0.305 (est.)	0.1075 0.0522 0.1391 0.2988	0.1052 0.0445 0.0869 0.2366	0.1055 0.0420 0.0271 0.1746	

TABLE 7 JOHN DEERE TEST DATA

-

.

ENGINE 0701-3 COMPRESSION RATIO: 7.5 TURBOCHARGER: AIRESEARCH T04, 1.3 A/R

POINT NO.	-	54	57
ENGINE SPEED	RPM	7990	8003
LOAD	1b	102.6	120.6
BRAKE POWER	HP	136.6	160.9
BMEP	psi	167.6	197.0
BSFC	lb/HP-hr	0.5098	0.5066
FUEL-AIR RATIO	-	0.0378	0.0417
AIR FLOW	lb/hr	1840	1950
FUEL	-	JET A	JET A
T TEST CELL AMB	F	97	88
T AIR PLENUM	F	83	76
T AIR FILTER	F	82	74
T AIR BOTTLE	F	80	72
T COMP IN	F	81	73
T COMP OUT	F	263	272
T ENG IN	F	119	119
P BAROMETRIC	in Ha	29.84	29.88
P COMP IN	in H2O	-18.5	-21.5
P COMP OUT	in Hq	31.3	34.2
P ENG IN	in Ha	24.3	29.4
RPM TURBO	RPM	99500	104060
FUEL FLOW, TOTAL	lb/hr	69.66	81.50
TUEL FLOW, PILTO	lb/hr	6.11	5.49
T FUEL, MAIN	c	38	39
T FUEL, PILTO	С	37	36
MAIN INJ PRES	psi	10000	15000
PILOT INJ PRES	psi	7000	7000
T TURBINE IN	F	1423	1457
T TURBINE OUT	F	1361	1425
P TURBINE IN	in Hg	12.7	15.0
P TURBINE OUT	in H2O	-5.3	-4.8
OIL FLOW	gal/min	4.61	4.87
P OIL	psi	63	61
T ENG OIL IN	F	173.4	174
T ENG OIL OUT	F	213.2	217
T T/C OIL OUT	F	192	195
COOLANT FLOW	lb/hr	1613	1599
T COOLANT IN	F	177.8	175.1
T COOLANT OUT	F	184.5	182.7
DELTA T COOLANG	F	7.0	7.6
P COOLANT IN	psi	19.4	20.0
P COOLANT, ROT hsg	psi	12.0	12.8
P COOLANT, DE hsg	psi	10.5	10.8
P COOLANT OUT	psi	8.0	8.4
T INTERCOOLER IN	F	79.4	77
T INTERCOOLER OUT	F	92.2	91

TABLE 7 JOHN DEERE TEST DATA (Cont.)

ENGINE 0701-3

POINT NO.	-	54	57
IGNITION START	deg BTC	53	56
IGNITION END	deg BTC	7	5 ATC
PILOT START	deg BTC	52	55
PILOT END	deg BTC	3	10 ATC
MAIN START	deg BTC	51	52
MAIN END	deg BTC	8 ATC	10
T ENG OIL OUT DE	F	238	243
T ENG OIL OUT ADE	F	217	221
T ROTOR hSG DE	F	360	377
T ROTOR hsg ADE	F	379	392
T ROTOR hsg #1	F	207	204
T ROTOR hsg #2A	F	223	221
T ROTRR hsg #2B	F	220	219
T ROTOR hsg #3A	F	238	236
T ROTOR hsg #3B	F	230	228
T ROTOR hsg #4A	F	231	235
T ROTOR hsg #4B	F	244	253
T ROTOR hsg #5	F	196	191
T ROTOR hsg #5A	F	215	215
T ROTOR hsg #5B	F	OUT	212
T ROTOR hsg #6A	F	199	198
T ROTOR hsg #6	F	190	188
T ROTOR hsg #6B	F	206	208
T ROTOR hsg #7A	F	191	192
T ROTOR hsg #7B	F	195	195
T DE hsg #32	F	192	194
T DE hsg #33	F	OUT	OUT
T DE hsg #34	F	223	228
T DE hsg #35	F	214	217
T DE hsg #36	F	214	219
T DE hsg #37	F	196	197
T DE hsg #38	F	198	200
T ADE hsg #39	F	199	201
T ADE hsg #40	F	209	211
T ADE hsg #41	F	199	201

L

TABLE 8. : ENERGY BALANCE (simulation)

Energy In = Energy Out Heat Input + Air Input = Coolant Rej. - Oil Rej. - Inter-Cooler Rej. - Radiation Rej. - Exhaust Rej. - Work Out Heat Input = $\dot{m}_{air} * (F/A) * \Delta H_c = + 1,502,323.2$ BTU/Hr Air Input = $\dot{m}_{air} * C_p * T_{in} = + 248,676.5$ BTU/Hr Coolant Rej. = $\dot{m}_{cool} * C_p$ cool * $\Delta T = -107,548.7$ BTU/Hr Oil Rej. = $p * Q * C_p * \Delta T = -43,557.9$ BTU/Hr Inter-Cooler Rej. = $\dot{m} * C_p * \Delta T = -67,651.2$ BTU/Hr Radiation Rej. = Oil Rej. = -43,5557.9 BTU/Hr Work Out = Bhp * 2545 BTU/Bhp'Hr = -409,490.5 BTU/Hr Exhaust Rej. = $\dot{m} * C_p * T = -1,022,749.7$ BTU/Hr Balance = +56,443.8 BTU/Hr = 3% error

<u>Assumptions</u>

Fuel Enthalpy Neglected Radiation Rej. = Oil Rej. removal were obtained from a study performed by ADAPCO. It was decided that the percentage changes in heat rejection would be more approximate rather than the absolute changes reported by ADAPCO for addition of insulation and removal of engine coolant. These percentages were obtained from the heat transfer rates in Table 6.

The simulation was calibrated to the John Deere data (point 57) for a baseline. The output from the simulation appears as the baseline data in Table 9.

The specific heat rejections to coolant and oil were then successively changed by the percentages developed from Table 6. The input and output for an insulated, cooled engine appears in Table 10. Input and output for the insulated, uncooled engine appears in Table 11.

The additional power in the exhaust is plotted in figure 5.8-1. A nearly linear relationship exists between % adiabacity and % power gain. Approximately 7.5 % additional power becomes available for 20.8% adiabacity (insulated, cooled), and 14.9 % additional power becomes available for 41.6% adiabacity (insulated, uncooled). A portion of this additional power can be recovered in the bottoming cycle. The amount of recovery then is dependent on the efficiency of the bottoming cycle used. As mentioned above a value of 50% was assumed. Then the recoverable power is shown in figure 5.8-1 to be 3.75% of the rotary engine brake power for 20.8% adiabacity and 7.45% for 41.6% adiabacity.

This analysis indicated that a significant amount of additional power becomes available in the exhaust gas by adding thermal insulation to the engine and removing the engine coolant.

5.9 Task IX Reporting

Quarterly Technical and Progress Reports were submitted throughout the program. Each task was reported in each progress report. One copy of the Final Report draft shall be submitted for review in lieu of the 4 copies specified.

6.0 CONCLUSIONS

- 1. Application of adiabatic (low heat rejection) engine technology to the rotary (Wankel type) engine is highly dependent upon the materials used for the basic engine components.
- 2. Fundamental work on increasing the permissible operating temperature of the apex seal/rotor housing tribological system is required before the adiabatic technology can be successfully applied to a complete engine.
- 3. Successful low heat rejection major engine components have been designed, analyzed, fabricated and tested in a Mazda gasoline rotary engine and low heat rejection components fabricated for the NASA 1007R stratified charge engine. The 1007R components are available for testing by John Deere's Rotary Engine Division.

TABLE 9 BASELINE

INPUT

INLET TEMPERATURE - DEGREES F	73.00
INLET PRESSURE - IN HG ASB	29.88
INTAKE PRESSURE DROP - IN H20	21.50
COMPRESSOR EFFICIENCY	75.00
INTERCOOLER COOLANT IN TEMP - F	80.00
INTERCOOLER EFFECTIVITY DAGELINE EXHAUST ENTHALDY - BTU/MIN	18095.30
DASEDINE EVINOSI PULIMBLI DIG/	

<u>OUTPUT</u>

BMEP - PSI FMEP - PSI BSFC - LBS/BHP/HR ISFC - LBS/IHP/HR FUEL AIR RATIO FRICTION HORSEPOWER COMPRESSOR MASS FLOW - LBS/HR	$197.0000 \\ 37.0000 \\ 0.5076 \\ 0.4272 \\ 0.0420 \\ 30.3000 \\ 19443.0000$
COMPRESSOR PRESSURE RATIO	2.26
TURBINE PRESSURE RATIO	1.46
COMPRESSOR HORSEPOWER	34.30
ADDITIONAL POWER FOR TURBOCOMPOUNDING	0.00
COOLANT HEAT REJECTION - BTU/MIN	1792.000
LUBE OIL HEAT REJECTION - BTU/MIN	673.000
INTERCOOLER HEAT FLOW - BTU/MIN	1132.000
RADIATION HEAT REJECTION - BTU/MIN	673.000
ENGINE THERMAL EFFICIENCY	0.272
AMBIENT PRESSURE - IN HG	29.88
COMPRESSOR INLET	28.30
COMPRESSOR OUTLET	63.95
ENGINE INLET	59.81
TURBINE INLET	43.77
TURBINE OUTLET	29.88
AMBIENT TEMPERATURE - F	73.
COMPRESSOR INLET	73.
COMPRESSOR OUTLET	258.
ENGINE INLET	113.
TURBINE INLET	1573.
TURBINE OUTLET	1410.

INPUT

INLLET TEMPERATURE - DEGREES F	73.000
INLET PRESSURE - IN HG ABS	29.880
INTAKE PRESSURE DROP - IN H20	21.500
COMPRESSION RATIO	7.500
DESIRED FUEL AIR RATIO	0.042
APPARENT VOLUMETRIC EFFICIENCY	125.000
FRICTION REDUCTION PERCENTAGE	15.000
ISFC REDUCTION PERCENTAGE	-22.500
COMPRESSOR EFFICIENCY	75.000
INTERCOOLER COOLANT IN TEMP - F	77.000
INTERCOOLER EFFECIVITY	80.000
COOLANT - SPECIFIC HEAT REJECTION	8.821
LUBE - SPECIFIC HEAT REJECTION	3.573
BASELINE EXHAUST ENTHALPY - BTU/MIN	18095.300

<u>OUTPUT</u>

BMEP - PSI	197.0000
FMEP - PSI	37.0000
BSFC - LBS/BHP/HR	0.5076
ISFC - LBS/IHP/HR	0.4272
FUEL FLOW - CU MM PER STROKE	93.5805
ACTUAL FUEL AIR RATIO	0.0420
FRICTION HORSEPOWER	30.3000
COMPRESSOR MASS FLOW - LBS/HR	1944.0000
COMPRESSOR PRESSURE RATIO	2.2600
TURBINE PRESSURE RATIO	1.4600
COMPRESSOR HORSEPOWER	34.3000
ADDITIONAL POWER FOR TURBOCOMPOUNDING	24.0000
COOLANT HEAT REJECTION - BTU/MIN	1120.000
LUBE OIL HEAT REJECTION - BTU/MIN	564.000
INTERCOOLER HEAT FLOW - BTU/MIN	1132.000
RADIATION HEAT REJECTION - BTU/MIN	564.000
ENGINE THERMAL EFFICIENCY	0.272
AMBIENT PRESSURE - IN HG	29.88
COMPRESSOR INLET	28.30
COMPRESSOR OUTLET	63.95
ENGINE INLET	59.81
TURBINE INLET	43.77
TURBINE OUTLET	29.88
AMBIENT TEMPERATURE - F	73.
COMPRESSOR INLET	73.
COMPRESSOR OUTLET	258.
ENGINE INLET	113.
TURBINE INLET	1573.
TURBINE OUTLET	1410.

TABLE 11 INSULATED UNCOOLED ENGINE

<u>INPUT</u>

<u>OUTPUT</u>

DWED _ DST	197.0000
EMED - PSI	37.0000
BSEC - LBS/BHP/HR	0.5076
ISFC - LBS/IHP/HR	0.4272
FUEL FLOW - CU MM PER STROKE	93.5805
ACTUAL FUEL AIR RATIO	0.0420
FRICTION HORSEPOWER	30.3000
COMPRESSOR MASS FLOW - LBS/HR	1944.0000
COMPRESSOR PRESSURE RATIO	2.2600
TURBINE PRESSURE RATIO	1.4600
COMPRESSOR HORSEPOWER	34.3000
ADDITIONAL POWER FOR TURBOCOMPOUNDING	24.0000
	240 000
COOLANT HEAT REJECTION - BTU/MIN	524 000
LUBE OIL HEAT REJECTION - BTU/MIN	1122 000
INTERCOOLER HEAT FLOW - BTU/MIN	524 000
RADIATION HEAT REJECTION - BTU/MIN	534.000
ENGINE THERMAL EFFICIENCY	0.272
AND TONT ODECCUDE - IN HC	29.88
AMBLENT PRESSURE - IN HG	28.30
COMPRESSOR INDEL	63.95
CUMPRESSOR OUTLET	59.81
ENGINE INLEI THUDDINE INLET	43.77
TURBINE INDEI	29.88
TURBINE OUTLEI	
AMBIENT TEMPERATURE - F	73.
COMPRESSOR INLET	73.
COMPRESSOR OUTLET	258.
ENGINE INLET	113.
TURBINE INLET	1573.
TURBINE OUTLET	1410.

POWER AVAILABLE IN THE EXHAUST

Т

REDUTIONAL POWER

Figure 5.8-1 Power Available in the Exhaust Chart

- 4. Application of insulating coatings to the engine's rotor, by plasma spraying partially stabilized zirconia (PSZ) followed by surface densification, has proven to be successful. A similar coating with high temperature chrome oxide densification to provide a good wear surface was successful on the Mazda cast iron side housings. However, application of the same material to the aluminum side housings and aluminum rotor housing of the 1007R engine is not possible because the processing temperatures required to obtain good wear surfaces are above the maximum permissible temperature to which the aluminum can be exposed.
- 5. A layered coating consisting of PSZ and Tribaloy 800 has been applied to the aluminum 1007R components to provide a thermal barrier insulating layer with a good tribological surface. Testing by John Deere is required to demonstrate the integrity of this coating.
- Conclusive data on reduction of heat rejection is not available from 6. the Mazda testing but will be generated when the components are tested in the stratified charge combustion engine by John Deere. Examination the data from the Mazda engine testing with the insulated of components result in the conclusion that dramatic reductions in heat rejection are achievable with todays coating technology. For instance, looking at Figure 5.6.1-8, adding only 0.75 mm of coating to the rotors raised the peak exhaust temperature 90 C. from 730 to 820 C. and Figure 5.6.1-3 shows that the temperature rise in the lube oil in the engine dropped more than 20 percent. Application of 0.5 mm of insulating coating to both sides of the Mazda intermediate housing (the two end housing sides were not coated) reduced the temperature rise in the lube oil by 50 percent (Figure 5.6.0-3). If similar results are observed on the stratified charge combustion engine, reductions of heat transfer to the lube oil of 75 percent or greater are expected.
- Testing of the coated aluminum and coated cast iron rotor housings was 7. not sufficient to demonstrate the thermal performance of the coating as the coatings failed before adequate data could be svstems A conclusion which can be drawn from the rotor housing obtained. testing is that successfully coating the aluminum rotor housing with an insulating material with good tribological properties may not be The aluminum rotor housings tested on the Mazda engine possible. failed in the zirconia layer probably from the combination of high compressive loads under the apex seals and high tensile loads caused by the high thermal expansion of the aluminum housing. The coating failure may have been aggravated by either a poor quality PSZ plasma spray or damage to the PSZ caused by the trochoid grinding process. Based on these results, the processing of the rotor housing for the 1007R engine has been closely watched at every step to improve the the resulting coating which will hopefully provide quality of sufficient life to enable heat rejection data to be obtained.
- 8. Testing of the special coated cast iron Mazda rotor housings with minimal cooling (no cooling passages in the high heat flux area) were more successful, in that the coatings did not fail immediately (they were used for three engine builds). The engine ran very well with the cast iron housings and sounded different (less high frequency noise)

at low power levels and experienced failures of the apex seal system which terminated each test as the power was increased. The apex seal system failures included severe bowing of the seals (indicating that the wear surface was running significantly higher temperature than the inner surface of the seal), accelerated apex seal wear and sticking of the seals in the rotors. These failures are due to breakdown of the lubrication system at the very high surface temperatures which were experienced on the inner surface of the insulated cast iron rotor housing. Based upon extrapolation of the rotor housing heat flux thermocouple data, the temperature of the cast iron and coating interface was in excess of 244 C. as compared to 103 C. for the baseline engine at the same load. The baseline engine had a wall temperature of 127 C. at full load. While the absolute values of these data are highly questionably (actual temperatures are known to be higher) the data does show that the minimally cooled, insulated cast iron housing runs significantly hotter than the standard cooled aluminum housing. This high temperature operation breaks down the lubricating oil causing an increase in friction and also forms hard deposits (which cause the apex seals to stick).

- 9. As discussed separately in the ADAPCO report the conclusion of the cycle analysis, thermal analysis and stress analysis are that the design approach to insulating the rotor is sound and has acceptable stress levels. However, it is predicted that the insulated aluminum rotor housing with water cooling and the uncooled, insulated, cast iron rotor housing both have excessively high stress levels and will fail. ADAPCO does point out that their analysis could be greatly improved with additional fundamental property data for the coating systems and by using a more sophisticated cycle analysis and transient thermal analysis.
- 10. Analysis of the cycle simulation data, with various degrees of heat rejection reduction, shows that for a 40 percent reduction of heat rejection to the coolant and lube that an additional 15 percent of the rated engine power is available in the exhaust for compounding recovery.

7.0 RECOMMENDATIONS

This program has concluded that it is possible to reduce the heat rejection of high performance rotary engines by using state-of-the-art thermal barrier coatings provided that the basic engine components are made of compatible materials. In order to improve the engine for aircraft applications (or other applications which are weight sensitive) it is necessary to find an alternative to aluminum and cast iron for the engine housings and rotors. A material with low density and good high temperature strength is required. A study to identify an optimal material to replace aluminum or ductile iron for high temperature piston engines [3] has identified a titanium alloy (Ti6242) as having the desired properties and which also has low thermal conductivity.

It is recommended that a technology demonstrator engine be designed using the Ti6242 alloy with thermal barrier coatings on the side housings, rotors and (to a limited extent) the rotor housing. The design should prove that titanium is a superior material for a high performance aircraft engine and that the resulting engine will be inherently more reliable (as compared to an engine with aluminum housing castings). A techno-economic analysis should then be performed to determine the cost and marketing implications. It is recommended that efforts be continued (by NASA and others) to develop high temperature lubrication systems which are applicable to the apex seal. This effort should include high temperature liquid lubrication, dry lubrication systems and work on material compatibility.

RECOMMENDATION FOR TESTING AT JOHN DEERE

It is recommended that the components be tested together in one engine build to determine the performance implications in the stratified charge combustion engine. Testing should be done with an eye to obtaining as much data as possible before coating failure occurs. The coated rotor (which should survive any coating failure of the rotor housing or side housings) should then be tested by itself for durability and performance. If the rotor coating is damaged, Adiabatics, Inc. will recoat it for free.

T

APPENDIX A

ADIABATIC, INC.

STATEMENT OF WORK

APPENDIX A

ADIABATIC, INC.

STATEMENT OF WORK

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u> <u>Pac</u>	<u>ie</u>
INTRODUCTIO	NA-	-3
Task I	Engine Selection and Baseline Test A	-3
Task II	Thermal Analysis	-5
Task III	Adiabatic Component Design	-6
Task IV	High Temperature Apex/Side Seal Tribology A	-6
Task V	Prototype Engine - Procurement/Assembly - Mazda 13B A-	-7
Task VI	Engine Testing \ldots \ldots \ldots \ldots \ldots A -	-7
Task VII	Prototype engine - Procurement - NASA 1007R A	-8
Task VIII	Exhaust Energy Utilization	-8
Reporting R	equirements	-8

ADIABATIC WANKEL TYPE ROTARY ENGINE CONTRACT NAS3-24880

STATEMENT OF WORK

INTRODUCTION

The objective of this project is to design, fabricate, procure, assemble and test a prototype low heat rejection rotary engine based on studies performed in the SBIR Phase I contract entitled "Adiabatic Wankel TYPE Rotary Engines" completed in 1985. A program consisting of eight (8) tasks was formulated to accomplish this project as follows:

- I Engine Selection and Baseline Test
- II Thermal Analysis
- III Adiabatic Component Design
- IV High Temperature Apex/Side Seal Tribology
- V Prototype Engine Procurement/Assembly MAZDA 13B
- VI Engine Testing
- VII Prototype Engine Procurement NASA 1007R
- VIII Exhaust Energy Utilization

The following is a narrative description of the work plan for each task.

TASK I Engine Selection and Baseline Test

This first task starts with selection and purchase of a test engine followed by instrumentation of the engine and baseline testing. Per the conclusions of the first quarterly report and review at a meeting with Mr. William Hady at NASA LeRC November 12, 1986 a Mazda 13B engine of the latest configuration was procured. Based on engine availability and suitability for test cell operation the engine was purchased (following approval from Mr. William Hady) from Racing Beat, Inc. of Anaheim California. The configuration of the engine is listed in the following table:

Model	Mazda 13B	
Displacement	1.308 L (80 Cu In)	
Rated Power	132 KW (177 Horsenover)	
Intake Ports	6 Side Ports (2 Valved)	
Exhaust Ports	2 Peripheral	
Exhaust Manifold	Racing Type Header	
Carburetion	Dellorto 48 DHLA (Dual sidodraft)	
Ignition Distributor	Mazda Breakerloss (Lut	
Electronics)	Dicakerress (Integral	
Ignition Coils	Mazda Transistor Ignition "	
Flywheel	Lightweight Steel Type	

The plan is to this engine for component screening use (mechanical screening as opposed to performance development). The logic behind this approach is that the addition of low heat rejection components to a homogeneous charge engine will raise the temperature of the gases during the compression stroke and increase the tendency of the engine to detonate (early combustion). To counteract this phenomena special fuels with very high octane numbers will have to be used along with power reductions. A test plan for the engine is to be prepared which includes engine and test cell instrumentation, assembly instructions, test cell installation details and the actual listing of tests to be run. An eddy current type dyno matched to the Mazda engine is being used for this project.

Because the selected engine is a mature product the initial testing is limited to refinement of the test facility and baseline performance measurements of the engine with no endurance or durability testing. A partial listing of the parameters which are be measured and the measuring method are as follows:

Engine Speed	Speed pickup on dyno.
Torque	Load Cell on dyno.
Fuel Flow	Mass Type Flowmeter
Air Flow	Mass Type Flowmeter
Intake Temperature	Thermocouple
Exhaust Temperature	Thermocouple
Coolant In Temperature	Thermocouple
Coolant Out Temperature	Thermocouple
0il In Temperature	Thermocouple
0il Out Temperature	Thermocouple
Rotor Housing Temperature	Thermocouple
Side Housing Temperature	Thermocouple
Coolant Pressure	Bourdon tube gage
0il Pressure	Bourdon tube gage
Barometric Pressure	Mercury Barometer
Wet and Dry Bulb Amb Temps.	Sling Psychrometer

Following receipt of the inputs from NASA the detailed test plan will be finalized and submitted to NASA for approval.

Following approval of the test plan the Contractor will conduct the test program and prepare and issue an informal test report.

Task II Thermal Analysis

A thermal analysis shall be conducted for NASA's 1007R engine to obtain a thermal history including the temperature distribution in the rotor and rotor housings during rated and peak torque operating conditions.

The analysis shall provide the basis for calculating the distortion, allowable clearances and thermal stresses in these components. The thermal stresses obtained in this analysis shall be combined with the rotating stresses and pressure loading stresses to provide input for the component design to be performed in Task III - Adiabatic Component Design.

After completion of the thermal analysis, the Contractor shall prepare an informal report and present it to the NASA Project Manager for his approval. Upon approval, the Contractor shall proceed with the design of all the adiabatic components as determined in Task III - Adiabatic Component Design.

The following method will be used to accomplish this task:.

- a. NASA to furnish 1007R drawings and test data to ADAPCO.
- b. NASA to furnish MIT Stratified Charge Combustion Model.
- c. ADAPCO will incorporate 1007R geometry and run the MIT model to generate boundary conditions.
- d. ADAPCO to use John Deere data to verify model.
- e. ADAPCO to generate FE model of 1007R rotor and rotor hsg. f. ADAPCO to use boundary with the second seco
- f. ADAPCO to use boundary conditions from c. and run FE analysis.
- g. ADAPCO to prepare informal report.

III. Adiabatic Component Design

Following completion of TASK 2, the Contractor will upon approval from NASA's Project Manager have ADAPCO proceed to modify the models for combustion and the FE models for the rotor and rotor housing to include selected low heat rejection components and to run the models and analysis at the low heat rejection conditions. These results will be used in an iterative manner to design the actual modifications to the 1007R parts. Detailed drawings of the modifications will be completed by Contractor personnel and submitted to the Project Engineer for approval. Upon approval, the Contractor may initiate procurement of the adiabatic components outlined in task IV - High Temperature Apex/Side Seal Tribology and task VI - Prototype Engine Procurement - NASA 1007R.

IV High Temperature Apex/Side Seal Tribology

The Contractor shall evaluate and procure candidate apex seals, side seals and high temperature lubricants as follows:

Based on experience from reciprocating adiabatic engine testing four candidate sets each of apex seals and side seals for high temperature operation along with high temperature oil for two oil changes will be procured for the 1007R engine. The same candidate apex seal and side seal designs will be procured for the Mazda engine along with the same high temperature oil. The apex seals and high temperature oil will be run in the Mazda engine build with the low heat rejection rotor housing and the side seals and high temperature lube will be run in the engine build with the low heat rejection side housings.

V Prototype Engine - Procurement/Assembly - Mazda 13B

The Contractor shall procure, fabricate, modify, and assemble a complete prototype adiabatic rotary engine utilizing those parts and or components obtained in performance of Tasks I, III and IV. This engine is to be used for screening components for later inclusion in the 1007R engine. A series of screening tests are to be planned wherein a concept can be tested individually for mechanical and tribological integrity.

VI Engine Testing

The Contractor shall install the Mazda 13B rotary engine and auxiliary components from Task IV (High Temperature Apex/Side Seal Tribology) to his test facility and make all necessary preparations for testing. Prior to commencing the engine testing a test plan will be prepared and approved by the NASA Project Manager. The engine testing shall consist of separate engine builds and tests for the rotor, rotor housing, and side housings along with a final test of the complete engine. A minimum of four separate engine build and test cycles are required.

VII Prototype Engine - Procurement - NASA 1007R

The Contractor is to provide thermal barrier coatings for the following parts of the NASA 1007R engine:

Note: The parts to be coated are NASA owned parts which are presently at John Deere.

ROTOR - The 1007R rotor will be machined and coated the same as the Mazda rotor.

SIDE HOUSINGS - The present 1007R side housings are aluminum and present the same problem as the aluminum rotor housings. Depending upon the results from the Mazda testing and the thermal analysis program, either zirconia coated aluminum housings with the three cycle coating or plasma sprayed chrome-oxide or the K-Ramic coated cast iron housings will be supplied.

ROTOR HOUSING - The selection of rotor housing material and coating will be dependent upon the results of the Mazda testing and the thermal analysis.

The testing of the 1007R components will be accomplished by John Deere and is not included in this project.

VIII Exhaust Energy Utilization

Ć

The Contractor shall conduct a study on methods of recovering waste energy from the exhaust of the adiabatic rotary engine using exhaust gas data from the 1007R engine and the results of the thermodynamic modeling of that engine with low heat rejection components. The results of this study will be presented to the NASA Project Manager for his approval.

Reporting Requirements

Reporting shall be in accordance with the Reports of Work attachment except as modified below:

1. A Quarterly Technical and Progress Report shall be substituted in lieu of the Nonthly Report.

- 2. Each task shall be reported in the Quarterly Progress Report.
- 3. The Quarterly Progress Report shall include the number of labor hours expended for each category of labor for the quarter as well as cumulative totals.
- 4. One (1) copy of the Final Report draft shall be submitted for review in lieu of the four (4) copies specified.

· ·

•

APPENDIX B

ENGINE TEST PLAN

The engine test plan encompasses five engine configuration tests: the standard engine. the standard engine with coated rotors. the standard engine with coated intermediate housing. the standard engine with coated rotor housings. and the standard engine with a combination of all above mentioned coated components. The purpose of the engine tests is to screen components for later inclusion on the 1007R engine. The data from the testing will be analyzed to determine the change in heat rejection.

The first test configuration, the standard engine, is being run to develop baseline information. Because the selected engine is a mature product the initial testing is limited to refinement of the test facility and performance measurements of the engine with no endurance or durability testing.

The test consists of engine preparation, instrumentation, and machining of the engine rotor housings and intermediate housing to enable installation of thermocouples. The assembled engine will be placed on the test stand and connected to an Eaton eddy current type dynamometer Model AD-8081.

1

The following parameters will be measured and recorded:

Engine Speed	Speed pickup on dyno.
Torque	Load cell on dyno.
Fuel Flow	Mass type flow meter.
Intake Temperature	Thermocouple
Exhaust Temperature	•
Coolant In Temperature	-
Coolant Out Temperature	•
Oil In Temperature	••
Oil Out Temperature	•
Rotor Housing Temperature	**
Side Housing Temperature	•

(Continued on next page.) B-2

Intake PressureMercury ManometerExhaust PressureMercury ManometerBlow byMercury ManometerCoolant PressureBourdon Tube GaugeOil PressureBourdon Tube GaugeBarometric PressureMercury BarometerWet & Dry Bulb Amb. Temps.Sling Psychrometer

(For locations of rotor housing and intermediate housing thermocouples see Figures 1 & 2.)

Periodic visual inspection through the exhaust ports and pre and post test measurements of the wear surfaces will be performed.

The second engine configuration to be tested is the baseline engine with the addition of two insulated rotors. The two rotors will be coated with plasma sprayed zirconia and then densified with a chrome oxide coating. This test will include an endurance test at various loads to ensure proper component screening. The same parameters will be measured as outlined in the first test configuration.

The third engine configuration tested is the baseline engine with a coated intermediate housing and coated side seal. This test will also be performed under endurance conditions and the test will measure the same parameters as above.

The fourth engine configuration tested is the baseline engine with coated rotor housings and coated apex seals. Testing will be done in the same manner as above.

The last engine configuration tested is with a combination of all coated components. This test will be performed if all components endure the previous tests. The same parameters will be measured.

Once the test program is performed, Adiabatics, Inc. will prepare and issue an informal test report.

