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SUMMARY

Mathematical models and an associated computer program have been devel-
oped for heat pipe startup from the frozen state. The models have been checked
against previously published analytical and experimental data. Agreement is rela-
tively good for most situations examined.

When a liquid metal heat pipe is started by introducing heat to one end while
cooling the other, internal working fluid dynamics may greatly affect temperature
distributions and fluid properties within the pipe as well as the overall conductance
of the pipe. For example, if the working fluid is initially frozen, during startup
melting will occur in the capillary structure and the vapor will experience free
molecular, choked, and continuum flow at various times. These changing internal
conditions generally make the heat pipe relatively slow to transport energy from
heated to cooled ends and very large radial and axial temperature gradients may
develop.

The present work uses finite element formulations of the governing equations
written for each heat pipe region for each opérating condition experienced during
startup from a frozen state. In the shell, energy transport is by conduction only. In
the capillary structure, conduction and heat of fusion a.re considered. In the vapor
region different sets of governing equations are utilized for regions undergoing free
molecular, choked and normal continuum flow. The various models were checked
against analytical and experimental data available in the literature for three specific
types of operation. For example the models used to predict melting in the capillary
structure were checked against analytical results previously published for melting
In a corner region.

Computation using the methods developed in the present work were made for




a space shuttle reentry mission where a heat pipe cooled leading edge was used on
the wing. This wing had a sodium heat pipe built into the wing near the leading
edge. Charles J. Camarda of NASA Langley Research Center made experimental
measurements of startup behavior for such a heat pipe. Results computed in this

work compared well with Camarda’s data.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the problem

Since the heat pipe concept was first introduced inde;;endently by Gaugler[1]
in 1942 and Grover[2] in 1963, theoretical and experimental studies have been un-
derway to understand and develop heat pipe technology. Most theoretical stud-
ies concern certain portions of the heat pipe, such as the evaporator, condenser,
capillary structure, and vapor flow region. The overall performance of the entire
heat pipe, including the thermal behavior along the heat pipe wall and capillary
structure, vapor flow dynamics, and the various types of boundary conditions on
the evaporator and condenser surfaces have received less attention. However, the
steady state characterisfics of heat pipe pérformance at low temperatures and un-
der normal operating conditions are relatively well understood, and heat pipes have
been successfully applied in various fields.

Little research has been done on the transient case. Transient behavior of heat
pipes have been experimentally and numerically studied for low temperatures and
working fluids with high vapor density by Chang and Colwell[3,4,5].

Recently, use of the heat pipe has been considered as a means of reducing the
peak temperature and alleviating the thermal gradients at the leading edges of reen-
try vehicles and hypersonic aircraft, and in nuclear reactors. In these applications,
the rate of heat transfer may be large, and the range of operating temperatures
broad, from ambient to high témperature, so that liquid metal, which is in the solid
state at ambient temperature, may be used as the working fluid. Under these condi-

tions, the working fluid in the capillary structure may be in the solid or liquid state,



or may be freezing or thawing, with some liquid and some solid present. The vapor
flow may be free molecular, continuum, choked, or some combination of these. No
complete research has been reported on this subject.

The primary objective of this research is to investigate analytically the per-
formance of an entire heat pipe with metallic working fluid during startup from a
frozen state. To accomplish this goal, a mathematical model has been developed,
and a numerical solution technique tested to predict the transient temperature dis-

tributions along the heat pipe, and the optimal heat transfer rate.

1.2 Description of heat pipe operation

Many scientists and engineers have observed the phenomenon of surface tension
in nature and tried to understand, formulate, and apply it for improving human
life. Among many natural phenomena, the action of surface tension can raise liquid
against a gravity force within a small vertical tube or gauze with a portion immersed
in liquid. This capillary action can transport liquid through suitable materials with-
out using external power. When phase change takes place from one state to another,
the change of enthalpy is r-apid, and the difference between enthalpies of two states
is large. Therefore a large amount of energy may be absorbed or released depending
on the direction of phase change, and without a large temperature gradient. These
two phenomena are utilized in a heat pipe.

A heat pipe consists mainly of a shell as the container, a capillary structure or
wick to transport liquid by using surface tension, and a vapor space to provide vapor
passage as shown in Figure 1.1. Heat pipe shells have been made of stainless steel,
copper, nickel alloys, hastelloy, et cetera. Wire screen, fiber glass, porous metal, and
woven cloth have been used as capillary structures. Narrow grooves cut lengthwise

in the interior pipe wall have also served as a capillary structure. The capillary
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structure is saturated by the working fluid in the liquid state, and the vapor space
is occupied by the working fluid in the vapor state. Heating and/or cooling devices
are applied to the outer surface of the heat pipe shell. In the longitudinal direction,
the heat pipe consists of an evaporator and a condenser.

Heat added to the evaporator is transferred to the working fluid by conduction
and causes vaporization of the working fluid at the surface of the capillary structure.
Vaporization causes the local vapor pressure in the evaporator to increase and vapor
to flow towards the condenser thereby transporting the latent heat of vaporization.
Since energy is extracted at the condenser, the vapor transported through the vapor
space is condensed at the surface of the capillary structure, releasing the latent
heat. The radius of curvature of the meniscus in the capillary structure of the
evaporator is decreased and that in the condenser is increased. This difference in
radii between the two sections creates the pumping force that transports the liquid
from the condenser to the evaporator through the capillary structure. This process
continues so long as no extreme heat fluxes are encountered.

Hence, in a heat pipe energy is transported by utilizing phase change of the
working substance instead of a large temperature gradient and without external
power. Also, the amount of energy transferred through a small cross-section is
much larger than that by conduction or convection. Heat pipes may be operated
over a broad range of temperatures by choosing an appropriate working fluid, as
shown in Table 1.1[6].

However, this useful device has some operating limitations such as the sonic
limit, the capillary limit, the entrainment limit, and the boiling limit. When any
of these limitations is encountered, the capillary structure may dry out leading to
failure of the heat pipe. In addition to these limitions, when liquid metal is used

as the working fluid, startup difficulty may take place due to possible solid state of



Table 1.1 Heat pipe working fluids from Ref.[6]

Medium Melting Boiling point Useful range
point at atmos. press.
(°c) (°c) (°c)
Helium - 272 - 269 -271 - - 269
Nitrogen - 210 - 196 - 203 - ~-160
Ammonia - 78 - 33 -60 - 100
Freon 11 - 111 24 - 40 . 120
Pentane - 130 28 ~-20 . 120
Freon 113 - 35 48 -10 . 100
Acetone - 95 57 0 - 120
Methanol - 98 64 10 - 130
Ethanol - 112 78 0 - 130
Heptane - 90 98 0 - 150
Water 0 100 30 - 200
Toluene - 95 110 50 - 200
Mercury - 39 361 250 - 650
Cesium 29 670 450 - 900
Potassium 62 774 500 - 1000
Sodium 98 892 600 - 1200
Lithium 179 1340 1000 - 1800

(1}




the working fluid and extremely low vapor density.

1.3 Literature review

The heat pipe is a highly effective device for transporting heat between a source
and a sink. Since Gaugler[1] received a patent on the heat pipe concept applied to
a refrigeration system and Grover|[2] referred to a “heat pipe” in a patent filed for
the United States Atomic Energy Commission in 1963, scientists and engineers have
been developing heat pipe technology. The first paper which described the basic
principle of operation of a heat pipe was published by scientists at the Los Alamos
National Laboratory[7] in 1964. They built two heat pipes with water and sodium
as the working fluids for an initial qualitative experiment. Work at Los Alamos|8,9]
continued actively, emphasizing space applications for the transfer of very high heat
fluxes between two components and for the elimination of temperature gradients
over relatively large areas. For high temperature applications, lithium and silver
were tested as the working fluid at 1300°C and 2000°C, respectively. For the first
actual flight test, a stainless steel heat pipe with distilled water as the working fluid
operated successfully. At this stage, research on heat pipes was also conducted in
England and Italy{6].

Cotter[10] developed the general basic theory for making certain quantitative
calculations of heat pipe behavior. This analysis was confined to right circular
cylinders of large length-to-diameter ratio and emphasized the vapor flow. Uniform
injection or suction were assumed for a steady state condition. The axial transport
of energy was modeled with the vapor flow carrying the latent heat of vaporization
while neglecting axial conduction and radiation in the vapor space. After this
pioneering effort, several books[6,11,12] were published which describe the basic

theory of conventional heat pipe operation at steady state and low temperature.
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Busse[13] studied the pressure drop in laminar vapor flow in a long, cylindri-
cal heat pipe. The vapor density was assumed to be constant. The Navier-Stokes
equations were simplified by a boundary layer approximation and solved by approx-
imating the axial velocity component as a polynomial of the fourth power of the
radius, with a correction function which varied only in the flow direction.

Levy(14,15] used a one-dimensional approach in solving the vapor flow problem,
taking into account compressibility, shear stress at the liquid-vapor interface and
the vapor dissociation-recombination reaction. The analytical results indicated that
the shear stress is the most important factor, which reduces the maximum rate of
heat transfer from that based on the sonic limit.

Brovalsky et al.[16] described the vapor flow for alkali-metals by using averaged
equations of motion over the cross-section. Compressibility and friction at the
liquid-vapor interface were considered. Momentum and energy factors, and the
friction factof were evaluated based on theoretical data available for incompressible
vapor flow in a channel with porous walls. The comparison of numerical results
with available expeﬁmenta.l data indicated a maximum discrepancy of 10 %. The
temperature drop along the heat pipe was also observed.

Bankston and Smith[17] studied the fluid dynamics of the vapor flow at three
different Reynoids numbers; 0.01, 4, and 1000. The Navier-Stokes equations for
steady, incompressible, laminar vapor flow in a cylindrical heat pipe were solved
by a finite difference method in which the dependent variables were transformed
to the stream function and the vorticity. Inflow and outflow boundary conditions
were described at the wall as blowing and suction through a porous wall pipe, but
no thermodynamic change of phase was actually employed in the analysis. Their
results show that vapor flow in the condenser is more complex than that in the

evaporator, and that the vapor pressure varies not only in the axial, but also in the



radial direction for large Reynolds numbers.

A numerical analysis of steady two dimensional heat and mass transfer in the
vapor-gas region of a gas loaded heat pipe was made by Tien and Rohani[18]. In this
study, the radial component of velocity at the wall was determined by writing an
energy balance equation at the liquid-vapor interface. Numerical results show that
considerable pressure variations in the axial direction exist for large heat fluxes,
due to friction at the liquid-vapor interface. Thus, a temperature drop in the
axial direction occurs and vapor pressure variations play a significant role in overall
performance of the heat pipe.

Vapor flow dynamics in a flat plate heat pipe with asymmetric boundary con-
ditions was studied by Ooijen and Hoogendoorn[19]. The numerical study was con-
fined to two-dimensional, steady state, laminar and incompressible flow. From com-
putational results, velocity profiles were plotted in the evaporator and condenser for
wall Reynolds numbers of 2, 10, and 50, and were compared with parabolic Poiseuille
profiles for three locations. Flow reversal was observed, and similarity did not ex-
ist for high wall 'Reynolds numbers in the condenser section. For small Reynolds
numbers, the pressure drop is similar to the Poiseuille flow model. However, for
high wall Reynolds number, the large difference in velocity profiles in the condenser
section causes a higher pressure drop than that resulting from the Poiseuille model.
Good agreement was observed between experimental and computational results for
nitrogen gas.

Ismail and Murcia[20] studied combined liéuid and vapor flow in a tube with a
porous wick. Governing equations for the flow of viscous incompressible fluid were
solved using the separation of variables with known evaporation or condensation
rates. For the case of small Reynolds number, analytical results were obtained.

Demichele[21] investigated the two-dimensional, steady state and compressible



flow problem by using an integral transformation of the general compressible flow
equation introducing stream tubes which can be thought of as a set of concentric
nozzles. For each stream tube equations were derived with a different initial con-
dition. Numerical solutions predicted velocity, pressure, and temperature profiles.
Effects of viscous terms on pressure recovery were deemed to be important.

Compressible, transient and axisymmetric Navier-Stokes equations were nu-
merically solved to derive a friction coefficient expression to be used in one-dimens-
ional heat pipe vapor models by Bowman[22]. The equation for the friction coef-
ficient was expressed in terms of local axial Reynolds number, Mach number, pipe
aspect ratio and radial Reynolds number. The one-dimensional model with the
friction coefficient showed good agreement with experimental results.

Overall thermal performance of a heat pipe at steady state was studied the-
oretically and experimentally, by Sun and Tien[23,24]. In the analysis, a simple
conduction model was developed for a single-component heat pipe in one dimension
with uniform saturated vapor temperature and uniform mass injection or suction.
Axial wall temperature distributions were predicted. Theoretical predictions were
compared with measured results for gas-loaded heat pipes and good agreement was
reached. |

 Asthe digital computer was developed numerical techniques were used to solve
more complicated models. The simple conduction model developed by Sun and Tien
was extended by Kuramae[25] to transient heat pipes with time varying thermal
loads. In this model, the temperature was assumed to vary only in the axial direction
for the wall but in both the axial and radial directions for the wick structure. It was
assumed that the vapor temperature was dependent on time but uniform in space.
A numerical method was used to solve the governing equations and the calculated

axial temperatures were compared with typical experimental results.
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Experimental and numerical studies were conducted for transient operating
characteristics of low temperature heat pipes by Chang and Colwell[3,4,5]. The
computational model assumed that two-dimensional conduction in the heat pipe
shell and wick are the dominant heat transfer modes. A lumped mass model was
used for a combination of vapor space and central composite slab wick. Thermal
resistance at the liquid-vapor interface and along the vapor space was neglected.
To provide boundary conditions at the interface between the heat pipe wall and the
vapor space, the vapor region was modeled assuming that the vapor temperature was
a function of time only. A finite-difference method was used to predict performance.

Cotter[26] described three basic transient modes for heat pipe startup. A
frontal startup mode was observed when the vapor density is so low that the molec-
ular mean free path exceeds the diameter of the vapor passage. In this mode of
startup, the vapor in the hot zone is in continuum flow and that in the cold zone
is in free molecule flow. A large temperature gradient is developed and decreases
with time. Eventually, an isothermal steady state could be reached.

Ivanovskii et al.[11] carried out experimental studies of the temperature distri-
bution along the length of a sodium heat pipe in which the working fluid was in the
solid state at ambient temperature. The temperature distributions were measured
with the aid of a movable microthermocouple placed directly in the vapor channel.
Ivanovskii observed three simultaneous flow regimes in the condensation zone for
intense heat removal in a pipe operating at the sonic heat transfer limit: continuum
vapor flow at the start of the condensation zone and intermediate and free molecular
regimes futher on.

Neal[27] investigated the successful startup of a heat pipe with water as the
working fluid. The water in the condenser was initially frozen, but that in the

evaporator remained in the liquid phase. Experimental results showed that a large
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temperature gradient developed along the heat pipe length with increasing time
and even for a small heat flux the heat pipe failed to sta.rt‘up.

Shlosinger[28] studied the startup behavior of low temperature heat pipes with
the water initially frozen. With a heat input of 15 watts, the heat pipe working
fluid melted without wick dryout and normal operation began after approximately
one hour. Use of an auxilliary heat pipe which had a working fluid with a lower
melting point greatly improved the startup of the primary heat pipe without local
overheating and the transient period was reduced.

Deverall et al.[29] made a series of tests to study the startup problem with water
and metallic heat pipes. They described the transient behavior of heat pipe startup
based on their experiments. With the working fluid in the solid state, startup was
possible, but was highly dependent on the heat rejection rate at the condenser. For
successful startup, the heat rejection rate at the condenser had to be low enough
to enable the heat to melt the working fluid in the condenser, and allow liquid to
return through the wick structure before the evaporator was depleted of fluid. Heat
rejection by radiation is a self-compensating system and automatically controls the
heat rejection rate. Therefore, startup difficulties were not normally encountered
under these conditions. Another method suggested to aid the startup of a heat pipe
was the addition of a small amount of inert noncondensable gas which has a result
similar to that of radiation.

Camarda(30] investigated the performance of a heat pipe cooled leading edge,
experimentally and analytically. In the analysis, it was assumed that the temper-
ature was uniform throughout the continuum flow region and the melting process
of the working fluid was neglected. Temperatures were calculated by a lumped sys-
tem method which used a volumetric heat capacity per unit length of heat pipe.

Rates of continuum vapor region growth, which were predicted using simple energy
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balances, were compared with experimental results.

