View metadata, citation and similar papers at core.ac.uk

=
brought to you by .{ CORE
provided by NASA Technical Reports Server

N89-19245

UNSTEADY TRANSONIC FLOW

USING EULER EQUATIONS

Dave M. Belk
L. Bruce Simpson
Air Force Armament Laboratory
Eglin Air Force Base, Florida

215


https://core.ac.uk/display/42829169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Qutline

An implicit, two-factor, split flux, finite volume Euler equations solution
algorithm is applied to the time-accurate solution of transonic flow about an
NACA0012 airfoil and a rectangular planform supercritical wing undergoing pitch
oscillations. Accuracy for Courant numbers greater than one is analyzed. Freezing
the flux Jacobians can result in significant savings for steady-state solutions; the
accuracy of freezing flux Jacobians for unsteady results is investigated. The Euler
algorithm results are compared with experimental results for an NACA 0012 and a
rectangular planform supercritical wing (Figure 1).

e ALGORITHM
e TIME ACCURACY FOR COURANT NUMBERS GREATER THAN ONE
o FREEZING FLUX JACOBIANS

e COMPARISON WITH EXPERIMENT
e NACA0012
o RECTANGULAR SUPERCRITICAL WING

Figure 1
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Three Dimensional Euler Equations

The Euler equations model inviscid flow with entropy and vorticity being gener-
ated by shocks. Many unsteady flows of practical interest require that viscous
effects be included. One advantage of the Euler equations solution algorithm is that

,it is easily extended to include viscous effects.

‘ The three-dimensional time-dependent Euler equations in conservation form are
written in a general time-dependent boundary conforming curvilinear coordinate
system. This time-dependent coordinate transformation provides for a dynamic grid

that can follow the motion of the body (Figure 2). The details of this transforma-
tion are given in Reference 1.
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Algorithm

An implicit split flux finite volume solution algorithm for the Euler equations
is obtained. Flux Jacobians with superscript L correspond to information
propagating in the positive curvilinear coordinate direction, and flux Jacobians
with superscript R correspond to information propagating in the negative curvilinear
coordinate direction. The equation is then factored into two factors as discussed
by Whitfield in Reference 2. The first equation of the two-pass scheme requires the
solution of a sparse lower block triangular system by a simple forward
substitution, while the second equation requires the solution of a sparse upper
block triangular system by a simple backward substitution.

This algorithm is first-order accurate in time and second order accurate in
space. A simple modification to use three point backward time differencing will
result in second order time-accuracy (Figure 3).

o FINITE VOLUME
e FLUX SPLIT
e IMPLICIT
[ 1+ ar(6f A~ + 8¢ A™ + 6 BY + 55y B® + 57 G~ + 67 C™) ] AQ"=-A-R"
WHERE
R" =6 F"+ 676"+ 8. H"
e TWO-PASS
[ 1+ Ar( 8¢ A%+ 6y B~ + 67 C%) ] X" = -A-R"

[ 1+ Ar(6¢ A% + 8B+ 5/C) ] AQ"=X"
Figure 3
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ORIGINAL PAGE IS

NACAOO12 221 x 20 'c' cria OF POOR QUALITY

All of the Euler computations for the NACAOO12 airfoil used the 221 x 20 'C'
algebraic grid shown below. The grid was generated using Joe Thompson's grid
generation code (Reference 3). See Figure 4.
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Figure 4
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ORIGINAL PAGE IS

, OF POOR
NACA0012 Lift Coefficients QUALITY

Calculations were made for a NACAOO12 airfoil at Mach = 0.755 oscillating in
pitch about the 1/4 chord point with a reduced frequency of k = (wc/V ) = 0.1628.
The airfoil had a mean angle of attack = 0.016 degrees and an unsteady alpha = 2.51
degrees. Steady state solutions were obtained at the mean conditions prior to an
abrupt start of the oscillatory motion. The calculations were performed for four
complete cycles of motion. The figure below shows lift coefficient vs time for
three different time step sizes. DIMIN = 0.0l gave 5000 time steps per cycle of
motion and corresponds to a maximum Courant number of 10. DTMIN = 0.10 was 500 time
steps per cycle of motion and corresponds to a maximum Courant number of 100. DTMIN
= 0.20 was 250 time steps per cycle of motion and corresponds to a maximum Courant
number of 200. Lift coefficients were only slightly different for the various time
step sizes (Figure 5).