B-3

APPENDIX C

BASELINE DATA

BASELINE DATA

TABLE OF CONTENTS

<u>Title</u>

<u>Page</u>

Baseline	Chart	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-3
Baseline	Chart	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-4
Baseline	Chart	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-5
Baseline	Data.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-6
Baseline	Data.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-6

Baseline

(m*N) euproT

Baseline

(11*2dl) euproT

-

Oil Baro Baro Humid In In Exh Cool Cool Pres pres pres Temp Temp Temp In In 0il pres Intake Intake Exhaust Exhaust Blowby Blowby Cool Cool pres pres pres pres pres pres pres 85FC (1b/ BSFC Fuel Flow Fuel Flaw Fuel Point Date RPM Torque Torque BHP BHP BMEP BMEP

1

11 BASELINE 11

(Ł	179	2	5 8	5	8	5	2	5	8	3 8	181		1 8		i 8	ē	6	2 6	1 2	183	183	183
Ð	6	: 5	3 6	3 8	3 23	ā	3 8	5 6	3 8	5 13	19	3 5	3 6	3 2	3 8	10	3 6	3 5	3 3	18	3	8
(E)	40 175A	1011	1251 22	1498	5811 /		1701 0	8 1504	1528	1 1600	01100	ANCI 1	1575	7 1556	6 1590	1 1407	1 1503	1221 D	7 1556	3 1424	B 1523	1621 9
. = 	5	: 8	36	: = : 2		۲ -	: 2 : 0			 	1 71					47.4			35	11 0	828	198
е С	-		: 9	: =	: 53	~	, . . =	: •	: ::					9 00 : 90	0 0	4	, 4 ,			تة م	- 30 - 5-	8
2	=	2	. 89		3	5	. 5				5	: 5					. 2		9 	- -		9
) (by,	19	19	: 13	5	12	77	3 3		99		99	: :	. 9		3	2		22		2	7 6	2
a) (in/	1 29.	1 29	2	29.	1 29.	DC C	2	2 29.	2 29.	2 29.	2 29.	5	5	29.1	2 29.1	2	2	2	5.	29.6	29.6	2 29.6
) (kP	8	100	001	001	8	100	8	9	001	100.	100.	100	8	8	100.	100.	8	00	8	100.	100	100.
(psig	89	89	19	99	89	70		3	67	67	70	69	89	89	99	88	84	3	- 18	89	67	99
(kPa)	469	469	462	155	494	184	494	469	462	462	483	476	469	469	\$\$ 1	\$98	449	462	\$ \$	469	462	455
lpizg)	5	12	12	11	12	ň	1 2	-		1	81	8	2	8	8	22	2	12	3	26	21	28
kPa)	101	28	18	19	8	101	201	16	96	6	124	124	821	82	821	152	145	121	165	179	186	193
in/H20) (•	9	0	0	•	- 9	• •	. 0	0	•	. 0	•	•	• •	•			• •		. 0	•	0
kPa) (0	0	0	•	•	c	• •	0	•	0	0		0	•	•	9	•	• •	0	0	0	•
in/H20) (1.3	1.1	7.1		14.8	1.7	7.2	10.1	12.0	23.0	8.4	10.3	16.6	20.3	33.B	Σ .	10.4	17.7	1.12	1-4	11.0	19.8
kPa) (.323	.095	767	060	683	971	792	513	986	723	194	563	131	021	411	070	588	1 0	8¥/	020	137	927
) (bų/	4.0 0.	7.9 1	5.3 1.	4.3 2.	0.6 3.	4.5 Q.	8.8	5.9 2.	4.4.2.	0.5 5.	1.1.	9.0 2.	5.6 4.	.5 5.	0.5 8.	1.5 1.	2.0 2.	5.5	 		.2 2.	
Pa) (in	7.3 1	6.7	7.9	.5	2.0	1 0 1		6.0	6.1	Ŀ.	- 	-	6.	2		- -	-	~9	•.	.2 13		- -
-hr) (k	+ 18	138 21	73 1	-1 01	AN N	02	52	29 19	23 14	ដា	71 48	84 30	04 18	92 15	1 1	55 49	42 30	97 18	11 11	54 42	54 27	13 13
php.	3	2	0.6	0.6	_		6	0.6	0.6	5.0	0.9	0.6	0.6	0.5	0.5	0.9	0.6	0.5	0.5	0.8	0.6	0.5
(g/kMh	716	445	405	389	X	670	426	383	379	338	594	414	367	360	349	581	390	343	349	225	101	344
(lbs/hr)	20.2	25.3	30.4	32.9	NA	22. a	30.4	35.4	40.5	48.1	25.3	35.4	40.5	45.5	58.2	27.8	0.BL	45.5	50.6	32.9	45.5	50.6
(ga/hr)	1816	11476	13771	14919	NA	10328	13771	16066	18361	21804	11476	16066	18361	20657	26395	12623	17214	20657	22952	14919	20657	22952
ate (2)	80	2	12	11	NA	6	12	:	16	61	0]	z	16	81	23	11	15	81	20	11	81	50
(jsi) A	28.3	56.5	74.5	84.8	118.8	29.2	61.3	79.6	91.9	122.5	32.0	64.1	82.9	95.2	125.4	32.0	65.0	83.9	97.1	37.7	67.9	88.6
kPa)	195	260	513	585	619	201	4 27	5	51	B#5	221	ŝ	22	556	19	121	₽	823	69	560	89	=
(dq)	1.1	5.5	5.1	51.4	12.0	0.7	3.3	16.3	5.0	i6.6	5.9	8.1	2.0	6.9	 	9.1	- 	۰. ۲. e			9.2 1	
	2.8	-9-1	27	2	2	-		0.	5	9.4		.6 5	9 0'	-	.5 10	.7 2		6.	œ.	т •		68 /.
ft) (1	•	64 19	<i>е</i> н	10	9 9		9. N	i. A	₩.	-9 -9	0 15	87 97	0. 20	.0	5	0 21	¥ .	0 56	0 65	0 28	5 : 5 :	99 0
(1941)	7 30	99 +	1 79	0 40	9 126	. н		5 84.	2 97.	130.	5	2 68.	288. 289.	101.	1	34.	. 69.	8	101.	ę.	<u> </u>	.
(Hin)	40	81.	107.	122.	170.	42.1	88.	114.2	132.	176.	46.1	92.	.19.	137.6	180.2	46.1	93.6	120.7	139.7	54.2	9.79	12/.2
	16 08/16 3000	17 08/16 3000	18 08/19 3000	19 08/14 3000	1 08/10 3000	6 08/12 3500	5 08/12 3500	4 08/12 3500	3 08/12 3500	2 08/12 3500	7 08/12 4000	8 08/12 4000	9 08/13 4000	10 08/13 4000	11 08/13 4000	12 08/13 4500	13 08/13 4500	14 08/13 4500	12 08/13 4500	20 08/16 5000	0005 91/80 12	0005 91/80 77

ORIGINAL PAGE IS OF POOR QUALITY

Air Temp (F)	55 25 89 89	* * 8 5 * *	66 00 38	6 6 6 6	* 8 8
Air Teap (C)	A R R R R	****	668 7 7	8822	***
- 	234 234 234 234 234	216 233 260 265 265 265 265	5 20 5 33 33 33 33 33 33 33 33 33 33 33 33 33	<u>5</u> 2223	222 284 284
11 Q	12151299	102 115 118 127 127	11 11 12	<u>8588</u>	35E
- 101 101 101 101	194 194 205	194 194 206 206	191 197 202 208 208	202 200	202
1 Hour 112 (C)	8 8 8 8 8	88225	92 93 98 98	89 25 29 29	92 94 97
Rata 811 (F)	55 55 55 55 55 55 55 55 55 55 55 55 55	512 512 512 521 512 512 513 521 512 513	12 25 55 55 55 55 55 55 55 55 55 55 55 55	SS 12 55 69	
Front #11 (C)	103 115 116 118 118 118	123 123 123 124	107 126 128 135	101 122 123 129	11 1 11
#10 (F)	192 197 200 212 212	193 203 203 207 215	196 203 210 217	197 207 216 216	204 211 218
2	92 92 94 94 92 94 100 94	89 29 102	19 29 29 20	26 2 2	96 99 103
#3 (E)	247 272 286 292 292 292	254 277 288 297 297 311	260 286 291 301 319	280 287 301 310	269 295 318
6	54 F F F F F F F F F F F F F F F F F F F	123 142 142 143 155	127 141 144 149 159	127 142 149	132 146
(F) 88 (F)	194 198 201 202 202 211	194 199 202 206 213	197 203 205 205 205 205 205	199 206 214	203 209 215
te Ho #8 (C)	82228	90 84 101	92 95 98 98 101	97 97 98 101	95 98 102
edia 87 (F)	236 250 250 269 275 275	241 263 273 279 279 279	246 268 276 287 287 307	251 272 284 296	281 281 301
Inter 17 (C)		116 128 133 137 147	111 128 138 151	2 2 2 2	126 138 149
8 F	192 195 195 200 206	192 198 200 204 204 210	195 202 205 208 208 212	198 205 209 213	203 209 215
2 9	88 15 15 15 15 15 15 15 15 15 15 15 15 15	89 92 94 99	94 94 98 98	52 86 101	22 102 102
2 E	217 245 245	219 244 244 252 266	222 240 252 251 251 276	226 247 258 258 271	236 256 272
2 Û	103 108 115 118 118	104 112 1130 1130	106 122 127 136	108 119 126 133	124
(f)	194 205 208 208 208 218	195 203 209 213 213 221	198 209 214 219 226 226	213 219 225	208 217 227
ت ا ور 19	90 91 98 98 98	91 95 98 101 105	92 98 101 104 108	94 101 104	98 103 108
E Bete	21) 239 245 259 259	220 255 267 267	224 262 262 262 276	228 261 274	237 259 276
in the second	103 109 115 118 126	104 113 118 122 122 131	101 118 128 136	109 121 127 134	114 126 136
5 E	193 193 203 205 205 215	201 207 211 219 219	197 206 212 217 217 223	199 216 223	205 215 223
2 <u>9</u>	89 92 95 102	90 94 97 99 104	97 97 100 103	93 99 102 106	96 102 106
Delti Dil Temp (F)	*****	225325	23225	5 8 8 G	22 95
C)	281985	83255	8 8 7 7 8 R	2822	5 S
E But	179 195 197 198	171 192 192 206	194 200 218 218	14 22 22 22 22 22 22 22 23	52 219 22
	222882	22822	ឌនឧទន	88 8	77 108 108
13 a G	150 156 154	139 154 154 154	150 163 164 173	160 169 173 180	174 180 188
3 5 9	82228	5.2.2.8.2	32248	~ % R G	79 82 87
Cool Out (F)	3 1 1 1 1 1 1 1 1 1 1	181 181 182 182 182	184 184 185 185	181 281 281	186 186 187
Cool Cool		32288		******	3838
Point	41 11 11 11 11 11 11 11 11 11 11 11 11 1	-4 10 - 4 10 10	7 8 9 11	2212	222

11 BASELINE 11

C-7

APPENDIX D

ADAPCO

STATEMENT OF WORK

STATEMENT OF WORK

The purpose of this program is to determine the structural implications of an "adiabatic" direct injection stratified charge combustion rotary (Wankel) type engine.

To accomplish this program ADAPCO is to perform the following tasks using the NASA (John Deere) 1007R engine as the candidate engine:

- 1. Generate the three dimensional ANSYS finite element model for the rotor and rotor housing using the drawings generated by John Deere.
- 2. Using the MIT DISC model, generate the thermal and pressure boundary conditions for the above engine at rated and torque peak conditions.
- 3. Compare the results of the above analysis with test data supplied by John Deere and iterate the model as necessary such that the predicted pressures and temperatures agree with the measurements.
- 4. Using the above boundary conditions along with inertia loads and assembly loads, run the FE models and determine the deflections, stresses and temperatures of the components.
- 5. Run the MIT DISC model for the adiabatic configuration assuming a .030 inch plasma sprayed zirconia thermal barrier coating densified from chrome oxide on the combustion face of the rotor, the side housings and the rotor housing to determine the pressure and temperature boundary conditions for the insulated engine.
- 6. Modify the FE models to include the thermal barrier coatings.
- 7. Run the FE models with and without coolant in the rotor housing. Reiterate back through task 5 as necessary such that the MIT DISC and ANSYS surface temperatures are in agreement.
- 8. Analyze the results of the above run to determine if the stresses, temperature and deflections are acceptable. If they are not acceptable, modify the models to incorporate design changes to make the values acceptable and recycle until a satisfactory solution is found.

REPORTING

An interim report and a final report which details all of the effort and results shall be prepared and submitted per the schedule. A magnetic tape copy of the completed ANSYS finite element models is required.

SCHEDULE

Program start date - 1 April 1987 Interim report due - 1 July 1987 Program complete - 1 October 1987 Final report due - 1 November 1987 APPENDIX E

PRE & POST MEASUREMENT

PRE & POST MEASUREMENT

TABLE OF CONTENTS

<u>Title</u>

Main Bearing
Rotor Housing
Rotor
Rotor Oil Seal
Apex Seal
Side Seal
Corner Seal
Pre & Post Compression Tests \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $E-2$
Front Main Bearing Clearance
Rear Main Bearing Clearance
Front Rotor Bearing Clearance
Rear Rotor Bearing Clearance
Front Rotor.Housing Width Difference E-19
Rear Rotor Housing Width Difference
Front Rotor Clearance
Rear Rotor Clearance
Front Rotor Oil Seal Lip Width
Rear Rotor Oil Seal Lip Width
Front Rotor Apex Seal Clearance
Front Rotor Apex Seal Height
Front Rotor Apex Spring Free Height E-2
Front Rotor Apex Seal Weight
Rear Rotor Apex Seal Clearance

PRE & POST MEASUREMENT

TABLE OF CONTENTS (Cont.)

<u>Page</u>

<u>Title</u>

Rear Rotor Apex Seal Hei	.ght	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-30
Rear Rotor Apex Spring F	ree Height	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-31
Rear Rotor Apex Seal Wei	.ght	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-32
Front Rotor Side Seal Pr	otrusion .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-33
Front Rotor Side Seal We	eight	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-35
Rear Rotor Side Seal Pro	otrusion	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-37
Rear Rotor Side Seal Wei	ght	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-39
Front Rotor Corner Seal	Protrusion	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-41
Front Rotor Corner Seal	Weight	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-44
Rear Rotor Corner Seal H	Protrusion.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-46
Rear Rotor Corner Seal W	Weight	•	•	•	•		•	•	•	•	•	•	•	•	•	•	E-49

The five pages that follow are a description of the pre and post test measurement procedures. The procedures are described in the 1987 Mazda shop manual. All measurements not recorded were checked and were OK.

MAIN BEARING

1. Check the main bearing clearance. Measure the inner diameter of the main bearing and the outer diameter of the eccentric shaft main journal.

Standard Clearance: 0.04 - 0.08mm (.0016 - .0031 in)

Clearance Limit: 0.10mm (.0039 in.)

ROTOR HOUSING

- Check the width difference of the rotor housing. Measure the rotor housing width at the points A,B,C, and D as shown in the figure.
- 2. Check the difference between the value of point A and the minimum value among the points B, C, and D.

Difference Limit: 0.06mm (.0024 in.)

OF POOR QUALITY,

ROTOR

Check the clearance between the side housing and rotor.

1. Measure the rotor housing width and the maximum rotor width at three points.

Standard Clearance: 0.12 - 0.21mm (.0047 - .0083 in.)

Clearance Limit: .004 in.

- 49 0839 165 Gauge
- 2. Check the corner seal bores for wear
 - 1) If neither end of the gauge goes into the bore, use the original corner seal.
 - 2) If only one end of the gauge goes into the bore, replace the corner seal.
 - 3) If both ends of the gauge go into the bore, replace the rotor.
- 3. Check the rotor bearing clearance. Measure the inner diameter of the rotor bearing and the outer diameter of the eccentric shaft rotor journal. Standard

0.04 - 0.08mm Clearance: (.0016 - .0031 in.)

Clearance Limit: 0.10mm (.0039 in.)

E-5

1. Check the oil seal lip width.

Lipwidth: .0.05mm (.020 in max.)

2. Check oil seal protrusion.

Protrusion: 0.05mm (.020 in min.)

APEX SEAL

1. Measure the height of the apex seal at two points.

Standard Height: 8.0mm (.315 in.)

Height Limit: 6.5mm (.256 in.)

2.Check the apex seals for warpage.

Warpage Limit: 0.06mm (0.0024 in.)

APEX SEAL cont.

3. Check the clearance of the apex seal and the groove.

Standard Clearance: 0.062 - 0.102mm

(.0024 - .004 in.)

Clearance Limit: 0.15mm (.0059 in.)

4. Check the apex seal spring for wear and free height.

Free Height Limit: Long Spring 4.

4.6mm (.181 in.)

5. Measure the apex seal length.

SIDE SEAL

1. Check side seal protrusion.

Protrusion: 0.5mm (.020 in.) min.

SIDE SEAL cont.

2. Check the clearance between the side seal and the groove.

Standard Clearance: 0.028 - 0.078mm (.0011 - .0031 in.) Clearance Limit: 0.10mm

(.0039 in.)

3. Check the clearance between the side seal and the corner seal.

Standard Clearance: 0.05 - 0.15mm (0.0020 - 0.0059 in.)

Clearance Limit: 0.4mm (.016 in.)

CORNER SEAL

Check the corner seal protrusion.

Protrusion: 0.5mm

(.020 in) min.

			Rotor	Comp	ression		
Build	Nh	imbar	flank No	Pre (Ka/Cocc)	(see an an a	Post	·
	۲۹۹۲ (۲۰۰۰ - ۲۰۰۰ میں میں میں میں میں میں میں	ander		vivgz cinaciz	· · · · · · · · · · · · · · · · · · ·	(ky/cmsq)	
Baseline test	A) 1	front	1	7.8	164	7.6	126
		rotor	 مئه	2.7.7		7.7	
				7.4		7.5	
		rear	İ		243	5.3	243
		rotor		2 6.9		5.3	
				7.0		5.3	
Coated	B) 1	front	1	7.2	154	8.8	230
intermediate		rotor	 44. 	7.2		9.3	
test				7.2		9.0	
		rear	l	6.8	243	6.6	222
		rotor	 	2.0		. 7	
				7.0		6.5	
Undensified	C) 1	front	1	6.1	225	Not	NA
coated		rotor	er ali	2.3		Available	
rotor test			···	5 7.2		11	
		rear	1	8.7	216	NA	NA
		rotor	در نه	2. 7.0		н	
			 	6.5		11	
Undensified	C) 2	front	1	8.0	215	NA	NA
coated		rotor		2		11	
rotor test				8.5		24	
		rear	1	7.1	213	NA	NA
		rotor	 بله	7.8		17	
				7.6			
Undensified	C) 3	front	1	7.4	235	NA	NA
coated		rotor	2	2 7.2		1F	
rotor test				7.6		1)	
		rear	1	8.0	228	NA	NA
		rotor	سر مەر	2 7.8		11	
				7.7		(1	

** Pre & Post Compression Tests **

OF POOR QUALITY

			Rotor	Com	pression		
			flank	Pre		Post	
Build	Nun	nber	No.	(Kg/Cmsq) (rpm)	(Kg/Cmsq)	(rpm)
Densified	C) 4	front	1	7.9	203	NA	NA
coated		rotor	2	6.5		11	
rotor test			3	6.7		41	
		rear	1	7.7	201	NA	NA
		rotor	2	7.3		*1	
			3	6.6		14	
Coated	D) 1	front	1	9.2	216	NA	NA
aluminum		rotor	2	9.6) r	
rotor housing			3	9.4		17	
test		rear	1	8.5	209	NA	NA
		rotor	2	7.2		¥1	
			3	8.7		+ 4	
Coated	D) 2	front	1	8.5	215	NA	NA
cast iron		rotor	2	8.9		6.8	
rotor housing			3	8.6		11	
test		rear	1	9.7	215	NA	NA
		rotor	2	9.0		11	
			3	9.5		11	
Coated	D) 3	front	1	4.7	217	0.0	220
cast iron		rotor	2	4.0		Õ.Õ	
rotor housing			3	5.3		0.0	
test		rear	1	4.2	323	0.0	219
		rotor	2	4.0		0.0	
			3	4.1		0.0	
Coated	D) 4	front	1	8.1	221	0.0	212
cast iron		rotor	2	7.9		0.0	
rotor housing			3	7.9		0.0	
test		rear	1	7.1	221	0.0	205
		rotor	2	6.7		0.0	
			3	7.1		0.0	

****** Pre & Post Compression Tests ******

Build Number	Standard Clearand ClearanceLimit (inch) (inch)	re Pre (inch)	Pre (mm)	Post (inch)	Post (mm)
A) 1	0.0016 0.003 to 0.0031	7 0.0020	े.०५०३	0.0020	0.0508
B) 1		0.0020	0.0508	0.0020	0.0508
C) 1		0.0020	0.0508	0.0020	0.0508
C) 2		0.0020	0.0508	0.0020	0.0508
C) 3		0.0020	0.0508	0.0028	0.0711
C) 4		े.0029	0.0737	0.0030	0.0762
D) 1		0.0030	0.0762	0.0030	0.0762
D) 2		0.0030	0.0762	0.0030	0.0762
D) 3		0.0030	0.0752	0.0030	0.0762
D) 4		0.0030	0.0762	0.0030	0.0762

****** Front Main Bearing Clearance ******

ORIGINAL PAGE IS OF POOR QUALITY

.

** Rear Main Bearing Clearance **

Build Number	Standard Clearance (inch)	Clearanc Limit (inch)	e Fre (inch)	Pre (mm)	Post (inch)	Post (mm)
A) 1	0.0016 to 0.0031	0.0039	0.0020	0.0508	0.0020	0.0508
B) 1			0.0020	0.0508	0.0020	0.0508
C) 1			0.0020	0.0508	0.0020	0.0508
C) 2			0.0020	0.0508	0.0020	0.0508
C) 3			0.0020	0.0508	0.0028	0.0711
C) 4			0.0028	0.0711	0.0028	0.0711
D) 1			0.0029	0.0737	0.0029	0.0737
D) 2			0.0029	0.0737	0.0030	0.0762
D) 3			0.0030	0.0762	0.0030	0.0762
D) 4			0.0030	0.0762	0.0030	0.0762

,

** Front Rotor Bearing Clearance **

Build Number	Standard Clearance (inch)	Clearanc Limit (inch)	e Fre (inch)	Pre (mm)	Post (inch)	Post (mm)
A) 1	0.0016 to 0.0031	0.0039	0.0020	0.0508	0.0020	0.0508
B) 1			0.0020	0.0508	0.0020	0.0508
C) 1			0.0020	0.0508	0.0020	0.0508
C) 2			0.0020	0.0508	0.0020	0.0508
с) З			0.0020	0.0508	0.0022	0.0559
C) 4			0.0020	0.0508	0.0024	0.0610
D) 1			0.0020	0.0508	0.0020	0.0508
D) 2			0.0020	0.0508	0.0020	0.0508
D) 3			0.0021	0.0533	0.0023	0.0584
D) 4			0.0023	0.0584	0.0025	0.0635

OF POOR QUITTY

** Rear Rotor Bearing Clearance **

Build Number	Standard (Clearance (inch)	Clearance Limit (inch)	e Pre (inch)	Pre (mm)	Post (inch)	Post (mm)
A) 1	0.0016 to 0.0031	0.0039	0.0020	0.0508	0.0020	0.0508
B) 1			0.0020	0.0508	0.0020	0.0508
C) 1			0.0020	0.0508	0.0020	0.0508
C) 2			0.0020	0.0508	0.0020	0.0508
c) 3			0.0020	0.0508	0.0023	0.0584
C) 4			0.0020	0.0508	0.0028	0.0711
D) 1			0.0020	0.0508	0.0021	0.0533
D) 2			0.0024	0.0610	0.0024	0.0610
с, з			0.0024	0.0610	0.0028	0.0711
D) 4			0.0028	0.0711	0.0030	0.0762

****** Front Rotor Housing Width Difference ******

	Difference						
Eulid Number	Limit (inch)	Pre (inch	Differen) (inch)	ce Pre (mm)	Difference (mm)		
A) 1	0.0024	A) 3.1 B) 3.1 C) 3.1	490 0.0010 500 490	79.9846 80.0100 79.9846	0.0254		
		D) 3.1	300	80.0100			
B) 1		A) 3.1 B) 3.1 C) 3.1 D) 3.1	489 0.0004 490 490 493	79.9821 79.9846 79.9846 79.9922	0.0102		
C) i		A) 3.1 B) 3.1 C) 3.1 D) 3.1	484 0.0009 493 489 490	79.9694 79.9922 79.9821 79.9846	0.0229		
C) 2		A) 3.1 B) 3.1 C) 3.1 D) 3.1	484 0.0009 493 489 490	79.9694 79.9922 79.9821 79.9846	0.0229		
C) 3		A) NA B) " C) " D) "	NA	NA " "	NA		
C) 4		A) 3.1 B) 3.1 C) 3.1 D) 3.1	491 0.0005 496 493 494	79.9871 79.9998 79.9922 79.9922	0.0127		
D) 1		A) NA B) " C) " D) "	NA	NA ,, ,,	NA		
D) 2		A) 3.1 B) 3.1 C) 3.1 D) 3.1	505 0.0001 506 506 506	80.0227 80.0252 80.0252 80.0252	0.0025		
D) 3		A) 3.1 B) 3.1 C) 3.1 D) 3.1	506 0.0003 505 506 503	80.0252 80.0227 80.0252 80.0176	0.0076		
D) 4		A) 3.1 B) 3.1 C) 3.1 D) 3.1	513 0.0011 503 502 511 E-15	80.0430 80.0176 80.0151 80.0379	0.0279		

** Front Rotor Housing Width Difference **

	Difference					
Buald	Limit	I	Post	Differend	ze Post	Difference
Number	(inch)		(inch)	(inch)	(mm)	(mm)
A) l	0.0024	A)	3.1489	0.0004	79 9971	0.0102
		E)	3.1490	an in the second of	79.9846	and an and an and an
		C)	3.1490		79.9846	
		\mathbf{D})	3.1493		79.9922	
B) i		۵)	T 14Q4	0 0000	70 0/04	a
		E V	T 1207	0.0007	77.7074	0.0227
		(C)	T 1499		77.7744	
		D)	3.1490		79 9844	
			and an array of		//./OHU	
C) i		A)	3.1484	0.0009	79.9694	0.0229
		B)	3.1493		79.9922	
		C)	3.1489		79.9821	
		D)	3.1490		79,9846	
C) I		A)	NA	NA	NA	NA
		Б) Ф			0	
					11	
		10.1			1	
C) C		A)	3.1491	0.0005	79,9871	0.0127
		B)	3,1493		79,9922	
		C)	3.1494		79.9948	
		D)	3.1496		79.9998	
C) 4		A)	3.1484	0 0004	70 040A	0.0157
		B)	3.1490	in a montrourd	79 0044	Contraction of the second s
		с) С)	3.1490		70 00/14	
		D)	3.1490		79.9846	
		<u></u>	······	0.0010		
		H7 53	0+14/0 7 +4/7	0.0010	79.9414	0.0254
		<i>р)</i> С)			79.9160	
		с) D)	3.1403 7.1400		79.9160	
		D	0.1400		/9.928/	
D) 2		A)	3.1506	0.0003	80.0252	0.0076
		B)	3.1505		80.0227	
		C)	3.1506		80.0252	
		D>	3.1503		80.0176	
D) 3		A)	3.1506	0.0003	80,0252	0.0074
		B)	3,1505	a a ar ar ar ar an	80.0227	in a na na 7 tur
		С)	3.1506		80.0252	
		D)	3.1503		80.0176	
D) 4		A)	3.1505	0.0003	80 0227	0 0074
		н, В)	3.1508	an a serverserver	80 0303	V • VV/O
		Ē,	3.1507		80 0278	
		D)	3.1507		80 0770	
		<i>i</i>	sus ∎ de val Ser V	E-16	uv,⊾V≟/©	

** Rear Rotor Housing Width Difference **

Build Number	Difference Limit (inch)	të t € s	nch)	Lifferenc((inch)	e Pre (mm)	Difference (mm)
A) 1	0.0024	A) B) C) D)	3.1490 3.1500 3.1500 3.1500 3.1500	0.0010	79.9846 80.0100 80.0100 80.0100	0.0254
B) (A) B) C) D)	3.1491 3.1491 3.1494 3.1491	0.0003	79.9871 79.9871 79.9948 79.9871	0.0076
C) 1		A) B) C) D)	3.1484 3.1485 3.1488 3.1489	0.0005	79.9894 79.9719 79.9795 79.9821	0.0127
0) 2		A) B) C) D)	3.1484 3.1485 3.1488 3.1488 3.1489	0.0005	79.9694 79.9719 79.9795 79.9821	0.0127
C) 3		A) B) C) D)	NA " "	NA	NA u u	NA
C) 4		A) B) C) D)	3.1490 3.1502 3.1493 3.1492	0.0013	79.9346 80.0151 79.9922 79.9897	0.0330
D) i		A) B) C) D)	NA 	NA	NA '' ''	NA
D) 2		A) B) C) D)	3.1505 3.1505 3.1504 3.1507	0.0003	80.0227 80.0227 80.0202 80.0202 80.0278	0.0076
D) 3		A) B) C) D)	3.1505 3.1505 3.1504 3.1507	0.0003	80.0227 80.0227 80.0202 80.0278	0.0076
D) 4		A) B) C) D)	3.1504 3.1504 3.1507 3.1506	0.0003 E-17	80.0202 80.0202 80.0278 80.0252	0.0076

- 1

** Rear Rotor Housing Width Difference **

	Difference					
Build Number	Limit (inch)	F (inch)	Difference (inch)	(mm)	Difference (mm)
A) 1	0.0024	A)	3.1491 T 1401	0.0007	79.9871 79.9871	0.0178
		10 X 20 X	The second se		70 00/0	
		し) つい	0.L474 7.1000		77.7740	
		10.0	∴. 14∀4		/7.7740	
B) 1		A)	3.1484	0.0005	79.9694	0.0127
		B)	3.1485		79.9719	
		C)	3.1488		79.9795	
		D)	3.1489		79.9821	
C) 1		A)	3.1484	0.0005	79.9694	0.0127
		B)	3.1485		79.9719	
		(C)	3.1488		79.9795	
		D)	3.1489		79.9821	
c) 2		A)	NA	NA	NA	NA
		E)	: 1		41	
		С)	E1		11	
		D)	11		11	
C) 3		A)	3,1490	0.0006	79.9846	0.0152
		B)	3.1496		79.9998	
		C)	3.1495		79.9973	
		D	3.1495		79.9973	
C) 4		A)	3.1490	0.0008	79.9846	0.0203
		B)	3.1498		80.0049	
		C)	3.1497	-	80.0024	
		D)	3.1496		79.9998	
D) 1		A)	3.1487	0.0022	7 9. 9770	0.0559
		B)	3,1509		80.0329	
		C)	3.1495		79.9973	
		D)	3.1502		80.0151	
D) 2		A)	3.1505	0.0003	80.0227	0.0076
2,		B)	3.1505		80.0227	
		С) С)	3.1504		80.0202	
		D)	3.1507		80.0278	
ד נת		A)	3.1505	0.0002	80.0227	0.0051
and a second		B)	3.1506		80.0252	. –
		Ē)	3.1504		80.0202	
		D)	3.1505		80.0227	
ר ום		(۵	3.1505	0.0002	80.0227	0.0051
L// ~T		R)	3.1504		80.0202	
			3,1505		80.0227	
		ມ ກາ	3.1504		80.0252	
			ು ಕಾರ್ಯಗಳ ಬಳಿಗಳು	E-18		

Build Number	Standard C Clearance (inch)	learance Limit (inch)	Pre (inch)	Pre (mm)	Post (inch)	Post (mm)
A) 1	0.0047 to 0.0083	0.0040	NA	NA	0.0061	0.1549
B) 1	tar 🖬 tar tar New Yest		0.0061	0.1549	0.0069	0.1753
C) 1			0.0060	0.1524	0.0050	0.1524
C) 2			0.0060	0.1524	0.0060	0.1524
C) 3			0.0072	0.1829	0,0073	0.1854
C) 4			0.0070	0.1778	0.0071	0.1803
D) t			o .080	0.2032	0.0081	0.2057
D) 🛛			0.0081	0.2057	0.0081	0.2057
D) 3			0.0081	0.2057	0.0082	0.2083
D) 4			0.0082	0.2083	0.0082	0.2083