Most experimental studies[27,28,29] attempted sir'nply to see if it was possible
to obtain successful startup from the frozen state. It has been noted that startup
difficulties are normally encountered when the working fluid is initially in the solid
phase. No analytical studies which include the effects of phase change of the working
fluid and vapor flow dynamics have been reported, and further more, comprehensive
and qualitative research on startup from the frozen state has not been carried out

experimentally and numerically.
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CHAPTER 1I
MODELING OF STARTUP
2.1 Introduction

The use of heat pipes is being considered as a means of reducing the peak
temperature and large thermal gradients at leading edges of reentry vehicles and
hypersonic aircraft, and in nuclear reactors[31,32]. In the basic cooling concept,
the heat pipe, which is a highly effective heat transport device, covers the leading
edge, a portion of the lower wing surfaces, and a portion of the upper wing surface.
Aerodynamic heat is mainly absorbed at the leading edge, and transported through
the heat pipe to the upper and lower wing surfaces, where it is rejected by thermal
radiation and convection. Once fully operational, the near isothermal heat pipe
virtually eliminates temperature gradients and red-uces peak temperatures.

A previous feasibility study[31] of heat pipes for this application recommends
a rectangular cross-section for the heat pipe based on weight per unit surface area
of heat pipe cooling structure and fabrication considerations. A schematic diagram
of the physical model based on results presented in reference[31] is shown in Figure
2.1.

Previous experimental observations[26-32] suggest the following sequence of
events during heat pipe startup from the frozen sate. Initially, the working fluid is
in the solid state and the vapor density is extremely low, so that free molecular flow
conditions prevail throughout the vapor space. The input flux over the evaporator
starts to melt the frozen substance in this region, while the heat transport from the
hot zone to the adjacent zone proceeds quite slowly via axial conduction through

working fluid and capillary structure, while heat transfer in the vapor is almost
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negligible.

When energy is continuously added to the evaporator, the frozen working fluid
in the evaporator is melted, so that evaporation can take place at the liquid-vapor
interface and vapor flows into the condenser section due to the large pressure gra-
dient. Vapor therefore freezes on the inner surface of the frozen working fluid in
the cold zone and the vapor-solid interface temperature increases until the melting
temperature is reached. During this stage, energy is mainly transferred as latent
heat owing to vaporization in the heated zone, and condensation and freezing in the
cooled zone. The vapor flow may be choked at the exit of the evaporator because
of very low pressure in the cold zone.

This process continues until the frozen working fluid is completely melted and
the continuum flow regime reaches the end of the heat pipe, at which time liqu_id
returned to the evaporator is sufficient for normal transient operation. Eventually
the heat pipe may reach a steady state condition. As suggested, during the startup
of the heat pipe from a frozen state, the behavior of vapor flow may be divided into
three distinct phases for convience of analysis.

Phase I: = Vapor flow in the heat pipe is in free molecular condition through the
vapor space.

Phase II: In the vapor space, a region of continuum flow is established in the
heated zone and a continuum flow front moves toward the heat pipe
cooled end. Vapor flow may be choked at the end of the evaporator.

Phase III: Continuum flow exists over the entire heat pipe length in the vapor

region and the sonic limit is not encountered.
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2.2 Mathematical model development

On the basis of experimental observations, basic governing equations are writ-
ten to determine the startup, transient, and steady state performance of a heat pipe
which has initially frozen alkali-metal as the working fluid. These equations can be
coupled by several types of boundary conditions on the heat pipe surface, such
as specified temperature, heat flux, convection and radiation boundary conditions.
The boundary condition at the liquid-vapor interface depends on the three phases

of vapor flow dynamics mentioned in section 2.1.

2.2.1 Transition temperature

Continuum flow in the vapor space is considered to be established when the
mean free path,), is substantially less than the minimum dimension, D, of the vapor

flow passage, e.g.,

Kn

IN
o
(o)
—t

(2.1)

o>

]

From kinetic theory of gases[33], the dynamic viscosity and the mean molecular

velocity can be expressed as

p=0.5pAV (2.2)
8R,T
V= M (2.3)

Eliminating the mean free path from Equations(2.1) and (2.2) yields the tem-

perature of the vapor space corresponding to the given mean free path,
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r M{p\
T > —— (L .
— 2x107*R, (pD) (2.4)

where p is the density of the vapor, p is the dynamic viscosity of the vapor, R, is
the universal gas constant, and M is the molecule weight.

Iterations are required to obtain a value of T* due to the temperature depen-
dence of properties. Figure 2.2 illustrates the transition temperature, T*, from free
molecular to continuum flow as a function of minimum vapor passage for sodium.
When the temperature of the vapor space is greater than that calculated by Equa-

tion(2.4), continuum flow is assumed to be established in the vapor space.

2.2.2 Heat pipe shell and capillary structure with working fluid

Unlike the case of a conventional cylindrical heat pipe, aerodynamic heating
for the heat pipe shown in Figure 2.1 will cause the highest temperature to occur at
the outer shell of the heat pipe. Thus, to simplify the analysis, it is assumed that
the inner shell is sufficiently thin to neglect its thermal resistance and cai)acitance.
Furthermore, the following additional assumptions are made. The thicknesses of
the heat pipe and the rib are assumed to be much smaller than the width and
therefore temperature gradients would be developed primarily in the chordwise
direction during heat pipe sta.rtu‘p. Therefore, the rib may be neglected in the
analysis. Also, the heat pipe is assumed to be symmetric about the stagnation line
so that the upper half section of the heat pipe only is considered. Hence, a two-
dimensional model is considered for mathematical formulation. A simplified cross
section is shown in Figure 2.3.

The unsteady, two-dimensional conduction equation is applied to the heat pipe

shell and the capillary structure to evaluate the temperature distributions under
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the following assumptions:

1. The heat transferred through the wick and working fluid is by conduction
only since liquid flow velocity is very low, liquid layer is thin and thermal
conductivity is very high;

2. The presence of the wick structure does not affect the melting of the work-
ing substance, and melting occurs over a small, finite temperature range,
AT, around the melting temperature;

3. Boundary conditions at the liquid-vapor interface are subject to the phases
of vapor flow dynamics noted in section 2.1.

4. Radiation heat transfer at the liquid-vapor interface is neglected based on
the small thermal emissivity of liquid sodium(34].

The governing equations and boundary conditions for the heat pipe shell and

capillary structure with working fluid are expressed in one form:

or; 0 oT; 0 oT; .
C = ax <K‘ax> t oy (K‘ ay) y =12 (2:5)
T, =T, fort <0 (2.6)

3T1 v
K152 =Q(X,1) at Y=fi(X) for 0<% < (2.7)
"Kl%:%' = hcr(Tl - Tcr) + 05(T14 - Tr‘4) at Y= fl(X) for % < P < e
(2.8)
8T oT:

T, =T, and Kla—nl = Kz—a—n"l at Y =f(X) for 0<o <v (2.9)



21

— =0, i=1,2 at =0 and v =1, (2.10)

where the subscripts 1 and 2 denote the heat pipe shell and the capillary structure,
n represents the unit outward normal direction, and Sy represents the chordwise

direction.

In X - Y coordinates

kZ k%, kT

where I, and [, are the direction cosines between the surface outward normal, n,

and the X and Y axes, respectively.

2.2.3 Analysis of the vapor flow

- Analysis of the vapor flow is necessary to provide the boundary condition at

the liquid-vapor interface when continuum flow is established in part of the vapor
space. However, the behavior of the vapor flow as menticned in section 2.1 is very
complicated due to the extremely small vapor density of the metallic working fluid
at low vapor pressure, and the large pressure gradient in the chordwise direction.
Limits on vapor flow are encountered, and considerable thermal resistance exists at
the liquid-vapor interface due to phase change of the working fluid. The case of a
flat plate heat pipe with asymmetrical boundary conditions shown in Figure 2.3 is

considered for the vapor flow passage.

2.2.3.1 Evaporation and condensation

From kinetic theory, a significant thermal resistance exists at the liquid-vapor

interface for liquid metal{35] and this resistance increases with decreasing vapor
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pressure. This means that the difference between the vapor temperature and the
interface temperature is not negligible. At the interface, interphase mass transfer
has been stated from the viewpoint of kinetic theory as a net molecular flux which is
the difference between the rate of arrival of molecules from the vapor space towards
the interface and vice-versa. While condensation is proceeding, the arrival rate of
molecules exceeds the departure rate. During evaporation, the reverse is true, and
during the equilibrium state, the net molecular flux is zero. Hence, evaporation and
condensation are modeled by using an expression for the net rate derived from the

kinetic theory of gases[36]:

T, = (22250)\/;1\1:[%_\1/’%} (2.12)

where a is the condensation or evaporation coefficient which is assumed to be unity,

¢ is the porosity of the wick, m, is the rate of condensation or evaporation per unit
area, M is the molecular weight, R, is the universal gas constant, P; and Ty are
the pressure and temperature, respectively, at the interface, and Py, and T are the

pressure and temperature of the vapor, respectively.

2.2.3.2 Limitations of vapor flow

After continuum flow is established in the vapor space, because of the low
density of vapor at low pressure and the large pressure gradient, the vapor flow is
choked at the end of the evaporator, even for a low heat flux, just as it is at the
throat of a convergent nozzle for large pressure gradient. This sonic limit is the
first among several limitations encoﬁntered, and the performance of the heat pipe
is restricted until the vapor temperature increases accordingly until the velocity of

the vapor leaving the evaporator is less than the sonic velocity.
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The expression for the sonic limit[15,29] in terms of flow conditions at the
beginning of the evaporator, from an energy balance on a control volume enclosing

the entire evaporator, is:

0, = poAchsg/TR.To
V2(v+1)M

(2.13)

where A, is the cross-section area of the vapor space, hy, is the enthalpy of vapor-
ization, v 1s the ratio of specific heats, M is the weight of a molecule, R, is the
universal gas constant, T, is the vapor temperature at the beginning of the evapo-
rator and p, is taken as the saturation density corresponding to 7,. Experimental
verification of Equation(2.13) has been made by Kemme[37] for sodium, potassium
and cesium heat pipes.

Figure 2.4 shows the sonic limit, the entrainment limit[12] and the axial Rey-
nolds number for a heat pipe which has a cross-sectional area of 0.55 cm?, hydraulic
radius of 0.32 cm, 100 mesh screen wick, and sodium as the working fluid. The type
of limitation restricting performance of a heat pipe is determined by which limitation
has the lowest value at the temperature under consideration. Thus, the first limit
encountered is the sonic limit, as shown in Figure 2.4. However, when the acfual .

chordwise heat transfer required is below these limits, no limits are encountered.

2.2.3.3 Modeling of vapor flow during phase II

Even though some of the working substance is in the liquid state, the transition
temperature from free molecular flow to continuum flow is much greater than the
meltiﬁg temperature, so that the vapor flow is assumed to be free molecular during
phase I, and an adiabatic boundary condition is applicable at the interface. How-

ever, during phase II, a region of continuum flow is assumed to be established in the
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adjacent vapor space when the interface temperature is greater than the transition
temperature, while in the cold zone the vapor is still in free molecular flow. The
continuum flow region grows until it reaches the end of the heat pipe. The temper-
ature in the region of free molecular flow remains unchanged except in the vicinity
of the continuum flow region. Therefore, an imaginary plane, which is adiabatic
and normal to the liquid-vapor interface, is assumed to divide the two vapor flow
regions at the point of the transition temperature, and the dividing plane moves
toward the cooled end of the heat pipe as the location of the transition temperature
at the interface moves.

In the continuum flow region, energy is mainly transported as latent heat of the
working fluid, and variations of temperature and pressure in the chordwise direction
are significant. Even though continuum flow exists in the vapor space, the vapor
pressure is low and the pressure gradient in the chordwise direction is large, so the
heat transfer is limited by the choked flow condition, and suéersonic vapor flow and
a shock front[6,11,23,29] may occur in the condenser.

In this research, the overall performance of a heat pipe is of more interest
than details of one portion, and as noted, the ultimate heat transfer rate in the
axial direction is limited by the sonic limit. Thus, the vapor flow during phase II
may be approximated, without losing generality and accuracy, by evaluating the
sonic imit properly. In order to evaluate the sonic limit, the total heat input to
the vapor space, which can be obtained by applying Equation(2.12) to the element
adjacent to the continuum flow region, is equated to the sonic limited transport

from Equation(2.13) as follows:

Acv/7RaT,
ALW =22y Tt (2.14)
20y + )M
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where A, is the cross-section area, AL; is the length of the element, m. is the
number of elements at the interface in the e‘vaporator, and W is the width of the
vapor space. From Equation(2.14), the uniform vapor temperature can be computed
by iteration. This vapor temperature may be lower than true vapor temperature
at the beginning of the evaporator, but at this stage the variation of density with
temperature and the density itself is very small, so that the variation of sonic limit
with respect to temperature is also small, as shown in Figure 2.4. Thus, the heat
flux at the liquid-vapor interface and the sonic limit can be obtained by solving
Equations(2.12) and (2.13), respectively, with the vapor temperature obtained from
Equation(2.14). This method may be used until the vapor flow state reaches phase
IIIL.

2.2.3.4 Vapor flow during phase III

In this stage, the entire working fluid is completely melted and continuum
flow exists throughout the vapor space. However, the heat pipe has not reached
the desired operating condition and the density of the vapor is still small, so that
compressibility should be considered. The amount of energy stored in the .vapor
space is negligible. The Reynolds number in Figure 2.4 is the maximum value
corresponding to a given temperature and the diameter of the vapor space. When
the actual heat transfer required is below these limits, no limits are encountered.
A model[30] test, in which a thermal history for space shuttle reentry heating was
simulated, showed that the typical maximum heat pipe operating temperature is
about 940 K. At this temperature, the maximum Reynolds number is 1200. A study
of the effect of mass injection and suction, and/or chordwise pressure gradients on
flow transition from laminar to turbulent flow in the vapor space of a heat pipe,

was conducted by Bowman|[22]. His results showed that mass injection and pressure
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drops in the evaporator correspond to those for laminar flow for axial Reynolds
number up to 10°. For the condenser, transition of flow is observed at a Reynolds
number of 12,000. Even though the Reynolds number depends on the geometry of
the heat pipe and the actual heat transfer rate, the results cited from the previous
study show that the vapor flow may be assumed laminar. Also, it was observed

that the vapor reaches the steady state quickly, while the thermal response of the

~ heat pipe wall and wick progresses slowly. It was recommended that a steady state

model can be employed for the vapor flow.

Thus, quasi-steady, compressible, one-dimensional laminar flow in the vapor
space is considered. For purposes of formulating the mass, momentum, and energy
equations in one-dimensional form, the velocity is taken to be the average velocity,
which is approximated by the velocity distributions based on the similarity solutions
of semiporous channels. In addition, friction at the liquid-vapor interface, variations
of vapor quality, and momentum and energy factors are similarly c‘al.culated. The
vapor is evaporated at the interface with mass injection rate per uni; area,m,. It
is assumed that this vapor flows inward with a normal component of velocity only,
and joins the chordwise vapor flow.

Mass, momentum and energy balances in the chordwise direction, with the

assumptions noted, yield:

d .
D(—i—s-(pV) = 1m, (2.15)
dP d Fsz
E%-E(prV )= — 5D (2.16)
d . Esz i V.2 .
DdS [p‘f(h%- 5 )} = mo(ho + > ) (2.17)
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where D is the height of the vapor space, h is the vapor enthalpy and h, is the
vapor enthalpy at the interface.

A friction factor F for the surface is written as
F=0s (2.18)

Momentum and energy factors, M; and Ey, respectively, are expressed as

D
1
0 .
D
1 3
Es = 55 | Udy (2.20)
0

Normal velocity of the vapor at the interface is expressed in terms of the heat

transfer rate and latent heat of vaporization as follows:

. Q
Vo= i (2.21)

where Q) is the heat input rate at the interface, p, is the density for the interface

temperature and A4, is the interface area.




29

CHAPTER III
NUMERICAL MODEL DEVELOPMENT FOR PHASEYE CHANGE
3.1 Introduction

Transient and nonlinear heat transfer problems having phase change have been
encountered in many engineering fields, and pose inherent difficulties for analytical
and numerical solutions, because the interface between the new and old phase is
moving with time, and properties such as conductivity, specific heat, and density
are discontinuous at the phase change region.

