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UNSTEADY EULER EQUATIONS 
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I n  transonic flutter problems where shock motion plays an important part, 
it is believed that accurate predictions of the flutter boundaries will require 
the use of codes based on the Euler equations. Only Euler codes can obtain the 
correct shock location and shock strength, and the crucially important shock 
excursion amplitude and. phase lag. (For  a discussion of the importance of 
shocks in transonic flutter, see Ref. 1 . )  The present study is based on the 
finite volume scheme developed by Jameson and Venkatakrishnan (Refs. 2,3) f o r  
the two-dimensional unsteady Euler equations. The equations are solved in 
integral form on a moving mesh, Eqs. (1-2). Here the variables p, p, u, v and 
e are the pressure, density, Cartesian velocity components, and total energy, 
respectively, and xt and yt are the velocity components of the moving boun- 
dary 352 of an element 52 . By applying Eq. (1) to each element or  cell 
(i,j), a system of ordinary differential equations is obtained, Eqs. (3), where 
Sij is the cell area, Qij is the net flux out of the cell, and Dij repre- 
sents dissipative terms added to damp numerical oscillations (see Refs. 3,4). A 
five-stage Runge-Kutta scheme is used to integrate E q s .  (3) forward in time. 
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FINITE VOLUME FORMULATION 

INTEGRAL FORM ON A MOVING MESH 

a 
at  R an 
- 11 Wdxdy + I (fdy - gdx) = o 

DISCRETIZED FORM WITH DISSIPATION, ADAPTIVE OR TVD-BASED 
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(SijWij) + Qij - Dij = o  
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TYPICAL SECTION MODEL 

The wing is modeled as a typical section, with two degrees of freedom 
(bending h and torsion a), as illustrated in Fig. 1 .  The usefulness of this 
model in capturing the fundamental features of bending-torsion flutter is by now 
well established. In the usual notation, the equations of motion are of the 
form given by Eqs. ( 5 )  and ( 6 ) ,  where the lift and moment coefficients CL and 
CM depend on the motion of the airfoil. Because we will consider finite 
(rather than infinitesimal) amplitude motion, the superposition principle cannot 
be used. In the present study, CL and CM are calculated numerically from 
the unsteady pressure coefficient on the airfoil surface at the end of each time 
interval, obtained from the numerical solution of the Euler equations. It 
should be emphasized that the equations of motion are nonlinear through the 
dependence of CL and CM on the motion h,a of the airfoil (and its time 
history). 
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HETHOD OF SOLUTION 

Aeroelastic stability is determined by integrating the equations of motion 
for the coupled fluid-structure system. The structural equations are first 
transformed to normal coordinates rjr , Eqs. ( 7 ) - ( 8 ) ,  where the columns of [ a ]  
are the eigenvectors of the free vibration problem. The structural integrator 
is based on the convolution integral solution, Eq. ( 9 ) ,  and the generalized 
aerodynamic forces Qr are assumed to vary linearly within each time step At . 
Because the multi-stage Runge-Kutta scheme used to integrate the unsteady Euler 
equations was found to be sensitive to the manner in which the airfoil boundary 
condition was updated and the mesh moved, the structural integrator has been 
imbedded within the Runge-Kutta scheme in the Euler code. This permits an ef- 
ficient implementation of the exact airfoil boundary condition, Eq. ( l o ) ,  on 
the instantaneous position of the airfoil, given by B(x,y,t) = 0. Nonreflective 
boundary conditions are used in the far field. 