****** Front Rotor CLearance ******

ORIGINAL PAGE IS OF POOR QUALITY

****** Rear Rotor CLearance ******

Build Number	Standard C Clearance (inch)	learance Limit (inch)	Pre (inch)	Pre (mm)	Post (inch)	'Post (mm)
A) 1	0.0047 to 0.0083	0.0040	NA	NA	0.0071	0.1803
B) 1	nan de han nan bar had		0,0067	0.1702	0.0069	0.1753
C) 1			0.0070	0.1778	0.0070	0.1778
C) 2			0.0070	0.1778	0.0070	0.1778
c) 3			0.0071	0.1803	0.0071	0.1803
C) 4			0.0065	0.1651	0.0065	0.1651
D) 1			0.0065	0.1651	0.0066	0.1676
D) 🛛			0.0080	0.2032	0.0082	0.2083
D) 3			0.0082	0.2083	0.0083	0.2108
D) 4			0.0083	0.2108	0.0083	0.2108

** Front Rotor Oil Seal Lip Width **

Buiid Number	Standard (inch)			Pre (inch)	Pre (mm)	Post (inch)	Post (mm)
A) 1	max 0.0200	gear side	inner outer	NA NA	NA NA	NA NA	NA NA
		plain side	inner outer	NA NA	NA NA	NA NA	NA NA
B) 1		gear side	inner outer	0.0110 0.0100	0.2794 0.2540	0.0200 0.0140	0.5080 0.3554
		plain side	inner outer	0.0160 0.0100	0.4064 0.2540	0.0400 0.0400	1.0160 1.0160
C) t		gear side	inner outer	0.0080 0.0080	0.2032 0.2032	ः.००८० ः.००८०	0.2032 0.2032
		plain side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
C) 2		gear side	inner outer	0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
		plain side	inner outer	0.00 8 0 0.0080	0.2032 0.2032	0.0080	0.2032 0.2032
C) 3		gear side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0130 0.0120	0.3302 0.3048
		plain side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0100 0.0100	0.2540 0.2540
C) 4		gear side	inner outer	$0.0110 \\ 0.0100$	0.2794 0.2540	0.0130 0.0130	0.3302 0.3302
		plain side	inner outer	0.0100 0.0110	0.2540 0.2794	0.0120 0.0130	0.3048 0.3302
D) 1		gear side	inner outer	0.0150 0.0160	0.3810 0.4064	0.0180 0.0150	0.4572 0.3810
		plain side	inner outer	0.0130 0.0120	0.3302 0.3048	0.0140 0.0120	0.3556 0.3048
D) 2		gear side	inner outer	0.0120 0.0120	0.3048 0.3048	0.0130 0.0150	0.3302 0.3810
		plain side	inner outer	0.0120 0.0200	0.3048 0.5080	0.0130 0.0140	0.3302 0.3556

E-21

Build Number	Standard (inch)			Pre (inch)	Pre (mm)	Post (inch)	Post (mm)
D) 3	max 0.0200	gear side	inner outer	0.0130 0.0150	0.3302 0.3810	0.0190 0.0180	0.4826 0.4572
		plain side	inner outer	0.0130 0.0140	0.3302 0.3556	0.0160 0.0180	0.4064 0.4572
D) 4		gear side	inner outer	0.0200 0.0170	0.5080 0.4318	0.0200 0.0170	0.5080 0.4318
		plain side	inner outer	0.0150 0.0180	0.3810 0.4572	0.0150 0.0180	0.3810 0.4572

** Front Rotor Oil Seal Lip Width **

** Rear Rotor Oil Seal Lip Width **

Build Number	Standard (inch)			Pre (inch)	Pre (mm)	Post (inch)	Post (mm)
A) 1	max 0.0200	gear side	inner outer	NA NA	NA NA	NA NA	NA NA
		plain side	inner outer	NA NA	NA NA	NA NA	NA NA
B) 1		gear side	inner outer	$0.0110 \\ 0.0100$	0.2794 0.2540	0.0210 0.0130	0.5334 0.3302
		plain side	inner outer	0.0140 0.0120	0.4064 0.3048	0.0480 0.0390	1.2192 0.9906
C) 1		gear side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
		plain side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
C) 2		gear side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
		plain side	inner outer	0.0080 0.00 8 0	0.2032 0.2032	0.0080 0.0080	0.2032 0.2032
C) 3		gear side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0130 0.0130	0.3302 0.3302
		plain side	inner outer	0.0080 0.0080	0.2032 0.2032	0.0120 0.0140	0.3048 0.3556
C) 4		gear side	inner outer	0.0110 0.0110	0.2794 0.2794	0.0160 0.0160	0.4064 0.4064
		plain side	inner outer	0.0100 0.0100	0.2540 0.2540	0.0130 0.0130	0.3302 0.3302
D) 1		gear side	inner outer	0.0130 0.0120	0.3302 0.3048	0.0160 0.0160	0.4064 0.4064
		plain side	inner outer	0.0150 0.0100	0.3810 0.2540	0.0130 0.0130	0.3302 0.3302
D) 2		gear side	inner outer	0.0160 0.0100	0.4064 0.2540	0.0140 0.0110	0.4064 0.2794
		plain side	inner outer	0.0150 0.0160	0.3810 0.4054	0.0100	0.2540 0.4064

Build Number	Standard (inch)			Pre (inch)	Pre (mm)	Post (inch)	Post (mm)
ב (ם	max 0.0200	gear side	inner outer	0.0090 0.0110	0.2286 0.2794	0.0070 0.0120	0.2286 0.3048
		plain side	inner outer	0.0100 0.0160	0.2540 0.4064	0.0130 0.0180	0.3302 0.4572
D) 4		gear side	inner outer	0.0090 0.0120	0.2286 0.3048	0.0100 0.0120	0.2540 0.3048
		plain side	inner outer	0.0120	0.3048 0.4572	0.0120	0.3048 0.4572

** Rear Rotor Oil Seal Lip Width **

OF POOR QUALITY

****** Front Rotor Apex Seal Clearance ******

Build Number	Standard Clearance (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) 1	0.0024	A)	0.0030	0.0762	A)	0.0030	0.0762
	to	B)	0.0030	0.0762	B)	0.0030	0.0762
	0.0040	C)	0.0030	0.0752	C)	0.0030	0.0762
B) 1		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		С)	0.0030	0.0762	C)	0.0030	0.0762
C) 1		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	С)	0.0030	0.0762
C) 2		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		\mathbb{C})	0.0030	0.0762	\mathbb{C})	0.0030	0.0762
C) 3		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		с)	0.0030	0.0762	C>	0.0030	0.0762
C) 4		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		С)	0.0030	0.0762	С)	0.0030	0.0762
D) 1		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		С)	0.0030	0.0762	С)	0.0030	0.0762
D) 2		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		С)	0.0030	0.0762	с)	0.0030	0.0762
D) 3		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		с)	0.0030	0.0762	С)	0.0030	0.0762
D) 4		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762

****** Front Rotor Apex Seal Height ******

Builc Number	Standard Height (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) 1	(n.l.13	A)	0.3330	8.4582	A)	0.3310	8.4074
	0.315	в)	0,3320	8.4328	B)	0.3320	8.4328
		C)	.3330	8.4582	с)	0.3320	8.4328
B) 1		A)	0.3310	8.4074	A)	0.3300	8.332
Aut f its		B)	0.3320	8.4328	B)	0.3310	8.4074
		C)	0.3320	8.4328	\mathbb{C})	0.3310	8.4074
(**) I		۵)	0.3310	8.4074	A)	0.3310	8.4074
(J) 1		E)	0.3220	8.4328	B)	े,3320	8.4328
		C)	0.3320	8.4328	\mathbb{C})	0.3320	8.4328
(* 1 - ⁻		۵.)	0 315	> 0.315	A)	> 0.315	> 0.315
have I when		8)	> 0.315	> 0.315	Б)	> 0.315	> 0.315
		C)	> 0.315	> 0.315	C)	> 0.315	> 0.315
en v - er		۵)	5 0 315	> 0.315	A)	> 0.315	> 0.315
/		E)	> 0.315	> 0.315	B)	> 0.315	> 0.315
		C)	> 0.315	> 0.315	C)	> 0.315	> 0.315
CA A		۵)	> 0.315	> 0.315	A)	> 0.315	> 0.315
		B)	> 0.315	> 0.315	B)	> 0.315	> 0.315
		Ċ)	> 0.315	> 0.315	С)	> 0.315	> 0.315
n) t		۵)	> 0.315	> 0.315	A)	> 0.315	> 0.315
127 1		8)	> 0.315	> 0.315	R)	> 0.315	> 0.315
		Ċ)	> 0.315	> 0.315	Ċ)	> 0.315	> 0.315
n 1 (2)		۵ ۱	5 0 315	> 0.315	A)	> 0.315	> 0.315
L.7 /		B)	> 0.315	> 0.315	B>	> 0.315	> 0.315
		Ċ)	> 0.315	> 0.315	C)	> 0.315	> 0.315
n) 🛪		A)	> 0.315	> 0.315	A)	> 0.315	> 0.315
and a second		B)	> 0.315	> 0.315	B)	> 0.315	> 0.315
		Ċ)	> 0.315	> 0.315	C)	> 0.315	> 0.315
D) 4		A)	> 0.315	> 0.315	A)	> 0.315	> 0.315
		B)	> 0.315	> 0.315	B)	> 0.315	> 0.315
		C)	> 0.315	> 0.315	C)	> 0.315	> 0.315

****** Front Rotor Apex Spring Free Height ******

Build Numper	Standard (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) (nın	é)	0.2150	5.4610	Α)	0.2190	5.5626
	0.1810	B)	ି . 215୦	5.4610	B)	0.2160	5.4864
		\bigcirc)	0.2180	5.5372	\mathbb{C})	0.2180	5.5372
B) I		A)	0.2190	5.5626	A)	0.2150	5.4610
		B)	0.2160	5.4864	Β)	0.2130	5.4102
		C>	0.2180	5.5372	0)	0.2100	5.3340
C) t		A)	0.2150	5.4610	A)	0.2150	5.4610
		B)	0.2130	5.4102	B)	0.2130	5.4102
		(\mathbb{C})	0 . 2100	5.3340	\odot)	0.2100	5.3340
C) 2		A)	· 0.181	> 0.181	A)	> 0.181	> 0.181
		E)	· 0.181	C.181	B)	> 0.181	> 0.181
		\mathbb{C})	0.181	> 0.181	C)	> 0.181	> 0.181
C) 3		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.18i	> 0.181	B)	> 0.181	> 0.181
		\bigcirc)	> 0.181	> 0.181	C)	> 0.181	> 0.181
C) 4		A۷	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		C)	> 0.181	> 0.191	С)	> 0.181	> 0.181
D) 1		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.18t
		С)	> 0.181	> 0.131	с)	> 0.181	> 0.181
D) 2		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		БЭ	> 0.181	> 0.181	В)	> 0.181	> 0.181
		С)	> 0.181	> 0.181	с)	> 0.181	> 0.181
D) 3		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		\mathbb{C}	> 0.181	> 0.181	С)	> 0.181	> 0.181
D) 4		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		С)	> 0.181	> 0.181	C)	> 0.181	> 0.181
OF FORGER

** Front Rotor Apex Seal Weight **

Build Number		Pre (g)	Post (g)	Difference (g)
À) î	A) B) C)	13.20 13.24 13.29	13.18 13.22	0.02 0.02
В)	а, А) С)	13.18	13.16	0.02
	с) С)	13.22	13.24	0.03
C) 1	A) (8) (3)	13.16 13.24 13.18	13.16 13.24	
C) l	A) B)	13.16 13.24	13.10 13.19	0.06
J	C) ()	13.18	12.99	0.19
and a second	B) C)	1 41 11-11 1 1	13.25 13.27	NM 11 11
C) 4	A) B) C)	13.30 13.25 13.27	13.20 13.18 13.13	0.09 0.07 0.13
D) 1	A) B) C)	14.29 14.21 14.20	13.78 13.63 13.66	0.51 0.58 0.53
D) 2	A) B) C)	13.92 13.95 13.95	13.16 13.24 13.18	0.76 0.71 0.77
D) 3	A) B) C)	14.92 15.01 15.06	15.02 15.03 15.05	-0.09 -0.02 0.00
D) 4	A) B) C)	15.12 15.16 15.22	12.86 12.79 13.10	2.26 2.36 2.12

ORIGINAL COMMENT

** Rear Rotor Apex Seal Clearance **

Build Number	Standard Clearance (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) 1	0.0024	 A)	0.0030	0.0762	A)	0.0030	0.0762
	to	B)	0.0030	0.0762	в)	0.0030	0.0762
	0.0040	C)	0.0030	0.0762	\Box >	0.0030	0.0762
B) 1		A)	0.0030	0.0762	A)	0.0030	0.0762
Au (-19		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	C)	0.0030	0.0762
C) 1		A)	0.0030	0.0762	A)	0.0030	0.0762
U / 1		B)	0.0030	0.0762	B)	0.0030	0.0762
		Ċ)	0.0030	0.0762	C)	0.0030	0.0762
(*) (?		A)	0.0030	0.0762	A)	0.0030	0.0762
میند ∕ می با		B)	0.0030	0.0762	B)	0.0030	0.0762
		Ē)	0.0030	0.0762	E)	0.0030	0.0762
C) 3		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	С)	0.0030	0.0762
C) 4		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		с)	0.0030	0.0762	С)	0.0030	0.0762
D) 1		A)	0.0030	0.0762	A)	0.0030	0.0762
<i>D1</i> ±		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	С)	0.0030	0.0762
ר ומ		A)	0.0030	0.0762	A)	0.0030	0.0762
and a second		E)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	С)	0.0030	0.0762
ד נם		A)	0.0030	0.0762	A)	0.0030	0.0762
		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	с)	0.0030	0.0762
D) 4		A)	0.0030	0.0762	A)	0.0030	0.0762
<u> </u>		B)	0.0030	0.0762	B)	0.0030	0.0762
		C)	0.0030	0.0762	С)	0.0030	0.0762

+

** Rear Rotor Apex Seal Height **

Build Number	Standard Height (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) i	min	AD	0.3340	8.4836	A)	0.3320	8.4328
	0.315	B >	0.3340	a.4836	B)	0.3320	8.4028
		0)	0.3330	8.4582	U)	0.3330	8.4582
B) 1		A)	0.3320	8.4328	A)	0.3300	8.3820
		B)	0.3320	8.4328	B)	0.3310	8.4074
		с)	0.3330	8.4582	C	0.3300	8.3820
C) 1		A)	0.3300	8.3820	A)	0.3300	8.3820
		B)	0.3310	8.4074	B)	0.3310	8.4074
		C)	0.3300	8.3820	ς,	0.3300	8.3820
10.5 02		A)	> 0.315	× 0.315	A)	> 0.315	> 0.315
San A Los		B)	> 0.315	> 0.315	B>	> 0.315	> 0.315
		Ċ)	> 0.315	> 0.315	\mathbb{C})	> 0.315	> 0.315
C) 3		A)	> 0.315	> 0.315	A)	> 0.315	> 0.315
tioned of the second		B)	> 0.315	> 0.315	В)	> 0.315	> 0.315
		C)	> 0.315	> 0.315	C)	> 0.315	> 0.315
C) 4		A)	> 0.315	> 0.315	A)	> 0.315	> 0.315
		B)	> 0.315	> 0.315	B)	> 0.315	> 0.315
		\mathbb{C})	> 0.315	> 0.315	С)	> 0.315	> 0.315
\mathbf{D}) 1		A)	> 0.315	> 0.315	A)	> 0.315	> 0.315
		B>	> 0.315	> 0.315	B)	> 0.315	> 0.315
		C)	> 0.315	> 0.315	с)	> 0.315	> 0.315
D) 2		A)	> 0.315	> 0.315	A)	> 0.315	> 0.315
		B)	> 0.315	> 0.315	B)	> 0.315	> 0.315
		C)	> 0.315	> 0.315	C)	> 0.315	> 0.315
n) ع		A)	> 0.315	> 0.315	A)	> 0.315	> 0.315
		B)	> 0.315	> 0.315	B)	> 0.315	> 0.315
		с)	> 0.315	> 0.315	C)	> 0.315	> 0.315
D) 4		A)	> 0.315	> 0.315	A)	> 0.315	> 0.315
·		B)	> 0.315	> 0.315	B)	> 0.315	> 0.315
		C)	> 0.315	> 0.315	C)	> 0.315	> 0.315

ORIGINAL PAGE IS OF POOR (CALLY

**** Rear** Rotor Apex Spring Free Height ******

Build Number	Standard (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
A) 1	min	A)	0.2160	5.4864	A)	0.2180	5.5372
	0.1810	B)	0.2150	5.4610	3)	0.2190	5.5626
		C)	0,2140	5.4356	\mathbb{C})	0.2150	5.4610
B) i		A)	0.2180	5.5372	A)	0.0210	0.5334
		$E \rangle$	0.2190	5.5626	\mathbb{B})	0.2140	5.4356
		C)	0.2150	5.4610	C)	0.2120	5.3848
C) 1		A)	₀ . 0210	0.5334	A)	0.0210	0.5334
		B)	0.2140	5.4356	8)	0.2140	5.4356
		(\mathbb{C})	ः 2120	5.3848	\mathbb{C})	0.2120	5.3848
(C) (A)	· 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	0.181	0.1S1	\exists)	> 0.181	0.181
		C)	> 0.181	> 0.181	С)	> 0.181	> 0.181
() ()		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.131	> 0.181
		(\Box)	> 0.181	> 0.181	\mathbb{C})	> 0.181	> 0.181
C) 4		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		с)	> 0.181	> 0.181	С)	> 0.181	> 0.181
D> 1		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		\mathbb{C}	> 0.181	> 0.181	\mathbb{C})	> 0.181	> 0.181
D) 2		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		С)	> 0.181	> 0.181	с)	> 0.181	> 0.181
D) 3		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		C)	> 0.181	> 0.181	C)	> 0.181	> 0.181
D) 4		A)	> 0.181	> 0.181	A)	> 0.181	> 0.181
		B)	> 0.181	> 0.181	B)	> 0.181	> 0.181
		C)	> 0.181	> 0.181	C)	> 0.181	> 0.181

orten. 14 Foor Guiller

Rear Rotor Apex Seal Weight

Build		Pre	Post	Difference
Number		(g)	(g)	(g)
Ĥ) i	A) B) C \	13.22	13.19 13.21	0.03
B) 1	с, А)	13.10	13.04	0.02
	8)	13.21	13.16	0.05
	C)	13.19	13.13	0.06
C) (A) B) ()	13.04 13.16 13.13	13.04 13.16 13.13	0.00
0) 2	A)	13.04	12.38	0.66
	B)	13.16	13.13	0.03
C) 3	C) A)	13.13 NA	13.11	0.02 NA
	C)		13.19 13.24	21 11
C) 4	A)	13.26	13.24	0.02
	B)	13.24	13.22	0.02
	C)	13.19	13.19	-0.01
D) 1	A) B) C)	NA u u	13.20 13.18 13.13	NA ''
D) 2	A)	15.17	15.12	0.05
	B)	15.22	15.10	0.13
	C)	15.11	15.02	0.09
D) 3	A)	14.99	14.93	0.07
	B)	15.01	15.01	0.01
	C)	15.01	15.01	0.00
D) 4	A)	15.09	12.81	2.29
	B)	15.17	13.14	2.04
	C)	15.22	13.15	2.07

** Front Rotor Side Seal Protrusion **

Build Number	Height Limit (inch)		Pre (inch)	Fre (mm)		Post (inch)	Post (mm)
A) 1	min		0.0500	1.2700	A)	0,0450	1.1430
	o.o200	ΒX	∴ 0580	1.4732	B)	0.0420	1.0668
		\mathbb{C}	े.0490	1.2446	С)	0.0490	1.2446
	j∈a	ar A)	0.0590	1.4986	gear A)	0.0500	1.2700
	sic	ie B)	0.0550	1.3970	side B)	0.0530	1.3462
		\mathbb{C})	0.0450	1.1430	C>	0,0490	1.2446
B) 1		A)	0.0450	1.1430	A)	0.0500	1.2700
		B)	0.0450	1.1430	B)	0.0420	1.0668
		\mathbb{C})	0.0490	1.2446	C)	0.0450	1.1430
	aea	ar A)	0.0500	1.2700	gear A)	0.0450	1.1430
	si(de 8>	0.0530	1.3462	side B)	0.0500	1.2700
		\mathbb{C})	. 0490	t.2446	C)	0.0450	1.1430
() 1		A)	o.o500	1.2700	A)	0.0500	1.2700
		B)	0.0420	1.0668	BC	े.0420	1.0668
		C)	0.0450	1.1430	C :	0.0450	1.1430
	0 e	ar A)	0,0450	1.1430	dear Al	0.0430	1.1430
	s-	te B)	0.0500	1.2700	side Bl	0.0500	1.2700
		C)	0.0450	1.1430	C	0.0450	1.1430
C) 2		A)	> 0.020	> 0.020	A	> 0.020	> 0.020
-		B)	> 0.020	> 0.020	B	> 0.020	> 0.020
		C)	> 0.020	> 0.020	C	> 0.020	> 0.020
	ae	ar A)	> 0.020	> 0.020	dear A	> 0.020	> 0.020
	51	de B)	> 0.020	> 0.020	side B	> 0.020	> 0.020
		C)	> 0.020	> 0.020	С	> 0.020	> 0.020
C) 3		A)	> 0.020	> 0.020	A	> 0.020	> 0.020
		B)	> 0.020	> 0.020	В) > 0.020	> 0.020
		C)	> 0.020	> 0.020	С	> 0.020	> 0.020
	ae	ar A)	> 0.020	> 0.020	qear A	> 0.020	> 0.020
	5i	de B)	> 0.020	> 0.020	side B	> 0.020	> 0.020
		с)	> 0.020	> 0.020	С	> > 0.020	> 0.020
C) 4		A)	> 0.020	> 0.020	A	> 0.020	> 0.020
		B)	> 0.020	> 0.020	В) > 0.020	> 0.020
		C)	> 0.020	> 0.020	С) > 0.020	> 0.020
	ae	ar A)	> 0.020	> 0.020	dear A	> 0.020	> 0.020
	si	de B)	> 0.020	> 0.020	side B	> > 0.020	> 0.020
		C)	> 0.020	> 0.020	С) > 0.020	> 0.020
D) 1		A)	> 0.020	> 0.020	A	> > 0.020	> 0.020
		B)	> 0.020	> 0.020	В) > 0.020	> 0.020
		Ē,	> 0.020	> 0.020	Ē) > 0.020	> 0.020
	ne	ar A)	> 0.020	> 0.020	oear A	> > 0.020	> 0.020
	gu ci	de B)	> 0.020	> 0.020	side B) > 0.020	> 0.020
		;	> 0.020	> 0.020	Ē) > 0.020	> 0.020

Build Number	Height Limit (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
D) \gtrsim	min o ome	A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
	0.0200	8) C\	0.020	0.020	E)	> 0.020	> 0.020
		1/ 	2 0.020	2 0.020 	\Box	> 0.020	> 0.020
	gear	H)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
	side	6) 	> 0.020	> 0.020	side B)	> 0.020	> 0.020
		U)	> 0.020	> 0.020	c)	> 0.020	> 0.020
D) C		A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
		\mathbf{B})	> 0.020	> 0,020	B)	> 0.020	> 0.020
		C)	> 0.020	> 0.020	(\mathbb{C})	> 0.020	> 0.020
	gear	Ã)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
	side	B)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
		\bigcirc)	> 0.020	> 0.020	\mathbb{C})	> 0.020	> 0.020
D) 4		A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
		B)	> 0.020	> 0.020	B)	> 0 020	> 0.020
		Ċ)	> 0.020	> 0.020		> 0.020	> 0 020
	dear	A)	> 0.020	> 0.020	near A)	> 0 020	> 0.020
	side	B)	> 0.020	> 0.020	eide B)	> 0.020	> 0.020
	the first free	Ω.Ύ	> 0 020	> 0.020	ore c)	× 0.020 × 0.000	> 0.020 > a ama
		· · /	e - Se = Se Suite	المتكم فرواله المحاد المراجع	/ سا	2 O.OZU	> 0.020

** Front Rotor Side Seal Protrusion **

					Difference
Build			Pre	Post	Pre – Post
Number			(ġ)	(g)	(g)
					an intervente and give the same trad term pro-
$\rightarrow 0$ 1		A)	3.91	3.97	-0 . 06
		B)	3.95	3.94	0.O1
		(\mathbb{C})	3.99	3.98	\circ . \circ 1
	gear	A)	3.99	3.98	0.01
	side	B)	4.00	3.97	EO.
		(\Box)	3.99	3.98	0.01
\mathbb{B}) 1		A)	3,97	3.91	ം ം
		B)	3.95	3.97	-0.02
		(C)	3.99	ី.88	O.11
	qear	A)	3.98	4.00	-0.02
	side	B)	3.97	4.00	-0.03
		C)	3.98	4.00	-0.02
C) l		A)	5.91	3.91	0.OO
		B)	3.97	3.97	0.00
		\mathbb{C})	3.8 8	3.88	0.00
	gear	A)	4.00	4.00	0.OO
	side	B)	4.00	4.00	0.00
		C	4.00	4.00	0.00
C) 2		A٢	3.91	3.91	0.00
		B)	3.97	3.97	0.00
		C)	3.88	3.88	0.00
	gear	A)	4.00	4.00	O.OO
	side	B)	4.00	4.00	0.00
		C)	4.00	4.00	0.00
(\Box) is		A)	3.91	∴. ' 74	O.O.S
		B)	5.97	3.97	0.00
		C)	3.88	3.98	-0.10
	gear	A)	4.00	3.99	0.01
	side	B)	4.00	3.99	0.01
		C)	4.00	4.00	0.00
		~ >	7 04	1 m 1	
L) 4		н) Бу	∴.74 ⊐ ∩⊐	4.01	-0.08
		в)	3.77 T 20	4.02	-0.05
			୍ର.୨୫	ು. ಇರ	0.00
	gear	A) 	3. 79	5.7/	0.01
	side	В)	3.99	5.97	0.01
		С)	4.00	4.01	-0.01
J)) 1		A١	NΔ	3 97	NA
L / سه		201 201	11	T 05	
		μ μ	Li I		н
		ند ۸۱	11	0.70 7.07	11
	year _id=	H7 D1	11	2.7/	11
	STUR	с) (С)	17	0 • 77 A 0 •	*1
		U/		~~. \ 1	

+

* *	Front	Rotor	Side	Seal	Weight	* *
-----	-------	-------	------	------	--------	-----

Build			Pre	Post	Difference Pre - Post
Numper			(g)	(g)	(g)
D) 2		A)	3.97	3 . 97	0.00
		B)	3.95	3.95	O.OO
		(\mathbb{C})	3.96	3.96	O,OO
	gear	A)	3.90	3,90	\odot . \bigcirc
	side	B)	3.92	3,92	0 . OO
		\mathbb{C})	3.91	3.91	0.00
D) S		A)	3.90	3.90	0.OO
		B)	3.92	3.92	0.00
		C)	3.91	3.91	0.OO
	gear	A)	3.97	3.97	0.00
	side	\mathbb{B})	3.95	3.95	0.00
		\mathbb{C})	3.96	3.95	0.00
$(0) \rightarrow (4)$		A۷	3.90	3.90	0.00
		B>	3.92	3.92	0.00
		\mathbb{C})	3.91	3.91	0.O
	qear	A)	3.97	3.97	0.00
	side	B>	3.95	3.95	0,00
		(\mathbf{C})	3.95	3.95	0.00

** Rear Rotor Side Seal Protrusion **

Suild	Height Limit			Pre	Pre			Post	Post
Number	(inch)			(inch)	(mm)			(inch)	(mm)
A) i	m 1 M		A)	0.0500	1.2700		A)	0.0450	1.1430
	0.0200		Β)	0.0460	1.1684		B)	0.0450	1.1430
			(\mathbb{C})	0.0530	1.3462		()	0.0500	1.2700
		gear	A)	o.0550	1.3970	gear	A)	0.0430	1.0922
		sıde	B)	0.0510	1.2954	side	B)	0.0460	1.1684
			\mathbb{C}	0.0460	1.1684		(C)	0.0450	1.1430
B) 1			ΑX	0.0450	1.1430		A٢	0.0380	0.9652
			B)	0.0450	1.1430		$_{\rm B}$)	0.0320	0.8128
			(C)	े.0500	1.2700		\mathbb{C})	0.0280	0.7112
		gear	A)	0.0430	1.0922	gear	(A)	0.0470	1.1938
		side	B)	0.0460	1.1684	SlO@	\mathbb{B})	0.0340	0.8636
			\mathbb{C})	. 0450	1.1430		0	0.0280	0.7112
C) i			A)	0.0380	0.9652		A)	0.0380	0.9652
			B)	0.0320	0.8128		B)	0.0320	0.8128
			\mathbb{C}	0.0280	0.7112		\mathbb{C})	0.0280	0.7112
	í.	jear	A)	0.0470	1.1938	gear	A)	0.0470	1.1938
	5	side	B)	0.0340	0.8636	side	B)	0.0340	0.8636
			c)	0.0280	0.7112		С)	0.0280	0.7112
C) 2			A)	> 0.020	> 0.020		A)	> 0.020	> 0.020
			B)	> 0.020	> 0.020		B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		CΣ	> 0.020	> 0.020
	Ģ	jear	(A)	> 0.020	> 0.020	gear	A)	> 0.020	> 0.020
	<u>.</u>	side	B)	> 0.020	> 0.020	side	B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		С)	> 0.020	> 0.020
C) 3			A)	> 0.020	> 0.020		A)	> 0.020	> 0.020
			B)	> 0.020	> 0.020		B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		с)	> 0.020	> 0.020
	Ģ	jear	A)	> 0.020	> 0.020	gear	A)	> 0.020	> 0.020
	<u>c</u>	side	B)	> 0.020	> 0.020	side	B)	> 0.020	> 0.020
			С)	> 0.020	> 0.020		С)	> 0.020	> 0.020
C) 4			A)	> 0.020	> 0.020		A)	> 0.020	> 0.020
			B)	> 0.020	> 0.020		B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		C)	> 0.020	> 0.020
	ç	jear	A)	> 0.020	> 0.020	gear	A)	> 0.020	> 0.020
	ç	side	B)	> 0.020	> 0.020	side	B)	> 0.020	> 0.020
			С)	> 0.020	> 0.020		C)	> 0.020	> 0.020
D) 1			A)	> 0.020	> 0.020		A)	> 0.020	> 0.020
			B)	> 0.020	> 0.020		B)	> 0.020	> 0.020
		.	U)	> 0.020	> 0.020		C)	> 0.020	> 0.020
	Ç	lear Liu	H)	> 0.020	> 0.020	gear	A)	> 0.020	> 0.020
	S	510e	B)	> 0.020	> 0.020	side	E)	> 0.020	> 0.020
			L)	> 0.020	> 0.020		С)	> 0.020	> 0.020

** Rear Rotor Side Seal Protrusion **

8uild Number	Height Limit (inch)			Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
D) 2	min		A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
	0.0200		ΒX	> 0.020	> 0.020	B)	> 0.020	> 0.020
Q a			C)	> 0.020	> 0.020	C)	> 0.020	> 0.020
	gear	A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020	
		side	B)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
		()	> 0.020	> 0.020	\mathbb{C})	> 0.020	> 0.020	
D) 3			A)	> 0.020	> 0,020	A)	> 0.020	> 0.020
			B)	> 0.020	> 0.020	В)	> 0.020	> 0.020
			С)	> 0.020	> 0.020	C)	> 0.020	> 0.020
		dear	A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
		side	B)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020	C)	> 0,020	0.020
D) 4			A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
			E)	> 0.020	> 0.020	В)	> 0.020	> 0.020
			$\overline{\Box}$	> 0.020	> 0.020	Ē.	> 0.020	> 0.070
		near	A)	> 0.020	> 0.020	near A)	> 0.020	> 0.020
		ginda -	E)	> 0.020	> 0 020	eide P)	> 0.020	> 0.070
		تتبالية يقدمن	Ē,	> 0.020	> 0.020		> 0.020	> 0.020