The fundamental feature of these phase change problems was given attention
and was solved analytically by Lame and Clapeyron in 1831, Stefan in 1891, and
Newmann in 1912. Since then, many scientists have introduced analytical methods
of solution of phas>e change problems to a number of idealized problems involvirig
semi-infinite or infinite regions, subject to simple Boundary and initial conditions.
A brief discussion of these methods is presented by Ozisik[38]. A large number of
numerical solutions of phase change problems were made possible by the availability
of high speed digital computers. The finite element method has been used for
nonstructural problems since the procedure was first proposed by Zienkiewicz and
Cheung([39]. The solution process is now well established for linear situations, but
relatively little work has been reported for nonlinear problems.

The Galerkin weighted residual method is used here to derive finite element
formulations. Since the governing differential equations are highly nonlinear due
to the temperature dependence of the thermophysical properties, a three time level
difference scheme which was proposed by Dupont et al.[40] is utilized to allow a

direct evaluation of the properties at an intermediate time level, thereby eliminating
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iterations within each time step. However, this scheme is not self-starting, so the

implicit method with Newton-Raphson iteration is used for the first few time steps.

3.2 Mathematical model

For the system, having an arbitrary control volume V and control surface area
A, the general principle of conservation of energy implies that whatever energy
enters the system must either leave the system across the boundary or cause a
change in the energy within the system. With no work, mass transfer, nor energy
generation sources, the net rate of change of the total energy within the system
must equal to the net rate of energy entering the system due to heat transfer across
the control surface area. This statement can be expressed in mathematical form as

follows:

é\/‘ pth=/KVToﬁdA (3.1)
oty A

where p is the density, h is the specific enthalpy, K is the thermal conductivity, VI

is the gradient of temperature and 7 is the unit outward normal to the surface as

shown in Figure 3.1.

For a single phase region, the fixed control volume is independent of time, and
the divergence theorem is used to convert the surface integral to a volume integral.

Therefore, Equation(3.1) can be written

/Vgt.(ph)df/=/vv.(KVT)df/ (3.2)

The volume may be chosen so small as to remove the integral, and the specific
enthalpy can be replaced by the expression for the specific heat and temperature.

Equation(3.2) is then reduced for an arbitrary small volume V as follows:
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oT
pcp—a? =Ve (KVT) (33)
This equation can be applied to the solid and liquid regions when the motion
of the liquid due to the change of the density is neglected. However, the properties
of the material are discontinuous at the interface as shown in Figure 3.2 , so that a
single equation cannot describe the phase change phenomenon. Hence, a problem

with the phase change of a substance is mathematically described as follows:

0Ty

Ca 5 = Ve (K21 VTy) for old phase (3.4)
0T,
Ca2 5 = Ve (K2, VTs;) for new phase (3.5)
with initia.l condition

Boundary conditions are, fori = 1,2,

Ty =T,, on 4, (3.7)
—K;;VTy; =Q  on A, (3.8)
—K3iVT3i = heo(Toi = Ter)  on Aj (3.9)
—K3; VT = B(Toi — T.)  on Ag (3.10)



K, ¢,, h

Figure 3.2. Variations of properties near the phase change temperature.
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where 8, = o¢(Thi® + T )(Tai + T,) and coupling conditions at the interface are

Iy =T =Tn (3.11)

0Ty
on

8Ty, . dS;
2 = o, (3.12)

Ko - Kz,

where h., is the heat transfer coefficient, H;, is the latent heat of a phase change,
S is the interface position, T,, is the temperature of the phase change, ¢ is the

emissivity, and o is the Stefan-Boltzmann constant.

3.3 Description of numerical formulations

3.3.1 Finite element formulation

The Galerkin weighted residual method is used to derive finite element formu-
lations. Within each element, the unknown function T may be approximated at

any time t by the relationship

. .
T(z,y,t) = Y _Ni(z,y) ¢ Ti(2) (3.13)

i=1
where k is the number of nodes assigned to the element, T; are the discrete nodal
values of T, and N; are the shape functions.
To derive the element equations for differential Equation(3.3) and their bound-
ary conditions, the solution domain R in two dimensions, as shown in Figure 3.3,
is divided into m linear triangular elements of k nodes each. Application of the

Galerkin method to Equation(3.3) yields

0 oT(® 7] o7 oT'e)
T g — ¢ = Q.
/};(G)A,{—aX (A % >+ G (K 5 ) = }d‘ dY =0 (3.14)



Y

K,V = (T2 — T7)

Figure 3.3. Two-dimensional solution domain.
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where N; are the shape functions which are conveniently chosen as weighting func-
tions in the Galerkin method.

To reduce the order of the derivatives in the equation above and to introduce
the influence of the boundary conditions, the second order derivatives are integrated

by parts

[ [ (K + 2 (2 axar -

ON; (., 8T a:r(e) |
- ! 1
./(-) [5 (K X )+ ( )}dXdY (313)

a7 .. 6T<f>., .
+/‘;(¢)N,-[(K Ve 1+ K % ])on]ds

where 7 is the unit vector in the X direction, j is the unit vector in the Y direction,

and 7 is the outward unit vector normal to the surface, which coincides with the
boundary to the solution domain. For the surfaces(or sides) of the elements con-
tained within the solution domain, the surface integrals cancel out by continuity
of heat flux when the element equations are assembled into the global system of
equations. Only those surfaces of elements which coincide with the boundary to
the solution domain, and do not have a specified temperature at the boundary,
contribute to the surface integral. |

The surface integral can be expressed as the sum of integrals over the external

surfaces A as follows:

AT o7
[A(=)Ni[<K F¥e 1+ K 37 )on}dS—

ON;dS — | h(T®) -~ T..)N;dS— (3.16)

A, As

Br(T'® — T,)N;dS

Aq
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Substitution of Equations(3.15) and (3.16) into Equation(3.14) results in the

following expression

X X Y Y ot
/ QNidS — | hee(T® T, )N:dS - | BT ~ T,)N,dS
Az As

Ay

. () . (e) (e)
/ [BN' (KaT ) + on; (KaT ) + N.-C——aT }dXdY =
Rle) (3.17)

After substituting the expression for unknown function T(¢) into Equation

(3.17), the resulting element equation is expressed as

8N; ON; aN,-aN,-) ‘ / ( . )
/R (C)K( 5% 3% T 5y oy | TXdY + - CN;N;T; }dXdY +

hc,.NiNjTde+/ ﬂ,.NiNjTde = (3.18)
Ay .

As

ON;dS + / hepNiTerdS + | B.N;T.dS

Az As Ay

Finally, the assembly of the nonlinear transient element equations can be ex-

pressed in matrix form as follows:

OHTY+ K+ [l + | (T} = (A} + B} 4 (B) (319)
where
Cl= |  CNNjixay (3.19.1)
(K. = /R . K(g])\:f ‘gj + %;V," ZJ}\;" )dXdY (3.19.2)
Ky = /A hesN:N;dS (3.19.3)
K= [ NN (3.19.4)
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[Fl= | QN:dS (3.19.5)
;

[Fy) = i her NiT.rdS (3.19.6)

[F,] = i B, N;T.dS (3.19.7)

3.3.2 Time stepping scheme

The finite element method is now firmly established to investigate transient
field problems governed by parabolic equations. However, the time derivative has
usually been approximated by the finite difference method. Thus, a finite element

discretization in space is coupled with finite difference approximation in time.

3.3.2.1 Implicit method

‘Let " denote a typical time in the response so that ¢"*! = ¢" + At where At
is the time increment, and an intermediate time ¢y within each time step may be

expressed as
tg =17 + 6AL, 0<6<1 (3.20)
Then, Equation(3.19) at ¢ is given as

[CI{T}e + [K|{T}s = {F} (3.21)

A first-order Taylor expansion in time is used,

(T} = (T} - 5 {Tho(080) (3.22)

and the following approximation for {T} is introduced.
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d
£k = (1) - (1) (3.23)
Substitution of Equation(3.23) into Equation(3.22) yields
{Tho = (1 - 8){TY" +6{T}"+ (3.2)

Finally, substitution of the expressions for {T'}¢ and {T'}4 into Equation(3.21)

gives

([—g + 0[K ]){T}’+1 = ([—g -(1- 0)[K]){T}’ +{F} (3.25)

Since the values of [C], [K], and {F} depend on {T}s, a choice from among
the values § = 0, 1/2, 2/3, and 1, respectively, yields Euler forward-difference,
Crank-Nicolson center-difference, Galerkin, and fully implicit backward-difference
formulations. The fully implicit backward-difference scheme is unconditionally sta-

ble and predicts a smooth decay.

3.3.2.2 Explicit methods

The implicit method is much more stable than the explicit method, but requires
an iteration within each time step. To avoid iteration, a three level scheme proposed
by Lees[41] was used by Comini et al.[42-46] and Morgan et al.[47]. Oscillations
have been observed in certain instances, so a slightly modified form was used to
improve stability.

Another three level scheme is referred to as the Dupont three level scheme.

Hogge[48] demonstrated its overall performance to be superior in accuracy and
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stability to other time stepping schemes in solving the one-dimensional homogeneous
equation.

Thomas et al.[49] compared several time integration schemes such as the Lees
scheme, the Dupont écheme, and the Crank-Nicolson method. He concluded that
the Dupont three level scheme was clearly superior to that of Lees in both ac-
curacy and stability, and temperature-dependent terms should be evaluated using
{T}™*? instead of {T}"*}. With the use of Dupont method, Equation(3.21) can

be approximated as follows:

G[K] + [—AC;]){T}’+2 = %{T}'*’ + [—f—]-{T}" +{F} (3.26)

The Equation(3.26) allows the explicit evaluation of {T'}"*% without iteration,

provided that {T}"*? and {T'}" are known. However, this scheme is not self-starting, .

so that {T}"+! at the first time step may be calculated by using the implicit method.

3.3.2.3 Latent heat evaluation schemes

The principal difficulties in the analysis of the phase change problem are that
the variation of the heat capacity is very severe at the interface, as shown in Figure
3.2. The position of the moving interface is not known a priori and the shape may
be multi-dimensional. Thus, physically realistic approximation techniques must be
used to overcome these difficulties. It is convenient to divide them into two groups,
based on the choice of grids.

In the first group, the moving mesh technique continuously tracks the location
of the interface by deforming the grid system to maintain the finest mesh in the
vicinity of the critical phase change region. This technique may be limited to very

simple geometries. In the second group, a fixed grid technique can avoid tracking
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down the position of the moving interface, but the interface is generally at an un-
known location between nodes. Many different types of methods are available with
the fixed grid system. The first method uses the enthalpy as a dependent variable
along with the temperature, and may be referred to as the enthalpy method[50].
Since two dependent variables are used, the system of algebaric equations are solved
by iteration.

The second method treats the latent heat effect accompanying a change bf
phase in terms of a temperature-dependent specific heat; or with the use of an
enthalpy function. These methods avoid the moving interface difficulty so that
instead of continuously tracking down the position of the moving interface, the
same numerical scheme for conduction heat transfer without phase change is equally
applicable to the phase change region. Then, the position of the interface can be
easily determined by linear interpolation of nodal temperatures.

When temperature approaches the phase change temperature, the heat capacity
tends to the Dirac delta function, and cannot be satisfactorily represented across the
peak by any smooth function. Frivik and Comini[42] proposed a technique based

on the integral of the heat capacity with respect to temperature

T
H= | cdr (3.27)
T

This is a smooth function of temperature in the phase change zone. Therefore,

the enthalpy rather than the heat capacity is interpolated in a element as follows:

H=Y Ny H) (3.28)

where H; are the enthalpy values at nodal points.
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From definition, the heat capacity can be expressed as
dH
C = T (3.29)

Thus, the values of the heat capacity can be approximated by evaluating the
gradient of enthalpy with respect to temperature. Defining the direction n to be

normal to the interface line, Equation(3.29) is expressed as

O0H 0T
o (79‘#%) 3.30
(1 2 (E) -
ax ™y ™ on
where l __QZ 3_T
" T 8X' On
L _oT T
"W 8Y on -

2 293
or _[(9T\,(oF
on [\ 86X i) ¢
Hence, for the entire element, the final expression of the heat capacity proposed

by Del-Giudice et al.[51] is given as

o-[FE-EFIG) -F)] e
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CHAPTER IV
VAPOR FLOW DYNAMICS IN HEAT PIPES
4.1 Introduction

Analysis of the hydrodynamics of vapor flow in heat pipes with metallic working
fluids indicates considerable difficulties at low vapor pressure, due to the extremely
small vapor densities. Even for relatively small heaf transfer rates, vapor velocity in
the chordwise direction can be very large, accelerated towards sonic velocity because
viscous action causes pressure and density to decrease. Additional heat input causes
choking at the condenser inlet. Such behavior makes it necessary to include vapor
compressibility and viscous action in mathematical models. The vapor pressure
drop due to friction cannot be recovered completely in the condenser section. Thus,
the temperature distributions along the length of the heat pipe are not isothermal,
and thermal resistance in the vapor region is significant. Studies of the distributions
of temperature, pressure, and velocity in the vapor passage along the length of a
heat pipe are essential for an evaluation of the maximum heat transfer rates and
prediction of correct heat pipe performance.

Reviews of the literature on hydrodynamic processes in vapor flow of cylin-
drical heat pipes made by Tien[52] and Ivanovskii et al.[11] indicate that no com-
pletely detailed investigation has been presented thus far. Moreover, experimental
measurements of pressure and velocity for metallic working fluids have not been
reported.

An analysis of the steady, compressible, one-dimensional, laminar flow of
sodium vapor is presented for the case of a flat plate-type heat pipe with asymmet-

rical boundary conditions. In addition, shear stress at the liquid-vapor interface,
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variations of vapor quality, and momentum and energy factors are considered. A
similarity solution for a semiporous channel is used to provide the velocity profile

at cross sections.

4.2 Similarity solution for a semiporous channel

4.2.1 Governing differential equations

A sketch of the geometry for a se_miporoué channel is given in Figure 4.1. The
following assumptions are made: that the fluid flow is incompressible and lami-
nar, and that the properties of the fluid are constant. The width of the channel
is assumed much greater than the height. Therefore, two-dimensional flow is con-
sidered. Fully developed flow is assumed in the channels. A constant injection or
suction velocity is used. With these assumptions, the Navier-Stokes equations for

two-dimensional, steady state, incompressible, laminar flow are written as

ou LU 10P U  8*U
Vax " Vv = ,ax T [axz * vz } (4.1)
ov* LoV* 10P &ve  §rve
Vox TV %y = Lar [axz t By J (4.2)
and the continuity equation is
oUu ov*
ax + W - 0 (4.3)
Boundary conditions used on the channel surfaces are
U =0, and V*=0 at Y = 0 (solid wall) (4.4)
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V. : Suction.

Figure 4.1. Schematic diagram of a semiporous channel.
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U=0, and V=V, at Y = D (porous wall) (4.5)

4.2.2 Similarity transformations

The governing equations can be transformed into total differential equations
by the use of a dimensionless length coordinate, w, and a dimensionless function,
f, which automatically satisfies the continuity equation. The new variables[53] are

defined as

where V(X) =U"(0) - Kb}—{ and U*(0) is the average velocity at X = 0.

Then, the local velocity can be expressed by the new variables as follows:

U= =Vf' (4.8)

Use of Equations(4.1), (4.2), and (4.6) to (4.9) gives

18P V° n ! Vo om
_;__BX:V[—-—D(ff —.f)z———sz ] (4.10)
lap r ! v "
_;_aw =V, [poff - _D_f } (4.11)
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Since the right side of Equation(4.11) is a function of w only, differentiating

with respect to X yields

8P
a0 =0 (4.12)

On taking the derivative with respect to w, applying Equation(4.12), and inte-

grating, Equation(4.10) becomes

Re, [(f')z - ff"] S =4 (4.13)
where Re, = Z‘;Q and A = —%—E—g—;

The transformed boundary conditions are written as

fl=f=0 at w = 0 (solid wall) (4.14)

fl=0,f=1 at w = 1 (porous wall) (4.15)

4.2.3 Solution of equation

Differential Equation(4.13) together with the associated boundary conditions,
constitutes a nonlinear boundary value problem with the parameter Re,. Since this
governing equation is no longer partial differential equation, it can be solved numer-
ically by the Runge-Kutta integration method. However, the number of boundary
conditions is not enough to solve Equation(4.13). Therefore, for each specified Re.,,
the value of A and f"(0) are guessed to solve a system of the first order differen-

tial equations. Then, at w = 1(porous wall), the calculated values of f' and f are
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compared with the given boundary conditions. When both values are not accept-
able, other values are used until the convergent tolerance is satisfied. When wall
Reynolds numbers for suction are greater than 13, separation occurs on the solid
wall. Similarity solutions are valid for wall Reynolds numbers up to 13. Hence, the
equation is solved for wall Reynolds numbers ranging from - 30 to 13.