M=0.755, k=0.1628, MEAN ALPHA=0.016, UNSTEADY ALPHA=2.51
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Figure 5
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NACA0012 Unsteady Pressure Distributions
340° of Oscillatory Motion

After 340° of oscillatory motion, the angle of attack is increasing through
-0.84 degrees, A shock has formed on the lower surface near the 44% chord location.
At this point in the motion, the shock is nearly stationary and of maximum strength.
The figure below shows the coefficient of pressure distribution along the airfoil.
Calculations were done using both first and second order time-accurate differencing
and various time step sizes. The results show that all the methods are nearly
equivalent for this case (Figure 6).

M=0.755, Unsteady Alpha=2.51, Mean Alpha=0.016, k=0.1828, 221X20 'C’ Grid
Two Pass Algorithm

-1.50

LOVWER SURFACE

.3
DTMIN=0.01, 2nd ORDER
--—--DTMIN=0.10, 2nd ORDER
-------- ~DTMIN=0.20, 2ad ORDER
"""""""" DTMIN=0.05, Lst ORDER
———-DTMIN=0.10, {st ORDER

] [+]
340° oF OscILLATORY MoTioN,  INCREASING THrousH -0.84

Figure 6
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NACAOO12 Unsteady Pressure Distributions
25° of Oscillatory Motion

Shortly after the next cycle of motion begins, the shock on the lower surface
starts to collapse and move forward., As the angle of attack increases through
1.09°, the shock speed becomes maximum. The figure below shows coefficient of
pressure along the airfoil for first and second order differencing and the same time
step sizes as in. Figure 5. Very little difference is observed between first and
second order solutions, but considerable difference in the shock location is noted
for different time step sizes. However, as noted previously, the difference in 1lift
coefficient is relatively small (Figure 7).

M=0.755, Unsteady Alpha=2.51, Mcan Alpha=0.018, k=0.1828, 221X20 'C’ Grid
Two Pass Algorithm
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Figure 7
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\ Shock Location

Defining the shock location as the axial location where the pressure coefficient
equals the critical pressure (for Mach = 0,755, C_* = -0.5143), the figure below
shows shock location given at different time step sizes. The figure shows that the

} shock location appears asymptotic to a value as the time step decreases. This
indicates that reduction of the time step size below 0.01 should not be expected to
change the shock location appreciably (Figure 8).
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Figure 8
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Freezing the Flux Jacobians for Steady State Conditions

The implicit equations to be solved have the flux Jacobians as coefficients.
Since the flux Jacobians, AL, AT, BL, etc., are functions of the current values of
Q, they should be updated at each time step. However, D. L. Whitfield has shown
steady calculations in which he did not update (froze) the Jacobians and at
convergence obtained identical results with calculations updating the Jacobians each
time step. The table below shows the obvious computational savings by not doing the
extra calculations each time step (Figure 9).

RO BFL(Q), AR _ aFR(Q), gL - BGL(Q),

3Q © o 9Q 3Q
CPU SEC
CYCLES CPU SEC MWD RESID POINT- CYCLE

IMPLICIT 4 _s
UPDATING 250 3492 3.26 10 7.8-10
JACOBIANS
IMPLICIT » s
FREEZING 250 1527 3.26 10 3.4-10
JACOBTIANS

(8 BLOCK FINNED BODY CALCULATION)

Figure 9
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Freezing the Flux Jacobians for Unsteady Calculations

The effect of freezing the Jacobians for unsteady calculations were studied
using the oscillatory NACAOOl2 as the test case. The conditions tested were the
same as previously shown. The table below again shows the obvious savings from
updating every 10th step (which equates to 3.6° of oscillatory motion) and for
never updating the Jacobians. The case listed as never updated used Jacobians from
the steady state condition just prior to start of motion. Other cases tried were
Jacobians from the freestream starting conditions, updating every 25th step and
updating every 50th step. Each of these resulted in stability problems (Figure 10).