Build Number			Pre (g)	Post (g)	Difference Pre - Post (g)
			7 00		
1. (Pm				0.77 7 00	O.O.
		р) С)	3.77 7 00	J.77 T.00	0.00
				J.70 4 07	0.01
	year cido	н/ р)	4.03	4.02	0.01
	STOR		4.02	4.02	0.00
		C)	°† x ∿/44	+•O1	0.01
B) 1		A)	3.99	3.91	0.0 8
		B)	3.99	3.94	0.05
		C	3.98	3.94	0.04
	gear	A)	4.02	4.00	0.02
	side	B)	4.02	3.97	0.05
		C)	4.01	4.00	O.O1
C) 1		A)	3.91	3.91	0.00
		B)	3.94	3.94	0.00
		C)	3.94	3.94	0.00
	gear	A)	4.00	4.00	0.00
	side	B)	3.97	3.97	0.00
		C)	4.00	4.00	0.00
C) 2		A)	3.91	3.91	0.00
		B)	3.94	3.94	0.00
		C)	3.94	3.94	0.00
	gear	A)	4.00	4.00	0.00
	side	B)	3.97	3.97	0.00
		С)	4.00	4.00	0.00
C) 3		A)	3.98	3,98	0.00
		B)	3.99	3.98	0.01
		C)	3.99	3.98	0.01
	qear	A)	4.03	4.03	0.00
	side	B)	4.02	3.98	0.04
		с)	4.02	4.01	0.01
C) 4		A)	3.98	3.98	0.00
		B)	3.98	3.97	0.01
		C)	3.98	3.99	-0.01
	qear	A)	4.03	4.02	0.01
	side	B)	3.98	3.98	0.00
		с)	4.01	3.99	0.02
D) 1		A)	NA	3.97	NA
		B)	11	3.97	11
,		C>	11	4.01	н
•	gear	A)	11	4.01	n
	side	B)	н	4.02	н
		C)	11	3.97	11

* * F	Rear	Rotor	Side	Seal	Weight	**
--------------	------	-------	------	------	--------	----

					Difference
Build			Pre	Post	Pre - Post
Number			(g)	(g)	(g)
D) 2		A)	3.97	3.97	0.00
		B)	3.97	3.97	0.00
		\bigcirc	4.01	4.01	0.00
	gear	A)	3.68	3.68	0.00
	side	B)	3.90	3.90	0.00
		C>	3.80	3.80	0.00
D) 3		A)	3.97	3.97	0.00
		B)	4.01	4.01	0.00
		(\Box)	3.68	3.68	0.00
	gear	A)	3.97	3,97	0.00
	side	E)	3.89	3,89	0.00
		с)	3.80	3.79	0.00
D) 4		A)	3.97	3.97	0.00
		B)	4.01	4.01	0.00
		С)	3.68	3.68	0.00
	gear	A)	3.97	3.97	0.00
	side	B)	3.89	3.89	0.00
		С)	3.79	3.79	0.00

** Front Rotor Corner Seal Protrusion **

Build Number	Standard (inch)			Pre (inch)	Pre (mm)			Post (inch)	Post (mm)
A) i	min		A) P)	0.0370	0.9398		A) 8)	0.0340	0.8636 0.7366
			р/ Сл	$\circ \circ $	0.8434		C)	0.0330	0.8382
		noar	Δ	0.0350	0.8890	dear	A)	0.0400	1.0160
		side	B)	0.0260	0,6604	side	\mathbb{B})	0.0320	0.8128
			С)	0.0370	0.9398		C)	0.0300	0.7620
B) I			A)	0.0450	1.1430		A)	0.0300	0.7620
			B)	0.0490	1.2446		B)	0.0270	0.6858
			\mathbb{C})	0.0440	1.1176		(C)	0.0300	0.7620
		gear	A)	0.0400	1.0160	qear	(A) (5)	0.0370	U.7370 4 4470
		side	Β)	0.0320	0.8128	SICe	日) で、	0.0450	1.1430
			0)	0.0300	0./620		127	0.0000	0.0070
C) 1			A)	0.0300	0.7620		A)	0.0300	0.7620 0.4950
			B)	0.0270	0.6858		в) су	0.0270	0.8838
				0.0300	0.7820		07 (A)	0.0370	0.9398
		gear	н) тор	0.0370	1 1430	gea cida	E()	0.0450	1.1430
		SIUE	с)	0.0350	0.8890		C)	0.0350	0.8890
C) 2			A)	> 0.020	> 0.020		A)	> 0.020	> 0.020
			B)	> 0.020	> 0.020		B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		C)	> 0.020	> 0.020
		gear	A)	> 0.020	> 0.020	gear	A)	> 0.020	> 0.020
		side	B)	> 0.020	> 0.020	side	в)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		С)	> 0.020	> 0.020
C) 3			A)	> 0.020	> 0.020		A)	> 0.020	> 0.020
			B)	> 0.020	> 0.020		B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		C)	> 0.020	> 0.020
		gear	A)	> 0.020	> 0.020	gear	A)	> 0.020	> 0.020
		side	B>	> 0.020	> 0.020	side	87	> 0.020	> 0.020
			C)	> 0.020	> 0.020		67	2 0.020	2 0.020
C) 4			A)	> 0.020	> 0.020		A)	> 0.020	> 0.020
			B)	> 0.020	> 0.020		B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		C)	> 0.020	> 0.020
		gear	A)	> 0.020	> 0.020	gear	A)	> 0.020	> 0.020
		side	B)	> 0.020	> 0.020	side	B)	> 0.020	> 0.020
			C)	> 0.020	> 0.020		C)	> 0.020	> 0.020
D) 1			A)	> 0.020	> 0.020		A)	0.0060	0.1524
			B)	> 0.020	> 0.020		B)	0.0080	0.2032
			C)	> 0.020	> 0.020		C)	0.0070	0.1778
		gear	A)	> 0.020	> 0.020	gear	A)	> 0.020	> 0.020
		side	B)	> 0.020	> 0.020	side	8)	> 0.020	> 0.020
			(C)	> 0.020	> 0.020		し)	> 0.020	2 O.OZO

E-41

ORIGIMAL PROTEIS OF POOR QUALITY

Build Number	Standard (inch)			Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
D) 1	min		A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
	0.0200		BD	> 0.020	> 0.020	B>	> 0.020	> 0.020
			(\mathbb{C})	> 0.020	> 0.020	C)	> 0.020	> 0.020
		gear	A)	> 0.020	> 0.020	qear A)	> 0.020	> 0.020
		side	BY	> 0.020	> 0.020	side B)	> 0.020	> 0.020
			\bigcirc)	> 0.020	> 0.020	\mathbb{C})	> 0.020	> 0.020
D) 3			A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
			B)	> 0.020	> 0.020	B)	> 0.020	> 0.020
			(\mathbb{C})	> 0.020	> 0.020	\mathbb{C})	> 0.020	> 0,020
		gear	A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
		side	\mathbb{B})	> 0.020	> 0.020	side 8)	> 0.020	> 0.020
			0)	> 0.020	> 0.020	\mathbb{C})	> 0.020	> 0.020
)) 4			A)	> 0.020	> 0.020	A١	> 0.020	> 0.020
			B)	> 0.020	> 0.020	B)	> 0.020	> 0.020
			\bigcirc	> 0.020	> 6.020	C)	> 0.020	> 0.020
		gear	A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
		side	E)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
			\mathbb{C})	> 0.020	> 0.020	С)	> 0.020	> 0.020

** Front Rotor Corner Seal Protrusion **

** Front Rotor Corner Seal Weight **

Build Number			Pre (g)	Post (g)	Difference Pre – Post (g)
A) 1	gear side	A) B) C) A) B) C)	NA "" " "	NA "" " "	NA 11 11 11 11 11 11
B) 1	gear side	A) B) C) A) B) C)	2.68 2.68 2.67 2.69 2.67 2.70	2.67 2.64 2.67 2.67 2.67 2.67	0.01 0.04 0.00 0.01 0.00 0.01
C) 1	gear side	A) B) C) A) B) C)	2.67 2.64 2.67 2.67 2.67 2.69	2.67 2.64 2.67 2.67 2.67 2.67	0.00 0.00 0.00 0.00 0.00
C) 2	gear side	A) B) C) A) B) C)	2.67 2.64 2.67 2.67 2.67 2.69	2.67 2.64 2.67 2.67 2.67 2.69	0.00 0.00 0.00 0.00 0.00
C) 3	gear side	A) B) C) A) B) C)	2.67 2.64 2.67 2.67 2.67 2.69	2.67 2.68 2.68 2.69 2.68 2.67	0.00 -0.04 -0.01 -0.02 -0.01 0.02
C) 4	gear side	A) B) C) A) B) C)	2.67 2.68 2.68 2.69 2.68 2.67	2.64 2.66 2.68 2.67 2.67 2.67	0.03 0.02 0.00 0.02 0.01 0.00
D) 1	gear side	A) B) A) B) C)	NA " " "	2.64 2.67 2.69 2.69 2.66 2.66	NA """"""""""""""""""""""""""""""""""""

* *	Front	Rotor	Corner	Seal	Weight	**
-----	-------	-------	--------	------	--------	----

Build Number			Pre (g)	Post (g)	Difference Pre - Post (g)
D) 2	gear side	A) B) C) A) B) C)	2.64 2.67 2.69 2.69 2.66 2.67	2.65 2.67 2.70 2.68 2.66 2.67	0.00 0.00 0.00 0.00 0.00 0.00
D) 3	gear side	A) B) C) A) B) C)	2.68 2.66 2.67 2.65 2.67 2.70	2.68 2.66 2.67 2.65 2.67 2.69	0.00 0.00 0.00 0.00 0.00 0.00
D) 4	gear side	A) B) C) A) B) C)	2.68 2.66 2.67 2.65 2.67 2.67 2.69	2.68 2.66 2.67 2.65 2.67 2.69	0.00 0.00 0.00 0.00 0.00 0.00

****** Rear Rotor Corner Seal Protrusion ******

Build Number	Standard (inch)		Pre (inch)	fre (mm)		Post (inch)	Post (mm)
A) 1	min 0.0200	A) B) C)	0.0400 0.0370 0.0400	1.0160 0.9398 1.0160	;] [4) 0.0400 B) 0.0320 C) 0.0410	1.0160 0.8128 1.0414
	C S	jear A) side B) C)	0.0350 0.0400 0.0300	0.8890 1.0160 0.7620	gear <i>i</i> side I	A) 0.0460 B) 0.0380 C) 0.0450	1.1684 0.9652 1.1430
B) i		A) De	0.0570	1.4478	ŕ	A) 0.0500	1.2700
	c	gear A)	0.0550 0.0550 0.0460	1.3970 1.1684	gear A	3) 0.0510 2) 0.0520 4) 0.0550	1.2934 1.3208 1.3970
	9	side B) C)	0.0380 0.0450	0.9652 1.1430	side H (3) 0.0510 2) 0.0500	1.2954 1.2700
C) 1		A) B) C)	0.0500 0.0510 0.0520	1.2700 1.2954 1.3208	F I C	A) 0.0500 B) 0.0510 C) 0.0520	1.2700 1.2954 1.3208
	(<u> </u>	jear A) side B) C)	0.0550 0.0510 0.0500	1.3970 1.2954 1.2700	gear A side A (A) 0.0550 B) 0.0510 C) 0.0500	1.3970 1.2954 1.2700
C) 2	с	A) B) C) Jear A)	> 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020	f I Gear f	A) > 0.020 3) > 0.020 2) > 0.020 A) > 0.020	> 0.020 > 0.020 > 0.020 > 0.020
		side B) C)	> 0.020 > 0.020	> 0.020 > 0.020	side H (3) > 0.020 2) > 0.020	> 0.020 > 0.020
C) 3	Ģ	A) B) C) Jear A)	> 0.020 > 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020 > 0.020 > 0.020	A E gear A	A) > 0.020 3) > 0.020 2) > 0.020 A) > 0.020	> 0.020 > 0.020 > 0.020 > 0.020
	9	side B) C)	> 0.020 > 0.020	> 0.020 > 0.020	side E C	3) > 0.020 3) > 0.020	> 0.020 > 0.020
C) 4		A) B) C)	> 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020	f E C	A) > 0.020 B) > 0.020 C) > 0.020	> 0.020 > 0.020 > 0.020
	g	gear A) side B) C)	> 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020	gear A side B C	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	> 0.020 > 0.020 > 0.020
D) 1		A) B) C)	> 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020	e E C	$\begin{array}{l} (1) > 0.020 \\ (3) > 0.020 \\ (2) > 0.020 \end{array}$	> 0.020 > 0.020 > 0.020
	g	lear A) Side B) C)	> 0.020 > 0.020 > 0.020	> 0.020 > 0.020 > 0.020	gear A side E C	 > 0.020 > 0.020 > 0.020 > 0.020 	> 0.020 > 0.020 > 0.020 > 0.020

** Rear Rotor Corner Seal Protrusion **

Build Number	Standard (inch)		Pre (inch)	Pre (mm)		Post (inch)	Post (mm)
D) 2	(n 1 n	A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
	0,0200	B)	> 0.020	> 0.020	B)	> 0.020	> 0.020
		C)	> 0.020	> 0.020	C)	> 0.020	> 0.020
	ge	ear A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
	91	ide B)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
		(C)	> 0.020	> 0.020	С)	> 0.020	> 0.020
D) O		A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
		B)	> 0.020	> 0.020	B)	> 0.020	> 0.020
		C)	> 0.020	> 0.020	C)	> 0.020	> 0.020
	qe	ear A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
	S:	ide B)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
		C)	> 0.020	> 0.020	\mathbb{C})	> 0.020	> 0.020
D) 4		A)	> 0.020	> 0.020	A)	> 0.020	> 0.020
		B)	> 0.020	> 0.020	B)	> 0.020	> 0.020
		\mathbb{C}	> 0.020	> 0.020	C>	> 0.020	> 0.020
	C1 6	ear A)	> 0.020	> 0.020	gear A)	> 0.020	> 0.020
		ide B)	> 0.020	> 0.020	side B)	> 0.020	> 0.020
		c>	> 0.020	> 0.020	C)	> 0.020	> 0.020

** Rear Rotor Corner Seal Weight **

Build			Pro	Post	Difference Pro - Post
Number			(g)	(g)	(g)
A) 1		A)	NA	NA	NA
		B)		11	#1
					11
	gear	A)	11	11	11
	side	B)			11
		L)		11	Л
B) 1		A)	2.67	2.67	0.00
		8)	2.68	2.67	0.01
			2.68	2.67	0.01
	gear	A) Th	2.6/	2.69	-0.02
	side	B) C)	2.70	2.69	0.01
		(سا	2.68	2.67	0.01
C) 1		A)	2.67	2.67	0.00
		B)	2.67	2.67	0.00
		C	2.67	2.67	0.00
	gear	A)	2.69	2.69	0.00
	side	B)	2.69	2.69	0.00
		с)	2.67	2.67	0.00
C) 2		A)	2.67	2.67	0.00
		B)	2.67	2.67	0.00
		C)	2.67	2.67	0.00
	gear	A)	2.69	2.69	0.00
	side	B)	2.69	2.69	0.00
		С)	2.67	2.67	0.00
C) 3		A)	2.67	2.67	0.00
		B)	2.67	2.66	0.01
		C)	2.67	2.67	0.00
	gear	A)	2.69	2.69	0.00
	side	B)	2.69	2.69	0.00
		с)	2.67	2.67	0.00
C) 4		A)	2.67	2.67	0.00
		B)	2.66	2.66	0.00
		С)	2.67	2.68	0.00
	gear	A)	2.69	2.67	0.02
	side	B)	2.69	2.68	0.00
		С)	2.67	2.68	0.00
D) 1		A)	NA	2.64	NA
		B)	н	2.66	11
		С)	11	2.68	11
	gear	A)	11	2.60	11
	side	B)	11	2.67	11
		C)	*1	2.67	н

1

E-49

× ×	Rear	Rotor	Corner	Seal	Weight	**
-----	------	-------	--------	------	--------	----

Build Number			Pre (g)	Post (g)	Difference Pre - Post (g)
D> 2		A)	2.64	2.64	0.00
		B)	2.66	2.66	0.00
		C)	2.68	2.68	0.00
	gear	A)	2.60	2.67	-0.07
	side	B)	2.67	2.67	0.00
		C)	2.67	2.67	0.00
D) 3		A)	2.64	2.64	0.00
		B)	2.66	2.66	0.00
		C >	2.68	2.68	0.00
	gear	A)	2.67	2.67	0.00
	side	B)	2.67	2.67	0.00
		C)	2.67	2.56	0.00
D) 4		A)	2.64	2.64	0.00
		B)	2.56	2.66	0.00
		C	2.68	2.68	0.00
	gear	A)	2.67	2.67	0.00
	side	B)	2.67	2.67	0.00
		C)	2.66	2.66	0.00

OPICITY & COOR 13 OF PCCR QUILITY

APPENDIX F

COATED INTERMEDIATE

HOUSING DATA

COATED INTERMEDIATE HOUSING DATA

TABLE OF CONTENTS

<u>Title</u>

p	а	a	P
r	а	ч	-

Coated	Intermediate	Chart.	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	F-3
Coated	Intermediate	Chart.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	F-4
Coated	Intermediate	Chart.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	F-5
Coated	Intermediate	Housing	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	F-6
Coated	Intermediate	Housing	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	F-7
Coated	Intermediate	Housing	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	F-8
Coated	Intermediate	Housing	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	F-9

(m*N) euproT

Coated Intermediate

1

Torque (Ibs*ft)

(Thousands) (Thousands)

Point Date RPM	Torque	Tarque	BHP	BHP B	MEP	BNEP	Fuel	Fuel	Fuel	BSFC	BSFC I	ntake I.	ntake E	chaust Ev	chaust Blo	imby Blo	wby Co	ol Co	ol 0il	011	Baro	Baro	Huaic	1 1	In Exh	Ech.	aal Caal
	(N1e)	(166166)	(KN)) (dy)	kPa) ((psi) Ri	r.u. ite (2) (ga/hr) (lbs/hr)	d (AKX/g)	hp-hr)	(kPa) ((kPa) (in/hg)	ikPa) (jr	/H2D) (K	ц (в лі) (в	H20) (F	r (r 20)	ig) (kPa	bsit	g) (kPa	in/hg	(2) ((E) (C)	(F)	(C) (E)
25 09/25 3000	40.7	30.0	12.8	17.1	195	28.3	-	8033	17.7	629	1.033	#.7	13.2 (0.124	0.5	0	•	16	¥ ±	1 64	100.	5 29.77	\$	~ ~	41 689	1273	82 179
26 09/25 3000	81.4	60.09	25.6	34.3	390	56.5	01	11476	25.3	449	0.738	24.4	7.2 (0.747	3.0	0	0	6	13 44	1 64	f 100.	5 29.77	94	12	53 794	1461	81 178
27 09/25 3000	108.5	80.0	1.1	45.7	520	75.4	12	13771	30.4	101	0.564	15.2	÷.5	1.617	6.5 -	0	•	8	1	-io : 	100.	1.9.1	46	1	62 788	1421	82 179
28 09/25 5000 41 10/01 1000	123.4	0.19	38-8 74 - 12	52.0	591 520	82.8 7	: :	12421	32.9	385	0.633	13.2	6.7 7	141	6. Y	. .	• •	14	: : :	ية ف 		17.92 0	9 9 9	2 28	9// 59 9// 23	1429	82 160 97 170
42 10/01 3000	123.4	91.0	38.8	52.0	291	82.8	: 1	14919	32.9	SBE	0.633	16.3	, co	.493	6.0	, 0	, 0	38	: = : =	; 30 . •		29.62	₽ ₽	1 2	61 732	1350	82 180
45 10/02 3000	81.4	60.09	25.6	34.3	390	56.5	01	11476	25.3	611	0.738	33.9	10.0	.398	1.6	•	0	<u>Σ</u> 8	12 42	7 61	2 99.	1 29.45	\$	1	45 663	1226	82 179
58 10/07 3000	108.5	80.0	34.1	45.7	520	75.4	11	12623	27.8	370	0.609	22.4	6.6	0.323	1.3	0	0	83	12 42	1 61	. 99	3 29.54	42	Ξ	51 712	1314	83 182
59 10/07 3000	142.4	105.0	44.7	60.0	682	99.0	=	16066	35.4	359	0.591	12.5	3.7	178.0	3.5	0	0	96	13 41	4	. 99 .	3 29.54	4	61	66 723	1333	84 181
88 10/20 3000	1.04	30.0	12.8	17.1	195	28.3 1	"	5738	12.7	644	0.738	51.9	15.9	0.100	+	• •	0 0	101	15 42		2 100.	29.73	\$:	m •	38 647	1196	81 178
00 10/20 2000	2.42 1 1	0.62	2	16.6	RRI	21.12	n w	B2/C	17.7	C94	0.764		16.0	0.025		• •	• •	105	2 2 2		. 100	57.92 H	: :	u r -	39 652	1206	B/1 18
90 10/20 2000		0.04	* *	10.0	190		nα	BC/C	20.7	100	10'-0	7.12	0.01	070-0			,	51 6		5 6 		C/- 62 1	; ;	• •	102 24	1171	8/1 1/8 01 1/8
72 10/20 3000	81.4	90°0	25.6		390	54.5	, 00	1919	20.2	55	0.591	34.6	10.2	1.274	1.1	, o	> a	: 6	14 42	, t	100	29.76	1		49 709	1309	82 179
93 10/21 3000	40.7	30.0	12.8	17.1	195	28.3	0	5738	12.7	644	0.733	55.2	16.3	0.025	0.1	. 0	0	67	14 42	2.9	2 101	29.93	53		33 641	1185	8/1 18
99 10/22 3000	40.7	30.0	12.8	17.1	195	28.3	9	6886	15.2	539	0.886	55.2	16.3 (0.025	0.1	0	0	90	13 42	7 6.	2 100.1	B. 29.84	8	-	34 619	1146	83 181
100 10/22 3000	40.7	30.0	12.8	17.1	561	28.3	5	5738	12.7	694	0.738	55.2	16.3 (.000	0.0	0	0	60	13 42.	7 62	2 100.1	3 29.84	ន	ы	38 644	1191	181 28
101 10/22 3000	81.4	60.09	25.6	34.3	390	56.5	•	10328	22.8	404	0.664	36.9	10.9	.149	0.6	0	0	60	13 41-	4 6(1 100.1	3 29.84	ន	*	40 688	1270	83 182
102 10/22 3000	80.0	59.0	25.1	1.7	383	55.6	œ	1816	20.2	365	0.601	36.9	10.9	.149	0.6	0	•	96	13 41	4	1.00.1	3 29.34	20	9	42 716	1321	181 181
37 09/28 3500	42.0	31.0	15.4	20.7	201	29.2	-	1816	20.2	596	0.980	17.8	14.1	. 796	3.2	a	0	103	11	1 64	100	7 29.83	23	7	44 713	1315	82 179
38 09/28 3500	88.1	65.0	32.3	43.3	122	61.3	Ξ	12623	27.8	391	0.642	26.4	7.8	.617	6.5	• •	•	8	13 44	1	1 100.	7 29.93	3	91	8// 09	1432	82 179
39 09/28 3500	113.9	84.0	11.7	56.0	546	79.2	1	16066	35.4	385	0.633	16.6	6.4	.538	10.2	0	0	16	14 42	1 62	100.	7 29.83	3	24	75 807	1485	82 180
40 09/30 3500	132.9	98.0	48.7	65.3	637	92.4	16	18361	40.5	377	0.620	13.6	4.0	.961	11.9	0	•	103	15 43.	1	100.	1 29.72	46	20	¥11 89	1425	181 28
46 10/02 3500	42.0	31.0	15.4	20.7	201	29.2	80	1816	20.2	296	0.980	52.2	15.4 0	.523	2.1	0	•	103	15 44.	1 64	. 99.	1 29.45	\$	7	35 629	1164	82 160
47 10/02 3500	88.1	65.0	32.3	43.3	422	61.3	Ξ	12623	27.8	162	0.642	31.2	9.2	.344	5.4	•	0	101	15 44	¥9	. 66	1 29.45	1	Ξ	51 712	1314	82 180
48 10/02 3500	134.2	99.0	4 6 .2	66.0	643	93.3	រ	17214	38.0	320	0.575	14.6	5.4 1	189	10.8	•	0	101	15 43	33 +	6	1 29.45	\$	61	66 757	1394	82 180
49 10/02 3300 57 10/05 7500		30.0		0 4 2 0	56 J	28.3		1816	20.2	616 50'	1.012	51.2	1.2		2.1		•	2 2	16 44	5	5 8 -	29.45	\$		35 626	1129	82 180 57 150
0000 00/01 20 21 10/04 1500	0.74	0.10		1 1 1	5 6	7.12	n =	1914	7.02	940	084.0	4.7C	0.01 0.0	797 707				7 2		53	6	94-74 24-92	9 9		10 10	B011	181 28
54 10/06 3500	88.1	65.0	32.3	5.5	1 <u>2</u>	61.3	: =	12623	27.8	162).642	31.5		.697	2.8	, o	> 0	201	1		66	29.42		- 00	46 713	1316	81 181 81 181
55 10/07 3500	40.7	30.0	14.9	20.0	195	28.3	80	1816	20.2	516	1.012	53.9	15.9 0	.025	0.1	0	0	10	15 44	19	3.99.1	1 29.54	4	7	29 628	1162	83 181
56 10/07 3500	108.5	80.0	39.8	21.1	520	75.4	17	13771	30.4	346	0.569	23.4	6.9 0	566.	4.0	0	0	103	15 44.	1 64	1.99.1	1 29.54	42	2	50 732	1350	83 182
57 10/07 3500 35 10/07 3500	142	105.0		2. 2. 2.	683	99.0	91 :	18361	5.1 9	5	0.579	12.2	2.6	.090	4. 8	0	0	8	15 42.	19	- 66 - 10	29.54	¥	6	66 758	1396	85 185
0000 CI/01 C/	1.101	0.71		9.7C	20		= :	12625	R.12	775	47C.0	52. 4	 	124.	· · ·	•	•	2 2			8.8	PR-67 4	2	= :	15/ 16	134/	281 28
77 10/15 3500	108.5	80.0	39.8	22.1	220	1.2	: =	12623	27.8	318).522	23.4	6.9 6.9	.921	3.7		• •	2	; ‡ :	6 93 • •	100.5	29.38	9 [2	3 0-	49 729 49 729	1344	83 182
29 09/25 4000	1.44	0 12	4 0): 0 :): 0 :	Ę	¢ 02	9	7171	, 20 1	TOS	1 577	14.4	1 2 1	071	1	-	e	16	55V D.	17	001	71 02 3	11	u'	11 765		101 10
30 09/25 4000	- CD		7 2		; S	1 1 1	2 2	0/411	35			10.4		0/1-		,	.	5		8 3				י	50 005		101 CO
31 09/25 4000	119.3	0.88	20.02	17.0	212	87.9	3 22	17714	38.0	344).566	197		157	1.51	, c	• •	5	10 446		100	11.9%	2	: ;;	14 877	1520	181 181
32 09/25 4000	138.3	102.0	5.12	1.7 6	195	96.1	8	20657	45.5	. 192	1.586	12.5	3.7	.653	18.7		• 0		1		100.4	29.78	2	1	74 819	1505	83 181
43 10/01 4000	46.1	34.0	19.3	33.9	121	32.0	6	10328	22.9	232 (.879	50.1	0 8.41	565.	• • 0		0	1	11 11	9	100.1	29.62	5	**	38 701	1273	62 130
44 10/01 4000	119.3	0.88	50.0	67.0	212	82.3	5	17214	38.0	110).Sáó	18.5	5.5	592.	13.2	Ċ	0	5	18 42.	29 2	100.1	29.62	02	16	597 13	1460	84 183
50 10/02 4000	7.24	0.65 2	3 8.6	21-8 21-8	i i	64.: 20.0	21	61611		385	0.635			. o 4 2	5.0	، د .	0	2	11 61	5	8	59.42	\$	3:	52/ 05	1393	62 130 52 151
0004 70/01 15		0.64	2.4			1 77	3 5	17/1	0.90 		0.350			.061	12.5	.	·	5 C	2	53			; ;	3 :	61 803 57 71	8/61	101 50
ANAT 17171 40		> DD			7	1.10	2	1//1	***	100	1.100	.7.1	2.0	176.		>	>	11	:	5		51.52	7#	71	10/ 00	7441	~?: + D