0 COUPLED EQUATIONS FOR FLUID & STRUCTURE ARE 
INTEGRATED NUMERICALLY USING NORMAL COORDINATES 

2 ii, + urvr Qr 

STRUCTURAL INTEGRATOR IS BASED ON CONVOLUTION INTEGRAL SOLUTION 

+ - 1 jtQr(T) sin[ur(t-~)]d1 

r O  w 

STRUCTURAL INTEGRATOR IS IMBEDDED IN FIVE-STAGE 
RUNGE-KUTTA SC"E FOR EULER EQUATIONS 

- EXACT AIRFOIL B.C. IS SATISFIED 
aR -+ - -  DB - 0 o r  - + ~ * V R  = o 

Dt at 

on B(x,y,t) = 0 

- MESH IS MOVED AT EACH STEP 
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NUMERICAL RESULTS 

Flutter calculations have been carried out for the three aeroelastic test 
cases listed in l’able 1, and compared to previously published calculations based 
on various TSD codes. Case A is the same as studied by I s o g a i  (Refs. 5 , 6 )  and 
later by Edwards et al. (Ref. 7) and also by Weatherill and Ehlers (Ref. 8). 
Note that the elastjc axis location “a” is ahead of the leading edge; the idea 
here is to simulate the vibratory behavior (in pitch and plunge) of the stream- 
wise sections near the tip of a swept-back wing. Case B has been studied pre- 
viously by Isogai (Ref. 6) and by Ueda and Dowell (Refs. 9,lO). Case C was 
introduced by Ueda and Dowell as an example where nonlinear (amplitude) effects 
were clearly discernible, based on LTRAN2 aerodynamics implemented via the 
describing function method. In all cases, the airfoil is fr2rced for 3-6 cycles 
in pure torsion at a reduced frequency of interest, released, and the aero- 
elastic equations are integrated forward in time for another 3-6 cycles. The 
flutter boundary i s  located by cFl’culating the logarithmic decrement 6 of the 
transient solutions, and interpolating to 6=0 between adjacent solutions with 
different U/bwa . 

TABLE 1 

Aeroelastlc Test Cases 

Case A B C 

Airfoil(s) NACA 64A010 NACA 64A010 NACA 64A006 

0.7 - 1.0 0.80 0.86 

a 

Xa 

-2.0 -0.3 
1.8 0.5 

-0.3 
0.5 

3.48 0.49 0.49 2 
a r 

c1 60 60 60 

1 . 0  0.2 0.2 wh’wa 

Refs. 5,6,7,8 6,9 10 
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MESH GENERATION 

The unsteady Euler calculations are carried out on a C---mesh of quadrila- 
teral elements, generated by means of a square root transformation followed by 
selective stretching to compress the grid near t.he trailing edge. A near field 
view of the resulting mesh is shown in Fig. 2 .  In the far field, the mesh 
extends to 15-100 chords, dependiiig on direction. The mesh moves with the air- 
foil as a rigid body, i .e. without deformation. Flutter calculations published 
earlier by the authors ( R e f .  4 )  were carried out on R 96 x 16 C-mesh, which 
was found to give adequate engineering accuracy in most, but not all, of the 
cases studied. In the present study, additional calculations have been performed 
on both 96 x 16 and 192 x 32 C-meshes, and the results of Ref. 4 have been 
updated where appropriate. 
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FLUTTER BOUNDARIES FOR CASE A 

P r e v i o u s  s t u d i e s  ( R e f s .  5 8 ) ,  which have been based  on B number of  d i f  
f e r e n t  t r a n s o n i c  small d i s t u r b a n c e  (TSD) t h e o r i e s ,  g e n e r a l l y  a g r e e  t h a t  t h e  
f l u t t e r  boundary f o r  Case A e x h i b i t s  a s i g n i f i c a n t  " t r a n s o n i c  t l j p " ,  as shown i n  
F i g .  3 .  Also  shown i n  t h i s  f i g u r e  are t h e  r e s u l t s  of  f l u t t e r  c a l c i i l a t i o n s  based  
on t h e  p r e s e n t  Euler c o d e ,  and u s i n g  an i n i t i a l  f o r c i n g  a m p l i t u d e  o f  0 . 1  d e g r e e  
i n  p i t c h .  O v e r a l l ,  t h e  agreement  w i t h  p r e v i o u s  TSD c a l c u l a t i o n s  are f a i r l y  
good.  However, t h e  E u l e r  c a l c u l a t i o n s  a p p e a r  t o  s h i f t  t h e  bot tom of t h e  
" b u c k e t "  toward  h i g h e r  Mach niimbers. I t  i s  i n t e r e s t i n g  t o  n o t e  t h a t  t h e  bend- 
back o f  t h e  f l u t t e r  boundary  a round  M - 0.88 o b s e r v e d  by Edwards e t  a ] .  ( R e f .  
6 )  and W e a t h e r i l l  and E h l e r s  ( R e f .  8 ) ,  is  a l s o  p r e d i c t e d  by t h e  p r e s e n t  Eiiler 
c a l c u l a t i o n s .  Not s u r p r i s i n g l y ,  t h e  p r e c i s e  l o c a t i o n  of t h e  nose  of t h e  c u r v e ,  
where t h e  f l u t t e r  boundary  h a s  a v e r t i c a l  t a n g e n t ,  was forind t o  be s e n s i t i v e  t o  
t h e  mesh s i z e  used  i n  t h e  c a l c u l a t  i o n s .  
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FLUTTER FREQUENCIES FOR CASE A 

Figure 4 shows the flutter frequencjes v s .  Mach number, with some com- 
parisons to earlier OPTRAN2 calculations by Weatherill and Ehlers (Ref. 8 ) .  As 
first noted by Isngai (Ref. 5), the flutter mode is essent.ially the first 
(predominantly bending) natural mode. The flutter frequency is close to the 
first coupled natural frequency q/o, until the nose of the bend--back is en- 
countered. At this point, the flutter frequency increases to a value between 
the two coupled natural frequencies and the flutter mode also changes, although 
it is still associated with the first predominantly bending branch. 
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FIGURE 4 
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TRANSIENT SOLUTIONS FOR CASE A AROUND LOWER FLUTTER BOUNDARY AT M - 0.9  

