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UNSTEADY EULER EQUATIONS

In transonic flutter problems where shock motion plays an important part,
it is believed that accurate predictions of the flutter boundaries will require
the use of codes based on the Euler equations. Only Euler codes can obtain the
correct shock location and shock strength, and the crucially important shock
excursion amplitude and. phase lag. (For a discussion of the importance of
shocks in transonic flutter, see Ref. 1.) The present study is based on the
finite volume scheme developed by Jameson and Venkatakrishnan (Refs. 2,3) for
the two-dimensional unsteady Euler equations. The equations are solved in
integral form on a moving mesh, Eqs. (1-2). Here the variables p, p, u, v and
e are the pressure, density, cartesian velocity components, and total energy,
respectively, and x;y and vyt are the velocity components of the moving boun-
dary 992 of an element @ . By applying Eq. (1) to each element or cell
(i,j), a system of ordinary differential equations is obtained, Eqs. (3), where
Sjj 1is the cell area, Qjj is the net flux out of the cell, and Djj repre-
sents dissipative terms added to damp numerical oscillations (see Refs. 3,4). A
five-stage Runge-Kutta scheme is used to integrate Egs. (3) forward in time.

FINITE VOLUME FORMULATION
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TYPICAL SECTION MODEL

The wing is modeled as a typical section, with two degrees of freedom
(bending h and torsion a), as illustrated in Fig. 1. The usefulness of this
model in capturing the fundamental features of bending-torsion flutter is by now
well established. 1In the usual notation, the equations of motion are of the
form given by Egs. (5) and (6), where the lift and moment coefficients C; and
Cyq depend on the motion of the airfoil. Because we will consider finite
(rather than infinitesimal) amplitude motion, the superposition principle cannot
be used. In the present study, Cp and Cy are calculated numerically from
the unsteady pressure coefficient on the airfoil surface at the end of each time
interval, obtained from the numerical solution of the Euler equations. It
should be emphasized that the equations of motion are nonlinear through the
dependence of Cj and Cpy on the motion h,a of the airfoil (and its time
history).
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METHOD OF SOLUTION

Aeroelastic stability is determined by integrating the equations of motion
for the coupled fluid-structure system. The structural equations are first
transformed to normal coordinates n,. , Egs. (7)-(8), where the columns of ([¢]
are the eigenvectors of the free vibration problem. The structural integrator
is based on the convolution integral solution, Eq. (9), and the generalized
aerodynamic forces Qp are assumed to vary linearly within each time step At
-Because the multi-stage Runge-Kutta scheme used to integrate the unsteady Euler
equations was found to be sensitive to the manner in which the airfoil boundary
condition was updated and the mesh moved, the structural integrator has been
imbedded within the Runge-Kutta scheme in the Euler code. This permits an ef-
ficient implementation of the exact airfoil boundary condition, Eq. (10), on
the instantaneous position of the airfoil, given by B(x,y,t} = 0. Nonreflective
boundary conditions are used in the far field.

e COUPLED EQUATIONS FOR FLUID & STRUCTURE ARE
INTEGRATED NUMERICALLY USING NORMAL COORDINATES

{a} = (o1{n} (7)

”r rr r (8)

e STRUCTURAL INTEGRATOR IS BASED ON CONVOLUTION INTEGRAL SOLUTION

nr(O)

nr(t) = nr(o) cos wrt + sin wrt

r
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e STRUCTURAL INTEGRATOR IS IMBEDDED IN FIVE-STAGE
RUNGE-KUTTA SCHEME FOR EULER EQUATIONS