F-6

1

11 COATED INTERMEDIATE HOUSING 11

COATED INTERMEDALTED HOUSING

•																																				
Air Teal	E)	ē	3 8	86	8	6	2 8	8	18	3 23	88 3	5	7	21	* *	2	20	2 8	8	8	56	3 2	8	87	: 8	1	2 2	: 6	88	; i	6	92	53	# C	: 8	87 1 8
Air Temp	ŝ		38	ŝ	8	55	3 6	27	22	9 8	F	3 8	3	ដដ	2 2	5 73	1	5 6	2	R 8		3 23	27	8 ¥	38	23	* *	15	87 59	7	1 13	8	88	AZ 82	1	5 52
E	ŝ	Ĩ	12	240	34	243	5	249	260	518	12	3 2	218	22		ន្ត	0.0	5	249	5	41Z	2	219	521	33	ន		5	249	22.2	łZ	222	197	2 F	38	ត្តត្ត
E	9	3	Ξ	116	8	12	2	121	127	33	<u>8</u>	22	3	5	5 3	Ξ	101	1	121	83		22	5	5 E	Ξ	2	2 8	12	2 E	i g	23	122	121	101 2	18	នួន
112 112	£	5	6	197	6	8	2	20	5 3	88	881	2 5	189	161	141	61	6	: E	66	12 S	2 2	22	8	26 I 82	5	16	202	8	88		: 6	20	ន្ត	161	6	202
Hous 112	Ĵ	1	2	5	5		2 65	56	% 5	; G	6	5 8	87	888	8 8	: 2	88	: =	56	8	B 5	: :	88	8 6	: ::	8:	; ;	5	55		5	5	8 1	83	: ::	22
Rotor 811	3	112	228	238	242	240	2 8	245	5	88	512	3 2	217	219	R17	18	717	12	244		17	18	217	512	12	219	244	542	246 247			246	82 E		i Fi	15 E
	9	9	6	ŧ	1	2	12	811	102	2 2	23	3 3	103	5	3 3	Ξ	101	12	118	8	2 2	15	103	<u> </u>	21	ŏ	2 2	: 2	611	. 10	13	119	2	9 5	E	88
101	(F)	j.	8	203	ន្ល		2	202	212	16	6	P 66	191	56 133	5 C	22	194	ē	202	23	25	5	5	56 10	3 2	8	808 518	30	30	6	3	6	Ξ;	8 =	8	6 6
010	G	8	: 2	5	23	: 3	23	96	ខ្ម ខ្ម	6	\$ 8	2 2	6	5 8	2 2		06	: 3	96	s 8	5 X	2 8	8	= s	2 2	5	Ra	6	66	2	: 5	11	57	5 8	: :::::::::::::::::::::::::::::::::::::	82 82
 2	Ð	ž	5 B	289	ž.	54 F	18	in the second se	8 F	រ ស	5		221	292	3 8	162	650	582	ō	61 2	5 g	2	5	67	5	63	= =	3	3 3	592		16	= :	9 E	8	61 60
64	Ð	Ē	15	Ŧ	£ :	2 2	16	3	3 5	1 29	8	2 2	ន	88	8 3	=	46	Ŧ	\$	5 F	35	: 3	2	a 3	;⊉	នេ	a 12	5	33	3	18	G	នេះ	38	: \$	55
51.ng_	£		5	202	ž	2 4	28	202	26	2	5	2 g	5	23	\$ 5	8	46	5	5	83	2 2	: 5	8		: 53	88	5 C	8	33		: 13	50	88	 8 0	5	 6 8
B Hou	a	5	: 2	ß	2	ç 1	: 2	16	8 8	5 85	8 8	2 2	68	=	≍ 3		1		36 2			: 52	=		2	22	2 22	2	56	- 12		8	≈ - œ :	- ~ 2 8	2	88
ISING diate	G	E	÷	62	89	3 2		11		4	₽:	• •	Ŧ	\$:	2 8	89	13	89	83		2 12	: 2	=	2 2	12	¥ :	- 2 9	16	2 2	=	13	2	83	3 2	2	28
	3	2	: =	8		7 P	5 22	22	2 2 2 2	22	2 2	5 6 5 6	16 2	6 6	2 2		17 2	2 2 2 2	23	29	~ ~ 2 2	161 12	8		1.5	~ ? _ :	56	22	77 77 28 28	2 9	5 2	121		3 8 5 5	. 53 . 59	8 N 9 D
	- -	1		2	 		2 2				= 9		5			1	2	14				·		= = > -9	1	=:	: :: > 0	с С			ິ ສ	22 : 6- (<u> </u>	22		==
	()	-	: ==	8	28	38	8 8	21	1 2	: 5	5 9	2 5	61 6	5 S	2 2	12	6	8	2	~ ~	s 2	ន 	<u>e</u> :	2 2	8	≞ ;	38	8	â â	Ş	Ř	8	17 S	51	2	កក
	ບ			ð-	67 d	- 0		ē	<u>s</u> č	č	æ :		.00	5		5	6	2	5	8- 9		. 2 .	5	2 5	: 6	5 5	F 9	96	66	56	8	8	<u>6</u>	2 8	16	66 66
	E	512	2	241	25	202	196	243	266	2	221		22	2	77	241	221	238	2	1	32	264	21	252	246	12	80	249	57 F2	224	243	52	107	262	250	13 E
2	Û	10	8	116	<u>-</u>	9 6	5	5	8	10	501	Ξ	104	61	118	116	105	114	<u>21</u>	121	2	129	106	106	119	901	5 6	121	<u>12</u>	107	117	8	132	128	121	<u>8</u> 8
sing.	9	, e	661	206	209		201	209	218 193	194	194	32	194	197	206	204	197	204	211	217	202	216	197	198	208	8	31	208	209	200	208	216	721	216	210	33
루파	<u>e</u>	5	5	6	8 3	¢ 8	5	8	101 101	8	8 3	5	8	6 8	2 6	96	92	96	8	28	2 %	102	5 5	26	8	۶ ş	3 6	85	88	16	8	102	8	5 G	66	20 20 20
Roto 13	<u>e</u>	717	22	523	3	.	iB	249	292	219	82 E	38	220	11 11 11	32	241	223	239	22	29 F	32	564	8	52	246	ž F	38	249	52 F2	522	245	258	797	59	221	555
Rear	<u>e</u>	201	8	8	83	2 E	12	121	129	3	1	Ξ	5	90 F	2	116	106	115	8		3 3	129	20 20 20		119	6	36	121	ឌឌ	107	811	21	771	5	12	8 8
2	5	193	197	201	202	3 2	6	201	512 16 1	2	193	ž ž	193	961	2	203	195	201	82		22	E	761	Èã	50	81	23	202	88	86	502	:::	3 8	1	202	10
2	<u>ə</u>	8	F	ន	5 8	2 5	5	6	8 <u>5</u>	5	6 6	2 2	6	5 5	: 36	5	16	5	8	2 7	: 2	ē	= 5	22	8	F 8	: 12	6	8 8	5	8	8 2	3 8	1 1	6	38
	ε	11	61	12	2 5	3 8	5	2	5 I	12	29	2	<u> </u>	2 2	: 2	8	16	21	2	R =	2 2	8	=:	2 8	2	2 ¥	ន	5	× 2	16	54	89 F	1 5	: 23	21	- R N
	a	~	Ξ	23	= :	2 2	=	= :	<u>-</u>	~	~ :	: =	1	~ ~	` =	Ξ	•	12	::	<u>-</u>	. 5	:	60 r	` =	=	~ =	: =	<u>n</u>	: :	0 -	13	2 9	<u> </u>	. 9	n :	2 2
1365 1565	۵ ۵	8	R	F :	₽ P	5 5	R	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	₽ 8	18	8 F	នគ	53	88	ន	ß	52	5	달 :	2 5	: 2	±	£ :	. 8	2	2 3	: 2	2 :	= 2	=	5	2 5	: 5	22	= :	± 8:
	a	60	=	12 :	2 ¥	2 2	1	2 :	2 2 2 2	8	2 2	2 2	88	6 5 7 73	2 2	13 2	04 2	11 2	2:	~ ~ 1 8	: =	18 2	~ ~ ~	3 62 2 2	2		- ~- - =	2	6 6 2 2	3	2	~~~ 5 9	4 84 5 52	: 21 1 22	20	5 Ki 8 VI
	a	1 21	:	3	= =	9 99	18		2 2	12	91	. 2		9] 1 5	: ::	5	1	16 1		2 2		Ξ	<u> </u>	 	6		: 5			10	=	= = = =	: = 2 ≤	: = : 2:	= :	
	ວ ລ	02 7	5	23	5 6	3 2	2	8:	5 7 5 7	2	82	5 7 5 7	5	~ ^ 2 2	28	2	3	22	2:2	2 2	~~ : =	2	22	2 22	21	2 2	22	21	2 12	5	2	2 S	2 2	1 R1 1 11	21	22
it 20	- -	181	181	181			183	1 1		181	86		182	181	- 31 6 98	3	83 11	H 18	= : 5 t			1 18		- ×	28 : 28 :		84	= : 8 :	= <u>-</u> 	51 16	31 58	88 22	: 3	: 2 2 6	33	22 CB
35 24	=		-		2 4		-		• •		 	·				~ ~	-	-				-					-			-	_		•	•		
음 음 달	2	2	28	3	80 a 87 3	:2	5	80 0 87 5	2000 2007 2007	66	8 E	: 22	5	8 8 8 9	° æ ₹ ≍	22 8	5 6	89 92	5 40 25 5	ĕ ē 2 ⊴9		dő BB	6 6 5 0	5 86 1 12	स्त व ज्रह	a, 58 2, 59		ສີ ກໍ	2 28	- 6	ã S		; 56 ; 10	- 88 - +		13 13 13 13 13 13 13 13 13 13 13 13 13 1
Poir						. 4					- 0			~ 9	: 3	2	м	~					-	, 10	873 6	- -	- 67	~ '		7	2	~ ~	,	•	~	n -ā

ORIGINAL PAGE IS OF POOR QUALITY

.

11 CDATED INTERMEDIATE HOUSING 11

Baro Humid In In Exh Exh Cool Cool pres Temo Temo Temp In In Cool Oil Oil Baro pres pres pres BSFC Intake Intake Exhaust Exhaust Blowby Blowby Cool (1b/ pres pres pres pres pres pres 332B Fuel Flaw Fuel Flow Fuei Flow Point Date RPM Torque Torque BHP BHP BMEP BMEP

(C) (E)	89 192	82 180	82 180	81 181 81	181 28	84 184	82 180	181 20	84 183	83 182	181 181	82 180		8 3 182	84 183	84 183	83 182	84 183	87 189	83 187	84 183	84 183	84 184	82 182	201 00	CR1 49	84 184	84 184	84 184
E	1446	1423	1421	1402	1399	1422	1324	1419	1508	1510	1509	1508		1400	1492	1540	1501	1443	1472	1380	1460	1504	1500	1051		711	1503	1490	1494
0	987 B	111 0	0 772	0 761	0 759	1 772	B1/ 1	111 2	1 820	3 821	6 821	2 820		5 760	1 811	7 833	5 816	1 784	800	1 749	2 793	818 2	\$ 816	3 816	2		817	810	812
C) (F	20 6	10 5	5	10 5	2	11 5	-	-	16 6	17 6	18	17 6.		¥ B	16 6	22	24 7	12 5	16 6	*	11 22	22	21 12	22 22	5	7	13 97	18 61	2
2	42	ħ	8	ន	R	ន	32	32	53	29	5	29		ş	ş	Ş	R	31	3	23	23	23	2	23	;	5	Ħ	ħ	ħ
(by∕u	9.54	9.62	9.68	9.68	9.69	9.90	9.70	9.70	9.93	9.93	9.93	9.93		9.78	9.7B	9.78	9.78	9.62	9.62	9.81	18.9	9.81	9.81	9.81	2	7.07	3.62	3.62	9.62
(Pa) (i	9.8 2	0.0 2	0.2 2	0.2 2	0.3 2	1.0 2	0.3 2	0.3 2	1.1	1.1 2	1.1 2	1.1 2		0.6 2	0.Å 2'	0.6 2	0.6 2	0.0 2	0.0 2	0.7 2	0.7 2	0.7 2	0.7 2	0.7 2	č		0.0	0.0	0.0
sig) (ł	62 9	64 10	64 10	64 10	64 10	64 10	64 10	64 10	62 10	62 10	62 10	62 10		66 10	62 10	62 10	60 10	64 10	62 10	64 10	64 10	62 10	62 10	62 10		1 40	64 10	64 10	63 10
Pa) (p	427	Ŧ	Ŧ	Ŧ	Ŧ	Ĩ	Ŧ	Ŧ	127	[2]	127	127		55	127	127	11	н	127	H	Ξ	127	121	127	-	Ē	Ŧ	Ξ	Ē
ig) (k	5	16 1	91	16	16	2	8	8	<u>e</u>	8	8	<u>.</u>		51	2	ខ	2	5	5	2	2	ខ្ល	28	20	5	3	2	ដ	2
25) (B	101	10	2	91	10	10	124	124	124	121	124	124		45	22	52	29	50	5	\$	\$	BS	R	85	Ş	5	5	ដ	5
/HZD) (K	0	0	•	0	•	0	0	0	•	0	•	•		•	0	•	•	•	•	•	•	•	•	•	•	-	•	•	•
kPa) (in	0	0	•	0	0	0	0	0	•	•	•	•		•	•	0	•	0	0	0	0	0	•	•	•	•	•	•	0
in/H201 (17.5	1.4	7.3	7.1	1.4	7.1	2.4	6.5	11.2	10.5	10.3	10.0		3.7	9.9	17.2	20.5	4.7	28.6	2.5	1.4	18.2	18.2	18.2	0		17.3	22.7	32.1
(kPa) (4.335	1.841	1.817	1.767	1.841	1.767	0.597	1.617	2.787	2.613	2.563	2.488		0.921	2.464	1.280	5.101	1.170	7.117	0.622	1.841	1.529	1.529	1.529	001	211	1.305	5.649	. 988
in/hg)	2.4	8.5	8.6	8.9	8.9	9.3	15.4	9.3	5.9	5.8	5.7	5.7		13.9	0.8	1.1	3.1		<u></u>	14.9	8.S	3.9	3.9	3.9			Ţ	3.0	r:1
(kPa) (8.1	28.8	29.1	30.2	30.2	31.5	52.2	31.5	20.0	19.7	19.3	19.3		1.1	27.1	15.9	10.5	27.4	;	50.5	28.8	13.2	13.2	13.2			13.9	10.2	÷
hp-hr)	0.578	0.586	0.586	.617	1.617	0.586	978.0	0.586	0.523	.523	0.528	.523		.868	.642	.597	119.0	1.599	1.624	.844	599	585	.579	.579	121		.594	.607	.620
g/kWh) bi	321	357	327	375	375	321	555	357	318	318	321	318		5 28	390	363 (5	364 (380	213	364 0	356 0	352 (352 0	1 601		361 0	369 0	377 0
lbs/hr) (50.6	30.4	30.4	32.9	32.9	30.4	22.8	10.4	35.4	13.4	35.4	13.		25.3	38.0	45.5	53.1	35.4	65.8	25.3	12.4 1	50.6	50.6	50.6	47.0		23.1	60.7	70.8
(ga/hr) (22952	13771	13771	14919	14919	13771	10328	13771	16066	16066	16066	16066		11476	17214	20657	24079	16066	29837	11476	16066	22952	22952	22952	10500		24099	27542	32132
ate (2)	20	12	12	11	11	12	D -	2	=	=	=	=		2	5	81	21	=	26	2	1	5 0	20	20	1	: :	7	54	5 8
(15d)	108.4	64.1	64.1	66.0	66.0	64.1	32.0	64.1	83.9	BJ.9	82.9	83.9		32.0	65.0	83.9	95.2	45.0	115.9	33.0	65.0	95.2	96.1	96.1	47 0		9.88	0.46	113.1
(FPa)	1H	4 42	442	5	1 55	442	21	442	878	2 78	212	578		21	₩	578	656	81	561	122	448	656	663	£99	440	3	119	289	780
ĝ	87.6	51.8	51.8	21	2.1	51.8	25.9	51.8	67.8	67.8	67.0	67.8	:	29.1	59.1	74.3	86.5	59.1	105.4	30.0	29.1	86.5	87.4	87.4	5 87		6.2	0.00	114.2
<u> </u>	65.3	38.6	38.6	39.8	39.8	38.6	19.3	38.6	30.5	50.5	50.0	20.5	1	21.7		56.9	64.5		78.6	22.4	#.1	64.5	65.2	65.2	1 15		66.7	2.2	85.2
bfaft)	115.0	68.0	68.0	70.0	70.0	68.0	34.0	68.0	89.0	89.0	0°88	89.0	i	34.0	69.0	89.0	101.0	69.0	123.0	33.0	69.0	101.0	102.0	102.0	17.0		0.14	105.0	120.0
Nan -	155.9	92.2	92.2	94.9	94.9	92.2	46.1	72.2	120.7	120.7	119.3	120.7	:	46.1	93.6	120.7	137.0	93.6	166.8	47.5	93.6	137.0	138.3	138.3	97. A		c. /21	142.4	162.7
-	000	000	000	0001	000	1000	000	000	000	000	000	000	i	200	200	200	200	200	200	200	200	200	200	200	000		8	000	80
	1 10/07 4	8 10/07 4	9 10/01 4	0 10/07 4	1 10/07 4	10/12	1 10/13	2 10/19 4	5 10/21 4	6 10/21 4	7 10/21 4	8 10/21 4		3 09/25 4	4 06/25 4	5 09/25 4	6 09/25 4	2 10/07 4	3 10/07 4	8 10/16 4	9 10/16 4	1 10/16 4	2 10/16 4	3 10/14 4	1 10/07 5		C /0/01 C	c /0/01 9	7 10/07 5
	-0	-0	•	-	1	-	8	00	0 -	a -	~	0~	i	-5	r)	M	M	-0	ó	~	ŕ	œ	œ	œ	14	. :	ð Ì	ă	0

OF POOR Quality

Air	Tenp	9	18	8	22	83	8	87	1	82	2	98	88	8	5	: 5	7	8	£	88	6	8	38	88	8	8	28	8	2	86
Air	Tenp	ទ	8	27	38	2	27	5	23	26	3	8	5	52	F	3 :	3	25	R	5	8	28	8	8	5	29	28	29	\$	8
	E	Ð	162	249	249	250	220	72	228	ឪ	265	264	263	263	71	5	d	263	274	256	307	234	260	280	281	282	263	279	290	505
	E	ê	E	121	121	121	121	123	109	12	129	129	128	128	Ξ	1	2	128	Ē	124	151	112	127	138	138	139	128	131	Ŧ	152
buis	Ë	E)	ដ	20	661	201	200	203	192	201	207	205	202	203	501	2	ē	206	210	204	226	196	206	212	213	214	206	212	217	222
r Kou	1 12	ទ	20	55	26	5	r L	Ϋ́	66	5	5	36	22	55	5	: 2		16	6	96	80	16	67	8	101	101	79	10	101	106
Rato	11	9	290	245	245	247	247	152	222	249	263	261	260	260	171	1		238	268	224	201	222	121	279	280	281	260	277	288	ŝ
Front	H	<u>0</u>	1	811	118	119	119	12	107	121	128	127	127	127	001		2	126	Ē	123	12	Ξ	52	11	B21	138	127	136	142	151
	0] #	Ð	232	207	206	207	208	210	197	208	215	214	213	212	002		017	214	219	212	239	202	214	223	224	225	215	223	228	236
	018	<u>0</u>	Ξ	19	19	16	85	56	92	86	102	<u>10</u>	101	<u>8</u>	La La	2 8	\$	<u>0</u>	5	<u>8</u>	:::	5	101	106	107	107	102	106	601	113
	64	E	361	301	302	303	303	318	274	312	ñ	325	322	321	110	5		316	326	319	367	286	327	348	344	342	329	354	363	372
	6#	<u>0</u>	181	151	150	151	151	159	ħ	155	166	163	161	161	DC 1		£	8	163	159	186	H	164	176	:21	172	165	179	18 4	189
butst	8	હ	52B	205	205	205	205	208	196	204	210	209	207	206	140			204	213	211	231	201	209	216	216	217	211	216	221	227
te Hot	8	ê	10	96	96	96	96	B 6	16	96	66	86	67	67	70	: ;	2	85	ī	66	Ξ	5	86	102	102	103	6	102	105	108
edia	11	£	13	274	274	275	275	280	222	278	296	297	292	292	111	2		291	ខ្ព	292	363	258	289	315	316	317	292	314	326	356
Interi	#1	9	5	12	Ē	135	135	138	<u>13</u>	131	147	147	Ŧ	Ħ	2		5	Ξ	£	Ŧ	181	126	Ξ	127	158	158	Ŧ	157	163	180
	\$	3	121	206	206	206	207	209	197	205	211	211	209	208	207		017	214	217	214	244	202	211	219	219	220	214	224	229	241
	98	ŝ	112	62	67	16	16	86	92	98	66	\$	86	86	Fo	5	\$	10	<u>8</u>	101	811	5	\$	101	1 0	0	101	107	601	116
	5	£	30	250	250	251	223	255	12	255	270	270	268	268	220		ŝ	267	278	263	325	238	264	289	291	292	270	291	201	320
	5	ទ	5	121	121	122	123	124	111	124	132	132	131	131	901		3	151	13	128	163	Ħ	129	Ħ	Ŧ	Ŧ	132	Ŧ	121	160
, Tng		Ē	53	209	209	209	210	213	199	211	218	218	216	216	505		3	22	222	217	248	204	217	228	229	230	221	231	237	244
Such	ŧ	9	1	8	86	86	5	101	56	66	103	103	102	102	10		201	106	6	103	120	96	103	109	109	110	105	111	Ħ	118
Rotor	:	9	302	251	2	251	152	256	152	254	270	269	266	268	975	1	90	268	277	264	322	240	264	288	288	290	271	289	20 20	314
Rear	:	Đ	120	12	122	12	121	124	Ξ	123	132	132	130	131	8			5	136	129	191	116	129	142	142	143	121	143	149	157
	2	(F)	236	207	207	208	209	212	861	209	216	216	214	214	002		212	216	22	215	245	203	215	227	227	228	218	22B	234	ΞE
	2	Đ		6	16	86	86	10	c,	8	102	102	101	101	6	2	B	102	106	102	118	ŝ	102	10 8	801	109	103	109	112	116
elta 11		G	۴	7	17	24	54	51	1	5	8	۶,	5	2	2	:;	3	F	8	2	\$	8	2	R	5	35	28	ß	5	\$
lta 0		3	2		11	1	11	2	•	:1	16	16	16	16	5	::	± !	1	8	5	3	2	2	61	21	50	16	6	ដ	26
	kt Te	2	5	=	Ŷ	ŝ	Ŧ	3	R	65	9	\$	Ŧ	1	Ę	3	Ŧ	\$	Ş	Ŧ	19	ē	ŧ	3	8	R	45	2	8	192
	۲ ۲	с С	2	12	1	12	16	17 2	н	15 2	19 2	18	18	17 2	5		2	5	ក្ត	16 2	28	1	8	2	2	12	18	12	22	2
11 C	e	3		1 12	: 2	13	1	19	5	5	18	91	2	Ξ	ž		2	2	2	E	-	116	-	1	116	1	11	8	61	61
11		с С		15	1 2	10	10	3	8	2	2	2 2	8	5	Ę		20	2	20	5	5	8	5	5	8	5	50	3	3	3
0 01	 	- 	5	2		18	18	87 1	83	83	86 1	1 98	1 181	1 18	5	1	86	186	88	186 1	1 26	184 1	186 1	199	187 1	1 88	1 98	187 1	187	187
د 1	6 1	5			: =			1 9		1		1		-	-	1 :	-	2	-	1 1	- 2	=	3	2	3	-		2	2	2
Point Co	9	ບ	6 19		6.9	2	71 8	74 8	84 8	85 8	3 5 8	96 8	97 8	8 86	11	3;	5	3	36 8	62 B	53	78 8	79 8	81 8	82	83 8	8 89	65 B	999 999	67 B

11 COATED INTERMEDALLED HOUSING 11

APPENDIX G - I

UNDENSIFIED COATED

ROTOR DATA

UNDENSIFIED COATED ROTOR DATA

TABLE OF CONTENTS

<u>Title</u>

<u>Page</u>

Undensified	Coated	Chart.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-I-3
Undensified	Coated	Chart.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-1-4
Undensified	Coated	Chart.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-I-5
Undensified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-I-6
Undensified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G - I-7
Undensified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-I-8
Undensified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-I-9
Undensified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-I-10
Undensified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-I-11

.

Undensified Coated

2 8

G-I-3

r19. . 1 . . I - 1

۰ ن

.1, (

--4.

Undensified Coated

1

()†*sdi) euproT

G - I - 4

1- i - i

G-I-5

;	Arr (F)	*****	225222	81 71 83 83 80 1000	10 I I I I I I I I I I I I I I I I I I I	8 101 107 112	おかねい	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
:	r ten C	*******	* * * * * * *	222222	85 65 65 88	2844 284	****	2 2 2 2 2 2 2 2 2 2 2
	E G	22 48 42 54 99 57 54 55 55 55 55 55 55 55 55 55 55 55 55	224 246 255 261 261 261	252 264 269 283 283	236 822 172 882 862 271 862 298	245 263 275 286	និនីនីនី	251 251 250 250 250 250 250 250
	33	33382 1 1	107 119 124 127	<u>222225</u>	113 128 138 138	12 IS IS	107	53 55 55 55 55 55 55 55 55 55 55 55 55 55 55
	1. 2. 2. 2. 2. 2. 2.	201 201 201 201 201 201 201 201 201 201	161 20 20 20 20 20 20 20 20 20 20 20 20 20	201 202 203 210 212 210	199 207 215 216 224	200 209 211 216	191 192 192	205 206 206 206 206 206
	² 2 3 3	2 2 2 2 2 2 2 2	89 94 98 98 99	92 98 99 101	26 I 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	28 88 50 02 98 86 20	888888	55 5 56 56 56 56 56 56 56 56 56 56 56 56 56
	Rato #11 (F)		2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 3 2 3	38 223 59 239		241 262 276 288	នួននួន	64 76 75 75 75 75 75 75 75 75 75 75 75 75 75
		201 I I I I I I I I I I I I I I I I I I I	107 119 124 132		11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	116 128 155	201 201 201	121 122 123 124 125 125 125 125 125 125 125 125 125 125
	(F)	195 201 205 206 206 206 214	197 205 211 215 217	201 210 219 219 228	32 57 57 50 53 57 57 50	206 216 221 228	261 261 261	210 213 213 213 213 213 213 213
	39	92 92 93 93 94	92 97 99 102	99 101 102 103 103 104 103 104 104 104 104 104 104 104 104 104 104	86 101 101 101	97 102 105	16 16 16	99 99 101 101 101
	(F)	249 273 204 304	254 285 301 307 308	259 309 316 318 318	266 305 329 329 338	328 324 334	2 2 2 2 2	291 289 304 503 504
	6 9	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 6 6 5 5 5	126 158 158 158 158	151 165 165	138 163 163	<u>2222</u>	12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14
	(F)	202 213 213 213 213 213 213	22 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	212 228 231 241	222 233 233	199 200 200	214 213 213 214 213 215 216 217 217 217 217 217 217 217 217 217 217
:	te 40 (C)	8 8 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	95 101 102 105 105	98 103 106 107 111	104	101	17 F F F F F F F F F F F F F F F F F F F	99 99 101 101 101
: 5	8012 87 (F)	244 255 266 285 285 285 285	249 270 285 285	249 271 304 321	258 285 319 319	267 293 312 330	247 249 250	276 2778 2778 295 295 295 295 295
2.	C)	BI 121 121 121 121 121 121 121 121 121 12	22222222	121 133 151 151 151	126 141 149 159 171	131 145 156	5 5 5 E	136 137 146 146 145 145
	38 (f)	200 201 201 201 201 201 201 201 201 201	202 208 214 215 215	206 213 213 218 218 222	222 223 231 231 231 231 231 231 231 231	213 224 230	200 200	214 214 214 214 214 214 214 214 214 214
2	3	5 3 8 8 8 5 5	98 98 101 102	97 103 103 103	86 201 101 111	101	25 E E E	99 99 101 101 101
	5 E		241 241 241 242 243 243 243 243 243 243 243	231 252 266 275 275 275 275	238 265 276 276 276 276 276	244 271 286 30 2		255 251 252 252 258 258 252 252 252 252 252 252 252 252
5	2 0		108 119 125 131		1114 138 143	120	106 107 107	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	5 1 1	212 213 213 214 215 215 215 215 215 215 215 215 215 215	22 23 2 23 26 20	22 23 23 14 23 4 23 23 23 33 4 23 23 4 23 23 4 23 23 4 23 23 4 23 4	201 222	240 240 240	861 861 761	
:	tous (C)	92 98 99 102	98 99 102 102	95 101 108 108 113	97 104 112 112	90 100 110 110	22222	101 101 104 104 104
	Kator 83 (F)		22 26 26 27 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	231 275 275 275 289	237 262 276 276 287 287 287	244 271 286 302	2 2 2 2 2 C	82 88 82 82 82 82 82 82 82 82 82 82 82 8
	E C C	20 I I I I I I I I I I I I I I I I I I I	1119 1119 1121 1131	<u> </u>	114 128 136 142	8 F F S	107 107 107	2222222222
	6	211 211 212 202 202 202 202 202 202 202	205 207 211 217 219	220 220 222 222 222 222 222	204 215 222 228 228	23 23 29 29	195 196 196	210 208 216 215 215 215 215
	2 <u>9</u>	10 2 2 2 2 3 3 1 1 1 2 2 3 3 1 2 1 2 2 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 3 3 3 3	92 97 99 104	93 99 104 104	96 102 106 114	97 104 112	2 1 2 2 2 2 3 1 5 3 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5	99 99 102 102 102
Deita	(F)	22386222	3388212	12 2 2 2 2 F	1 12 1 2 13 13	61 X R R	2222	ន្លន្លន្ល្ នន
Delta		► B 6 : 2 : 1 : 1	~•====	8 2 4 4 4 7	51216	11 11 11	~ ~ ~ ~ ~	22222222
	E GE	*****	243 245 245 245 245 245 245 245 245 245 245	5 5 5 5 5 5 5 5 5 5	233 240 255 255 255	236 241 243 249	622 622 622	
i	5 3 0	8333339			112 119 119 119	113	108 109 109	114 117 118 118
	3 s 6	518 518 514 518 518 514 519 519 519	213 214 217 213 214 217	215 217 218 218 218 218	215 215 217 217	217 213 215 215	218 218 218	215 214 214 214 214 214 214 214 214 214 214
:	3 <u>s</u> 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	102 103 104 104 104	102 102 103 103 103	102 103 102 102	101 102 102	101 102 102	102 101 101 102
	(r) (F)	181 181 181 181 181 181 181 181 181	185 185 187 187 187	185 186 187 187 187	186 187 188 188 188 188	187 186 184	182 183 183	181 181 182 183 183 183 183 183 183 183 183 183 183
		*******	28 28 28 28 28 28 28 28 28 28 28 28 28 2	C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	86 87 87 87	8 8 8 8	81 81 81	888888888
	oint	103 104 121 105 105 105	126 128 128 128 128 128	111 112 1130	113 114 115	8858	121 121 121	14 14 14 14 14 14 14 14 14 14 14 14 14 1

UNDENSIFIED COATED ROTOR

1

. .