A comparison of the present results with those found in the literature[53,54],
which use the perturbation method for small Reynolds numbers and a different
numerical scheme, verifies the accuracy of this numerical solution.

The velocity profiles for the suction and injection sections are shown in Figures
4.2 and 4.3. Asymmetric boundary conditions cause the velocity profiles to be
asymmetric. For injection, Re, < 0, the location of the maximum velocity shifts
from the center of the channel toward the solid wall. Thus, injection increases
friction at the solid wall, and decreases friction at the porous wall. As wall Reynolds
numbers increase, the degree of shifting is large, although the general shape is
changed little. For suction, Re, > 0, the location of the peak velocity shifts toward
the porous wall. Hence, suction increases friction at the porous wall and decreases
friction at the solid wall. Unlike injection, separation for suction appears around
a wall Reynolds number of 13. The velocity profiles change considerably with wall
Reynolds number. In general, friction for the semiporous channel is larger than that
fc;r the impermeable channel.

Results[19] from two-dimensional, incompressible, Navier-Stokes equations for
a flat plate heat pipe show similar velocity profiles. In the evaporator, the velocity

profiles retain similarity for a wall Reynolds number of 50, which is the highest

value tested. However, back flow was observed near the end of the condenser for

a wall Reynolds number of 10. For a wall Reynolds number of 50, back flow was

observed in the entire condenser section.
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Figure 4.2. Velocity profiles for wall injection in a semiporous channel.



2.2

Velocity Ratio, U/V

N Suction

1.4

1.2
L

]
—

Re
0

1.0

0.8
L

0.6

T T T T T T T ™
00 01 02 03 04 05 06 07 08 09

Solid Nondimensional Distance Porous

Fi‘gure 4.3. Velocity profiles for wall suction in a semiporous channel.

l
1.0



4.3 Compressible vapor flow analysis

Steady, compressible, one-dimensional, laminar flow in a heat pipe is consid-
ered. The principal governing equations for mass, momentum, and energy are
formulated by using the average velocity as described in Chapter 2. This veloc-
ity is approximated from velocity distributions based on the similarity solution of
semiporous channels. Shear stress at the interface, and the momentum and energy
factors are similarly calculated and shown in Figure 4.4.

The fluid in the vapor passage of the heat pipe is assumed to be a mixture
of liquid and monatomic vapor. Thus, the quality of the vapor is considered. The

specific volume v and the enthalpy h are expressed as

v=uv5+ Xy X (vg — vy) (4.16)

h=hf+Xq X hfg (417)
The specific volume of the saturated vapor can be approximated by

_R.T
- PM

vg (4.18)

Also, the temperature and pressure are related by the Clausius-Clapyron equa-

tion:

dP _ hsgM dT

P R, T?

(4.19)

where hyy is the enthalpy of vaporization, vy and v, are the specific volume of

saturated liquid and vapor, respectively, and X is the vapor quality.

ORIGINAL PAGE IS
OF POOR QUALITY
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4.3.1 Formulation of differential equations

Bankston and Smith[17] showed that variation of the momentum and energy
factors with axial distance and radial Reynolds number is very small except near
the end of the heat pipe. Figure 4.4 shows that both My and E; are nearly indepen-
dent of the radial Reynolds number except near separation. These results are taken
from the similarity solution for semiporous channels. Therefore, it is assumed that
the derivatives of My and E with respect to chordwise distance are equal to zero.
In addition, assuming vy and hy, are constant quantities, and combining Equa-
tions(2.15) through (2.21) and Equations(4.16) through (4.19) yields the chordwise

gradients for the density, quality, velocity, pressure, and temperature.

4.3.1.1 Density_

The differentiation of Equation(4.18) with respect to S gives

dvg vgdP vy dT
-9 _ 9 -— 4.2
ds PdS T dS (4.20)
Substitution of Equation(4.19) into the equation above yields
dvg vy [ R, T dP
s - P [hng B 1} ds (4.21)

The derivative of the mixture specific volume in the S-direction is written as

aXx . | dv dv
— = —+(vg—vf)~(—i-§q+]&q[-33,g —"#J (4.22)

With the prescribed assumption for vy, substitution of Equation(4.21) into

Equation(4.22) results in



54
dv dX, vgXq R.T dP
- = — , -1l — 4.2
25 = =g T [hng } ds (4.23)
The derivative of specific volume and density are related as follows:
dp 1 dv
9= "3 (4.24)

From Equations(4.23) and (4.24), the expression for density in differential form

can be written as

dp 1 dX, vgXg[ R.T dP
a5 = "w | gg T \n,m ) as (4.25)
4.3.1.2 Quality
From Equation(4.23), the quality gradient is expressed as
dX, 1 dv  veXg ( R,T \ dP
= —_ 1- — 4.26
S ~ (vg—v5) [dS 7P h;M ) dS (426)

Substitution of Equation(4.24) and the equations for conservation of mass,

Equation(2.15), and momentum,Equation(2.16), into Equation(4.26) yields

dX, v? { 1 +V2qug_(1_ RuT> dP FVv?
dS = (vg —vs)V? My P v? hfggM )| dS 8DvM;y
o 9 (4.27)
- (vg —vs) DV

4.3.1.3 Velocity

The equation for conservation of mass,Equation(2.15), can be expressed as

follows:
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dV. v, Vdv
=D +;g§ (4.28)
Substitution of Equation(4.23) into the expression above gives
dV. v,  V(vg—vg)dX, VX,v,( R,T dP
S Dt T v @ tTTP o\ a4

4.3.1.4 Pressure

With the previously mentioned assumptions, substitution of the energy Equa-

tion(2.17) into the momentum Equation(2.16) yields

(4.30)

dS ~ E; dS 2 2 8D

dP_ Mspdh Mymno (, EfV? V_) __Fp1?
dS ~ E; dS  E;VD ° -

In order to obtain an expression for the derivative of the vapor enthalpy, dif-
ferentiation of Equation(4.17) is taken with respect to S, and Equation(4.19) is
substituted:

dh dX, R, T_2 dP

a5 =935 T hM P dS (431)

After the expressions for the derivative of the enthalpy and quality are substi-

tuted into Equation(4.29), the pressure gradient can be expressed as follows:

M, vy —v E,v? V2 hsy F vy —v 2
——f———[2hfg+—9v—’-(h —h+ =~ + )]——,;—!—518—5—4—LFV

dP E,VD ° 2 2 v? 8D
ds vomvs | 1Ay | MphioXgvg [ R.T ) | Mpvg=vs R T2
v E! Vv? E, P v2? hng{ Ef ‘U2 hfgﬂf P



4.3.1.4 Temperature

The temperature gradient is derived from the Clausius-Clapyron equation,

Equation(4.19), as follows:

T _ R.T* dP
dS ~ h;yMP dS

(4.33)
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CHAPTER V

COMPUTATIONAL PROCEDURES

5.1 Transient conduction equation with phase change

The algorithm proceeds similarly to most finite element method procedures.
First, the element data are generated by a grid generation program. This data
consists of the coordinates cf the nodal points of each element, by element, and
the properities and boundary conditions for each element. Based on this data, the
capacitance matrices, [C], and the conductance matrices, [K.], related to the time
derivative of nodal temperatures and conduction, are calculated for each element.
The conductance matrices, [Kj] and [K,], and the vectors {F,}, {Fir}, and {F,}
for specified surface heating, convection, and radiation boundary conditions, are
computed only for elements having the boundary conditions above. These boundary
conditions may be time dependent, so these matrices and vectors must be evaluated
based on the appropriate temperatures. For an implicit time step, the iteration
scheme is such that temperatures are initially assumed, and the proper value of 6
is chosen to obtain stable and accurate results. In this study, 6 = % or 1 is used,
so iterations are required within each time step. However, for an explicit time step,
such as the Dupont scheme, the element temperatures for the previous step are
involved in obtaining the matrices and vectors related to the boundary conditions.
Then, these element matrices and vectors are assembled into the global matrices for

the entire solution domain, and the full set of equations may be written in matrix

form as



58

[AM] {T} = {RM} (5.1)

where [AM)] represents the banded coefficient matrix, {T} denotes a column ma-
trix of unknown temperatures, and {RM} is the column matrix of constants. If
temperatures are specified on some boundary surfaces, these boundary conditions
must be incorporated into the global matrices as described in reference[55].

Once the global matricesl have been assembled, they are solved by using Chole-
ski decomposition. Choleski’s method[56] has the advantage of being simpler and
easier to implement than other elimination methods. It may also be used to ad-
vantage for storage in the computer by overlaying the upper and lower triangular
matrices in the same storage location([AM] matrix).

The system of Equations(3.25) for the implicit method or (3.26) for the explicit
method is then marched forward in time. Among the various iteration schemes,
the Newton-Raphson method is used for the implicit method because of its fast
convergence. For the explicit method, iteration is not required, but it is not a self-
starting scheme, so the implicit method is employed for the first few time steps.
When temperatures at two previous time steps are known, the explicit method can

be marched forward. The algorithm flowchart is shown in Figure 5.1.a.

5.2 Compressible vapor flow

The five dependent variables: density, quality, velocity, pressure, and tempera-
ture, are coupled by differential Equations(4.25), (4.27), (4.29), (4.32), and (4.33),
which are first order, nonlinear, ordinary differential equations. A computer code
has been written to numerically solve these equations simultaneously using the

Runge-Kutta integral method, which needs only proper boundary conditions for
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the first step of integration.

Since the velocity term appears in the denominator of Equc;ition(4.32), the phys-
ical boundary condition for velocity cannot be used directly. To avoid this problem,
proper boundary conditions at the upstream end of the evaporator are determined
for initiating all calculations as follows: a new boundary condition for the velocity
is determined a short distance away from the beginning of the evaporator, assum-
ing incompressible and saturated vapor flow at the temperature corresponding to
the heat pipe operating temperature. Saturation pressure is used for the pressure.
Since the velocity is small at this point close to the upstream end of the evaporator,
boundary conditions determined this way are realistic. The differential equations

are solved using these boundary conditions.

5.3 Coupling vapor flow effects

When the Mach number is less than about 0.2, compressibility is neglected,
and friction effects at the interface may be negligible due to the low velocity of
the vapor. Thus, most studies of heat pipe performance[5,23-25] assumed that the
temperature is uniform throughout the vapor space. This approximation eliminates
difficulties encountered in solving the vapor flow dynamics, and gives simple results
for low operating te:rnperatures with small heat fluxes. When the vapor temperature
is uniform in the vapor space, no thermal resistance exists, so a maximum amount of
energy can be transferred through the vapor space for a given operating condition.

The energy stored in the vapor space is negligible due to low density, so the
energy entering the evaporator is equal to the that leaving the condenser. Equa-
tion(2.12), which describes evaporation and condensation, is applied to every ele-

ment at the interface, and the energy balance in the vapor space is:
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e Pf' Pg} mc[Pf' Pg}
—Ji_ AL = —= - AL (5.2)
;[VTH \/179 ; \/Tfi \/T;

where m, is the number of elements at the interface in the evaporator, m,. is the
number of elements in the condenser, and AL, is the side length of an element at
the interface. Equation(5.2) can be solved by iteration to obtain the uniform vapor
temperature, as long as the temperature at the interface is known. The heat flux
at the interface is evaluated using Equation(2.12) with known temperatures.
However, when liquid metal is used as the working fluid, and the heat flux
applied to the surface is large, the velocity of the vapor is large, so the temperature
drop in the vapor space should be considered. The temperature drop in the vapor
region implies that the thermal resistance allows less energy to be transferred from
the evaporator to the condenser. Thus, the evaporator temperature is higher, and
the condenser temperature is lower, than in the uniform vapor temperature case.

When vapor flow dynamics is coupled with the heat pipe shell and capillary

structure at the interface, the governing equations are solved simultaneously with

unknown boundary conditions at the interface. Iterations are required for every
time step until both results match at the interface. This method may yield accurate
results, but in general consumes much computational time, due to iteration. Also
convergence may not be reached. Hence, an approximation method is employed to
eliminate these difficulties.

Instead of simultaneously solving governing equations for both regions, govern-
ing equations for the vapor region are separately solved with a given heat flux, so
that the temperature drop,ATy, can be obtained. The thermal resistance,R,, in

the vapor space may then be evaluated from Equation(5.3):
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Q=—= (5.3)

In order to obtain the thermal resistance, the total heat flow rate is needed.
But without solving both governing equations, the heat flow rate is also unknown.
Thus, the known heat flow rate at the previous time step is used, and the heat flow
rate evaluated at the present time step is used at the next time step.

Coupling of the evaporator and condenser sections becomes very difficult when
vapor temperature changes along the length of the vapor section. An approximate
coupling method is used here which accounts for thermal resistance in the vapor
region but which uses a constant vapor temperature. Since the total heat transfer
rate through the vapor space, which is computed by using Equation(2.12), is the
same as the heat input at the liquid-vapor interface in the evaporator or heat output
at the interface in condenser, a certain fictitious layer, which has the same thermal
resistance as that evaluated in the vapor space, may be placed at the liquid-vapor
interface. Thus, the temperature at the new interface in the evaporator is lower
than that at the true interface, due to the resistance in the fictitious layer, and
vice-versa for the condenser. With this coupling technique the heat fluxes are
correct throughout the pipe and vapor thermal resistance is taken into account.

In order to compute the uniform vapor temperature, the temperatures at the
new interface are used for Ty, in Equation(5.2), and the heat flux at the interface
is calculated by using Equation(2.12) with the uniform vapor temperature and the
temperatures at the new interfaces. This heat flux then serves as the boundary
condition at the liquid-vapor interface when solving the governing equations for the
heat pipe shell, capillary structure, and vapor flow at the next time step. By using

this approximation scheme, iterations can be excluded, while vapor flow effects are
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retained.

5.4 Overall computational procedures

Since the working fluid of the heat pipe is initially in the solid state and the wick
structure is saturated, the transient conduction equation is applied to the heat pipe
shell and wick structure. The variable heat flux and radiation boundary condition
are considered on the outside surface of the heat pipe. The adiabatic boundary
condition is used at the liquid-vapor interface, due to the vaccuum in the vapor
space, until the nodal temperatures at this interface are greater than the transition
temperature (700 K). The implicit method is used for the the first ten time steps,
and then the explicit method is employed using a time step of 10 seconds.

When the temperatures of the first two nodes at the liquid-vapor interface are
greater than 700 K, Equation(5.2) is solved for the vapor temperature by using
‘the Newton-Raphson method. Then, the heat fluxes are calculated using Equa-
tion(2.12) with the known interface and vapor temperatures. These heat fluxes are
to be used as boundary conditions at the interface for the next time step. However,
the adiabatic boundary condition is still applicable for the rest of the interface.
From then on, a small time step is used to obtain stable startup. These procedures
continue until the heat transport in the chordwise direction is less than the sonic
limit.

When the sonic limit is encountered, the total heat transport through the
vapor space should equal the sonic limit, and Equation(2.14) is solved for the vapor
temperature. The heat fluxes at the interface in the evaporator are calculated by
using this vapor temperature and the nodal temperatures at the interface. Then
the heat fluxes for the condenser are evaluated in proportion to nodal temperatures

which are greater than 700 K. Again, these heat fluxes are used to solve the transient
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conduction equation for the heat pipe shell and wick structure. This scheme is
effective until the entire vapor space achieves continuum flow and the heat transport
in the chordwise direction is less than the sonic limit.

When the sonic limit is not encountered, Equations(4.25), (4.29), (4.32), and
(4.33), which are first order, nonlinear, ordinary differential equations for compress-
ible vapor flow dynamics, are solved to evaluate the thermal resistance in the vapor
space, as stated in section 5.3. This computational scheme is used until the desired
operating temperature, or the steady state condition, is reached. Figures 5.1.a and
5.1.b schematically shown the computaﬁonal procedures.

Since any implicit scheme is excluded, except the first few steps to provide
initial conditions for the explicit method, time steps are gradually decreased from
0.5 seconds to the order of milli-seconds to maintain a stable condition at the liquid-
vapor interface. The computer code is successively tested against the given physical

model by following these procedures.
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CHAPTER VI

RESULTS AND DISCUSSION

6.1 Transient conduction and phase change

To verify the finite element formulation and algorithm, computed numerical
solutions are compared with available solutions, such as analytical and other ap-

proximate solutions.