RNy STEPS CPU SEC poftt Sees PERCENT
Every STep 4510 1716 8.61x107 100%
Every 10TH STEP 5400 1382 5.79x10™° 672
Never UPDATED 5400 1311 5.49x107> 64%

NACA0012 PITCHING ABOUT 1/4 CHORD

Figure 10
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Effect of Frozen Jacobians on Lift Coefficient

Lift coefficient vs time for each of the two frozen Jacobian cases which proved
to be stable are compared with the solution from updating every time step. All
three solutions used lst order time-accurate algorithm and a time step size of 0.05.
One cannot discern a difference in the three curves shown below (Figure 11).

M=0.755, Unsteady Alpha=2i51, Mean Alpha=0.016, k=0.1628, DT=0.05
0.60 T

0.20 //r\\ //\\ //\\ //\\ //\\

.oo// / / /' /
NEYEYENE
V/AVERAV/ IRV,

JACOBIAN UPDATE
FREQUENCY
-0.60 — FEVERY STEP
———— EVERY | 10th %TEP
--—-—NEVER |UPDATED

0.40

LIFT COEFFICIENT
=

-0.40

-0.80
0 0. 360. 720. 1080. 1440.

TIME (DEG)

Figure 11
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NACAO012 Unsteady Pressure Distributions
25 Degrees

A plot of pressure coefficlent along the body for the three cases at 25 degrees
of oscillatory motion is shown below in Figure 12, This is the same flow condition
described earlier, when the angle of attack 1s increasing through 1.09 degrees and
the shock speed is near a maximum as the shock on the lower surface collapses. Very
little difference is noted in the three curves with the only perceivable difference
being in the shock location similar to the results shown in Figure 7.

M=0.755, Unsteady Alpha=2.51, Mean Alpha=0.016, k=0.1628, 221X20 'C' Grid
Two Pass Algorithm, DT=0.05, 1st-Order in Time

-1.50
o 25 DEG
JACOBIAN UPDATE
-1.00f FREQUENCY
Cp EVERY STEP

————— EVERY 10th STEP
--— --NEVER UPDATED

1.00F
150 | | | { | | l f i
0.0 0.2 0.4 0.6 0.8 1.0
X/C
Figure 12
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of oscillatory motion is shown below.

and moving downstream.

location.
the shock (Figure 13).
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M=0.755, Unsteady Alpha=2.51, Mean Alpha=0.016, k=0.1628, 221%X20 'C' Grid
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NACA0012 Unsteady Pressure Distributions

70 Degrees

Two Pass Algorithm, DT=0.05, lst-Order in Time

A plot of pressure coefficient along the body for the three cases at 70 degrees
This condition is when angle of attack is
increasing through 2.37 degrees and the shock on the upper surface is strengthening
Again, the three solutions are identical except at the shock
Note that the never updated Jacobian shows a slight ringing action near
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NACA0012 Lift Coefficients

A comparison of calculated lift coefficients with the experimental results of
Landon (Reference 4) is given in Figure l4. The experimental results were given for
one cycle of motion and are duplicated through four cycles on the figure to compare
to the calculations. Examination of experimental 1ift coefficient reveals a bias
towards positive lift not consistent with the small mean angle of attack reported
for the symmetric airfoil. A correction to the mean angle of attack was calculated
to account for this bias. The following figures show calculations using both the
nominal angle of attack of 0.016 degrees and thg 'corrected' angle of attack of
0.375 degrees. The freestream Mach is 0.755, reduced frequency is 0.1628, and the
unsteady angle of attack amplitude is 2.51 degrees.

M=0.755, k=0.1628, UNSTEADY ALPHA=2.51
221X20 ALGEBRAIC 'C’ GRID

LIFT COEFFICIENT

DTHIN=0.10, 2nd ORDER, NEAN ALPHA=0.016
———-DTMIN=0.10, 2nd ORDER, MEAN ALPHA=0.37%
. O  EXPERINENT

-------------- ANGLE OF ATTACK

L I
0. 50. 100. 150. 200. 250.
T IME

Figure 14
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NACAO0O012 Moment Coefficients

Moment coefficients do not compare with experiment as well as 1lift, particularly
for the negative moments. The 'corrected' mean alpha of 0.375 did not improve the
comparison (Figure 15).