Typical transient solutions for Case A are shown in Figs. 5 , 6 .  At a Mach 
No. of  0.9, multiple flutter solutions occur diie  to the bend-back of the flutter 
boundary (see Pig. 3 ) .  Figure 5 illustrates the dynamic behavior of the air- 
foil, plotted as h(t)/h and a(t) vs. time, immediately above and below the 
lower fJutter point at M = 0 . 9  . In this case. the airfoil is stable below 
(bottom figure) and unstable above (top figure) thr. nei l t ra l  stability boundary 
(CF - IJ,/bwa vs. M . )  Here, the airfoil has been f(JrWd f o r  3 - 6  c y c l c s  jr i  pure 

p i t c : h .  with an amplitude of 0.1", and then released at t=O. 
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TRANSIENT SOLUTIONS FOR CASE A AROUND UPPER FLUTTER BOUNDARY AT M = 0.9 

.004 

.002 
W 
0 
3 

-I 
x 
4 

t, 0 -  
n 

-.002 

-.004 

In the vicinity of the upper flutter point at M = 0.9, the stability 
behavior is reversed from that observed around the lower point. The airfoil is 
now stable for values of nondimensional airspeed U/boa, above the neutral 
stability boundary, as shown in the bottom diagram of Fig. 6. Conversely, the 
airfoil is unstable for values of U/bw, below the flutter boundary. 
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FLUTTER CALCULATIONS FOR CASE B 

In Table 2 ,  the results from our present flutter calculations for Case B 
are compared to predictions by previous researchers using various TSD codes. 
This case is the same as Case B considered by Isogai in Ref. 6. Note that the 
present Euler calculations predict a somewhat higher flutter speed than the TSD 
calculation by Isogai, but still below the speed predicted by classical linear 
theory. The flutter speed predicted by Ueda and Dowel1 (Ref. 9 ) ,  using the 
describing function method based on LTHANB aerodynamics, is significantly below 
the predictions of the Euler code. 

TABLE 2 

Comparison of Predicted Flutter Speed for Case B 

Present 0.1" 3.43 0 . 2 0 3  

Ueda & I)owel19 0 . 2 5 " ( @ 1 )  2 . 9 5  0 . 2 2 1  

Isogai6 0 .  I" 3.25 0 . 2 1 5  

- Linear Theory 3.86 0.210 
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NONLINEAR DEPENDENCE OF FLUTTER SPEED 
ON INITIAL FORCING AMPLITUDE FOR CASE C 

In Refs. 9-10, Ueda and Dowel1 investigated the nonlinear amplitude 
dependence of the flutter boundary for Case C, Table 2. They found a distinct 
drop in the flutter speed as the amplitude of the effective induced angle of 

attack 
midchord. Figure 7 shows results from the present Euler calculations, plotted 
as flutter speed vs. initial forcing amplitude in pitch (prior to release). 
Note that the flutter boundary is not very sensitive to a in the range 0"-5", 
and that the results obtained are sensitive to the initial forcing frequency. 

$q = a + hc/U exceeded about 1". where b, is the plunging velocity at 
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FIGURE 7 
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TRANSIENT SOLUTIONS FOR CASE C 

.04 

.02 

Typical sl-able and unstable triinsient. solutions are shown in F i g s .  8 arid 9, 
corresponding to initial forcing amplitudes of a = 1' and 4 ' .  respectively. 
The flutter mode is again a predominantly bending mode arid emc!rE;es qi l i ck ly  
(wjthin a couple of cycles), despite the fact that the initial dist-iirbance is 
purr? torsion. This rapid  convergence toward the sigrii f icarit at!roelast ic niodc! 
was a l s o  observed in most of the  transient solution of Cases A and B as well. 
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CONCLUSIONS 

1. 

2 .  

I , 3. 

4 .  

5 .  

Typical section flutter calculations based on the two-dimensional unsteady 
Euler equations are now feasible. 

Flutter speeds predicted by the present Euler code are in good overall 
agreement with previous TSD calculations, except in cases where strong 
shocks are present. 

The Euler code calculations predict a transonic dip similar to the corre- 
sponding dips predicted by TSD codes, but shifted toward higher Mach numbers. 

Multiple flutter points occur at certain Mach numbers, caused by a bend- 
back of the flutter boundary. 

The amplitude dependence of Up appears to be less than might be expected. 
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