6.1.1 Temperature of a semi-infinite body

This case involves pure conduction of heat, without phase change, over a semi-
infinite body. It is solved as a two-dimensional problem, shown in Figure 6.1.
Adiabatic boundary conditions are assumed throughout, but at the surface (X =
0), the constant heat flux (Q = 100kW/m?) is imposed to heat the surface while
the initial sodium temperature of 293 K is uniform. The conductivity and specific
heat are assigned constant values for sodium.

The exact solution to this problem was given by Luikov([57] as

T(X,t) = glgx/&?[—\%exp (%) - 2\}/(;{erfc<2§§>] LT, (61)

- K

where a = pe
For the numerical solution, an explicit time stepping scheme is used with an
implicit method for starting. A time step of 5 seconds is used, and numerical
calculations are terminated as the temperature of the last node starts to change

from the initial temperature. Numerical results are compared to the analytical

solution in Figure 6.2. The results yield excellent agreement.
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6.1.2 Convection and radiation boundary conditions

This example tests the ability of the numerical method to handle convection
and radiation boundary conditions. The same grid system shown in Figure 6.1 is
used, but the boundary condition on the surface at X = 0 is replaced. For a Biot
number of 1.0, three different cases are examined. First, only a convection boundary
condition (8 = 0.0) is applied to the surface, and an initial temperature of 1650 K
is used. Next, convection and radiation boundary conditions(8 = 1.0) are applied
to the‘ surface with the same initial temperature. Finally, an initial temperature
of 2650 K, which is greater than the previous two cases, is used for § = 4.0. In
these tests, phase change is not involved, and the properties of sodium are used for
specific heat and conductivity;

An analytical solutiop for this case is not available except for one having only
a convection boundary condition, so the numerical results are compared with prob-
ablity solutions which Sheikh and Sparrow[58] found for the same cases. As shown
in Figure 6.3, temperatures at the boundary surface and opposite end are plotted

versus time. The results show good agreement.

6.1.3 Phase change of sodium

In this example,. sodium is used as the phase change material for two-dimens-
ional region as shown in Figure 6.4. An initial temperature of 393 K is used. The
ratio of diffusivities of solid and liquid phases is assumed to be one to compare
with the existing solution. Boundary conditions(T, = 293 K) of the first kind
are imposed on the surfaces. Since specified temperature boundary conditions are
suddenly imposed on the surface, the temperature gradient in this region is infinite,

which causes unstable conditions. This difficulty may be eliminated by introducing
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Figure 6.4. Two-dimensional mesh used to represent a corner region: 242 elements.

144 nodes.
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a layer of fictitious elements with negligible thermal storage capacity and very high
conductivity, such that the temperature gradient at this region artificially becomes
finite. For this purpose, numerical values of the thermophysical properties of the

ficititious layer are chosen as follows:

pcp = 1.26 x 104 /m*K

K =419 x 10°W/mK

Two different time stepping schemes, the fully implicit method and the explicit
method, are employed to compare the computational time anc results. A time step
of 5 seconds is used. For the two-dimensional case, the position of the interface
is compared with an approximate solution given by Rathjen and Jiji[59]. This
solution assumes that the ratio of diffusivities of solid and liquid is unity, and
that the interface at points beyond three times of the one-dimensional interface in
X and Y directions is the same as the one-dimensional interface position. Both
numerical solutions for explicit and implicit methods are directly compared with
the approximate solution, and good agreement is obtained for early time steps, as
shown in Figure 6.5. As time passes, the position of the interface given by numerical
results advances further than for the approximation, and the interface lines obtained
from the approximate are not perpendicular to the boundary surface. According
to assumptions made by Rathjen and Jiji, adiabatic boundary conditions for the
approximate solution can be located beyond the present solution domain at certain
time steps. However, the numerical calculations use adiabatic boundary conditions,
so that all heat is used for phase change, while the approximate solution does not
match the same boundary condition within the solution domain. This explains why
the positions of the two interfaces are different.

Numerical results predicted by the explicit method using an implicit scheme for
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a few initial time steps are close to those of the fully implicit scheme and the explicit
method consumes much less computational time, since iterations are eliminated.

Even though the numerical solutions do not exactly match the approximate

solutions, because of different boundary conditions, general trends in the numerical

results and the usefulness of the explicit time stepping scheme are verified.

6.2 Compressible vapor flow

To test the differential formulations and algorithm for vapor flow, the numerical
solutions are compared to other numerical results[18] for cylindrical heat pives with
sodium a.s‘the working fluid, since data for a flat plate heat pipe are not available.
The two-dimensional mass, momentum, and energy conservation equations, which
were transformed in terms of the stream ‘function, vorticity and enthalpy, were
solved numerically. The dimensions of this cylindrical heat pipe are: total length
of 0.6 m, evaporator length of 0.2 m, condenser length of 0.3 m, and inside radius
of 0.0086 m. Since variation of temperature and pressure in the axial direction for
low heat input is small, two different operating conditions are selected. One has
an operating temperature of 818 K with a uniformly distributed heat input of 610
watts. Another has an operating temperature of 841 K with a heat input of 1265
watts.

To match the results for the rectangular heat pipe to that for the cylindrical
heat pipe, the rectangular cross-section of the vapor space is modeled such that the
cross-section area is the same as for the cylinder, and the hydraulic radius is close
to the radius of cylinder. Also, the same heat input is applied to yield the same
velocity and a similar Reynolds number in the axial direction, and the same length
for each section is used. The wall Reynolds number at the condenser must be less

than 14 to use the results of the similarity solution. Therefore, two different cross
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sections are chosen. For high heat flux, the wall Reynolds number cannot be less
than 14 so that a square of 0.0152 m is used and comparison is made only for the
evaporator and adiabatic sections. For low heat flux, the cross section is chosen such
that the wall Reynolds number at the condenser is close to the allowable maximum
value. Thué, the cross section is rectangular with a width of 2.11 cm and a height of
1.1 cm, resulting in a wall Reynolds number of 13.4 in the condenser. Even though
the two models do not match exactly, the effect of vapor flow may be simulated
using these models.

One-dimensional numerical results of the flat plate heat pipe are compared
with published two-dimensional numerical data for cylindrical heat pipes as shown
in Figures 6.6 and 6.7. Pressure and temperature drops for the one-dimensional case
are a little greater than those for the two-dimensional case, but overall agreement is
good. For high heat flux, pressure variation with axial position is somewhat differ-
ent for the two cases, but the total pressure drops are nearly the same. Temperature
profiles agree well. Thus, as shown in Figures 6.6 and 6.7, one-dimensional differen-
tial formulations yield valuable results. The difficulties of solving two-dimensional
governing equations are avoided.

To investigate various vapor effects, two other heat pipes with sodium as the
working fluid were selected for analysis. One has an adiabatic section, the other
does not. Dimensions of the heat pipes are shown in Table 6.1. Different operating
temperatures were chosen so that temperature effects could be evaluated. For each
operating temperature, various heat fluxes were considered. Since the similarity
solutions used are valid only while wall Reynolds numbers are less than 14, the

maximum heat flux on the condenser is chosen to satisfy this condition.
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Table 6.1. Description of heat pipes

Dimension 773 X 808 K
L, (cm) 8.0 20.0
La 0.0 10.0
LC 22.0 30.0

°D 1.33 1.35
W 1.33 1.72
A (en®) 10.64 34,4
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Figure 6.8 shows solutions for axial variation of vapor temperature, pressure,
velocity, and density, as obtained from Equations(4.25), (4.27), (4.29), (4.32), and
(4.33). An operating temperature of 773 K and a uniformly distributed heat transfer
rate of 200 watts were used. Momentum equation(2.16) implies that variation of
pressure in the axial direction depends on the relation between the contributions of
inertia and friction. Thus, the pressure of the vapor in the evaporator falls sharply
along the -vapor passage due to friction and acceleration of the flow caused by the
injection of mass. The corresponding temperature also drops sharply about 5.5 K.
Since the density of sodium vapor is relatively low at low temperatures, the velocity
is correspondingly large in order to transfer the required mass. Results show that
the maximum Mach number reaches 0.3 at the exit of the evaporator.

In the condenser, extraction of mass tends to increase pressure because of
decreasing velocity while friction tends to decrease pressure. Therefore, pressure
cannot recover completely due to friction loss. Even though some temperature
recovery is a,chievéd in the condenser, the temperature at the end of .the condenser
is about 4.2 K less than that at the begiﬁning of the evaporator. Figures 6.9, 6.10,
and 6.11 show variations of temperature, pressure, and Mach number, respectively,
corresponding to five different heat fluxes. At an operating temperature of 773 K,
larger heat input leads to greater pressure and temperature drops, and to a higher
Mach number. When the Mach number exceeds about 0.2, variation of the Mach
number is large, due to expansion of the vapor. For heat inputs of 50 and 100 watts,
the vapor can be assumed to be isothermal.

Figure 6.12 shows that heat transfer is limited to about 351 watts, because
velocity at the end of the evaporator approaches the sonic velocity. at this heat

input.
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Figure 6.13 presents axial variation of vapor temperature, pressure, velocity,
and density at an operating temperature of 808 K, with a uniformly distributed
heat input rate of 350 watts. For this case, the operating temperéture is 35 K
higher, but the pressure and density are twice as high as for 773 K. Thus, velocities
are small and the maximum Mach number is only about 0.2. This leads to a small
pressure drop, with a corresponding temperature drop of about 2 K. Even though
the heat input is twice as much as for 773 K, a comparison of temperature drops
suggests that the pressure and temperature drops depend mainly on the operating
temperature.

In the adiabatic section, there is no mass injection or extraction. Hence, pres-
sure simply decreases due to friction, and the velocity increases very little. The
contribution of the adiabatic section is the addition of pressure and temperature
drops such that, for a high Mach number at the exit of the evaporator, maximum
heat transfer rate is reduced considerably. Figure 6.14 shows this phenomenon. A
heat input of 865 watts results in a Mach number of 0.7 at the exit of the evapora-
tor. Then, the vapor is accelerated in the adiabatic section, so that velocity of the

vapor approaches sonic velocity at the end of this section.

As expected, in the condenser section the pressure and temperature are par-
tially recovered, but the degree of recovery is small due to the small vapor velocity
and large friction loss in the longer condenser. Numerical results show that temper-
ature recovery is only 0.6 K. Variations of temperature, pressure, and Mach number
corresponding to six different heat fluxes at an operating temperature of 808 K are
presented in Figures 6.15, 6.16, and 6.17, respectively. For heat input up to 200
watts, pressure recovery is not observed. This implies that the pressure drop due to
friction in the condenser may exceed the value of the inertial contribution. However,

total pressure drops are small, so that the vapor can be assumed isothermal.
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Figure 6.18 shows the distribution of nonuniform heat flux on the evaporator
length of 8 cm and condenser in ar;other case studied numerically. Axial variations of
vapor temperature , pressure, velocity and density corresponding to the distribution
shown in Figure 6.18.a, are presented in Figure 6.19. At a short distance from
the beginning of the condenser, the slight heat extraction causes that the axial
variation of the vapor velocity is small. Thus, the friction effect in this region
is dominant. The minimum temperature and pressure appear in the condenser,
instead of at the exit of the evaporator. As heat extraction increases, the absolute
value of axial variation of velocity increases and the vapor velocity decreases. The
pressure is recovered gradually. In Figure 6.20, corresponding to the distribution
shown in Figure 6.18.b, temperature and pressure are recovered immediately from
the beginning of the condenser, due to large heat extraction. As expected, axial
variations of temperature, pressure, velocity, and density depend on distribution of
heat input.

In summary, the degree of pressure recovery depends mainly on the heat flux,
operating temperature, and length of the condenser. The higher the heat flux, the
lower the operating temperature and the shorter the condenser, the greater the
pressure recovery. However, for this case, the pressure drop in the evaporator can
be large enough so that the heat pipe is not entirely isothermal. Since experimental
data is not available, quantitative comparison cannot be achieved. However, com-
parison of the general behavior of the present results with published data[15,18]

gives qualitative agreement.
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6.3 Heat pipe startup

To verify the model developed for heat pipe cooled leading edges, computed
numerical results are compared to Camarda’s experimental results[30]. The shape
of the cross-section of Camarda’s model is different from that of the model un-
der consideration. However, the rectangular cross-section used in this research is
modeled such that the cross-section areas occupied by the heat pipe shell, the cap-
illary structure, and the vapor space are the same as for Camarda’s experiment. A
comparison of these two cross-sections is shown in Figure 6.21. The surface area
where the heat flux is applied for the model is chosen to be identical to that of
the experiment so that the width and length of the heat pipe are identical, but the
thicknesses of the components of the two heat pipes are different. The thickness is
much smaller than other dimensions, and the temperature drop at the cross-section
is small compared to that in the axial direction, so the effects of the difference in
thicknesses are minimal. Effects of energy storage and fusion of the working fluid in
the heat pipe shell and the capillary structure are the same, and the effect of vapor
flow dynamics may be simulated. Since the minimum dimension of the vapor space
is different, due to the different thickness of the heat pipe, the transition tempera-
ture, which is evaluated based on the dimension .of the vapor space, is not identical.
However, this temf)erature determines the boundary condition at the liquid-vapor
interface. Therefore, to simulate Camarda’s case, the inner diameter of the circular
heat pipe is used to calculate the transition temperature.

The material of each component used in the computation is the same as in the
experiment, except that the braze alloy is assumed to be Hastelloy X to simplify
computations in the heat pipe shell. Properties of the materials are varied with

temperature during numerical calculation.
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Figure 6.21. Comparison of the two cross-sections.
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Heat distribution on the heat pipe surface as used in the model is based on a
normalized distribution[30] is shown in Figure 6.22 and heat input at the stagnation
point is shown in Figure 6.23. Actual heat distribution due to aerodynamic heating
is shown in Figue 6.24. In addition to aerodynamic heating, a radiation boundary
condition is used to extract energy from the entire heat pipe surface, so that the net
rate affects the heat pipe internal operation. The section which has a net positive
rate is considered the evaporator, and the section with the net negative rate is the
condenser.

Figure 6.25 shows the two-dimensional grid system, dimensions, boundary con-
ditions, and materials used to represent a leading edge. It is assumed that the
temperature of the heat pipe is initially the ambient temperature, which is below
the melting point of the sodium working fluid. A temperature of 700 K is used for
transition from free molecular to continuum flow.

An explicit method with a few implicit initial steps is used as the time stepping
scheme. Until continuum flow is established in the vapor space, a constant time
step of 10 seconds is used. This time is gradually decreased, due to the increasing
heat input on the external surface.

Figure 6.26 shows a comparison of numerical and experimental results at var-
ious times. Since nﬁeasured temperatures were not surface temperatures but the
temperatures at intermediate points, numerical data at the interface between the
heat pipe shell and capillary structure are used for comparison. Since most of the
energy which is transferred by conduction through the heat pipe shell and capillary
structure in the axial direction is added near the stagnation point, temperature at
that point increases rapidly and a large temperature gradient is established in the
heat pipe during startup. This implies that the heat pipe is not effective, due to

the extremely small vapor density, for about the first 450 seconds. Temperatures in
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the rest of the heat pipe are not much different from the initial condition. At 550
seconds, temperature at the stagnation point is greater than the transition temper-
ature and the temperature gradient in the region adjacent to this point begins to
decrease. This means that a continuum flow region is established in the vapor space,
so that energy is mainly transported via latent heat transport. However, as shown
in Figures 6.27 and 28, most of the working fluid is in the frozen state, and free
molecule flow prevails in most of the vapor space. With time, the continuum flow
region is expanded, so that at about 750 seconds, two-fifths of the device iJerforms
as a heat pipe. The rest of the heat pipe still behaves like a solid bar in which heat
is transported only by conduction, even though the working fluid is melted over the
entire length. Between the two flow regions, a large temperature gradient exists,
where the continuum flow front is located. This front moves down toward the cool
end of the heat pi'pe. At 1000 seconds, most of the heat pipe is active, except near
the end of the condenser section. About 100 seconds later, continuum flow exists in
the entire vapor space as shown in Figure 6.28. Until this moment, the sonic limit
is encountered due to the large temperature gradient in the vapor space. Therefore,
maximum heat transport in the vapor space is equal to the sonic limit. However,
the expression used for the sonic limit excludes friction effects at the interface, so
that the sonic limit is overestimated. Thus, at a time of 1000 seconds, temperature
near the stagnation point is less than that found in experiments, and the continuum
flow front is advanced further. After a time of 1200 seconds, the heat pipe becomes
isothermal, but due to increasing heat input the temperature increases until the
system reaches a steady state at a later time.