-~ EXACT AIRFOIL B.C. IS SATISFIED
DB =0 or %}E + G.VB = 0
Dt (10)
on B(x,y,t) = 0

- MESH IS MOVED AT EACH STEP
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NUMERICAL RESULTS

Flutter calculations have been carried out for the three aeroelastic test
cases listed in Table 1, and compared to previously published calculations based
on various TSD codes. Case A is the same as studied by Isogai (Refs. 5,6) and
later by Edwards et al. (Ref. 7) and also by Weatherill and Ehlers (Ref. 8).
Note that the elastic axis location "a" is ahead of the leading edge; the idea
.here is to simulate the vibratory behavior (in pitch and plunge) of the stream-
wise sections near the tip of a swept-back wing. Case B has been studied pre-
viously by Isogai (Ref. 6) and by Ueda and Dowell (Refs. 9,10). Case C was
introduced by Ueda and Dowell as an example where nonlinear (amplitude) effects
were clearly discernible, based on LTRAN2 aerodynamics implemented via the
describing function method. In all cases, the airfoil is fosrced for 3-6 cycles
in pure torsion at a reduced frequency of interest, released, and the aero-
elastic equations are integrated forward in time for another 3-6 cycles. The
flutter boundary is located by caIculating the logarithmic decrement &6 of the
transient solutions, and interpolating to &=0 between adjacent solutions with
different U/bwy

TABLE 1

Aeroelastic Test Cases

Case A B Cc

Airfoil(s) NACA 64A010 NACA 64A010 NACA 64A006

M_ 0.7 - 1.0 0.80 0.86
a ~2.0 -0.3 -0.3
Xg 1.8 0.5 0.5
r2 3.48 0.49 0.49
a
i 60 60 60
0 2 0.2
wh/wa 1.0 0
Refs. 5,6,7,8 6,9 10
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MESH GENERATION

The unsteady Euler calculations are carried out on a C-mesh of quadrila-
teral elements, generated by means of a square root transformation followed by
selective stretching to compress the grid near the trailing edge. A near field
view of the resulting mesh is shown in Fig. 2. In the far field, the mesh
extends to 15-100 chords, depending on direction. The mesh moves with the air-
foil as a rigid body, i.e. without deformation. Flutter calculations published
earlier by the authors (Ref. 4) were carried out on a 96 x 16 C-mesh, which
was found to give adequate engineering accuracy in most, but not all, of the
cases studied. In the present study, additional calculations have been performed
on both 96 x 16 and 192 x 32 C-meshes, and the results of Ref. 4 have been
updated where appropriate.

FIGURE 2



FLUTTER BOUNDARIES FOR CASE A

Previous studies (Refs. 5-8), which have been based on a number of dif-
ferent transonic small disturbance (TSD) theories, generally agree that the
flutter boundary for Case A exhibits a significant "transonic dip”", as shown in
Fig. 3. Also shown in this figure are the results of flutter calculations based
on the present Euler code, and using an initial forcing amplitude of 0.1 degree

in pitch. Overall, the agreement with previous TSD calculations are fairly
good. However, the Euler calculations appear to shift the bottom of the
"bucket”" toward higher Mach numbers. It is interesting to note that the bend-

back of the flutter boundary around M ~ 0.88 observed by Edwards et al. (Ref.
6) and Weatherill and Ehlers (Ref. 8), is also predicted by the present Euler
calculations. Not surprisingly, the precise location of the nose of the curve,
where the flutter boundary has a vertical tangent, was found to be sensitive to
the mesh size used in the calculations.
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FLUTTER FREQUENCIES FOR CASE A

Figure 4 shows the flutter frequencies vs. Mach number, with some com-
parisons to earlier OPTRAN2 calculations by Weatherill and Ehlers (Ref. 8). As
first noted by Isogai (Ref. 5), the flutter mode is essentially the first

(predominantly bending) natural mode. The flutter frequency is close to the
first coupled natural frequency q/wWg until the nose of the bend-back is en-
countered. At this point, the flutter frequency increases to a value hetween

the two coupled natural frequencies and the flutter mode also changes, although
it is still associated with the first predominantly bending branch.
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TRANSIENT SOLUTIONS FOR CASE A AROUND LOWER FLUTTER BOUNDARY AT M = 0.9

Typical transient solutions for Case A are shown in Figs. 5,6. At a Mach
No. of 0.9, multiple flutter solutions occur due to the bend-back of the flutter

boundary (see Fig. 3). Figure 5 illustrates the dynamic hehavior of the air-
foil, plotted as h(t)/b and a(t) vs. time, immediately above and below the
lower flutter point at M = 0.9 . In this case, the airfoil is stable below