M=0.755, k=0.1628, MEAN ALPHA=0.016, UNSTEADY ALPHA=2.51
221X20 ALGEBRAIC 'C* GRID
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NACA0012 Unsteady Pressure Distributions

The comparison of calculated and experimental pressure distributions is shown in
Figures 16 through 21.

M=0.755, Unsteady Alpha=2.51, Mean Alpha=0.016, k=0.1628, 221X20 'C’ Grid
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Figure 16
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M=0.755, Unsteady Alpha=2.51, Mean Alpha=0.016, k=0.1628, 221X20 'C' Grid
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Figure 17
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NACA0O0!2 UNSTEADY PRESSURE gg%TRIBUTION%

M=0.755, Unstecady Alpha=2.51, Mean Alpha=0.016, 628, 221X20 'C’ Grid

-1.50

11]
TIME=16.345
0.50 EXPER IMENT
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DTMIN=0.10, 2nd ORDER
TR 1] — DTMIN=0.10, 2nd ORDER, MEAN ALPHA=0.375
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1505 0.2 0.4 0.6 0.8 1.0
X/C
Figure 18

NACA0O12 UNSTEADY PRESSUR% &g%TRIBUTIONS

N=0.755, Unsteady Alpha=2.51, Mecan Alpha=0.01 628, 221X20 'C’ Grid

-1.50

-1.00
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~-0.50

TIME=22.735

0.50f EXPER IMENT
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DTMIN=0.10, 2nd ORDER

1.00f - DTMIN=0.10, 2nd ORDER, MEAN ALPHA=0.375
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X/C :
Figure 19
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NACA0O012 UNSTEADY PRESSUR%J

M=0.755, Unsteady Alpha=2.51, Mean Alpha=0.01
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Figure 20
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Figure 21
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Rectangular Supercritical Wing

Euler calculations were performed to compare to the experimental results of
Ricketts, et al (Reference 5). Calculations at a higher reduced frequency, k =
0.714, compare similarly to those presented here, k = 0.358. At higher Mach
numbers, however, the comparison was much poorer due to mislocation of the shock by
the inviscid Euler code. The time step size used resulted in 360 time steps per
cycle of motion for the k = 0.358 case. Maximum Courant numbers near 500 occurred
in the vicinity of the wing tip for this time step size. Fourier analysis of the
third cycle of oscillation yielded the magnitude and phase of the unsteady pressures
shown on subsequent figures. The three cycles of motion used 6357 seconds on a CRAY
X-MP (Figure 22).

o EXPERIMENT BY RICKETTS SANDFORD, WATSON, AND SEIDEL
NASA TM 85765, AUG 8

o RECTANGULAR PLANFORM, ASPECT RATIO 4 (FULL SPAN)
o 12% THICK SUPERCRITICAL AIRFOIL
¢ USCILLATORY PITCH ABOUT 467 CHORD

o CONDITIONS
o MACH 0.70
o 4 DEGREES MEAN ALPHA
o ONE DEGREE UNSTEADY ALPHA
o REDUCED FREQUENCY = 0.358 = 2

Figure 22
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_ ORIGINAL PAGE IS
Rectangular Wing Blocked Grid OF PCOR QUALITY

The wing calculations were carried out on a grid broken into four blocks to
obtain the solution using only 2.6 million words of memory. The entire grid has
dimensions 101x25x27. Block I contains all points below the wing, Block II contains
points wrapping around the wing tip, Block III contains all points above the wing,
and Block IV contains all points downstream of the wing (Figure 23). The method used
to obtain time-accurate solutions on blocked grids is described in Reference 6.
Motion of the wing is modelled by pitching the entire grid containing the wing as a
rigid body using the time-dependent coordinate transformation described earlier.

BLOCK III™
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\
\\\\\\\\ A

\
/

M
)
\

Figure 23
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Rectangular Wing Pressures
at 60% Semispan

Steady pressures compare fairly well. There is a slight overshoot at the
leading edge and the captured shock is aft of the experimental location (Figure 24),.
Unsteady pressure magnitude compares well except that the shock spike is downstream
of the experimental location. Unsteady pressure phase calculations show excellent
agreement up to the highly cambered trailing edge where the experiment and
calculation differ slightly (Figures 25 and 26).