Figure 6.29 shows temperature history of the heat pipe at three different loca-
tions in the axial direction. When a part of the vapor space has free molecular flow,

most of the heat input is used to heat up the condenser section, so that the temper-
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ature increases very slowly. As the continuum flow front approaches the end of the
heat pipe, the remainder of the vapor space quickly reaches continuum flow. After
the entire heat pipe is active, temperatures at all axial locations increase relatively
fast, and then tend to change slowly as steady state is reached. Experimental results
exhibited steady state at a time of 1500 seconds where the maximum temperature
was 883 K. However, the numerical results yield a maximum temperature of 948 K
at 1450 seconds. The temperature at 1500 seconds can be estimated to be 958 K,
according to the slope of temperature with time. This temperature difference of 77
K may result from using a different emissivity for the heat pipe surface, neglecting
natural convection in the numerical calculation, and additional heat loss from the
inside surface and end of heat pipe through insulation. These effects increase with
temperature. The leading edge test set was coated with a high emissivity ceramic
paint to improve heat rejection by radiation, but the emissivity was not specified.
For numerical calculations an emissivity of 0.8 is used. The heat loss due to con-
vection is estimated by using the approximation of a horizontal heated plate facing
upward. Estimation shows that the operating temperature drop of 35 K may be
possible due to convection. Increasing emissivity from 0.8 to 0.9 would reduce the
outside temperature about 30 K.

Figure 6.30 shows the temperature diétributions at different wall locations.
Near the stagnation point, a large temperature difference exists due to intensive
heat input while for the rest of the heat pipe the difference is only about 15 K. The
figure shows the length of the evaporator, which is not specified initially. Out to a
length of about 15 cm, the temperature at the surface is greater than that of the
interface, so that this region may be assumed to be the evaporator, and the rest of
the length is the condenser section. Figures 6.31 and 32 show detailed temperature

distributions obtained by numerical calculation, along the length at the external
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surface and interface between shell and wick structure. respectively, for different
times.

Figure 6.33 shows the variation of the average vapor temperature during start-
up. Vapor temperature increases corresponding to increasing heat flux. The vapor
temperature increases very slowly because most of the heat added in the evaporator
is extracted at the interface of the condenser to heat up the adjacent cold zone until
the entire vapor space is in the continuum flow regime. Then the vapor temperature
rises to approach steady state. Figure 6.34 shows the vapor flow dynamics at a time
of 1140 seconds. Even though the sonic limit is not encountered, the velocity of the
vapor is about 180 m/s. The temperature drop in the vapor space is about 60 K
and pressure is not recovered due to the effect of friction at the interface, so that
thermal resistance in the vapor space should be considered.

Even though numerical results do not exactly match experimental results, due
to the difference in configuration, material properties and boundary conditions, it
is clear that the model does approximately predict the correct startup time and
temperature distribution. It is important to note that heat inputs for the model
were based on aerodynamic heating corﬁputations, which were only approximated
in the experiments.

To show the effectiveness of the heat pipe for cooling a leading edge, numz=rical
calculations were executed for the same example problem, except that an adiabatic
boundary condition is applied to the liquid-vapor interface during the entire startup.
The development of large axial temperature gradients is similar for the cooled and
uncooled leading edges, due to the free molecular condition in the entire vapor space
during the initial transient heating. However, beyond this stage, peak temperatures
are reduced, and temperature gradients disappear when the heat pipe is fully active.

Figure 6.35 shows temperature distributions for both cases at a time of 1450 seconds.
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It is clear that the heat pipe is very effective for reducing peak temperatures near

the leading edge and eliminating axial temperature gradients.

6.4 Simulation of reentry heating environment

After the model components were checked against published data, a spacecraft
reentry heating environment[30] was simulated to show capability of the present
model. The same rectangular cross-section and material of each component were
used. Heat input at the stagnation point is much greater than fhat for the previous
test, as shown in Figure 6.36, so that the heating distribution on the heat pipe
surface is also much greater as shown in Figure 6.37. Maximum heat flux at the
stagnation point is 390 kW/m?. A triangular element is used to fit the curved
leading edge shape. Figure 6.38 shows the two-dimensional grid system used to
represent the leading edge. In order to reduce computational time a relatively
small number of elements and nodes was used. Heat input near the stagnation
point is very large so that small size elements are used near the stagnation point
and large size elements are employed for the rest of the heat pipe. The same
numerical procedures as previously described were employed except that an initial
time step of 5 seconds was used.

Figure 6.39 shows temperature distributions along the heat pipe from the initial
condition to 700 seconds. General behavior is similar to previous results, but due
to high heat fluxes the continuum flow region is established early in the vapor space
at 230 seconds. Also, as shown in Figures 6.40 and 41, most of the working fluid
which is initially in the frozen state is melted at about 350 seconds and the entire
vapor space is occupied by continuum flow at 460 seconds. As expected, less time
is consumed for the entire heat pipe to become active. At a time of 500 seconds,

the heat pipe is nearly isothermal with position, but the temperature increases
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uniformly with time until a maximum temperature of 1040 K is achieved at a time
of 700 seconds. Figure 6.42 shows the temperature histories of the heat pipe at
the stagnation point, end of the heat pipe, and a short distance away from the
stagnation point. After the continuum flow region is established, it takes about 280
seconds for the entire vapor space to reach continuum flow. Also Figures 6.43 and
44 show temperature distributions along the length at an interface between shell
and wick and at the liquid-vapor interface respectively, from initial time to 700
seconds. Temperature distributions at these sections are shown on Figure 6.45. A
maximum temperature difference of 90 K is ob:zerved owing to the large heat input
at the stagnation point while small differences exist for the rest of the heat pipe.

Variation of the average vapor temperature as shown in Figure 6.46 is similar
to that for low heat input. When the entire vapor space reaches the continuum
flow regime, vapor temperature increases relatively rapidly and then again slows
down to approach steady state. Figure 6.47 shows behavior of the vapor flow at
503 seconds. A temperature drop of 50 K is observed along the length and pressure
is not recovered. Since velocity is still large and heat extracted at the beginning of
the condenser is small, the effect of friction at the interface is greater than that of
inertia. Thus, a maximum velocity of the vapor does not occur at the exit of the
evaporator but in the condenser.

As expected, behavior of the heat pipe is similar to the previous results pre-
sented except that a higher steady state temperature is achieved and startup is
faster due to greater heat input. Figure 6.48 shows temperature distributions for a
leading edge with heat pipe cooling and without cooling at 700 seconds into reentry.
The heat pipe reduces peak temperature by the 600 K near the stagnation point
and the leading edge becomes nearly isothermal. Again, it is obvious that the heat

pipe is an effective device for cooling leading edges during reentry.
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CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

This study has been concerned with startup behavior of heat pipes from the
frozen state. A mathematical model and associated finite element computational
code were developed. Results were compared with published data and a reentry
heating environment was simulated to show capability of the model developed. The
model approximately predicts the correct startup time and temperature distribu-
tion for the reentry problem. Numerical results computed for heat pipe cooled and
uncooled leading edges show development of the large chordwise temperature gra-
dients during the initial heating for both cases. After a part of the heat pipe is
active, the eﬁ‘ectiveness. of using the heat .pipe is shown clearly. In addition, the

following conclusions are derived from numerical results.

1. Temperature near the stagnation point increases rapidly and a large tem-
perature gradient is observed due to the extremely small vapor density

during the beginning of startup. Thus, critical design consideration should

be given for this period.

2. During the second phase of startup, the sonic vapor limit is encountered
due to the large temperature gradient in the vapor space, and temperature

increases slowly.

3. When the sonic limit is not present, temperature first increases rapidly and

then more slowly as steady state is approached.

4. A large temperature difference exists at all times in the wall and capillary
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structure near the stagnation point due to large heat input at this point.

5. Heat pipe cooling of hypersonic wing structures greatly reduces tempera-

ture gradients on the skin.

6. Startup behavior of heat pipe cooled leading edges is similar for relatively
large and relatively small heat inputs but large inputs cause startup to

occur more quickly.

7.2 Recommendations

{

It is recommended that models and numerical techniques be improved so that

more accurate predictions can be made and so that computer costs can be reduced.

1. Dﬁring startup, the working fluid is only partially melted so that some of
the vapor may'condense on the surface of the frozen working substance.
Drying and rewetting might be incorporated into the model instead of

assuming a saturated wick structure.

2. For a better prediction of the vapor flow dynamics, one-dimensional, tran-
sient and compressible equations might be developed to take into account

supersonic flow of vapor.

3. A better numerical scheme is needed to couple the effect of vapor flow

dynamics to governing equations for the heat pipe shell and wick structure.

4. To handle realistic operating conditions, the effects of gravity might be

included in the mathematical model.

5. The model should be made fully three dimensional.



6. The computer program should be made user friendly.
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APPENDIX A

ELEMENT MATRICES

A.l Interpolation function

The spatial domain is discretized into three-node, linear, triangular elements
as shown in Figure A.l, since an assemblage of triangles can always represent a
two-dimensional domain of any shape. The shape functions are derived by using
natural coordinates which range between zero and unity within the element, and
whose variation between nodes is linear. Use of these coordinates is advantageous
in evaluating the integrals in the element equations[55].

If L, L,, and L3 are selected as the natural coordinates, the location of the

point P, within the element may be expressed by the following equations

X =Li X, +L;X; + L3 X5 (A.1)
Y =L1Y: + LY, + L;Y; (A.2)
1= L] + L2 + L3 (A.3)

From the equations above, natural coordinates are written in terms of cartesian

coordinates.

L= (a1 = b, X + 1Y) (A.4)

pYANCY.
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(X.Y)
(X2 .1%)
(X3 .13)
—

Figure A.1. Three-node, linear, triangular element with global coordinates
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1

L2 = m(ag + b2X + CgY) (AE))
1

Ly = m(d;; + b3 X + C3Y) (Aﬁ)

where

a = XoY3 -Y3Y,, b =Y, -Y;, 01=X3‘—X2

a; = X3 -Y1Y;, b=Y:-Y;, c=X;1-X;

a3 =X, -1Y;,, b=Y1-Y,, c3=X;-X;

1 X3 hh
1 X, Y,
1 X3 Y3

20 =

These natural coordinates L,, L,, and L; are the linear interpolation functions
for a triangle, that is, N; = L; for the linear triangle. The interpolation functions

are expressed as follows:

1

N = m(ai +b6:X +¢;Y) 1=123 (4.7)

ON; b
X 2Lt

ORIGINAL PAGE i3
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oN; _
Yy — 240

(4.9)

A.2 Two-dimensional element matrices

Thermal conductivity and specific heat are assumed to be constant within an
element and are evaluated by using the average temperature. The [K.] matrices are

then expressed by

~ _(BN,ON; 8NN,
Kol = /le‘(ax 5y T By oy )dXdY

— b; bj Ci cj
B K(2A(e> 2/\(€) + 2A(e) 2A(e)) (A.10)

K
= (bb; + cic;
4(A(e))2( F eics)

where

b + 2 bibs +c1cz  bibs + cics
bib; + cic; = | baby + cic2 b2 + c babs + cac3

b3b1 + ¢3¢ b3b2 + c3c b§ + Cg

For the element which is not involved in phase change, the [C] matrices are

given by

€] = CN;N;dXdY
R(e)

N2 NN, NN,
—'=C N2N1 N22 N2N3
RC) \ N,N; N,N; N?
1/6 1/12 1/12
=cA® | 1/12 1/6 1/12

1/12 1/12 1/6

(a.11)

ORIGINAL PAGE IS
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For the matrix contributions of an element having sides coincident with the
external boundary of the solution domain, it is assumed that the convective heat
transfer coefficient, h.,., heat flux, @, and radiation coefficient, 3,, are constant
along the side of an element. The shape functions for the boundary segment have
the same expression of Equation(A.7). For the side of the element shown in Figure
A.1 between nodes 1 and 2, coincident with external boundary of the solution

domain, the matrix contributions are written as follows:

(K] = / hen NiN,dS
As

N2 NN; 0
= her NNi N2 0
As

AT (4.12)
2 1 0
=hcr6£12 1 2 0
0 0 O
(K= [ B.N:N;ds
Ay
2 10 (A4.13)
=:3r6£12 1 2 0
0 0 O .

where /{3, is the length of the side between nodes 1 nad 2 of the element.

Also, the column vectors contributions from surface integrals are

[F,]= [ QN.dS
A2

- Nl
=Q " J\(;z a5 (A.14)

_ Gt |
2 \o




(Fa) = / hes NiTordS
As
N
= hchcr/ N2 ds
As 0

hchcrelz 1
= —-—2— 1
0

139

(A.15)

(A.16)
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PROGRAM HPMAIN (INPUT,OUTPUT,TAPE3=INPUT, TAPE4=QUTPUT, HPDAT,
&TAPES=HPDAT, JANG, TAPE6=JANG,DATA, TAPE7=DATA,RESTA, TAPE8=RESTA,
&DATAV,TAPE2=DATAV)

Fooe Y ve e de de Y ve Yo e e e Yo e Fe vk ve de vk ve e de e e vede deFedevede e ve ek e e Koskde et dede e sk e st ke de ke ded dedde e ek e e de ke ke

This program solves the startup and transient performance of heat
pipe with metallic working fluids by using a finite element method.
The temperature is predicted from two-dimensional and transient

heat conduction equation, which incorporates the effects of the
phase change process in an expression for the volumetric heat cap-
pacity by using the enthalpy method. The Galerkin weighted residual
method is used to drive finite element formulations.

The flow dynamics of the vapor are described by one-D, compress-—
ible and laminar momentum and energy equations. In one-D model,
the variation of velocity at cross section, friction at the liquid- *
vapor interface, and quality of vapor are considered.

Five one-D governing differential equations for vapor are solved
by subroutine DVERK which uses Runge-Kutta method. The specified
temperature, heat £flux, convective, and radiation boundary
conditions are applicable. This program can be used to solve pure ¥
conduction or phase change problem alone. *

Implicit or explicit time stepping schemes are used. Since *
explicit scheme is not self-statring method, implicit scheme is used®

% ot k% % % kb

L

for first few time steps. For this purpose, set proper number for *
variable NTS. ¥
Grid system can be generated by program HPGRNW. Input data file *
for program HPMAIN consists of output data file of HPGRNW and *
general data which specifies some general conditions. *
To use IMSLIB Library : *

*

AT,IMSLIB/UN=LIBRARY %
LIBRARY, IMSLIB *

To obtain, compile and run program HPMAIN : ¥

*

GET,HPMAIN,HPDAT,RESTA(Get this RESTA only for restart) *

RWF _ *
FTNS, I=HPMAIN,L=0 *
LGo,, ¥

%

(PROGRAM WILL PROMPT FOR INPUT DATA) *

To view results in files JANG, DATA and DATAV: *
RWF *
C,JANG(Temperature distribution for every time step) *
C,DATA(Temp. distribution for particalur time to plot) *
C,DATAV (Vapor temperature for every time step) *

Created ; Dec. 9, 1985 by Jong Hoon Jang w
Last update ; Dec. 05, 1987 by Jjong Hoon Jang *

TS Y Y s Y v d e s e S s s Ye Sty e e e T v v Y e e v Y vy Yo s s v S e IeIeseese SesriresTrshdt et
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C

oO0O0OOO000n

A0 o0n

a0 no (@]

a0

FORMAT('HOW OFTEN DO YOU WANT-TO PRINT, EX = 1,3..7")

READ(3,*) NFREQ

..READ GENERAL DATA. ... vvvieeesecennns

READ(5,*) TEMPI,TMEL,TSTAR,DETP,HRSL,DIST,WIDTH

READ(5,%*)

TEMPI = INITIAL TEMPERATURE(TEMP.) [K]

TMEL = MELTING TEMP({K].