G-I-6

ORIGINAL FACE IN OF POOR QUALITY **11 UNDENSIFIED COATED ROTOR 11**

E 19 Cool in Co Eap C 5 **1** 2 g g (f Huard In Teap T) (I) (C) Baro H pres (in-hg) Baro pres (kPa) (psig) 0il pres 0il pres (kPa) Cool pres (psig) Cool pres (kPa) pres pres ((kPa) (in/H2D) (Blowby Blowby Exhaust (1n/H20) pres Exhaust pres (kPa) Intake E (jn/hg) pres Intake pres (kPa) bhg-hr) BSFC (1b/ (gr/hr) (lbs/hr) (g/kWh) BSFC Fuel Flow (psi) Rate (I) Fuel Flow BNEP (kPa) BKEP (yp) 붋 (EN) 붋 (1bftft) Torque Torque (Nte) RPH oint Date

G-I-7

ORIGINAL PAGE IS OF POUR QUALITY

Cool	ц (J	6	: E	1 81	181	182	181	181	181	181	8	181		181	181	182	182	182	182	281	2 6	183	182	182	182	182 192	78 183	181	183	8	3 6	1 28	183	182	182	182	181	Ē	8	191	2 1 8 1 8	182	18:
Coal	- Û			33	3	3	28	38	53	5	8:	3 5	2 2	1 13	18	58	8	3	31	3 5	3 5	3 23	3	83	13	56	3 23	1.23	81	a :	5 6	3	18	18	8	8	81	B	68	3 8	: 23	8	2B
Exh	Ten (F)	1851		6	9851	1572	1580	1579	1121	1576	5	9/cl		1569	1570	1571	1568	1231	1212	4/CI	55	1589	1590	1588	1281	TECI I	1589	1600	1595	1592	RRC1	1583	1582	1565	1566	1561	1564	1264	1557	1/51	1570	1568	1555
Ezh		178	198	58	998	8 28	860	859	828	828	5	R v	55	158	824	855	851	5	5	33	700	38	866	864	862	298 276	900 298	871	898	198	• · · · · · · · · · · · · · · · · · · ·	862	861	852	823	849	951	5		22	a54	353	348
-	e Teer	2		: 28 	1 51	5	5	33 	5	32	5	73	8 29	3	\$	8	3	5	ត	2 2	5 2	i 7	56	3	នេ	8 ¥	9 5	25	5	នេះ	3 19	3	23	5	R	ដ	25	5	ភេទ	3 6	13	5	3
1d In				: =: 	Ξ	=		=	Ξ		=:	= =	2 11	: 12	2	1	2	2	= :	2 2	: :	: 🗆	1	13	<u>:</u> :	2 5	2 =	::	12	2 2	212	12	Ξ	13	12	<u>11</u>	≛	≛ :	≛ :	= ::	1	Ц	1
Hu	Z) (6	- M	• • • •		5	е 10	5 5	in in	8	ñ	83 i 11 i				22	13 	8		83 F			12	36	35	.	3 5	38	12	22	ដេដ	3 2	12	22	29	29	53	53	5		18	18	20	2
Baro	pres (in-h	29.7	29.7	2.62	29.7	29.7	29.7	29.7	24.7	24.7	29.7	1.1.00	26.1	29.7	29.56	29.55	29.58	29.58	29.83	50 60	29.82	29.85	29.82	29.85	29.85	CB - 62 CB - 62	30.15	30.14	30.14	30.14	30.1	30.14	30.14	30.16	30.16	30.16	30.16	30.16	30.16	30.05	30.00	30.00	29.92
Baro	pres (kPa)	100	100	001	100.5	100.5	100.5	100.5	100.5	100.5	100.4	100	100.4	100.4	9.9	99.9	9.99	6.99	100.8	8.001	100.8	100.8	100.3	100.3	100.8	R-001	101.8	101.8	101.8	8.101	101.8	101.8	B.101	101.8	101.8	8.10	B.10	01-3	R-10		01.3	01.3	01.0
0il	pres (psig)	13	59	59	79	62	62	62	62	62	33	2 2	29	62	53	6.3	62	62	3	3 3	13	5	63	29	3:	3 2	3 3	62	62	33	1 7	62	62	62	62	3	3	3 5	22	: 3	5	62	62
Dil	pres (kPa)	5	121	5	427	427	427	427	427	427	4 <u>7</u>	2	124	427	134	121	124	124	2	35	₿	124	121	121	5	2 5	2 2	427	[Z]	[]	124	427	427	427	427	£3	124	2	2	121	427	124	427
Coai	(brsd) (bsrd)	2	5	7	5	24	24	5	53	58	2	5 2	5	5	24	12	12	23	≂ ;	3 2	ន	21	21	ដ	25	3 8	7	20	7	2 2	5 83	8	24	22	2	2	₹ :	2	5 8	3 2	52	2	13
Cool	pres (kPa)	159	162	162	165	165	165	165	129	162	165	3 3	165	162	165	159	5	601	2 9	5 3	8	Ξ	155	126	£ 9	128	3	138	S	51 53	28	203	165	841	3	162	<u>1</u>	2		: 2	841	159	12
laway	pres (n/H20)	•	•	•	•	•	0	•	0	•	•	• •	• •	0	•	0	0	•	0 0	• c	• •	0	0	0			• •	0	0	• •	• •	•	•	•	0	•	•	-	.	, ი	0	3	0
lo⊭by [pres kPa) (j	0	•	•	•	•	•	•	0	•	• •	• •	• •	0	0	0	• •			» a		0	0		~	.		0	•	• •	• •	•	•	•	0	0	0			, o	0	0	0
Exhaust	pres in/H2D) (14.0	13.2	13.9	13.9	13.2	13.2	13.2	13.2	13.2	13.2	12.4	12.3	11.8	11.0	11.2	10.8	10.4	5.71 5.7	16.8	17.1	17.1	17.0	16.9	16.2	19.1	17.6	16.8	17.0	16.9	16.6	16.3	15.9	17.9	17.8	17.8		9.11	11	16. ó	16.7	16.5	11.1
xhaust	pres (kPa) (3.484	3.285	3.459	3.459	3.285	3.285	3.285	3.285	3.285	5.285	3.086	5.061	2.936	2.737	2.787	1B9-1	71/-7		181	5	. 255	.230	. 205	150.18	504	OBE .	.181	8. H	607. IB	5	.056	.957	. 454	621	626			250	Ē	. 155	901.	.732
ntake E	pres in/hg)	6.3	6.3	6.0	5.9	6. 2	6.1	6.2	6. 2	9.2			9.7	6. L	6. 2	9.5	~				6.2	6.2	6.2			9	9.2	6.4	9.9 .9	• • •	4	6.5 4	6.5	4 - 4 - 9 - 1	-			• • • •		6.5 4	é.5 4		و.ت ا
intake li	pres (kPa) (;	21.3	21.3	20.3	20.0	21.0	20.7	21.0	21.0	21.0	21.0	21.0	21.0	20.7	21.0	21.0	Z1.0	n.12	21.0	21.0	21.0	21.0	21.0	21.3	0.77	21.0	21.0	21.7	22.4	23.0	21.7	22.0	22.0	21.7	Z1.7	0.22	0.22	22.0	22.0	22.0	22.0	22.0	22.0
BSFC	(1b/ hp-hr)	0.554	0.551	0.544	0.544	0.542	0.545	0.544	0.540	0.540	/55-0	0.558	0.554	0.555	0.558	85. I				3	.539		5			, es	. 557	. 558	55.	7 95	5	-552	55:	ត្ត	<u> </u>	81				នុ	833	5	.560
BSFC	(dikid) b	165	555	155	Ē	220	Ħ	5	328	BZS	657 BL		155	121	655	5	455			329	373	111	122	911			339 0	622	336 0		111	336 0	336 0	622	6.55 6.55					339 0	339 0	6 :	0 14:
Fuei	Flaw lbs/hr)	1.1	41.7	41.7	41.7	11.7	/ - H				12.0	1 3.0	43.0	43.0	43.0	43.0	15.0	2	13.0	41.7	41.7	43.0	43.0	4 3.0	1.14	43.0	43.0	43.0	43.0	•3.0	43.0	43.0	43.0	4 3.0	•••••	n.≎			43.0	43.0	43.0	43.U	11.0
Fuel	Flow gr/hr) (18935	18935	18935	18935	18935	55481	189.55	189.55	C2481	40C41	19509	19509	19509	19509	19509	19500	10201	19509	18935	18935	19509	19509	19509	18935	19509	19509	19509	90291	19509	19509	19509	19509	19509	14209	40241	200201	19509	19509	19509	19509	19509	4004
Fuel	Flow ate (2) (11	11	17	5	5 !	≥ !	2 !	2:	::	2 5	: 1	17	1	1	2:	2 :	: :	2	: 1	17	17	5	2 5	: :	::	17	1	2 :	: :	11	<u>-</u>	5	2:	2 :	2 5	: :	2 2	: 2	17	11	2:	1
BNEP	(psi) R	82.9	83.4	84.4	81.4	86.7			2 2		84.Y	84.8	85.4	85.3	8, 8	8.48		0.10 2 4	85.0	84.8	85.2	85.5	8.4	9.6 9.6	7.70 84.9	85.4	84.9	81.8	9. CB 0 80	86.1	85.5	83.8	82.8	8,48		2.5	1.1		8.4	3 4 .8	8. S	P -	
ЦĘр	kPa)	272	575	283		i i	5			è s	6 6	193	589	288		5]]	98	82	87	68	68	26	58	68	ន	58 2	P 5	: :;	69	5 1	F 1	83	8 5	2 6		: 12	ន	58	ន	38	2
e H) (dų	5.4	5.8	6.7			•					12	7.6		2	33	22		2 2			2	-9 0	n v n v	10		3		, v 10	3 CJ	5	e i O	 -	-: •	າຍ ເບ	ים ר פי	,	, 64 , 64	1			13 ŭ 1	;
e.) (1	.2 7	.5.	2	~ ·			- • • •		- + 	9 M	. ~	1 6.	8.	ni i Kiri		 	: # ; *		12	12 8.	0 9	6. 4 6. 4	2 F		6.	۶ ۲	F :	2 -	2 2 - n	0 77		~ .	5 7	- F	• α		: I: 8	5 77	5 11		ະ ສ ດ (2
盡	10	0 29	ŝ	5	6 I 6 1	5 C	7 E	3 6 0 •	5 5 7 F		7 Fr - 0	5	6 57	6 I 10 I	51		50	5 6	5	15	5.	8 8	5	Ŕ F	5	5	5	5.5	R 8	ទំនាំ	85	ន់ ទ	7 (5	:0	50	5	5	57.	57.	5	5.0	;
Torqu	(lbf8f	8 8.	88	6	6	2: 8	6.8	6 8	È S	2 8		<u>8</u>	30. 7	8	8.8	2 8		8	8	90.0	90.4	6.0	5.5	2 6	6	90.6	90.1	9.0		5.19	90.7	0.15		0.04		0.0	0	0.	90.0	50.0	90.0	70.V	
Torque	(TRN)	119.3	120.0	121.4		121.9	7.171				122.0	122.0	122.9	122.7	122.0	0.771 1.77	122.0	121	122.3	122.0	122.6	121.0	1.221	1.021	122.2	122.9	122.2	122.0	1.61	123.8	123.0	123.4		122.0	122 4	122.6	122.4	122.6	122.0	122.0	127.0	5-121	
Hd		200	1500	1200	200						202	200	200	20	8 S	8	8 9	001	8	500	20	<u>8</u>	80		8	200	200	8	0	8	200	8	3 3	3 8	18	0	8	8	00	8	8 8	3 8	3
ite f		2	22 4	2 2	2 1 2 1		3 8	3 5	3 5	* * 1	18	1	3	 21	+ + R	2 K	3 K	12		¥ 22	39 ¥		4 1 9 2	* * 9 :2	: 4 1 2	27 45	*		- 4 - 4	: #	14 12	¥ ¥ 2	; ; ; ;	9 9 9 9	: 52 9 EP	: 57 8	: : : : : :	3¥ - 82	9 45	5 I		7 47 1. 0	!
Point Di		148 1/	149 1/	1 20		1 261					1 851	129 1/	190 1/	191	17 291		145 1/	1464 175	167 1/.	168 1/	19 1/	1 021	55		171 1/1	175 1/.	11 9/1	// ///	179 1/2	180 1/2	181	2/1 281		185 1/7	186 1/2	187 1/2	2/1 881	189 1/2	190 1/2	191 1/2	2/1 261	194 1/2	

1

G-I-8

	jir.	E G	5	1 3	5 3	5 8	2 3	5 8	5 6	; a	;	98	87	38	38 8	3 2	: 23	18	8	8	38	5	ន	%	66	5 a	5 2	6	52	*	8 8	6	90	8	8	Ęş	\$	A	Å	M	¥ :	42 42	5	Ţ
	1		, <u>8</u>		7	2 2	5 P	4 2	1 P	; =	: 13	8	3	ន	នខ	5 8	: 2	ន	58	8	ទ	5	2	ខ្ល	8	5 8	: 2		Ħ	8 :	3 8	: 5	2	គ	8 1		A	5	Ā	<u>N</u>	\$			¥.
		111	1	: 3	: 5	13	1 L	3 3	: 2	1 2	17	62	63	64	292	3 3		19	53	53	5	1 9	65	S.	2	25	3 3	. 93	83	3:	2	. 33	65	53	ຊ ;		. 2		2	2	= :	2 8	22	. 8
		23		: 5	3 2 3 2	4 F 3 E	28	9 C 9 C	* C 2 8	9 ¢		38	8	2			. 5	6	6	3	5	5	67 62	ณ์ ชา	171 F	96 59		5	1	йй 9:	5 F		5	64 - 19 -	22	4 F 7 F	1 N 1 M	5	5	2	N 8 10 1	vi h e v	1 61 1 -0	1
	2	30			: : ; :	2 L 2 M	2 -	3 1 2 1	: : : :	20	: 11 	:∷ 	5	:: •		12	1 1 1	1	7 13	2 12	7 12	7 12	8	5 I		2 2	: ==	. 2	8	⊡ : ~ r			5		:: • •	35	: 2	1	7 13	7 13		2 2	2 12	: 12
	JISNO	2	~ ~		3 8		3 8	38	38	, 9 , 9	1 R 1 P	20	۶ ۹	2	25	22	2 2 2	2	2 2	7 20	7 20	2	8 8	2:	28	2 2	32	1 R 	8	88	38	i ñ	8	ຊ: ສ	88	2 2		2	7 20	7 20	ä i	2 2	រ ភ	1
	tor	# 9			- 0	- •	- 0 - 0	~ 0 ~ 0				•	6- 6-	•	~ •	- 0-		•	~	<u>ه</u>	2	~	÷	-		- 0			÷			: F	*	87 i	5 2		. 5-	6	5		~ ~	F 8	: 3:	8
	nt Ro	# !!		¥	1 K	18	9 X 9 X	3 ¥	3 K	3 2	i ka	1 26	8	56		Ň	26	26	7 26(26	26	726	8	38	22		3	22	281	22	33	3	266	22	3	93	12	264	266	266	22	98	គេ	12
	Fro	29 29	1	2 1	15	10	22	2 2	10	12	12	12	12	2		2	2	2	123	12	12	8	12	2	25	3 5		2	2	2 2	2 2	5	130	8	23	2 2	151	129	ñ	130	<u> </u>	3 8	13	2
		35	16	1	1	12	12	52	12	212	2	213	21	ž		21	21	215	214	21	214	214	215	212			512	216	215	51	32	516	216	216	512	215	216	214	214	214	512	112	216	215
		12 0	9	3	ŝ	2	2 2	3	10	101	0	101	101	5		101	101	102	101	01	101	101	102	<u>[</u>]	<u> </u>	2 3	: 61	102	102	<u> </u>	102	<u> </u>	102	2	23	102	102	101	101	101	<u>6</u>	2 2	102	102
		F 9	102		35	3		5		201	88	308	308	5	8 2 2	6	307	306	308	308	307	309	309	505	209		; ;;	B	309	Box a	200	3	312	Ξ	:::	3 2	310	306	311	310	212	1 6	15	315
		: 9	1 2	2	1 6	1 2	i F	3 5	3 2	3 3	151	151	5	5	2 2	5	13	152	151	3	3	5	5	12		5 2	5	3	2	8	5 2	12	156	3	3	ŝ	15	152	155	151	ន	<u></u>	5	157
	#SING	8 ₽ €	15	11	::	15	35	35	::	213	213	213	212	213	212	212	213	213	213	213	213	214	214	314	2	1	215	216	216	215	216	216	216	216	216	214	216	215	215	215	216	217	218	218
	te K	8 Û	ē	Ē	5	2 3	2 3	3	3	3	01	101	<u>8</u>	<u></u>	8 9	3	101	101	ē	<u>0</u>	101	101	101	<u></u>	<u> </u>	3	2	102	102	<u>8</u>	202	<u></u>	102	102	62	2 G	102	102	102	102	<u> </u>	3 5	22	103
55 SE	etia	E	294	100	2	102	706	Ĭ	Ĩ	296	295	296	296	296	2	299	ĝ	300	301	299	30	301	ŧ0		265 265		105	6	Bös	202 202		308	307	600	21		313	314	315	315	ផ្ល	176	228	325
D 80T	Inter	ç û	1	1	1	9	3	1	3	2	911	147	147	E I	29	81	149	149	149	8	149	149	121	2	<u> </u>	3 2	5	3	5	5	3 8	5	151	<u>5</u>		5	156	127	12)	121	191	161	3	163
COATE		#6 (F)	214	110	Ĩ	Ĭ	31	Ĩ	Ĩ	213	213	213	213	213		213	214	214	214	213	214	214	215	212		52	512	213	215	51	215	215	215	216	216	216	216	215	215	215	216	917	517	217
160		9	ā	ē	101	9	5 2	Ē	101	1	101	101	<u></u>	<u></u>	33	101	õ	101	101	101	101	101	102	102	<u> </u>	101	102	102	102	3	5	20	102	2 2	23	102	102	102	102	102	23	201	1 22	103
DENSI		2 Û	288	747	287	247	249	247	267	287	267	268	269	268	R9 2	268	269	270	270	268	268	270	271		0/2		272	270	274	273	52	276	275	872	B/2	280	282	281	281	281	1	284	88	286
N) 11		2 2	E	E	2	E	12		15	13	5	131	132	<u> </u>	3 2	15	132	132	132	13	131	2	133	2	3 5	1	E	132	5	2	5 8	2	133	5	5		139	138	23	138	2 9	2 3	£	Ŧ
	but	# E	219	219	11	18	220	18	219	513	219	219	219	219	417 516	218	220	220	220	219	220	ន្ត	ន្ត	22		220	ភ	219	ន្ត	ន្ត ន្ត	ន	122	221		35	12	122	222	222			32	ន	5
	Hous	z 9	10	2	3	1	3 3	101	0	0	\$ 01	101	1 0	ě :	i i	103	104	104	1 01	1 0	104	10	0	5		5	105	104	105	2 2	2 2	106	105	106	801	30	106	106	106	106	80	5	107	107
	Rotor	11 11 11	192	11	1	17	247	17	266	266	266	266	267	997	997 797	266	266	268	268	267	267	267	267	268) F	268	268	266	22	592	38	11	571	5	32	5	276	275	276	575	[] [278	8	5
	Rear	2 9		E	2	2	3 E	2	951	8	8	<u>8</u>	1	8	2 2	12	130	131	131	5	5	5	11	3	5 2	1	5	22	13	<u> </u>	18	H	13	5	5	13	136	321	136	8	8		133	138
		#2 (F)	216	214	1	Ĩ	12	12	215	12	215	215	215	512	512	215	216	216	216	216	216	216	216		9 F	216	216	215	216	217	12	218	217	218	817	218	218	218	218	217		218	219	219
		2 Û	6	6	6	<u> </u>	20	9	201	102	102	102	102	22	<u> </u>	102	102	102	102	102	102	102	102	2 2	2 2	1 2	101	102	<u></u>	2 1	<u> </u>	101	<u>10</u>	23	3 5	3	103	103	10 1	101	20 I 10	3 12	5	10
	el ta		2	ĸ	1 12	1 2	3 %	2	3	3	26	26	2	2	9 %	5	38	34	5	2	2	2	2	83	5 7	5	2	ដ	2	5 X	1	51	នេះ	25	35	ដ	ព	21	2	7	2 2	: 13	13	ដ
		2 0	1	2	=	2	: 2	: =	: =	Ξ	Ξ	=	± :	::	: :	1	1	::	2	=	Ξ.	2	2	= :	2 =	1	12	2	= :	2 2	: 2	1	= :	2:	2 =	: 2	1	12	12	1	::	: 13	11	11
	011 C	E E	97	245	240	240	12	192	341	540	240	241	241		2 2	240	241	241	241	241	ž	2	8	5	247	5	243	243	2	Į	3¥	245	55	21	1	38	34	247	248	548	E E	2	248	12
	0i l	<u>e f</u>	1	114	114	114	12	11	116	116	116	116	11	91	2	116	116	116	116	116	2	118	911	22	3 2	: 2	117	=	= :	2 2	Ē	811	8	2 2	<u> </u>	: <u>=</u>	118	119	2	6	A 9	8	2	611
	011	a £	215	216	215	212	12	212	515	51	214	215	212		512	216	217	217	217	216	216		516	917 719		12	219	ŝ	513	2 5	8	12	2		5 2	ā	513	526	526		38	12	526	អ
	0i)	5 G	6	102	102	102	6	101	102	101	101	102	102	2 3	2 2	102	103	103	101	20	102	<u>8</u>	<u>6</u>	701	3 3	102	104	10	2	5 3	3	8	5	8 3	2 2	10	5	80	8	201	3 9	90	801	6
	lao	1 C	19	18	1	184	38	18	581	181	184	183	3	6		184	186	186	186	3	182	281	188	8	2 186	1 23	186	186	8	87	18	186	98	98	5	12	186	181	18				185	181
	00] C	- م ت ت ت	1	18		1	5 38		8	8	18	8	5	g 1		3	88	86	-8	2	8	2	8:	8 X		8	98	3		8 5	- 	28	28	3 -	8 %	8	98			: * :: *	8 2		5	
	Point C		891	140	150	151	1	151	5	5	156	157	5	6	191	162	163	164	165	166	167	891	691	28	3 2	12	12	2	2	821	6	180	<u>s</u>	29.5		381	186 1	187	8	681	161	192	193	1461

OF POOR QUALITY

G-I-9

11 UNDENSIFIED COATED ROTOR 11

.

Point Date APM Torque Torque 8HP BHP BMEP BMEP

Ŧ

	Ē	182	183	182	181	182	181	182	187	181	182	183	181	180	182	182	181	182	183	181	181	181	181	180	180	180
	3	3	8	3	3	3	18	3	3	3	58	8	3	82	3	8	38	3	8	3	38	3	3	S	83	82
	155	1558	1490	1498	1542	155	1556	155	1556	1549	1551	1551	1550	1564	1564	1568	1263	1573	1565	1565	1567	1566	1568	1565	1567	1559
	848	848	810	814	839	846	110	846	847	843	844	845	843	82i	851	853	851	856	852	852	853	853	853	852	853	848
	5	23	÷	¥	9 22	2	2	2	1 52	2	2 54	2	356	1 53	1	5	33	2	22	2	2	2	12	50	1 52	1 5 ~
	2	200	8	8	1	1	1	52 1	22	22	22	1	22	8	-		8				1	3	=	2	2	2
	- 22	32	8	5	R	R	2	2	2	R	12	22	2	81	87	82	87	8	87	22	24	52	16	68	8	89
	0 29	0 29	0 29	0 29	4 29	4 29	4 29	4 29	4 29	4 29	4 29	1 29	4 29.	9 29.	9 29.	9 29.	9 29.	9 29.	9.29.	0 29.	0 29.	0 29.	0 29.	9 29.	9 29.	9 29.
	101	101	101	101	8	8	<u>8</u>	100.	<u>6</u>	<u>8</u>	100.	0	100.	<u>10</u>	<u>10</u>	100.	100.	<u>10</u>	100.	101.	101.	101.	101.	100.	100.	100. 100.
	62	62	6 2	62	62	79	3	5	62	\$	62	3	62	62	29	23	62	53	62	62	8 2	53	62	62	62	29
	427	4 27	12	427	427	£24	427	427	427	121	427	427	123	427	427	427	123	121	427	427	427	427	427	427	427	427
	12	24	2	12	23	21	ដ	12	21	ដ	8	2	2	21	21	21	2	21	21	7	7	2	21	21	7	21
	159	162	155	51.	551	5	152	22	SH 1	30	152	159	155	141	145	145	145	145	115	145	£	841	H	541	145	145
	•	•	•	•	•	•	•	•	0	•	•	0	•	•	0	0	•	0	•	•	0	•	•	0	•	•
	•	•	•	•	•	•	•	0	•	•	•	0	•	0	0	•	•	Ģ	•	0	•	0	0	0	0	0
-		5.0		6.1		7.			-	0.	•	r.		-9-	ŗ	æ.	ς.	<u>ب</u>	'n	.7		₹.	·9.		2	Ā
	2	2		-0	Ξ	16	3	16	5	5	5	Ξ	1	=	Ξ	Ξ	=	≛	=	Ξ	::	<u> </u>	16	5	15	_
	3.757	3.733	1.792	1.717	3.534	4.031	4.006	4.006	3.832	3.733	3.733	3.658	3.658	3.633	3.608	3.683	3.608	3.558	3.608	3.658	3.409	3.334	4.131	3.907	3.782	Å
	å.å	6.7	11.1	1.1	6.1	6.l	6.1	6.2	6.4	. 1 . 9	6.4	÷.•	6.4	6.3	6.4	6.5	é.5	6.6	6.7	6.7	6.7	6.6	6.7	6.7	6.7	6.7
	22.4	22.7	37.6	37.6	20.7	20.7	20.7	21.0	21.7	21.7	21.7	21.7	21.7	21.3	21.7	22.0	22.0	22.4	22.7	22.7	22.7	22.4	22.7	22.7	22.7	22.7
	M	¥.	809	619	A	5	22	223	561	561	565	24 9	221	558	227	55	31	53	557	53	22	¥.	Å	561	3	22
	AN AN	¢.	20		¥.	90. 100	 Fi	о В	42 0.	42 D.	¥ 0.	 5	 	; €	39 O.	33 0.	29 0.	 24 0.	39 0.	39 0.	30.	Ā	Å	41 O.		24 0.
			-,	-,			~	~	-	~	m	m	м	m	m	m	~	5	м	•	~			*7	m	м
	Ă	NA	31.6	32.9	M	43.0	43.0	43.0	43.0	43.0	43.0	41.7	41.7	43.0	43.0	43.0	41.7	43.0	43.0	43.0	13.0	Å	AN	43.0	41.7	5°-04
	NA	MA	14345	14919	AN	19509	19509	19509	19509	19509	19509	18935	18935	19509	19509	19509	18935	19509	19509	19509	19509	M	AN	19509	18935	18361
	NA	M	11	2	¥	11	1	11	2	11	1	17	1	17	11	17	11	17	11	11	17	NA	AN	11	1	16
	-	:		•	0.0		.	5.6					-		.0	••	6.	6.	0.	6.	-	0.	ŗ.	•	₹.	.,
	83 83	8	50 2	2	20		8	80	œ	ě z	8	5	50 50	ž	-9 -9	20 29	ŝ	ão M	-9 -8	5	86 9-	4	ā .	2 84	2	7 83
	.7 51	5 []	ю 01	¥	3	ភ	3 7	۳. ۳	-9- 25	۳ ۲	5	5 	8. S	9. 2	33 72	7. 17	.2	3	8 7	.2	۶. ۲	5	.6 58	.7 58	.7 58	
	.2 76	.2 76	8. 23		.6 7		6.	2	.1 76	.1 76	.7 76	.7 26	52	1		6 7	11 9	5 7	6 7	1 1	6 1	4 7	1 76	2 76	2 76	7 76
	5 57	5	22	0 39	2 57	9 57	ę 21	8	•	+ 27	8 56	8	5	5	5	2 51	5	1 51	2	2	5	2	5.	5	5	3. 3.
	88.	8	3	3	ŝ.	6	ŝ.	ŝ.	8.	6	8	8	88	8	8	8	8.	8.	8	8	ŝ	8	6	8	66	88.
	121.4	121.4	82.3	84.1	122.3	121.9	122.9	123.1	121.2	121.2	120.4	120.4	120.0	121.9	122.3	122.3	122.2	122.2	122.3	122.2	122.9	122.3	121.2	121.4	121.4	120.4
	4500	1500	4 500	1200	4500	4200	1200	1200	1 200	1500	\$200	5 00	† 200	1 200	1200	1500	1200	500	500	500	200	500	1500	1500	200	500
	1/29	1/29	1/29	1/29	1/2	12	21	12	1/2	1/2	27	12	2	5	22	22	22	5	22	22	2	22	13	11	13	5
	561	196	197	198	199	200	201	202	203	201	202	206	707	208	209	210 2	211 2	212	213 2	214 2	215 2	216 2	217 2	218 2	219 2	220 2

ORIGERAL DEVELSE OF POCE QUALITY

	Air Temp	Ĵ				5	W ;		5 2			1	E N	đ	M	Ŵ	AN	đX	AN	S.	¥.	A	¢¥	¥4	¥.	¥.	¥:	Ā
	Air Tenp	ĝ	:	5	2 ;	5 3	1			9	S.	đ	W	¥	A	A	Ā	Ă	¥	A	M	\$	S	ş	Ā	¥	ŝ	¥.
	- :	3			8	35	3 6	562	Ē	281	280	279	281	182	673	281	282	283	282	18	¥82	8	B	83	B	8	53	B
	E	3		2 5	25	9 2	9 5		8		1	13	82	8	5	8	5	5	5	8	ę.	5	5	5	8	87 1 87 1	3	Z BS
	Ē.⊒	3		31	; ;	3	5	::	312	212	211	211	212	212	211	211	513	512		2	512	22	212	1	3	33	8 9	2
	Figure 1	e l	8	5 8	5 3	2 3	2 S	. 9	8	100	5	\$	8	8	66	8	<u>.</u>	ŝ	8	8	5	8	8	8	5	5 8		\$
	Rator 11	G	Ĩ	35	5 F	įź	12	276	276	276	275	274	277	112	275	112	514	6/2	82.1	87	8	5	B	62	823	88	5 8	2
		9	72.6	5 2	5 5	2	E	1	136	136	អ	134	136	136	135	136	5	5	5	5	2	5	2	5	5	<u>6</u> 8	2	9
	13	E	114		200	500	216	217	217	217	217	217	218	219	217	218	219	219	218	412	219	612	717	513	218	812	35	3
-	12 :	9	201	: E	5	2 8	2 2	101	103	103	103	103	103	1 0	101	10	10	5	23	5	5		5	5	2	20	3 5	3
	2	Ξ	111	; =	100	202		318	317	317	319	319	320	318	318	318	321	ផ្អ	2	<u>.</u>	22			121	320	119	5 5	2
	2	9	154	9	ŝ	1	2	129	158	821	159	651	160	139	159	5	161	191	3		91	2		191	9	129	5 2	ŝ
	bursn	Ξ	212	100	12	11	219	52	220	231	220	220	221	220	219	219	221	22	417	32	8	1	5	22	412	812 910	9 7	917
		9	101	i	2	10	0	10	104	105	1 0	101	<u>8</u>	<u>5</u>	101	10	51		53	53		53	5	2	5 3	103	35	3
5	10a	Ξ	104	862	302	202	328	ត្ត	Ê	Ē	Ħ	H	2	F	H	H		3	i i	3 2		2 2	5	Ē I	3	25	i e	i,
	1 1 1 1	2	143	164	151	3	191	166	166	167	167	167	167	167	167	[9]	168	89.5		8			8	8	2) 172	144	1
5	3	5	217	218	211	211	218	219	219	219	23	219	219	219	218	BIZ	61Z	R17	117	99	5	35		32	33	216	12	
1	25	2	103	101	66	66	103	1 0	5	2	10	5	104	2	101	3	5	3	3 2	3 5	3 5	35	3 3	3	3 9	2 6	6	:
	≌ ∃		290	291	266	266	290	293	293	294	292	292	292	292	291	2	8	5 5			102	i i		2	700	267	241	
5	55	2	143	144	130	8	143	145	145	9 1 1	ŧ	Ħ	£	£	Ξ :	£	2 :	2 5	2 2	2 3	2 3	2 2		23	5	2 3	Ξ	
	1 = 9	=	226	227	217	216	226	22B	522	228	228	228	228	228	228	98	96	37	337	22	35	35	i	277	97	222	52	
Hore .	* 9		108	B 01	103	102	108	109	109	601	601	6	6	6	80	<u>B</u> 5	5	5	801	8	801	3 8	2	5 2	5	201	107	
Batar	1 1 1 1 1		182	283	260	260	282	285	286	285	28	781			282	i i	ġ ģ		2	284	5	5		787		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	282	
Rear	89		138	139	127	121	139	Ξ	Ξ	Ξ	€	2	2	2 !	451	3	23		9	140	2	Ē	2	1	2	5	139	
	2		219	220	212	211	ដ	ន្ល	ន	3	12				8 2	3 5	35	35	271	222	ī	121	1.0	32	1 2	219	220	
	23	•	104	10	<u>8</u>	5	104	101	5	102	501	6	901	8	5	33	5	2 10	105	106	101	105	ŝ	3	104	10	1 0	
Deit	Ten (T		12	13	18	1	ដ	58	₹ 3	7	12	1	81	83		3 2	3 7	: 12	2	2	12	12	2,6	: 13	3	28	2	
Delta Dil		:	11	=	2	¢.	2	2	1	2 :	2 :	2:	≛ :	= :	2 3	: 3	1 2	: =	Ξ	1	Ξ	Ξ	1	. 2	=	Ξ	=	
Dil	i i e		245	249	242	5¥2	243	246	12	95	ŝ	₹ :	2	3	17	5	1	5	240	242	241	242	243	Ŧ	3ŧ0	ī.	۰.	
011	i a g		118	121	111	Ξ	117	611			8	2	93	1	91	2	911	116	116	117	116	11	117	116	116	12	116	
DÌI			12	ž	ន័	226	ជ	នី	8	31	3 6	33	93	92	312	17	312	216	215	217	216	217	217	216	215	215	216	
011	. 9		106	107	107	108	3	ě i	5	3	<u>s</u> s	<u>5</u>	2 9	7 F	2 i	60	102	<u>10</u>	102	103	102	103	8	102	102	102	102	
Cool	i s		184	<u>18</u>	186	183	18	6	8		i i	2 3		90 T T T	186	184	185	181	185	186	1 81	185	184	184	181	184	181	
Cool	ž 9		81	8	8 %	8	3	8 3	3 3	3 3	3 %	3 3	8 3	8 2	5 3	98	8	81	8	86	8	S	5	18	*	5	8	
"oint			195	961	197	198	661	202	2 2	202					508 208	209	210	211	212	213	214	215	216	217	218	219	220	

· .