RECTANGULAR SUPERCRITICAL WING
STEADY PRESSURE DISTRIBUTIONS

Mach 0.701; 4.0 degrees Angle of Attack
-2.00
-1.50
Cp
-1.00
-0.50
0.00
L/ \o
/ CALCULATED y/b = 0.62 ~
0 50k UPPER SURFACE ~~_DO
: 7 ———-LOWER SURFACE [
H EXPERIMENT ﬁ/b = 0.58
0 UPPER SURFAC
1-00r o LOWER SURFACE
1 1 1 ] i ! 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
X/C

Steapy PRessURE AT 60% SEMISPAN

Figure 24
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MAG

PHASE

RECTANGULAR SUPERC RITICAL VING
NSTEADY PRESSURE DISTRIBUT!ON
Mach 0.7; 4 ‘deg Steady Alpha; 1 deg Usl:ady Alpha

0.70

CALCULATED, b=0.62
0.60F _ CALCULATED. b
———-LOWER SURFACE

i EXPERINENTAL, y/b=0.58
0.50 0 UPPER SURFACE
0 LOWER SURFACE

0.40

0.30

0.20

0.10

0.4

0.6 0.8 1.0
X/C

MagN1TUDE AT 60 SEMISPAN

Figure 25

RECTANGULAR SUPERCRITICAL WING
UNSTEADY PRESSURE DISTRIBUTIONS
Nach 0.7; 4 deg Steady Alpha; 1 deg Unsteady Alphs

IBO'M\J CALCULATED. 4/5=0.67
0 ———UPPER SURFAC
———-LOWER SURFACE
EXPERIMENTAL, y/b=0.58

0 UPPER SURFACE
90.f o LOWER SURFACE

,1r‘4f

_180. 1 i t 1 1 1 [ 1 1
. . X//C . .

Puase AT 60T Semispan

Figure 26
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Rectangular Wing Pressures
at 957 Semispan

Steady pressures shown in Figure 27 underexpand slightly in the leading edge
region but follow the experimental results very closely thereafter. The peak in
unsteady pressure magnitude shown in Figure 28 near the leading edge is likewise
calculated to be smaller than experiment. Phase results shown in Figure 29 are in

excellent agreement.

RECTANGULAR SUPERCRITICAL WING
STEADY PRESSURE DISTRIBUTIONS
Mach 0.701'; 4.0 degrees Angle of Altack
-2.00
-1.50F
Cp
-1.00
-0.504
0.00
sl N
CALCULATED b =0.95 ~
0 50} CobshLaTER o/ aab N N
adf ———-LOWER SURFACE
r EXPERIMENT y/b = 0.95
o UPPER SURFACE
1.00f o LOWER SURFACE
1 1 1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

X/C
STEADY Pressure AT 957 SEMIsSPAN

Figure 27
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RECTANGULAR SUPERCR[TICAL WING
STEADY PRESSURE DISTRIBUTION
Nach 0.7; 4 deg Stcady Alpha; | deg Uslendy Alpha

CALCULATED, E/b=0.95
0.601 ——UPPER SURFAC
———-LOWER SURFACE

EXPERINENTAL, y/b=0.95
0.50F 0 UPPER SURFACE
O LOWER SURFACE

MaGNITUDE AT 957 SeMISPAN

Figure 28

RECTANGULAR SUPERCRITICAL WING
EADY PRESSURE DISTRIBUTIONS
Nach 0.7; 4 d:‘ Steady Alpba; | deg Unsteady Alpha
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Figure 29

239



240

CONCLUSIONS
TIME-ACCURACY CAN BE OBTAINED AT
COURANT NUMBERS MUCH GREATER THAN ONE

FOR THE CASE PRESENTED, FREEZING FLUX
JACOBIANS HAD LITTLE EFFECT ON TIME-ACCURACY

EULER CALCULATIONS COMPARE WELL WITH NACA0012
AND SUPERCRITICAL WING EXPERIMENT

VISCOSITY REQUIRED TO ACCURATELY MODEL
SUPERCRITICAL WING

Figure 30
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