TSTAR= TRANSIENT TEMP. OF VAPOR [K]

DETP = TEMP. DIFFERENCE FROM TMEL (K]

HRSL = LATENT HEAT OF MELTING(ALWAYS POSITIVE) [J/KG]
DIST = HEIGHT OF VAPOR SPACE [M]

WIDTH = ELEMENT THICRNESS [M]

TLENG = TOTAL LENGTH OF HEAT PIPE[M]

BETA,DELT1,DELTP,MM,NLEM,NTS,NFLUX,NRAD

BETA = 1 FOR FULLY IMPLICIT, .5 FOR CRANK-NIHOLSON
DELT1 = TIME DIFFERENCE FOR FIRST TIME STEP [SEC.]
DELT = TIME DIFFERENCE BETWEEN EACH TIME STEP [SEC.]
MM » TOTAL NUMBER OF ITERATION FOR EACH TIME STEP
MN = TOTAL NUMBER OF TIME STEP
NLEM = 1 FOR LEMMON METHOD OF ENTHALPY

2 FOR DEL GUIDICE METHOD OF ENTHALPY
NFLUX = 1, HEAT FLUX DEPEND ON TIME AND CALL FLUXD
NRAD = 1 RADIATION BOUNDARY CONDITION APPLIED.
NTS = NUMBER OF STEPS OF IMPLICIT

teveeeees READ ELEMENT DATA PROVIDED FROM GRID2D.....ccoans

READ(5,*) IOPT,LBH,NEL,NP,ICORD,IPROP,INRG,NDIM,IFIﬁ

READ(5,%)

I =1

IOPT = O FOR STEADY STATE, 1 FOR TRANSIENT

LBW = BANDWIDTH QUANTITY

NEL = NUMBER OF ELEMENTS

NP = NUMBER OF NODES

ICORD = O FOR RECTANGULAR COORDINATES

~1 FOR CYLINDRICAL COORDINATES

IPROP = Q0 FOR UNIFORM PROPERTIES THROUGHOUT
1 FOR NON-UNIFORM PROPERTIES

INRG = NUMBER OF REGION

NDIM = 1 FOR ONE DIMENSIONAL PROBLEM
2 FOR TWO DIMEUSIONAL PROBLEM

IFIN = 0, NOT A FIN PROBLEM

1, A FIN PROBLEM
(IRGN(I) ,NROW(I),NCOL(I),I=1,INRG)

NCOL = NUMBER OF COLUMNS

NROW = NUMBER OF ROW ORIGINAL PAGE s

OF POOR QUALITY

INRG = INRG/2

NCOLT

0
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COMMON/MATG/ AMC(140,151) ,RM(140),THETA(140),FLD(140),
AM(140,140),BM(140),C13(3,3),K13(3,3)

/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD,TEMPG1(140),THETAG(140),
THETAF (140) , THETAO (140) , THETTO (140) , THETAB (70) , TEMPD

/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT, VOLSPR,WIDTH,QE (140,3) ,NRESIS,RESIS, IX

/JELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3) ,EAREA(140) ,NPP1,
IES(140,2) ,ESL(140,3),BETA,XC(140,3),YC(140,3) ,DEFO,
NE (140) , TLENG, PNOD(5,30) ,EBC(3,3),CM(3,3) ,GNDB (70)

/INOUT/TEMPS (70) , TEMPV (70) , TEMPVS (70) ,QEI(70) ,VX(70),
GNDI(70),vY1(70),vY2(70),vY3(70),ELSI(30),
vY4(70),vY5(70) ,vY6(70) ,HFG, TEMPF (70)

/SPLIN/TIME (3), TIMER (20),QSTAG(20),XP1(25),CP1(4,25),ND1,
Xp2(60),cp2(4,60) ,ND2,XP3(25),CP3 (4,25),ND3, TS,
XP4(25),CP4(4,25) ,ND4,XP5(15),CP5(4,15) ,ND5,XP6(15),
cp6(4,15) ,XP7(15) ,cP7(4,15) ,ND7,XP8(15),CP8(4,15),
ND6,ND8,XP9(15),CP9(4,15) ,ND9,XP0O(15),CP0(4,15),NDO,
ELSS(30) ,TESL(30)

/OUTPT/MO, IDAY, IYEAR, TITLE,CASE,NUMBER,NO, TEMPCC,HTCC, I0UT,
TIMEN,DELT,DELT1,DELTP

DIMENSION X(3),Y(3),RS(70),DUMG(140) ,DUMC (140) ,DUMQE (140,3),
IRGN(15) ,NCOL(15) ,NROW(15) ,DUMK(140),TEST(140),
TEMP (3) , TEMPG(3) , TEMPB (70) , THETAX (140) ,TA(3,96),
AREA(30),QT(70) ,QEIN(70) ,DTEMPS (70) , TEMPC (140, 3)
INTEGER TS, TSM1,TSM2,P,GND,GNDB,GNDI,IOUT,FIRTS,FN1,FP1,PNOD
REAL KIJ,KLP,XSN,KFN,KLN,KREF,HRSL,HTC,KEE,MACH, INTVL,MASW, MASKN,
& JCOB, JCOBI

PRI RRRRRRRRRRRRR

e e

WRITE (4,5)

FORMAT (' INPUT CASE NUMBER?')

READ(3,*) NO

WRITE (4,6)

FORMAT (' INPUT DATE AS 12 20 1987')
FORMAT(I3,13,15) .

READ(3,7) MO, IDAY,IYEAR

WRITE(4,8)

FORMAT (' INPUT TITLE WITHIN 27 CHARACTERS')
FORMAT (349)

READ(3,9) TITLE,CASE,NUMBER

FORMAT (al)

WRITE(4,11)

FORMAT ("RESTART FROM LAST RUN ? (Y/N)™)
READ(3,10) YESNO

WRITE(4,12)

FORMAT (' TIME INTERVAL(SEC.)?")
READ(3,*) DELT

WRITE(4,13)

FORMAT ('HOW MANY TIME STEP DO YOU WANT TO RUN?')
READ(3,%) MN

WRITE (4, 14) .




30

aOOO0On0n

AOO0OO0O0O0O0

100

40

OO0 O0On0n

-50

NROWT = NROW(1l) + NROW(INRG+1) - 1
NCOLT = NCOLT + NCOL(I)
IF(I .LT. INRG) THEN
I=1+1
GO TO 30
END IF
NCOLT = NCOLT - INRG + 1
DO 100 I = 1,NEL

144

READ(5,%*) NE(I), (GND(I,L),L=1,3),(XC(I,L),YC(I,L),L=1,3)

NE = NUMBER OF ELEMENT

GND = GLOBLE NUMBER OF NODES
%C = X-COORDINATE OF NODES [M]
YC = Y-COORDINATE OF NODES [M]

READ(5,*) DUMK(I),DUMG(I),DUNC(I), (IES(I,L),

THERMAL CONDUCTIVITY [W/ (M*K)]
HEAT GENERATION PER UNIT VOLUME
SPECIFIC HEAT/DENSITY PRODUCT

DUMK
DUNMG
DUNMC
HTC
IES

NUMBER OF SIDE IN EACH ELEMENT

KTC(I,IES(I,L)),TEMPC(I,IES(I,L)),L=1,2),
& (1ES(I,L),QE(I,IES(I,L)),L=1,2)

HEAT TRANSFER COEFFICIENT [W/(M**2%*K)]

QE = HEAT FLUX ON BOUNDARY SURFACES [W/M**2]
TEMPC = REFERENCE TEMP. FOR CONVECTIVE HEAT[K]

CONTINUE

IST = 1

IFN = 6

READ(5,%*) (GNDB(I),I = IST,IFN), (TEMPB(I),I=IST,IFN)

GNDI = GLOBLE NUMBER OF NODE WHERE IS LOCATED ON

THE LIQUID-VAPOR INTERFACE.
GNDB = GLOBLE NODE NUMBER OF NODE WHERE IS
JFNT = TOTAL NUMBER OF GNDI
TEMPB = SPECIFIED BOUNDARY TEMP.

IF (GNDB (IFN) .GT. 0) THEN
IST = IST + 6
IFN = IFN + 6
GO TO 40

END IF

...READ GLOBAL NODE NUMBER ON LIQUID-VAPOR INTERFACE..

JST = 1
JFN = 6
READ(5,%*) (GNDI(I), I = JST, IJFN)
IF(GNDI(JFN) .GT. O) THEN
JST = JST + 6
JFN = JFN + 6
GO TO 50
END IF
JFNT = 0

ON BOUNDARY

ORIGINAL PAGE IS
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DO 60 I = 1,JFN OF POOR QUALITY

IF(GNDI(I) .GT. O) THEN
JFNT = JFNT + 1
END IF
60  CONTINUE

C.ecevevvse...READ DATA FOR RADIATION BOUNDARY CONTITIONS......vevven.

IF(NRAD .EQ. 1) THEN
READ(5,*) TEMPR,EMIS
END IF

C TEMPR = REFERENCE TEMP. FOR RADIATION [K]
C EMIS = EMISSIVITY

C.e.vveeev .. .READ SCALE FACTOR AND HEAT FLUX AT STAGNATION............

15 FORMAT(A20)

IF (NFLUX .EQ. 1) THEN
READ(5,15) INPUT1
READ(5,%*) ND1, (XP1(I),CP1(1,I),I=1,NDL)
READ(5,%*) cpPl1(2,1),CP1(2,NDl)
CALL SPLINE(ND1-1,XP1,CP1)
CALL CALCF(NDi-1,XP1,CP1)
READ(5,15) INPUT2
READ(5,%*) ND2, (XP2(I),CP2(1,I),I=1,6ND2)
READ(5,*) cP2(2,1),CP2(2,ND2)
CALL SPLINE (ND2-1,X%P2,CP2)
CALL CALCF(ND2-1,XP2,CP2)

END IF

C........READ CONDUCTIVITY AND SPECIFIC HEAT OF STAINLESS STEEL............

READ(5,15) INPUT3 .

READ(5,*) ND3, (XP3(I),CP3(1,1),1=1,ND3)
READ(5,*) CP3(2,1),CP3(2,ND3)

CALL SPLINE(ND3-1,XP3,CP3)

CALL CALCF(ND3-1,XP3,CP3)

READ(5,15) INPUTG

READ(5,%*) ND4, (XP4(I),CP4(1,I),I=1,ND4)
READ(5,*) CP4(2,1),CP4(2,ND4)

CALL SPLINE(ND4~1,XP4, CP4)

CALL CALCF(ND4-1,XP4,CP4)

o ND1,2,3 = NUMBER OF DATA POINTS
C XP1,2,3 = LOCATION IN X - AXIS
C CP1,2,3 = COEFFICIENT OF INTERPOLATION EQUATION

C........CONDUCTIVITY ,DENSITY AND SPECIFIC HEAT OF SOLID SODIUM.......

READ(5,15) INPUTS

READ(5,*) ND5, (XP5(I),CP5(1,I),I=1,ND5)
READ(5,%) CP5(2,1),CP5(2,ND5)

CALL SPLINE{(NDS-1,XP5,CP5)
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CALL CALCF(ND5-1,XP5,CP5)

READ(5,15) INPUT6 ,
READ(5,%) ND6, (XP6(1),CP6(1,I),I=1,ND6)
READ(5,*) CP6(2,1),CP6(2,ND6)

CALL SPLINE(ND6-1,XP6,CP6)

CALL CALCF (ND6-1,XP6,CP6)

READ(5,15) INPUT?

READ(5,*) ND7, (Xp7(I),CP7(l,I),I=1,ND7)
READ(5,%*) cpP7(2,1),CP7(2,ND7)

CALL SPLINE(ND7-1,XP7,CP7)

CALL CALCF(ND7-1,XP7,CP7)

READ(5,15) INPUTS

READ (5,%*) ND8, (xP8(1),CP8(1,I),I=1,ND8)
READ(5,*) CP8(2,1),CP8(2,ND8)

CALL SPLINE(ND8-1,XP8,CP8)

CALL CALCF(ND8-1,XP8,CP8)

READ(5,15) INPUT9

READ(5,*) ND9, (XP9(I),CP9(1,I),I=1,ND9)
READ(5,%*) CP9(2,1),CP9(2,ND9)

CALL SPLINE(ND9-1,XP9,CP9)

CALL CALCF(ND9-1,XP9,CP9)

READ(5,15) INPUTO

READ(5,*) NDO, (XPO(I),CP0(1,I),I=1,NDO)
READ(5,*) CP0(2,1),CP0(2,NDO)

CALL SPLINE(NDO-1,XPQ,CPO)

CALL CALCF(NDO-1,XP0Q,CPO)

IF (YESNO .EQ. "N") THEN
WRITE(7,*) ((GND(I,L),L=1,3),I=1,NEL)
WRITE(7,*) ((xc(1I,L),YC(I,L),L=1,3),I=1,NEL)
END IF

........ SET FIRST GUESS .cevevcvvecnns

DO 110 I= IST,IFN
IF(GNDB(I) .GT. -1) THEN
TEMPG1 (GNDB(I)) = TEMPB(I)
END IF
CONTINUE
DO 120 I = I,NP
DO 125 J = IST,IFN
IF(I .NE. GNDB(J)) THEN
TEMPG1 (1) = TEMPI

ENDIF ORIGINAL PAGE IS
CONTINUE OF POOR QUALITY

CONTINUE
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C....oo...SOME CONSTANT PARAMETER.........
C JINT = NUMBER OF NODES ON INTERFACE FOR PRESENT TIME STEP.
C TS = NUMBER OF TIME STEPS

BOLT = 5.67E-8

FMl = 1

FIRTS = 1

FPl = 1

KLP = 72.3

KREF = 141.

VOLSPR = 1.109E6
ALPAR = KREF/(VOLSPR)
DEFO = ALPAR™DELT1/DIST**2
IOUT = 1

JR =1

INT = 1

IX = 1

NPP1 = NP + 1

NRESIS = 1

TIMEN = DELT1
.TIME(1l) = DELT!

TS = 0

TEMPV(2) = 0.

C..veveo..CALCULATE BASIC ELEMENT GEOMETRIC MATRIX........ -
DO 200 M = 1,NEL
DO 220 I = 1,3
X(I) = 0.
Y(I) = 0.
X(I) = X(I) + XC(M,I)/DIST

Y (1)
220 CONTINUE
CALL ELMDM(X,Y,M)
200 CONTINUE

Y(I) + YC(H,I)/DIST

C......CALCULATE LENGTH OF SIDE OF ELEMENT AT INTERFACE...... .o

K=2
KMl = 1
226 DO 225 M = 1,NEL
IF(GND(M,1) .EQ. GNDI(KMl) .AND. GND(M,2) .EQ. GNDI(K)) THEN
ELSI(KM1) = SQRT((XC(M,1) - XC(M,2))**2 +
& (YC(M,1) - YC(M,2))**2)
K=K+1
KMl = K - 1
IF(K .LE. JFNT-1) THEN
GO TO 226
END IF
END IF
225 CONTINUE
K=2
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KM1 = 1
TLENG = 0.0
228 DO 227 M = 1,NEL
IF(GND(M,3) .EQ. PNOD(l,KM1) .AND. GND(M,2) .EQ.
& PNOD(1,K)) THEN
ELSS (KM1) = SQRT((XC(M,2) - XC(¥,3))**2 +
& (YC(M,2) - YC(M,3))**2)
TLENG = TLENG + ELSS (KM1)
IF(KM1 .EQ. 1) THEN
TESL(1) = ELSS(1)
ELSE
TESL(KM1) = TESL(RKM1 - 1) + ELSS(RMD)
END IF
K=K+ 1
KMl = R - 1
IF(X .LE. JFNT-1) THEN
GO TO 228
END IF
END IF
227 CONTINUE
WRITE(7,*) TLENG, (ELSS(I),I=1,JFNT-1)
WRITE(7,™) (TESL(I),I=1, JFNT-1)
WRITE(7,*) (ELSI(I),I=1,JFNT-1)
IF(YESNO .EQ. "Y") THEN
GO TO 545
END IF

Sedotedododestevrse s dedh e e vk Ao A A e v Fededede st oo S e e s e e e S e et de ok de e

TO EVALUATE TEMPERATURE AT FIRST FEW TIME STEPS

BY USING IMPLICIT METHOD(BETA = l.,.5)
de v e e e e e s oo e de sl sk e ook Fe e Koo drveste s st sk dededbde e e e ek ek

O0OnNn0

DO 230 I = 1,IFN
THETAB (I) = (TEMPB(I) - TMEL)/(TMEL - TEMPI)
230 CONTINUE

C.ovevesosss SET DIMENSIONLESS GUESS TEMP......... oo

DO 250 I = 1,NP
THETAG(I) = (TEMPG1(I) - TMEL)/(TMEL - TEMPI)
250+ CONTINUE
450 TS = TS + 1
IF(TS .EQ. 2) THEN
TIME(2) = TIME(l) + DELT
ELSE IF(TS .EQ. 3) THEN
TIME(3) = TIME(2) + DELT
ELSE IF(TS .GT. 3) THEN
TIME(1) = TIME(2)

TIME(2) = TIME(3)
TIME(3) = TIME(3) + DELT
END IF

DO 260 I = 1,NP
TEMPG1(I) = THETAG(I)*(TMEL - TEMPI) - TMEL

ORIGINAL PAGE 1S
OF POOR QUALITY
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260 CONTINUE
430 P =20
400 P=P + 1

€C ........SET ARRAYS ZERO........