UNDENSIFIED COATED ROTOR

G-I-11

APPENDIX G - II DENSIFIED COATED ROTOR DATA

÷

DENSIFIED COATED ROTOR DATA

TABLE OF CONTENTS

<u>Title</u>

Densified	Coated	Chart.	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-II-3
Densified	Coated	Chart.	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-II-4
Densified	Coated	Chart.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-II-5
Densified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-II-6
Densified	Coated	Rotor	Data	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	G-II-7
Densified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-II-8
Densified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-II-9
Densified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-II-10
Densified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-II-11
Densified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-II-12
Densified	Coated	Rotor	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	G-II-13

:

1

Densified Coated

(m*N) euproT

Densified Coated

ł.

G-II-4

Densified Coated

G-II-5

(Thousanda) Speed (רחm)

	78 80 79 80 80 80 80	30 23 23 23 23 23 23 23 23 23 23 23 23 23	13 13 13 13 13 13 13 13 13 13 13 13 13 1	
2] [9] [[]	81 1 82 1 82 1 82 1 83 1	No. <th>2232522 233522</th> <th></th>	2232522 233522	
Exh C Teap (F)	1270 1460 1426 1435 11355 1215	1206 1206 1515 1515 1515 1515 1515 1515 1515 15		1000 1000 1000 1000 1000 1000 1000 100
Exh Teno (C)	653 653 653	652 662 732 732 732 818 811 771 771 778 818 811 771 778 818 81	5555E	2012 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
In Temp (F)	12 24 20		0000000 000000000000000000000000000000	8848888888888888888888888
C)		0	1127 <u>z</u> .m	99309**95039939*9
Humid (2)		8 8085888888888	*****	89899999999999999999999999999999999999
Baro pres (in-hg)	29.83 29.83 29.83 29.83 29.83	29.92 29.31 29.37 29.37 29.92 29.92 29.92 29.95 29.85 29.85 29.85 29.85 29.85 29.85 29.85 29.85 29.85 29.85 29.33		55555555555555555555555555555555555555
Baro pres (kPa)	100.7 100.7 100.7 100.7 100.7	101.0 100.7 100.7 100.5 100.5 100.0 101.0 100.7 100.7 100.7	100.9 100.9 100.9 100.9	0.001 0.
Dil pres (psig)	4 2 2 2 3 3	9 999999999999999999999999999999999999	5 5 5 5 5 5	
0il pres (kPa) (424 424 424	**************************************	00303	++++++++++++++++++++++++++++++++++++++
Cool pres psig)	******	2 2128288822239	5528555	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Cooi pres (kPa) (97 97 97 90 107	107 90 90 113 124 117 117 117 117 117	0 0 0 0 0 0 7 4 - 0 9	510445400566650058666666666666666666666666
Blaway pres in/H20)	000000	0 000 0000 00000		0.00 1.00 1.00 0.00 1.00 0.00 1.00 0.000000
Blowoy pres (kPa) (0.000000000000000000000000000000000000		000000000000000000000000000000000000000
Exhaust pres in/H2D)	- 4 C 4 O 0		0 (4 2) U3 (5 0 (4 2) U3 (5	
(khaust pres (kPa) (0.1249 1.493 0.547 1.095 0.199 0.199	0.747 0.747 0.747 0.747 0.747 1.418 0.747 1.493 1.493 1.493 1.597		6 0 10 0 11 0 10 0 0 0 0 0 10 0 0 0 0 0
ntake E pres in/hg;	++ ritoria coso- c ++ ritoria coso - c	a	· · · · · · · · · · · · · · · · · · ·	0.412.016.016.016.000.000.000 NNN1.016.016.000.000.000
ntake Ir pres (kPa) ()	48.8 17.5 29.8 50.1 50.1	2012 2012 2012 2012 2012 2012 2012 2012	1. 1. 1. 1. 8 1. 1. 1. 1. 1. 8 1. 1. 1. 1. 1. 1. 8 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
BSFC [(1b/ hp-nr)	0.686 0.566 0.556 0.554 0.554 0.873	0.968 9.964 9.964 9.541 9.531 9.536 9.550 9.550 9.5555 9.555 9.555 9.555 9.555 9.555 9.555 9.555 9.555 9.555 9.555 9.5555 9.5555 9.5555 9.5555 9.5555 9.5555 9.5555 9.5555 9.5555 9.5555 9		
BSFC g/kWn) b	5 # \$ 6 6 6 F 6	8 8 8 8 8 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		8846635688568855
fuei Flam 55/hr) (15.1 15.1 15.1 15.1		· · · · · · · · · · · · · · · · · · ·	
ei be (hr) (1)	8886 8197 1323 1323 1474 1686 1686			
12 - E			11 A 11 A ==	
Fuel Flow Rate (1		° "21\$111111	(1 72 C1 23 23	-247942962996292222
BMEP	28, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		
BMEP (kPa)	285 270 195 195 195	198 390 552 552 552 552 552 552 552 552 552 55	75638	
8HP (hp)	1211 1211 1211 1211 1211 1211 1211 121	21.0 21.0 43.3 43.8 43.8 43.9 20.5 20.5 20.5 20.5 20.5	33422A	202030205002888029999999999999999999999999999
8HP (KN)	12.8 38.3 38.3 38.1 12.8 13.0	512577777 51257577777 51257577777 51257577777 51257577777 51257577777 51257577777 5125777777 51257777777 51257777777777		<u> </u>
Torque (1bf1ft)	30.0 30.0 30.0 4	C.02 8.5.9 8.5.9 8.5.9 8.5.9 8.5.9 8.5.9 8.5.9 8.5.9 9.1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	5.55 5.55 5.69 5.60 5.60 5.60	888 1246 1246 1246 1246 1246 1246 1246 1246
Torque (N1±)	40.7 122.0 81.4 40.7 41.2	41.4 42.7 31.4 31.4 89.4 89.2 115.3 68.1 15.3 68.1 15.3 68.1 15.3 68.1 15.3 68.1 15.3 68.1 15.3 68.1 15.3 68.1 15.3 68.1 15.3 68.1 15.3 68.1 15.3 68.1 15.3 7 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11	22352	
RPA	tor 3000 3000 3000 3000	3010 35500 35000 35000 35000 35000 35000 35000 35000 3500000000	4	
Dint Date	Coated Ro. 5 2/29 8 2/29 6 2/29 9 2/29 9 2/29	10 2/29 10 2/29 10 2/29 10 2/29 10 2/29 10 2/29 11		
- i	<u></u>			

at densifies conter foror at

1

ORIGINAL PAGE IS OF POOR QUALITY

Δ1.r	Teap (F)		81 84 85 85 85 85 85 85 85 85 85 85 85 85 85	84228228228	5: 6: 6: 5: 2: 6: 6: 5: 6: 5: 6: 5: 6: 6: 5: 6: 6: 6: 5: 6: 6: 6: 5: 6: 6: 5: 6: 6: 5: 6: 6: 5: 6: 6: 5: 6: 6: 5: 6: 6: 5: 6	8 2 2 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
415	(C)		21 23 30 23 21 23 24 21 23		8 6 8 6 8	0 5 8 5 5 5 5 5 5 5 5 7 0 0 5 7 5 5 5 5 5 5 5
	E G		228 228 228 228 228 228 228 228 228 228	221 222 222 222 222 222 222 222 222 222	* 5 5 5 6	88878877887888888888874
	₩ 9		108 118 118 125 107 108 108	HEES 85555555	61 6 8 6 3	
	23		191 202 196 190 190 224 223	193 193 204 201 193 204 201 193 204 193	*00 01 18 19 19 19 19 19 19 19 19 19 19 19 19 19	8811282282282182
, Hau	<u>5</u> 5		88 94 98 88 105 105	83 64 64 64 64 64 64 64 64 64 64 64 64 64	888888	3833366688686868686
Roto	ΞG				95825	
Frant	<u> </u>		106 1126 1126 1126 107 107	1 6 6 7 7 7 7 7 6 6 7 1 6 6 7 1 7 6 6 6 7 1 7 1	38532	<u> </u>
	E)		194 207 205 194 194	196 196 196 196 196 196 196 196 196 196	E 1 10 7 6	
	39		90 90 90 90 90	16 10 10 10 10 10 10 10 10 10 10 10 10 10	82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	355688888856885886888888
	(L)		254 254 255 257 257	281 281 281 281 281 281 281 281 281 281	HEREE	86666655685558688888888
	6 4 Q		123 154 125 125 125	220222222222	193565	446444444444444444444444444444444444444
out su	E (-		198 203 208 199 199		\$115 1 8	
te Ho	8 ĝ		22 22 28 28 28 28 28 28 28 28 28 28 28 2	5 10 25 8 8 5 6 8 8 10 10 5 10 25 8 8 5 6 8 8 10 10	8.28.538	1102 1102 1102 1102 1102 1102 1102 1102
aed 1 à	(E)		255 256 255 255 255	252 252 252 252 252 252 252 252 252 252		
Inter	C		122 153 124 128 128		55555 55555	181 181 181 181 181 181 181 181 181 181
	3 (j.		198 208 205 198 198 199	10011001100100100000000000000000000000	323348	
	2 Û		88 8 7 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	* 5 0 0 5 6 6 6 6 5 6 F	8 5 8 5 8	100 100 100 100 100 100 100 100 100 100
	3 E		222 222 222 222 222 222 222 222 222 22	868888888888888888888888888888888888888		
	2 9		108 117 117 117 117 117 108 108 108	4883 4 44444	953 22	
but	1		196 202 203 196 197 197	200 200 210 210 210 210 210 210 210 210	303 05	
Hous	# 9		91 74 91 92 92	29 20 20 20 20 20 20 20 20 20 20 20 20 20	101 50 50 50 50 50 50 50 50 50 50 50 50 50	801 100 100 100 100 100 100 100 100 100
Rotar	#3 (F)		221 222 223 223 223 223 223 223 223 223		8666 8	
Rear	1 2		105 113 113 113 113 113 105 106		05083	666686666666666666
	£ Û		193 208 198 193 193	197 201 215 204 205 212 205 1135	208 2019 2019	8885386586888888
	ũ 🕻		89 96 90 90 90 90	92 94 95 95 97 91 97 91 91 91	55 10 10 10 10 10 10	2010 100 100 100 100 100 100 100 100 100
Del ta Di l	Tenp (F)		=====	1 1 2 2 7 7 8 7 8 1 7 8 1	អនុងយុម	8868888888888888888888888888888888888
elta El	90		► 6 1 1 4 1 7 4 8 6 1 1 7 4 1 7 1	*U3/100017/20	일플일괄@	2264255552352325
0 [] []	E E		221 226 228 228 228 227 227 227 227	88288888888888888888888888888888888888	54245	4423444444444444444
0i1	jų į		1115 1116 1118 1118 1118 1118 1118 1118	6226729767	999999 99999	
110	<u> </u>		208 218 214 214 214 215 216		199955	92289222298828888
110	<u>.</u> 9		98 103 103 02 02 03	2 NN CO	38888	
Cool	i e	tar	182 184 183 183 183 183 183			
Cool	i C	roy pa	88 88 88 88 88 88 88 88 88 88 88 88 88 8		3 8 5 7 8	***************************************
Point (1-Coate	N 8 9 7 7 9 1 4	2''f 5 8 5 2 3 6 7 -	3698 3	

.

DENSIFIED COATED KOTCK

100	۳	9	181	181	8	181	183	18 1	E I	182	<u></u>	181 1	28 I	10	3	23	22	3			183	<u>1</u>	E	13	3	182	<u> </u>	5	121	6	1 6	183	181	ដ	63	2	6	<u> </u>	2 i	3 5	8	191	181
Cool	5	<u>e</u>	18	. 8	83	83	2	3		8	83		8	3	83	5 3	33	5		5	8	19	13	Ē	5	53	5	13	3	56 16	3 2	18	83	83	83	5	78 1	3 2	3 3	5 2	5	34	91
Exh	Teap	G	1553	1550	1546	1548	1552	6551	1221	155	1551			3	3				1546	122	1551	1549	55	5	5	5	99	5	5	1220		1549	1546	6 † 31	1351	2221	1546			2012	1550	133	1547
u.	Tenp	<u>e</u>	845	843	841	842	844	848	812	846	844	2	848	847	18	5	6	2	8	8	3	313	115	2	112	755	Ŧ	344	10	8 4 3	19	843	:13	317	213	2	842	798	878 , 10	2 2	1 1 1 1 1 1	845	34:
5	leno	£	51	8	51	5	វិ	\$	ន	5	7 5 1	8	5	5	C† 1	3 8	2 2	K I	នេះ	5	5	ព	23	.0 1	5	5	20	53	55	19	5 17	53	66	3	4 9	90	99 I	2 :	3 5	58	; ;;	5	5
<u>ب</u>	[GBO	<u>e</u>	=	=	:	5	2	o - 1	2	2	12	1	= :	=	= :	2 :	= :	= 1	2	2	11	12	12	12	*	1	2	1	2	2 2	: :	: :	61	18	81	5	61	1	2 5	2 £	: 2	1	2
haud		3	Ş	7	54	¥	¥	Ţ.	Ŧ	22	F 1	3	ន	9	13	3 8	2 9	2	58	8	2 B	21		3	đ,	5	3	23	28	89 P	9 8	19	ទ	20	ខ្ល	2	ន្ល	2	25	35	5	22	11
Baro 🕴	pres	(by-ut	29.53	29.49	29.49	29.49	29.49	29.49	29.49	29.49	29.49	29.49	29.53	23-62		7. T	YC. Y2	4C. 42	29.59	29.59	29.59	23.57	23.59	23.62	29.70	24.70	29.70	29.67	29.57	29.67	21.01	29.67	29.67	23.67	29.67	29.67	29.67	29.55	29.55		29.55	29.56	29.56
aro	or es	(kPa) (99.7	9.6	9.99	9.9	99.5	9.9	9.6	9.6	99.6	9.6	1.99	1. 19	1. 66	1.44	4.4		6.99	9.9	99.9	6.99	99.9	00.0	0.3	00.3	£.0)	00	2.0	00.2	100	00.2	00.2	2.00	1.00	2.00	80.2	94.8	8.66	0 C	8.99	9.9.8	B.99
011	pres	(6120	62	62	62	82	42	62	62	62	29	29	6 2	9	3	7	29	79	3	62	62	29	62	17	82 1	1	29	29	62	33	3 2	:3	62	6 2 1	29	79	5	62	3 :	35	; 73	;3	62
0il	bres	(kPa) (427	421	427	427	123	427	121	427	124	124	124	427	454	17	2	171	£5}	12	124	D.	124	13	427	124	427	124	124	<u>1</u>	10	427	124	124	121	4Z1	121		124	121	124	124	427
Cool	pres	(b15d	54	24	24	5	54	5	5	51	24	7	23	5	ខេរ	1	នរ	3	23	5	52	75	73	75	5	đ,	74	2	24	5	5 K	2	ព	អ	ខ	97	ខ	23	12	3 2	3 2	23	ព
loo	ores	kPa) (162	162	165	162	162	162	162	162	162	152	172	153	21	71	69]	167	21	2	12	165	55	52	5	:55	165	33	165	165	69	169	169	169	87	821	821	E		145	591	149	172
lowby (pres (n/H20) (0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	٥. v	0. Ú	o	0.0	00	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Iowby B	pres	kPa) (1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ū.Ū	ů.ľ	ŋ.ŋ	0.0	Ú.Ú	0 .0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0
chaust B	res	/H20) (I	12.5	12.4	12.7	12.8	12.5	12.5	12.6	12.4	12.5	+ •	12.9	12.7	E 1	1.71	12.3	12.4	12.2	12.4	12.3	12.5	2.2			i.i.	12.6		12.5	12.2		12.0	12.0	Ш.5	12.0	11.3	11.7	10.2	10.5	8.01	10.5	10.5	10.5
haust En	res	kPa) (ir	.135	980.	.160	.185	.135	н.	51. 11	.086	.111	533	. 185	.150	199	.160	182	, 086	.036	.086	.061	. 786	. 3 <u>65</u>	6	537	1	2	10.	H		101	196	936	352	996	121	116	B.1	213 1	/ 90		515	513
ke Ex	۰ م) (bų	ы. 1	.5	n	• · · ·	m ₹.		~	רי ד.		••	n In	(1) (1)	• • • • ?	د د	י יי ני	ni ni	ю В.	roj roj	יי הי	۲.1 ۲.1	· · ·	() 0	•••	11 19	13 12	יי פ	ri mj	~~ ~ ~ ~ ~	- 	i ri i ng	ei er	ei 19	ri m	ei m	ei ug	гі - 	ci e Qi	ii. Ng n	; .	ri .a	ri q
inta	pre	/ut)	-0	-oi	-0	-0	-0	-o	¢.	, O	-0	-o	-0	ġ.	-0	ġ	-o-	-o	9 .	-o	ò	ò	-0	'n	r.	ò		· i	è.	-o-		فہ ز	¢.	ġ.	ŝ	, o	ò.	ف	~ .		j -d	-o	<i>.</i> ,
Intake	pres) (kPa)	22.4	22.0	22.7	21.7	21.7	22.4	21.3	21.7	1.J	21.7	23.0	22.5			22.0	0.55	23.0	23.0	23.0	0.11	1	ń	25			Ē	2.12	:: :::	2 E		Ē	с. Ц	<u></u>	7.	9. 21. 21.			7.42	0.12	Ē	Ē
BSFC	(1b/	bhp-nr	0.552	0.547	0.561	0.559	0.560	0.544	0.541	0.546	0.553	0.55	0.556	0.11	0.54	0.558	0.529	0.538	0.538	0.538	0.538	3	557	÷	0.543	22.0	J.544	0.53	0.549	0.548		0.543	9.549	9.5.6	0.546		9:5:0	0.55	0.551	0.221	155.0	0.576	0.533
B 5FC		g/kWh)	342	222	342	340	340	13	329	111	111	335		511	R	5		121	327	327	13	Ĥ	: `	ß	13	R	ii.	13	1 22	81	à	313	Ē	Ē	Н	13	Ē		67 6 67 6	31		326	121
Fuei	Flow	bs/hr/	43.0	41.7	43.0	43.0	43.0	43.0	43.0	43.0	13.0	43.0	43.0	11		• · · ·	1.14	1.1	41.7	11.7	∓	; : ;		11		11.7		. .	41.7			1.7	11.	; :	÷.1+	· · · ·	11.7	41.7		/.14		10.5	10.5
le l	HO.	/hr) (1	9509	8935	9509	9509	9509	9509	9509	9509	9509	9509	9509	23.5B	3322 8322	9203	3935	8335	8935	8935	3975	3735	3375	3975	5535	8935	3168	3335	8975	8935 6975	22.48	5268	3935	3375	89.55	8351	51.63	8935	3975	6435 0075	5268	3 361	8351
ei Fi	ON F	16) (Z)	1	17	17	17	17	17	17	1	17	17	17	1	1	2	6	17	17	-	1	1		5	::	1	17	 11		- · :	1		17	17 1	17 1	16 1	17 1	1	51			16	16 1
P L	Œ	L) Rate	ŗ	6.	ŗ.	b		0.	'n.	.7	ν.	6.		'n		.	<u>.</u>	4	· ?	• ?	• ?	.3	÷	()·-		• ?	-+	' ?	°.	ngia		ים י	4	12	.	• •	ŝ.	4					"
P BYE		a) (ps	8	8	1 84	4 84	а 19 19	0 87	3 87	8 8	93	2 82	7 85	5 5 5	777 (F		3	82	85		5	8		8	11 11 11	91	₩.	÷.	81.	88		3 63		13	5		83.			200	3 63	1.2	* 6
He Be) (KP	5 58	1 51	6 58	83 8-	9 58	1 60	5 60	8 59	7 58	1 59	នះ +	83 	នេះ ច	27 : 	83 67	53 - 7	តិ ហ	8	89 69	23 14	ů.	1.; • •	11 1 1	3 9	21	3	0 57	5 i 	3 G • •	; G	0 572		8	5	5 0	15	G (à ti Nh	5 (5 . 07	5	ទ
BHP		d J	76.	76.	76.	76.	76.	5.	ĕ.	- 78.	1.	.B.	Ξ.	2.	76			1.	11.	1	77.	1.	36.	, [,]	2	0	.0.		76.	2:	ż x		.0	R.		12	76.	3.	ri :	e r		ŭ	76.
BHP		(88)	57.1	56.9	57.1	57.4	57.3	59.0	5.65	58.8	58.0	58.2	57.7	1.5	5	11 23 23	E.12	57.9	57.8	57.8	57.3	51.5 2	+.::	3		:;	11		56.7	56.3		56.33	53.7	55.7	1.;	26.4	55.7	5	3	3 :	ĩ	56.4	11
Torque		lbf8ft)	£.98	89.0	89.4	89.8	89.7	92.3	92.B	92.0	90.7	91.1	2.06	90.0	9. F	0.04	90.4	90.0	90.5	2.09	30.5	:0:	59.3	::	21. D	÷. f	2.9B	89.4	88.7	6.99). 4	6.98 6.98	6.8.7	88.3	69.3	38.J		68.3		+. 68		5 8 .3	89.4
anbuc		(IL)	1.1	70.7	11.2	8.15	1.6	22:5	35.8	34.8	33.0	23.5	+. 2	2	5. 21		49 I 1 I	-	1.7	1.1	2	54		2.1	5.6	•••	† . I	1.5	1.0	5.0		10	0.1	•••		r: •	2.5	6.7	6.6		0.0	9.5	1.2
PH IC		-	20 02	200 12	500 12	500 11	500 11	200 12	200 17	200 12	1005	200 12	200 12	500 1.	1 005	000	200	200 12	11 005	200 12	21 OO1	20 12	EI 001	2 03 201	1 0	1 01	500 12	21 005	100 12	500 12 500 12			21 02	21 00	CI 003	H 03	100 12	11 001	II 001	11 000		11 00	1001
te RI				*	4	*	*	¥	¥	¥	¥	¥	¥	¥ 2	;	÷ 2	• •	2	¥ 2	•	4 0	¥ 2	₩ 9	1 01	#	**	57 	#	¥ =	**		: 4	:# 	4	:? -	₽ 	4	¥ '	¥ 5 •			4	¥
Point Dai			41 3/5	42 3/5	12 24	44 3/1	45 3/	46 3/	47 37	48 3/V	46 3/1	50 3/1	51 3/1	1/2 23	12 23	11 12	12	29 3/	57 3/1	1/2 85	59 371	50 3/1	61 3/1	11.12	112 29	54 3/1	55 3/1	56 3/1	o7 3/1	1/2 89		1/2 1/	1/2 2/	112 27	1/2 1/1	172 SV	76 3/1	11 3/1	1/2 B/	1/2 4/	81 272	82 2/1	87 7/1

DENSIFIED COATED ROTOR

I.

OF POOR QUALITY

	ALC	Teap	3		3	8	82	81	83	69	70	2	11	11	2	11	1	78	76	76	1	82	78	8	80	30	83	9 6	90	88	88;		: 5	8	52	55	56	96	16	81	R 1	21	88	8 8	3 6
			3		9	8	38	27	28	21	51	5	52	22	5	3	ន	26	54	24	25	26	26	51	27	52	28	30	32	31	= :	3 5	:=	2	12	ŧ.	Ē	36	35	F	38	17	= :	7 F	3 5
		12	a		ន្ធៈ	8	33	8	98	88	68	28	87	88	88	6	8	ត្ត	88	2	2	2	2	E	10	£	6	2	0	8		ο α		~		8	8	7	80	1			0 0	r c	> o -
		1	- 			7	12	2	1	12	13 21	1	12 21	22	22	22 ·	2 2	12	53	32	22	52	3 29	28	12	8	8	57 2	3 29	2 2B	88	2 P	33	5	2 23	2 28	2 28	2 23	2 28	23	1 83 7	• 5	2 5 5 7	3 8. 7 M	3 R3
	2	2	- -		-	=	- 9	2	1		1	=	1 2	1	=	= 2	=	= ::	1	-	=	Ξ	Ξ	2	*	* *		= +	-	2 14		: = , r	: = . m	2 14	En	=	= 	2 14	=	5 1	: : : :	= : - :	 :	5 2 7 M	: =
	Housi	12	ວ ວ			5	99 2	99 2	01 2	01 2	5	5	8	2	2	ក ខ	5	12	12	12	12	11 21	12	0 21	12	1 21	- =	1 21	1 21	0 21	;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	35	 	0 21	1 21	1 21	12	0 21	1 21	12 0	77 0	ក ៖ 	FT F 	3 7	
	otor	=	Ê.		•	28	82	11	1 62	8	82 1	82	16 11	≍ ಜ.	≍ 8	≍ 8 :	3 8	×	20	32	22	32 10	22	01	11 10	22	2 2	2	1	10	2 : = :	29	2	1 10	2	2	2 10	9 10	2 1	2:	2 : 2 :	2 : •	2 S + P	2 9 7 M	: 2
	ont ñ	Ξ	ີ		2	25	2	36 2	37 2	38 2	39 2	37 2	2 12	8	23	73 13	13 13	2 22	38 21	39 21	5	39 28	12	ස ස	29 23	23 23	11 12	8 9	2	53 58	22 F	9 8 9 8		82 88	82	21 29	22 22	13 13	83 99	83 1 89 1		8 8 9 4	23 8 9 9	3 8 5 8	
	ŭ	12	Ê		2	6	81	8	1	19	20	17 1	18	16	16	-	13	16	19 1	20 1	20	50	20	61		5	21 21	- 8	- 2	13			5	8	E E	22 28	6	8	6	입 : 명 :	8	= : 2 :	22		
		10	с С		3	5	03	03 2	50	04 2	6	03 2	03 2	5	5	2 I 12 I	5	5	5	94 2	5	24 2	5	33 2	10	11	친	57 75	N X	12 21	22	3 5 2 12	5	3 21	5. 51	ក ២	51	2 2	77 17	23 12	ក : ភ :	년 1 호 ·	51 7 11 1	3 R 2 2	រ ក - =
		0	Ē.		2	2	2	51	20	22	24	20 1	1	17			-	5	27 -	58	- 83	29 1	5	- 2	= 22	= =	=	= 13		= 81		:≍ :≾	12	11 42	2	55 IG	2 2	2 12	2	2 : 	2:	= : = :	≝ : e: :	19 53	: <u>9</u> 2 0
		6	3		יי ה:	5	61	61 3	2 09	61 3	62 3	60 3	61 3	19	5	5 :	79 79	52	17 13	5	5	22	5	13	13	13	년 18	1 3	11 12	12	5	3 14 5 12	12	12	14 12	13 12	13 •±	12 12	5	121 121	-e -	9 I 9 I	13 F 13 U	3 F	2 2 9 - 49
	but		i.				2	12	15 1	18	18	16 1	17				1	3	17	21 81	18	81	19	21 91	1	31 E	5	8 16	816	7 16	2 2	7 16	81	7 16	3 16	5 15	5	9 16	9 16	91 : 91 :	21: 51:00	91 :	8 2	2 :: 0 13	91 P
	Hous		3		39	7 70	02	02 2	02 2	01 2	03 2	02 2	2	2 2	2	23 23	2	22	22	22	12 23	3 21	12	21 21	12	83 12		22 22	2 2	ដ : ១ :	77 77 77	5 77 7 19	12	3 21	3 21	13 19		4 21	ਜ਼ +	ក រ ច	11 H 17 H	ा । •	ा ह ७ म	1 F.	
-	diate	-	2	5	58	2	24	2	- 8	- 24		=	а Н	= . ព្រ	= 3		-	= 3	= 	E E	= =	28	11	3 22	13	-14 -15	22 27	2	3 8	2 : [2]			9 10	10	10	2 E	2 9	01 E	2 8			2:	22	22	: 2 . 15
I NOT	terae		3		2:	•	55	5	56 3	67 3	67 3	66 3	67 3	ы 93 9	5 5	ы і Са !	2	53	++i 193	5	5	26 26	5	5	14	12	2	8 2	2 2	::: ଜୁନ	31	3 12	1	5	6	9 9		13 i 	3	2: 0:	13 I 0- 4	3:	3 f: - 5	3 63	: 13 - œ
1ED %	1	2	2			2	16	1	12	61	19	18	1 61	22		 - :	2		18	19	50	16	16 17	11	22 22	2 6	:: ::		6	2 : 5 :			0	9 16	9 16	2	2 2	6	2			2 : B :	U		91
COA1			3		3 8	3	3	5	5	5	5	03 2	64	51	5 :	22	2	5	03 2	5	04 2	04 2	94 2	5	14 13	3	つ 式	н З	64. 75.	77 4 75 1	9 8 2 2	5 6 2	2	₹ 5	57 27	छ। इ.	:: 	हा । इ. :	53 27	51 i # :	त्र २ इ. २	ा २ इ. १	ಷ ನ ಕ ನ	1 F3 t 12	
IFIEI			2	5		2	1	22	#	95 1	1 95	1	95 1	1 98 98				5	5	97 1	- 16	96 1			 12	:: ::	23 133	22 22	≍ 8	≍ : ≿ :	2 2		5 10	2		2	≌ rr:	2 : e :	2	22 25 1	21 21 5	4 4 9 4	2 : 9 9	: 2 ? 5	: ::: : :::-
DENS		5	2		5 5	2	2 2	\$	€1 2₽	24 12	2 4	46 2	4 6 2	4 1 10	•		• •	F 7	1 6 2	12	24 13	17 2	64 12	č.,	14 12	21 22	Р. С	12	55	ы 2 1	9 P 2 D	: 2	1 25	5	5	12 15	ng i	80 I 89 I	5	27.8 00.4	53.5 10.0	36 7-0	35	13 I 1	. 80 . 80
Ξ		- 1	2			3 1		1	21	29 1	- 22	29 1	29 1	 8 8	- 	 8 8		- 23	 ₽3	- 20	- 8	- 62	а В	≓ B2	2 51	24 55	2 0	2 3	Ξ 3	= : 8 9		: = : ::	=	н. 9	2	= 0	-	= : ::::::	-		= : - :	1 : 9 :	5 2 	: : :	. =
	ousin	-	5		38	5 :	60	88	6	66	10	09 2	63	10	~ · ·	5 8 5 8	51 (25 (5	54 55	2	24 2	3	2	5	ह	21 25	2	24 0	2 0	2 2 0 9	3 F 2 C	: ដ • •	0 23	0 23	81 0	0 -				31	31	31	3 E	: R	: 13
	tor H	2	2	10		2 1	22	1	1	85	87 1	85 1	8		 23 :		- 		88	87	89	ž 98	 88	۲ ۲	:: :3	2 22	= 53	=	=	= : :::::::::::::::::::::::::::::::::::	≍ = 8 8		11		= 8	∷ ::::::::::::::::::::::::::::::::::::			= €	= :	= :	==	2 2 2	: = : :::	. ::: :::::::::::::::::::::::::::::::::
	ar Ro		3	1	9 F	5	24	39 2	5	4	42 2	41 2	4	≈ : ⊊ :		2 C	- 	F3	F3 ₽	6 2	2	3	5	73 2	23 27	23 52	ਸ 2	ਸ 21	임 : 도 :	22 : 22 :	2 F		12 28	22 22	23 52	년 1 11 1		8 : 9 :	2 2		2 8 2 8	5 8 5 5	58 25	: 23 : 12	3 28
	ž		2	5			2	5	22	22 1	- 13	21		 ល រ		83		-	- 2	12	1	÷ z	- 22	= =	= =	2 11	2 51	22 5.4 (≞ : ⊡	= = = : : :	= = = =	1 E1	= 11	Ξ. 13	ш. на			= : :: :	= : + :	Z : [4 6		5 2 • •	1 I • •1		E n
		8	3		4 C 5 2	33		ž	5	36.2	28	22	2 2	29	9 1 9 1		5 i 2 i	21 12	22 22	53 92	;; ≠9	5	53 19	เล เว	84 197	-0 -0	-0	-1-1-1 -40	-0 -	-0 4	, 	53 -0	6 22	4	년 - 10	- o		51 51		9 E	38	- r 1 F	3 E3 e	: 53 -0	- 51 - 40
1	: _'		-	2	3 6				∓ 83	= 8		≍ 82	≍ ::		= : 9 9		= : : :		≍ ∞	×	≍ œ	≌ œ	2	9 E	5	51 6	3	6	6 10	29	29	01 E	6	6	ິ ຄ	2 : m (2:	2:	23	2 2	29	2 5	29	9 9 9	0 0
	5	e Te	-		2 2	3 1	<u>g</u> :	2	-2	2	2	2		2		<u> </u>			-0	-9	4	4	-9	-9	 	 		- 0 -		- 1 - 1	0 4 0 4	0	۲٦ م	. 1 . 10	() -0				9 (0)	4 C		ас. а.,	••••	- ci 0	-0 -0
i e	13	it Ten	-					5	~	-0	-9	Ś	no.	-o u		•				-			~					_	_			_	_	-			_					-		-	
		a : :::::::::::::::::::::::::::::::::::	•	2	57	5.2	8	8	87	5	9 24	8 24	7. 8	5. C	5 i 0 i	5 7 0 0	57		75 - 10	5	5 6	5	74 54	73 09	77. 110	ř.	Ť.	7. i	7. i	ži		12	8	З. Б						27	17		88	E	E
	3	3	-	-		= : • •		=	1	≕ 8	= 8	7 11		::: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	::	= : • •		∷:: 	=	i≍ BB		≞ œ	Ē	= 9	=	= 	Ξ.			= :		E	Ξ	E	Ξ	<u> </u>	=	31	=	= =	2 2	: :	:::	113	8
	0		-			3 i 2 i	2	2	2	31	5	3 21	17 17 17	5 7 7 F		7 7 7 4	5 8 7 6	53	2	3 21	77	1 2	й н	5	5	ਸ਼ 	77 - 17 17					211	515	5	12	1	3	11	Ĩ	35	35	12	18	Ξ	8
	6		2		: :	= :		2	10	9 10	2	5	2:	9 9	23	29	2:	01 : 9 :	6 10	0 9	9	9	2	9	2	2	2		23		22	10	2	2	2		2	22	23	35	3 5	18		102	101
	1 Coo	a i	-		: :	2	2	8	8	8	<u></u>	81	≞ :		9 9	<u>n</u> ú	9	2	8	Ē	Ő	8	œ	8	ίų 	ē	ŭ 1		<u> </u>	8	6	381	18	8		1.1		10 1	8 G	4 S	13,	181	185	135	135
	t Coo	Ë	3		53	53	5. 	8 8	5 86	6 86	7 -86	8 23	6 6	8 d o -	88	3 4	2 2 2 -	8	සි ර	8	88	8	98 ~	8 6	85	98 0	.:	13 H	ទះ	5 3	5 8	8	8	53	8	38	3 8	f 3	8 8	5 8	3 #	38	3	នា	50
	Poin						•	÷	4	÷	-	Ŧ		ករី		16	÷ 0	5	8	ភ	3	3	5	90	9	55	2	÷ :	3 :	87	. 89	69	2	-	21	21	: :	22	5 t	: "	2 2	: 98	3	82	8

.