{bottom figure) and unstable above (top figure) the neutral stability boundary
(UF = UF/bwa vs. M.) Here, the airfoil has been forced for 3-6 cycles in pure

pitch, with an amplitude of 0.1°, and then released at t=0.
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TRANSIENT SOLUTIONS FOR CASE A AROUND UPPER FLUTTER BOUNDARY AT M = 0.9

In the vicinity of the upper flutter point at M = 0.9, the stability
behavior is reversed from that observed around the lower point. The airfoil is
now stable for values of nondimensional airspeed U/bwy, above the neutral
stability boundary, as shown in the bottom diagram of Fig. 6. Conversely, the
airfoil is unstable for values of U/bw, below the flutter boundary.
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FLUTTER CALCULATIONS FOR CASE B

In Table 2, the results from our present flutter calculations for Case B
are compared to predictions by previous researchers using various TSD codes.
This case is the same as Case B considered by Isogai in Ref. 6. Note that the
present Euler calculations predict a somewhat higher flutter speed than the TSD
calculation by Isogai, but still below the speed predicted by classical linear
theory. The flutter speed predicted by Ueda and Dowell (Ref. 9), using the
describing function method based on LTRAN2 aerodynamics, is significantly below
the predictions of the Euler code.

TABLE 2

Comparison of Predicted Flutter Speed for Case B

Method a Up/bug 2kp

Present 0.1° 3.43 0.201
Ueda & Dowell®  0.25°(¢;) 2.95 0.221
Isogai® 0.1° 3.25 0.215
Linear Theory - 3.86 0.210
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NONLINEAR DEPENDENCE OF FLUTTER SPEED
ON INITIAL FORCING AMPLITUDE FOR CASE C

In Refs. 9-10, Ueda and Dowell investigated the nonlinear amplitude
dependence of the flutter boundary for Case C, Table 1. They found a distinct
drop in the flutter speed as the amplitude of the effective induced angle of

attack ¢7 = a + EC/U exceeded about 1°, where Bc is the plunging velocity at
midchord. Figure 7 shows results from the present Euler calculations, plotted
as flutter speed vs. initial forcing amplitude in pitch (prior to release).
Note that the flutter boundary is not very sensitive to a in the range 0°-5°,
and that the results obtained are sensitive to the initial forcing frequency.
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TRANSIENT SOLUTIONS FOR CASE C

Typical stable and unstable transient solutions are shown in Figs. 8 and 9,
corresponding to initial forcing amplitudes of a = 1° and 4°, respectively.
The flutter mode is again a predominantly bending mode and emerges quickly
(within a couple of cycles), despite the fact that the initial disturbance is
pure torsion. This rapid convergence toward the significant aeroelastic mode
was also observed in most of the transient solution of Cases A and B as well.

.06
n .15
b
.04 At
02 .05 ¢
w
g « | 8
g 0 4 5 0
-.02 b <-.05
-.04f -4t
-.06 4 - 4 -.18 4 - 4
-20 0 20 40 60 0 20 40 60 80
TIME TIME
.02 .06
.04 +
.01}
02r
g |
2
=] 1] o or
§ g
-.02}
-0tr
-.04¢
-.02 A . s R -.06 N s N N
-20 0 20 40 80 80 0 20 40 60 80 100
TIME TIME
FIGURE 8 FIGURE 9

489



490

CONCLUSIONS

Typical section flutter calculations based on the two-dimensional unsteady
Euler equations are now feasible.

Flutter speeds predicted by the present Euler code are in good overall
agreement with previous TSD calculations, except in cases where strong
shocks are present.

The Euler code calculations predict a transonic dip similar to the corre-
sponding dips predicted by TSD codes, but shifted toward higher Mach numbers.

Multiple flutter points occur at certain Mach numbers, caused by a bend-
back of the flutter boundary.

The amplitude dependence of Up appears to be less than might be expected.
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