E P Cool	871 861 871	181 182 179 86 179 86 180	181 182 182 182	181 181 181 181 181 181		
Ccol (C)	81 81 81 81 81 81 81 81 81 81 81 81 81 8	3325 23				3 13
Erh Temp	1245 1405 1299 1272	1424 13204 1320 1320 1320	1466 1512 1514 1514 1512 1512 1513		1551 1552 1553 1554 1555 1555 1555 1555 1555 1555	5 E
Tens (C)	674 763 704 689	773 707 704 693 763	797 822 824 734 748		344 847 746 848 848 848 848 848 848 848 848 848 8	25
en generation (F)	5 8 5 F	4 7 7 7 7 F	3 3 2 2 2 2 2 2	52 68 68 69 69	8 3 2 8 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 I Z
		404-50	<u>• 111777</u>	=======	19995 5555568656555	1
Human (2)	5 8 8 8 8	18 35 18 18 29 18	8848886	5 23 53 23	26 29 26 26 26 26 26 26 26 26 26 26 26 26 26	28
Baro pres (in-hg	29.76 29.88 29.70 29.70	29.73 29.96 29.88 29.73 29.73 30.03 29.75	29.88 29.76 29.76 29.76 29.88 29.88	30.03 29.99 29.95 29.96 29.96	29.95 30.03 30.03 30.09 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.00 30.00030.00030.000030.000030.0000030.0000000000	29.55
Baro pres (kPa)	100.5 100.3 100.3	100.4 101.2 100.4 100.4	100.5 100.5 100.5 100.5 100.5	101.4 101.2 101.2 101.2	101.2 101.4 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.7 101.7 101.7 101.7 101.6 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	P. 66
011 pres (psig)	62 62 62 62	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	62 63 63 63 63	62 62 62 62		1 12
Uil pres (kfa)	1910 1910 1910	434 427 451 451	427 427 427 434 434	427 427 427	66666666666666666666666666666666666666	124
Cool pres (ps1g)	5 2 2 2 2	17 18 18 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	22 23 29 19 20 19	<u> </u>	******************	ង
Cool pres (kPa)	107 107 100	114 110 124 121 121 121		51 E E E E		12
Blowav pres (in/H20)	0.0 0.0 0.0	0.0000000000000000000000000000000000000	0.00000 0.0000000000000000000000000000	0.0 0.0 0.0 0.0		9.0 9.0
Blowby pres (kPa)	0.0	0.000000	0.00000	0.0 0.0 0.0		9.Ŭ
Exhaust pres (in/H20)	MA NA 0.2	4000-4 04000	4.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1	11.0 12.3 12.3 12.3 12.3		10.1
Exhaust pres (kPa)	0.000 0.000 0.050 0.249	1.120 0.647 0.647 0.647 0.573 1.120	1.170 1.817 1.817 1.391 1.566 0.423 0.299	2,727	1.160 2.787 2.787 2.788 2.788 2.788 2.788 2.748 2.748 2.747 2.748 2.7477 2.7477 2.7477 2.7477 2.74777 2.747777 2.747777777777	5.510
ntake pres in/hg)	15.2 15.0 15.0	9.7 15.8 13.5 15.5 15.5 9.8	10.1 6.8 6.8 6.8 15.2	0.0000	······································	9.1 9.1 9.1
Intake I pres (kPa) (51.5 33.2 50.8 50.8	27.5 27.5 27.5 27.5 27.5 27.5	21.2 21.2 51.5 51.5	N 7 9 N 7		2.5
BSFC (1b/ bhp-hr)	0.838 0.600 0.937 NA	0.573 0.846 NA NA 0.732 NA 0.578	5.574 0.529 0.529 0.784 0.784	0.555 0.555 0.547 0.547	11111111111111111111111111111111111111	113.7
BSFC (g/kWh)	510 365 871 88	515 848 848 848 848 848 848 848 848 848 84		RHAHA	ehegsekkingebinder:	ន្តដ
Fuel Flow (lbs/hr)	15.2 20.2 15.2	25.3 17.7 15.2 15.2 15.2 25.3	20.2 20.2 20.2 20.2		59559555555555555555555555555555555555	10.5
Fuel Flow (gr/hr)	6886 9181 6886 NA	11476 8033 8033 8033 8033 805 805 805 805 805 811 11476	127771 16066 16066 1819 1819	19925 16925 16925 16925 18925	1875 1475 1475 1475 1475 1475 1475 187555 187555 18755 18755 187555 187555 187555 187555 187555 187555 187555 1875	19281
Fuel Flow Rate (1)	ур С- 03 С- Х Х	0 N W N 0		22222	242222222222222222222222222222222222222	2.2
BMEP (psi)	29.9 55.7 26.7 28.7	62.4 29.6 40.1 29.3 61.3	65.5 82.5 82.5 82.5 32.0 32.0	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	。	ā3.5
BNEP (kPa)	206 384 184 198	430 204 276 202 199 427	452 565 569 571 221 221	576 578 578 578 578		22
BHP (dq)	18.1 33.8 16.2 17.4	44.1 20.9 28.3 20.7 20.7 43.8	52.9 66.5 66.6 66.9 25.9 25.8	75.9 76.3 76.3	75:5 77:5 75:7 75:5 75:5 75:5 75:5 75:5	76.4
BHP (N)	13.5 25.2 12.1 13.0	32.9 15.6 15.5 32.6 32.6	2 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	9 8 1 6 5 9 9 9 7 9 6		
forque bfift)	31.7 59.1 28.3 30.5	66.2 31.4 31.4 31.1 30.6 65.7	69.5 87.0 87.5 87.9 31.9 33.9	88. 6 39. 6 39. 0 39. 0 90. 0 90. 0 90. 0		1.1.1
arque	83.0 11.4	89.8 87.6 87.6 9.1	4.2 8.0 6.1 6.0	00.1 0.7 0.7 0.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
РН Т. ()	0000		000 11 000 11 000 11 000 4	200 220 220 200 220 220 200 220 220		11 02
ate f	12 13 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1	2282119 228219	~ ~ ~ ~ ~ ~ ~ ~ ~		***************************************	: # : #
Paint D.	120 31 117 31 88 31 87 31	92 3. 102 3. 115 31 91 3/ 93 3/ 93 3/	114 37 123 37 123 37 124 37 128 37 121 37	V2 101 V2 111 V2 111 V2 101 V2 161	881188 20 20 20 20 20 20 20 20 20 20 20 20 20	1. 19

11 DENSIFIED COATED KOTOK 11

1

ORIGINAL PACE 10 OF POOR QUALITY

OPICATE PLACE OF POLE CALLEY

2

DENSIFIED CORTED ROTOR

DEMSIFIED COATED ROTOR

÷

2 I I I 355 Erh Teng Ezh Temp Baro Humaid In pres Temp To (in-hg) (2) (C) Baro pres (kPa) 0il pres (psig) Uil pres (kPa) Cool pres (psig) Cool pres (kPa) Intale Intale Ethaust Elowby Blowby . pres pres pres pres pres (In/H20) (KPa) (In/H20) . (KPa) (In/H2) (KPa) (In/H20) (KPa) (In/H20) BSFC Intake (lb/ pres bhp-hr) (kPa) BNEP BMEP Fuel Fuel BSFC Flow Flow Flow (kPa) (psi) Rate (1) (gr/hr) (g/kMh) (d4) đ Nta) (lbftft) (kW) 붋 Torque Torque RPH Point Date

180 180 177 177 177 177 180 182 182 182 182 182 82 82 82 1317 1317 1448 1214 1239 1348 1450 1227 1337 1337 1336 1336 228 282 845848 ~ ~ ~ 777 -----222 8 H S S H S S S S 29.89 29.79 29.89 29.79 29.96 29.89 29.69 29.35 29.35 29.89 29.89 29.89 100.9 100.6 100.9 100.9 100.9 100.9 100.6 101.2 100.9 100.9 101.2 62 62 63 62 2222222 **427 427 427 427 427 427 427 427 427 427 427** 220215021 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 #9 0.050 0.398 0.423 0.050 0.498 0.000 0.498 0.796 0.871 0.871 0.000 0.050 15.7 15.6 15.5 10.4 1201222 35.2 50.8 51.2 52.9 21.5 21.5 0.770 0.793 0.909 0.725 0.730 0.732 0.864 0.578 0.582 0.582 0.578 0.578 494 184 1852 ÷ ‡ ₹ 526 351 495 495 457 30.4 15.2 17.7 15.2 15.2 15.2 22.8 30.4 17.7 20.2 20.2 6886 6886 8033 6836 6836 6536 10328 13771 13771 9181 9181 9181 -a -o -o 8 U N 8 1 2 4 292 65.0 31.6 32.1 29.6 29.4 29.7 32.6 55.0 32.1 32.5 32.5 448 218 222 205 222 222 222 222 222 222 222 222 222 20.9 20.8 21.0 39.4 19.1 19.5 26.4 27.6 27.6 27.6 27.6 29.4 14.3 14.5 15.5 15.5 19.7 19.7 19.5 19.5 19.7 31.4 31.2 31.5 57.5 33.5 34.6 69.0 334.5 334.5 334.5 334.6 93.6 45.4 46.2 46.9 46.2 46.2 46.2 46.2 46.9 42.5 42.3 42.7 2000 3/18 3/21 3/21 3/21 3/21 3/21 3/18 3/21 3/21 3/21 3/21 129 128 127 128 51 FE 62 FE

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINE PARTIC OF POOR QUILITY

	- ; e	Feep (F)	8	18 18 28	11	8 ¥	te a	F 8 3	88 68 52
			8	5 F2	23	2 2	29	333	5 C
	-	13 6	269	52	234	53 53	242		242 243
		29	132	<u>6</u> Ξ	112	II 112	£1	3 = :	11 11
		E E	205	16 16	194	192	198	6	208 198
	, Hor	2 G	96	66 66	8	\$ \$	5	283	38 23
	Date	E E	265	52 F2	222	5 22	239	12.6	240
	Front	2 0	129	101	Ξ	91	115	EEE	131
		9 €	210	196 196	197	82 132	201	196	212
		20	66	6	26	7 6	1 6	3 5 6	5 00 5
		5 E	E E	262 266	268	265	276	266	317 317 276
	_	2 9	156	130	121	129	136	1 2 2	BS1 121
	DUISNO	8 G	512	707 707	203	202	207	202	214
	ite Ho	∎ Û	8		ះ ៖	7	61	56	101
:	e i pas	£ 5	122	51 I C	772 777	i i	286	272	289
R0709	Inter	2 9	35	18	136	1	141	1 E E	164
		5	212	50 50	202	202	205	502 202	214
3		2 9	0 <u>1</u>	2 2	96 96	16	96 101	5 6	101
		5	112	i z	237	534	245 276	245	279
3		ខ្ម	136	H2	114	112	118	112 112	137 120
	- but	# £	219	20 20	201 200	661	206 220	202 202	221 207
	Hou	z 9	<u>5</u> 5	5.5	5 6	55	97 104	93 96	105 97
	Rotor	5 (F)	269	229	222 22	230	241 270	192 572	271 244
	Rear	₽Û	122	109	112 112	110	116 132	116	113 118
		6 2	513	197	198 197	261	202 214	197 201	214 204
_		2	ē 5	32	22	4	1 01	92 94	101 9.6
Delta	011	Teap (F)	22	=	2 1	11	51 P	= 5	53 19
Delta	011	(C)	27		~ ~	~	6 12	- 9 03	5
	Dil	E E	112	230	872 872	226	12 %	92 ZZ	112 112
	110	i i i i i i i i i i i i i i i i i i i	116	110	109	801	111 116	9 II	Ξ
	110	la F)	212	219	216 215	213	215 219	219 217	219
	071	9 B	10 10	104	102 102	101	102 104	5 20	104
	Cool	ž G	184 183	183	181 182	181	185 185	181 193	186
	00]	ž G	33	84	1 8 18	18	នន	3 7	88 84
	Point		121	132	129 128	127	125	19 19	136

DENSIFIED COATED ROTOR

G-II-13

.

APPENDIX H

COATED ALUMINUM

ROTOR HOUSING DATA

COATED ALUMINUM ROTOR HOUSING DATA

TABLE OF CONTENTS

<u>Page</u>

<u>Title</u>

Coated	Aluminum	Chart	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	H-3
Coated	Aluminum	Chart	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	H-4
Coated	Aluminum	Chart	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	H-5
Coated	Aluminum	Rotor	Но	ous	sir	ng	Da	ata	a.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	H-6
Coated	Aluminum	Rotor	Н	ous	sir	ng	Da	ata	a.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	H-7

Coated Aluminum

Torque (lbs*ft)

Coated Aluminum

1

(ɯ∗Ŋ) enbıo⊺

Coated Aluminum

(Thousands) Speed (rpm)

1			
[00] In (F)	179 179 179 180 180 178 178 178 177 178 179	178 180 180 180	621 621
[00] [12]	82 81 81 81 81 81 82 82 82 82 82 82 82 82 82 82 82 82 82	81 82 81 31	32 82
Erh Tean (F)	1167 1166 1172 1172 1150 1157 1343 1313 1313 1374	1219 1222 1356 1364	1336 1310
Exh Teno (C)	631 630 630 631 621 728 712 713 713	659 661 736 740	710 710
la (F)	********	44 44 63 45	្នន
In Teno (C)	256 11 2 4 6 4 8 4 258 23 1 2 4 6 4 8 4	8 7 20 12	S S
(1)	22222222222	2 2 3 9	7 2
Baro pres (in-hg)	29.96 29.96 29.96 29.96 29.96 29.96 29.96 29.96 29.96	29.96 29.96 29.95 29.95	23.95 29.96
Baro pres (kPa)	101.2 101.2 101.2 101.2 101.2 101.2 101.2	101.2 101.2 101.2	101.2
Oil pres psig)	6 F 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	64 62 62 62	62 62
01] pres (kPa) (421 427 427 427 427 427 427 427 427 427 427	441 427 427 427	421 427
Caai pres ps1g)	6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2422	16 16
Cooi pres (kPa) (67 79 62 69 62 62	103 97 90 90	611 011
Blawev (pres 1 tn/H20) (• • • • • • • • • • •	0000	69
elawoy pres ikPa) (• • • • • • • • • • • •	0000	• •
Exhaust P pres Ln,H20)	0 - 0 0 0 0	(1 (1 47 47 47 (1 (1 42 47 47	2.3
Exhaust pres (kPa) (0.000 0.249 0.149 0.075 0.075 0.075 0.275 0.278 0.271 0.371	0.547 0.547 1.145 1.120	u.597 0.572
ntake pres in/hg)	122 122 122 123 123 123 123 123 123 123	13.2 13.2 6.7 5.5	12.3
Intake pres (kPa)	4	44 .7	·· •
35FC 115/ 640-hru	1.181 1.181 1.121 1.172 1.172 1.128 1.128 1.125 0.755 0.663 0.662	1.212 1.268 0.709 0.492	9.575 0.997
BSFC (g/kwh)	713.4 713.4 713.0 713.0 713.0 713.0 713.0 713.0 713.0 713.0 713.0 713.0 713.0 713.0 713.0 713.0 713.0 713.0 713.0 713.0	737.2 734.3 426.0 426.0	577. ° 80 6. 3
fiel film (lbs/or)	20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5		
Fuel Flow (gr/hr)	9181 9181 9181 9181 9181 11476 11476 113771 13771	11476 11476 15771 15771 15771	11175 2/111
Fuel Flow ate (1)	2 <u>7</u> 2 2 8 8 8 8 8 8 8 8	9922	្លុ
BNEP (ps1) R	28.3 28.3 29.8 29.8 28.5 56.7 74.3 74.3 75.5	29.5 29.6 61.3 62.0	21.4 21.4
I d3M	195 196 196 197 197 205 205 239 196 239 239 196 252	203 204 422 423	218
3HP 8 (hp) (1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	0.9 13.4 13.4	
di li	**************************************		
te B	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
le Tori (1bf1	**************************************	H H S S	8 B
Torqu (N8e)	40.7 42.8 41.0 41.0 81.5 81.5 82.2 82.2 103.8 103.8	42.4 42.6 83.1 89.2	16.1 15.2
RPA	3000 3000 3000 3003 3003 3003 3003 300	1503 1503 1503 1503	4003 4003
Point Date	1 6/13 2 6/13 3 6/13 5 6/13 5 6/13 9 6/13 9 6/13 9 6/13 9 6/13 9 6/13	10 6/13 11 6/13 12 6/13 13 6/13	14 6/13 15 6/13

II COATED ALUMINUN KOTOR HOUSING II

1

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

	Air Temp (C)	24443333444444444444444444444444444444	2 F G G G	4 65 74
	E .	211 212 212 212 212 212 220 220 220 223 220 223	52 53 53	33
	39	99 100 100 104 104	66 88 LO	C [0]
	51Ag_ 812 (F)	197 197 197 196 196 201 201 206 206	206	661
	r Hau 12 (C)	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	16 8	92 92
	5010 111 (F)	22 22 22 22 4 2 2 2 2 2 2 2 2 2 2 2 2 2	12 2 Z Z	60 6 22
	Frant 111 (C)	107 107 107 105 1105 1113 1113 1118	117	3.5
	●10 (F)	196 197 197 195 195 201 201 205 205	196 206 204	861 651
	G	91 92 92 92 92 92 92 92 92 92 92 92 92 92	91 97 96	11 11 11
	\$	268 269 270 270 265 293 293 299 299 299 299	268 305 204	58
	\$	131 132 132 132 132 132 145 145 145 145 145 146 148 148 148	5 5 5	£ 5
-	(F) Ba	2010 2010 2010 2015 2015 2015 2015 2015	207	HH
1 9N)	11 8 10 10	99 99 97 97 97 97 102 102	97 103 103	39
ISNOH	#7 #7 (F)	255 255 255 255 255 255 255 255 255 255	257 290 239	23
iorer.	Tater 17 (C)	23 12 12 12 12 12 12 12 12 12 12 12 12 12	888	33
INN	86 (F)	200 201 201 200 200 203 203 203 203 203	201 206	101
HU16	2 9	25 25 25 25 25 25 25 25 25 25 25 25 25 2	46 86	22 12
19160	1	228 228 228 228 228 228 228 228 228 228	គគគ	ំដំ
8 11	2 9	109 109 109 108 1118 1118 1118 1118 1118	388 188 188 188 188 188 188 188 188 188	88
	11 (L)	2112 212 202 202 202 202 202 202 202 202	211 SS	88
	sno# (J)	92 92 92 92 95 96 96 101 101	93 90 86	5
	Rata/ #3 (F)	221 249 223 23 23 23 23 23 23 23 23 23 23 23 23		66
	fear 13 (C)	107 107 108 108 116 116 116 116 116 116 116	8 8 G	88
	5) (F)	194 195 195 194 194 200 200 208 207	196 207 204	691 198
-	<u>2</u>	99 19 19 19 19 19 19 19 19 19 19 19 19 1	9; 16	33
Delt	0il Tesp (F)	1	1 12 N	61
Delta	Teap (C)	~ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	2 2 2	23
	E E	232 232 245 245 252 252 253 253 253 253 253 253 253 25	727 77	1212
	ese	1110 1111 1111 1111 1111 1111 1111 111	116	22
	ie e e	215 215 215 215 215 215 215 216 218 219 219	218 215	216
	8 s 9	103 103 103 103 103 104	103	101
	Cool Out (F)	183 184 184 185 182 182 182 182 182	181 183	181
	C BE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Point	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	222	1 2

88 97 97 98 98 101 101 108 104 104 102 107 107 107

Air Temp (F)

H-7

L

APPENDIX I

COATED CAST IRON

ROTOR HOUSING DATA

COATED CAST IRON ROTOR HOUSING DATA

TABLE OF CONTENTS

<u>Page</u>

1

<u>Title</u>

Coated	Cast	Iron	Chart.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	I-3
Coated	Cast	Iron	Chart.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	I-4
Coated	Cast	Iron	Chart.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	I-5
Cast I	ron Ro	otor H	Housing	Da	ta	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	I-6
Cast I	ron Ro	otor H	Housing	Da	ita	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	I-7

1

Coated Cast Iron

(m*N) euproT

Torque (ibs*ft)

1

Coated Cast Iron

I-4

L

Coated Cast Iron

	1			
Cao! In (F)	180 181 181 181	177 180 178 179 177	180 180 180 180 180 180 180 180 180 180	
Cool In (C)	83 83 85 85 85 85 84 85 85 85 85 85 85 85 85 85 85 85 85 85	81 81 81 81 81 81 81 81 81 81 81 81 81 8	12 12 12 12 13 1 2	
Exh Tend (F)	716 746 872 866 1248 1248 1248 1248	722 1244 1244 1245 1403 1403 1260 1260		
Ezh Tenp (C)	330 337 467 463 463 676 672 727	383 653 653 762 632 632 691	12 40 40 10 10 40 70 40 10 10 10 10	
In Teac (F)	525526653	884455544		
11 (C)	======================================			
) (2)	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	NA 72.9	0 0 0 0 0 0 0 0	
Baro I pres (in-hg)	A A A A A A A A	NA 29.82 29.82 29.82 29.82 29.82	5555 535	
Baro pres (kPa)	A A A A A A A A	MA 100.7 100.7 100.7 100.7 100.7 100.7	22 2223	
0il pres (psig)	12 4 4 12 13 13 13 14 4 4 14 13 13 13 15 14 14 14 14 14 14 14 14 14 14 14 14 14	ατικό και ατι κη υπιψή Οι ναι ατι ατι κη υπιψή	רט היו היו היו היו היוי חיים שעים עיין חיים איים איים	
01] pres (kPa)	296 276 203 203 295 434 434	276 441 441 144 141 141 448		
Cool pres (psig)	8 9 8 9 9 9 9 9 9	57 4 83 63 7 7 7	97 - 1 - C - C - C - C - C - C - C - C - C	
Ccol pres (kPa)	25 B5 24 45 45 45 45	*********		
Blowav pres in/H20)	0.1 0.1 2.1 2.9	000 0000	000000	
lowov pres kfa <i>i</i> (0.0 0.0 0.5 0.5 0.7	0.0 0.0 0.0 0.0 0.0	0.0	
Einaust 8 pres 10/H20) (0		
chiust é pres (kFa) (1	0.249 0.000 0.000 0.000 0.025 0.025 0.025	0.075 0.448 0.747 0.775 0.571 0.571 0.571 0.571		
ta.e É res n/tg)	4 4 4 4 4 4 4 4 9 4 9 19 4 4 7 4 9 4 9 19 4 9 4 7			
itake (n ores pi (kPav tij	0+1311111111111111111111111111111111111	8.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1	03	
350 14 (15) (15)	AN AN AN AN AN AN AN AN AN AN AN AN AN A	NA 1916 1916 1916 1916 1916 1916 1916 191		
9 UN 04	AN A	R 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
LAN LAN LAN LAN LAN	A A A A A A A A A A A A A A A A A A A	5000000 5000000		
		acoa m m m m m	, , , , , , , , , , , , , , , , , , ,	
Fuei Flae (gr/hr	X X X X 0000	N 999		
Fuel Flow ate (1)	A A A A A A A A A A A A A A A A A A A	ሚ ወ ወ ጥ ጥ ጥ ጀ ጀ		
amer (psı) R	NA NA NA NA 29.0 28.9 28.9	NA 27.5 27.5 55.5 59.5 59.5 59.5 59.5 59.5 59.5 5		
MEP (Fa)	NA NA NA 199	NA 166 133 133 205 205	No. and the test of the test Des Des Testers (Constant) and test (Constant) (Constant)	
(du) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	99955777	119114 1187	
4 E	NA N			
arque 81 ofifft) (1	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
orque Ti Nasi (11	NA NA NA NA NA NA NA NA NA NA NA NA NA N	8 1.0 1.6 1.0 1.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6		
RPM To	1130 1176 1176 1600 3000 3000	1145 3001 3002 3500 3500 3500 3500	1000 1000 1000 1000	
ate	128 128 128 128 127 127 127 127 127 127 127 127 127	14 14 14 17 17 17 17 17 17		
Pcint S				OF P

11 CAST IKON RUTOR HOUSING 11

1

ORIGINAL PACE IS OF FLOR QUALITY
Air Teap iFJ	22 24 28 28 28 28 28 28 28 28 28 28 28 28 28	101 98 100 101 101 101	80 84 88 88 88 88
Ålr Teap (C)	28899332	38 37 38 38 39 38 38 39 38 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30	222223
12 3	293 295 317 310 448 446 528	298 445 528 466 466	85 85 544 486 486
1 9	145 147 154 154 154 230 230	148 229 275 242 241	25 25 25 25 25 25 25 25 25 25 25 25 25 2
(E)	241 233 233 233 233 233 233 233 233 233 23	236 305 355 355 355 355 355 355 355	83 365 379 371 375 375 375 375 375 375 375 375 375 375
or 86 112	108 112 115 115 153 153	113 152 179 179 179 161	28 28 185 165 165
t Aat #11 (F)	303 301 318 465 465 465 465 555	302 455 549 547 472 472	473 466 565 565 487 487
51 10 10	151 149 163 159 241 239 239 239	150 150 235 244 244	245 241 235 235 235 235 235
÷.	242 244 254 254 255 255 255 255 255 255	242 242 255 255 255 255 255 255 255 255	349
2 G	117 118 118 123 121 121 162 162 162	117 156 156 1565 1565	166 164 164 177 177 176
61) (F)	258 254 257 257 257 257 257 257 257 257 257 257	251 275 275 275 275 275 275 275 275 275 275	305 303 312 312 312
6	128 128 129 129 129 129 129 129 129 129 129	122 145 145 147	151 151 151 152 152
(1) 88 (F)	231 508 508 231 508 231 518		
112 dc 113 (11)	98 98 98 105 113	101 101 102 112 103 104	201 201 201 201
6 4 4	11 12 12 12 12 12 12 12 12 12 12 12 12 1	FE 2500 258	295 218 218 297 298
10000000000000000000000000000000000000	121 E E E E E E E E E E E E E E E E E E		9 0: 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*******	513 515 558 513 515 558 513 515 558
ត្ត ដូច	101 101 101 102 101 101	5555 55555555555555555555555555555555	601111111111
	2387 271 271 271 271 279 409 409 409	11111111111111111111111111111111111111	424 440 440 440 440 440 440 440 440 440
ំ មួន	11111111111111111111111111111111111111	51100 508 *	8155133
5 1 5	45 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		515 515 515 515 515 515 515 515 515 515
397 E C		21 4 4 7 7 7 7 7 9 9 9 9 7 7 7 9 9 9 9 7 7 9 9 9 9 7 7 9	159 157 152 152 152
Kotor Ja (F)	254 267 437 435 532 532 532	100 100 100 100 100 100 100 100 100 100	458 4413 541 481 481
Rear #5	123 142 142 142 143 225 224 278	135 275 275 242 242 242	237 232 283 283 283 283 283 283 283 283 283
€ €	25 25 88 27 25 25 25 25 25 25 25 25 25 25 25 25 25	226 231 331 352 352 352 352	297 293 205 205 205
2 9	*****	108 142 164 150 150	145 145 171 170 152
Deita Oul Temp (F)	75 57 57 57 57 57 57 57 57 57 57 57 57 5	22 23 29 88	5 5 2 2 3 5 5
Delta Dul Temp (C)	22227787	557 551 *	221412
ail Out	191 225 225 237 235 236 235 236	222 233 235 235 235 235 235 235	241 240 251 251 251 250 250 250 250 250 250 250 250 250 250
C III	88 104 107 114 113	1113 1114 1113 1113	116 115 1114 1114
5 = 5	179 214 215 215 215 215 215	214 215 215 213 213 213 213	220 216 216 219 219 219
<u> </u>	82 101 102 102 102	101 102 103 103 101	104 104 105 105
Cool Dut	181 180 180 182 183 183	182 182 182 182 181 181 181	181 180 182 182 181 181 175 181
Cool Out (C)	81 81 81 81 81 81 81 81 81 81 81 81 81 8	53 83 83 83 83 7 F	83838383 83838383
foint	→ 0 N ♥ N N ←		53333
		-	-

11 CHST INCH ROTON HOUSING 11

-

-

ORIGINAL FAGE IS OF POOR QUALITY