DO 310 I = 1,NP
THETA(I) = 0.
310 CONTINUE
DO 320 I = 1,NP
FLD(I) = O.
BM(I) = 0.
RM(I) = 0.
DO 325 J = 1,NP
AM(I,1) = 0,
325 CONTINUE
320 CONTINUE
DO 330 I = 1,NP
DO 335 J = 1,NPPI
AMC(I,D) = 0.
335 CONTINUE
330 CONTINUE
DO 340 ¥ = 1,NEL
DO 345 1 = 1,3
TEMPG(I) = THETAG(GND(M,I))*(TMEL - TEMPI) + TMEL

Coevvvnnnns IMPLICIT TIME STEPPING SCHEME............

IF(BETA .EQ. l.) THEN
TEMP (I) = TEMPG(I)
ELSE
TEMP(I) = (TEMPG(I) + TEMPG1(I))*BETA
END IF :
345 CONTINUE

C....TO ASSUMBLE ELEMENT MATRIX INTO GLOBAL SYSTEM MATRIX[aMC]....

CALL GLOBMAX (TEMP,TEMPC,M,DUMK,NLEX,NFLUX,NRAD,NTS,P,IFN)
340 CONTINUE

Covennn APPLY B. C.'S OF FIRST KIND IF APPLICABLE......
CALL FIRSTBC (IFN)
C.....TO EVALUATE RESIDUAL AND THETAG(I) FOR NEXT ITERATION.....

DO 350 I = 1,NP
THETA(I) = THETAG(I)
THETAG(I) = 0.
350 CONTINUE
CALL RESIDUL (RMAX)
CALL CHLSKY (TS,NTS,THETAX)
DO 355 1 = 1,NP
THETAG(I) = THETAX(I) + THETA(I)
355  CONTINUE

149
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*CHECK CONVERGENCE CRITERIOR ON DIFFERENCE BETWEEN NEW THETA AND *
*OLD THETA AT EVERY NODES. IF ONE OF DIFFERENCES IS GREATER THAN *

*TOLERANCE, THEN ITERATED BY NEWTON-RAPHSON METHOD. IF CRITERION
*1S MET, THETA(I) ARE SUBSTITUTED INTO EQUATION TO OBTAIN
*THETA(I) AT THE NEXT TIME STEP.

%
¥

%

sk e 9 ¥ e v ¥e o2 P 3 Yo o't e de v Yo oo Je v'e v e e o Yo vt Yo Yo e v Fe sl Ye T Yo ve e de ve de ok e de s v e e Yo de e de s dodt s s v e sk st e e ke

IF(RMAX .LT. .001 .OR., P .GT. MM) THEN
DO 370 1 = 1,NP
IF(TS .EQ. 1) THEN
TA(1,I) = THETAG(I)*(TMEL
ELSE IF(TS .EQ. 2) THEN
TA(2,I) = THETAG(I)*(TMEL
ELSE IF(TS .EQ. 3) THEN
TA(3,I) = THETAG(I)*(TMEL
ELSE
TA(1,I) = TA(2,1)
TA(2,I) = TA(3,1)
TA(3,I) = THETAG(I)*(TMEL
END IF
370 CONTINUE
NPRINT = JK * NFREQ
IF(TS .EQ. NPRINT) THEN
CALL MAINOUT(TA,TSTAR,NTS,MN,NCOLT,NROWT)
JK = JK + 1
END IF
DEFO = (ALPAR/DIST**2)*DELT
IF(TS .LT. NTS) THEN

TEMPI) + TMEL

TEMPI) + TMEL

TEMPI) + TMEL

TEMPI) + TMEL

GO TO 450
ELSE
IF(NTS .EQ. MN) THEN
GO TO 540
ELSE
GO TO 550
END IF
END IF
ELSE
GO TO 400
END IF
540 CONTINUE
GO TO 2
C Hr¥ciekfdnnidokmsrdindordddniohdthio et i dot e dode e e e de et

C TO EVALUATE TEMPERATURE BY USING EXPLICIT METHOD

C (DUPONT) WITH TEMPERATURES FOR TWO PREVIOUS TIME STEPS
C FEFfiidobih o didded R R Rk o doR R R deR e edeiok R e

545 TIF(YESNO .EQ. "Y") THEN
CALL DATAIN(TA,JK,JINT,TIMEN,FIRTS,TVU,QT, TEMPD)

FM1 = FIRTS - 1
FP1 = FIRTS
END IF
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550 TS =TS + 1
IF(TS .EQ. 2) THEN
TIME(2) = TIME(1) + DELT
ELSE IF(TS .EQ. 3) THEN
TIME(3) = TIME(2) + DELT
ELSE IF(TS .GT. 3) THEN
TIME(1) = TIME(2)
TIME(2) = TIME(3)
TIME(3) = TIME(3) + DELT
END IF
530 DO 500 I = 1,NP
FLD(I) = 0.
BM(I) = 0.
DO 510 J=1,NPP1
AMC(I,J) = 0.0
510 CONTINUE
500 CONTINUE

C......SET INITIAL TEMPERATURE FROM TWO PREVIOUS TIME STEPS.......

DO 520 I = 1,NP
FF(TS .GT. 3)THEN

THETTO(I) = (TA(2,I) - TMEL)/(TMEL - TEMPI)
THETAO(I) = (TA(3,I) - TMEL)/(TMEL - TEMPI)
ELSE
THETTO(I) = (TA(l,I) - TMEL)/(TMEL - TEMPI)
THETAO(I) = (TA(2,I) - TMEL)/(TMEL - TEMPI)
END IF
DO 525 J = 1,NP
AM(I,J) = 0.

525 CONTINUE
520 CONTINUE
DO 600 M = 1 ,NEL
DO 610 I = 1,3
TEMP(I) = THETAO(GND(M,I))*(TMEL - TEMPI) + TMEL
610 CONTINUE :

C....TO ASSUMBLE ELEMENT MATRIX INTO GLOBAL SYSTEM MATRIX[AMC]....

CALL GLOBMAXQTEMP,TEMPC,M,DUMK,NLEM,NFLUX,NRAD,NTS,P,IFN)
600 CONTINUE

C.....APPLY B.C.'S OF FIRST KIND IF APPLICABLE........
CALL FIRSTBC(IFN)

Ce.....SOLVE MATRIX BY USING CHOLESKY'S DECOMPOSITION.......
CALL CHLSKY(TS,NTS, THETAX)
DO 646 I = 1,NP

THETA(I) = THETAX(I)
646 CONTINUE

151
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152
.....CHECK TEMPERATURES ON LIQUID-VAPOR INTERFACE........

GNDI(1) = GLOBAL NODE NUMBER AT FIRST NODE ON INTERFACE

GNDI (INT) LAST GLOBAL NODE NUMBER WHOSE TEMPERATURE IS
GREATER THAN TSTAR

TEMPS = LIQUID TEMP. AT LIQUID-VAPOR INTERFACE

TEMPV TEMP. IN VAPOR SPACE

TEMPVS = YVAPOR TEMP. AT LIQUID-VAPOR INTERFACE

DO 660 I = 1,NP
IF(TS .GT. 3) THEN
TA(1,I) = TA(2,I)
TA(2,1) = TA(3,I)
TA(3,I) = THETA(I)*(TMEL - TEMPI) + TMEL
ELSE
TA(1,I) = TA(1,I)
TA(2,I) = TA(2,D)
TA(3,I) = THETA(I)*(TMEL - TEMPI) + TMEL
END IF
660 CONTINUE
NPRINT = JK * NFREQ
IF(TS .EQ. NPRINT) THEN
CALL MAINOUT(TA,TSTAR,NTS,MN,NCOLT,NROWT)
JK = JK + 1
END IF
DO 665 I = 1,JFNT
TEMPS(I) = O.
665 CONTINUE
DO 680 I = 1,2
JJ = GNDI(I)
TEMPS(I) = THETA(JJ)*(TMEL - TEMPI) + TMEL
680 CONTINUE

C......ADIABATIC BOUNDARY CONDITION AT LIQUID-VAPOR INTERFACE...........

IF (TEMPS(2) .LT. TSTAR) THEN
DEFO = (ALPAR/DIST*¥*2)*DELT
IF(TS .GE. MN) THEN
GO TO 2000
ELSE :
DO 910 J = 1,JFNT
DO 911 I = 1,NEL
IF(GNDI(J) .EQ. GND(I,l) .AND. GNDI(J+1) .EQ. GND(I,2))
& THEN
IES(I,1) = 1
QE(I,IES(I,1)) = O.
END IF
911 CONTINUE
910 CONTINUE
IF (TEMPS (JFNT) .GT. TSTAR) THEN
GO TO 2000
ELSE
GO TO 550

D T ORIGINAL PAGE IS
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ELSE IF(TEMPS(1) .GT. TSTAR .AND. TEMPS(2) .GT. TSTAR) THEN

C........NO LONGER ADIABATIC CONDITION AT LIQUID-VAPOR INTERFACE........
C......HOW MANY NODES ON INTERFACE HAVE GREATER TEMP. THAN TSTAR.........

DO 915 I = 1,JFNT
TEMPS(I) = 0.
915 CONTINUE
J=1
920 JG = GNDI(J)
TEMPS(J) = THETA(JG) *(TMEL -~ TEMPI) + TMEL
IF(TEMPS(J) .GT. TSTAR) THEN
J=J4+1
IF(J .LT.JFNT) THEN
GO TO 920
ELSE
JNT = JFNT - 1
END IF
ELSE
INT = J
TEMPSN = TEMPS (J)
END IF

C......CALCULATE UNIFORM TEMP. FOR VAPOR SPACE....css..

TEMPS (JFNT) = THETA(GNDI (JFNT))* (TMEL-TEMPI)+TMEL
DO 922 J = 1,JFNT
DO 923 I = 1,NEL
IF(GNDI(J) .EQ. GND(I,l) .AND. GNDI(J+1) .EQ. GND(I,2))
& THEN
IES(I,1) =1
QE(1,IES(1I,1)) = O.
END IF
923 CONTINUE
922 CONTINUE
IF(NRESIS .EQ. 2) THEN
CALL COUPLE(JNT,QT,TVU, JFNT)
GO TO 2500
END IF |
IF(FIRTS .EQ. 1) THEN
TVU = (TEMPS(1) + TSTAR)/2.
2100 RESD = O. .
TELSI = 0.
RESDC = 4,5E6%*1.4%,021%2,29E11
DO 924 1 = 1,JNT
RESDI = ELSI(I)*10.%**(-5567./TEMPS(I)) /TEMPS(I)
RESDV = ELSI(I)*10.%**(-5567./TVU)/TVU
RESD = RESD + RESDC* (RESDI - RESDV)
TELSI = TELSI + ELSI(I)
924 CONTINUE
JCOB = (1 - 12818.5/TVU) *TELSI
JCOB = JCOB * 10.%*%(-5567./TVU)
JCOB = RESDC®JCOB/ (TVU¥**2)
TVO = TVU
TVU = TVO - RESD/JCOB
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IF (ABS(RESD) .LT. .001) THEN

CALL INTFLUX(JFNT,JNT,TVU,TEMPV,TEMPS,QEI)
ELSE

GO TO 2100
END IF

ELSE

RESD = 0.

TELSI = 0.

RESDC = 4.5E6%*1.4%*.021%2.29E11

DO 928 I = 1,JNT
RESDI = ELSI(I)*10.%**(-5567./TEMPS(I))/TEMPS(I)
RESDV = ELSI(I)*10.%**(-5567./TVU)/TVU
RESD = RESD + RESDC*(RESDI - RESDV)
TELSI = TELSI + ELSI(I)

CONTINUE

JCOB = (1 - 12818.5/TVU)*TELSI

JCOB = JCOB * 10.%*(-5567./TVU)

JCOB = RESDC*JCOB/ (TVU**2)

TVO = TVU

TVU = TVO - RESD/JCOB

IF(ABS(RESD) .LT. .001) THEN

...... TO ESTIMATE THE SONIC LIMIT....ce0vvceananns

CALL INTFLUX(JFNT, JNT,TVU,TEMPYV,TEMPS,QEI)
VMAX = SQRT(1.4%8314.%TVU/23.)

PSATT = (2.29E11/SQRT(TVU))*10.**(~5567/TVU)
DENS = 2.766E-3*PSATT/TVU

HFGS = 182.%(25474.93 - .9935%TvU)

QMAX = VMAX*HFGS*DENS*DIST*WIDTH/2.2

QTAL = 0.
DO 930 I = 1,JINT
AREA(I) = 0.

IF(QEI(I) .GT. 0.) THEN
QTAL = QTAL + QEI(I)*ELSI(I)*WIDTH

END IF
CONTINUE
QMAXT = QMAX*.50
...... IF AMOUNT OF HEAT TRANSFER ON EVAPORATOR IS GREATER............
...... THAN THE SONIC LIMIT, IT IS ASSUMED THAT THE SONIC.............
...... LIMIT IS ACTUAL HEAT TRANSFER. CALCULATE NEW VAPOR.............
...... TEMPERATURE BASE ON SONIC LIMIT..uuunenninnnnnennenonneanennnnes
IF(QMAX .LE. QTAL .AND. JNT .GE. 4) THEN
RESD = 0
JCOB = O.

DO 931 I = 2,INT
IF(TEMPS(I) .GT. TVU) THEN
INTL = 1
ELSE IF(TEMPS(I) .LT. TVU .AND. TEMPS{I-1) .GT. TVU)
THEN '
XII = (TEMPS(JINTL) =~ TVU)*ELSI(I-1)
XI1 = XII/(TEMPS{JINTL)-TEXPS(I))

END IF ORIGINAL PAGE IS
OF POOR QUALITY
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931 CONTINUE
RSC1 = 2.29E11%*1.5%,021%4.5E6
RSC2 = 6.34E8%4.5E6%10.26DIST
1IC =0
DO 932 I = 1,JINTL
IF(QEI(I) .GT. 0.) THEN
RSC12 = RSCI*ELSI(I)
IF(I .NE. JINTL) THEN
RESDI = 10.**(-5567/TEMPS(I))/TEMPS(I)*ELSI (I)*RSC!
RESDV = 10.%**(-5567/TVU) /TVU*RSC12

JCOBI = RSCI*ELSI(I)

ELSE
RESDI = 10.**(-5567/TEMPS(I))/TEMPS (I)*XII*RSC1
RESDV = 10.%**(~5567/TVU)/TVU* (RSC1*XII+RSC2)
JCOBI = RSC1*XII

END IF

RESD = RESD + RESDI - RESDV
JCOB = JCOB + JCOBI
ELSE
IC=1IC + 1
END IF
932 CONTINUE
JLM1 = JNTL -~ IC
JCOB =(JCOB+RSC2)*(1-12818.5/TVU)
JCOB = JCOB*10.**(-5567./TVU)/ (TVU**2)
TVO = TVU
TVU = TVO - RESD/JCOB
IF(ABS(RESD) .LT. .1) THEN

AREAT = 0.
DO 933 I = 2,JNT
IF (TEMPS(I) .LT. TVU .AND. TEMPS(I-1) .GT. TVU)
& THEN
INTM = I
AREA(I) = TEMPS(I) - TVU
AREA(I) = AREA(I) + (TEMPS(I) - TEMPS(I+1))/2.
AREA(I) = AREA(I)*ELSI(I)
ELSE IF(TEMPS(I) .LT. TVU) THEN
AREA(I) = TEMPS(I) - TVU
AREA(I) = AREA(I) + (TEMPS(I) - TEMPS(I+1))/2.
AREA(I) = AREA(I)*ELSI(I)
END IF
AREAT = AREAT + AREA(I)
933 CONTINUE |
INTL = JNTM - 1
CALL INTFLUX(JFNT,JNTL,TVU,TEMPV, TEMPS,QEI)
VMAX = SQRT(1.4%8314,*TVU/23.)
PSATT = (2.29E11/SQRT(TVU))*10,**(-5567/TVL)
DENS = 2.766E-3*PSATT/TVU
HFGS = 182.%(25474.93 - .9935%TVU)
QMAX = VMAX®HFGS™DENS*DIST*WIDTH/2.2
OTAL = 0.
DO 935 I = 1,JNTL
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IF(QEI(I) .GT. 0.) THEN
IF(I .LT. JNTL) THEN
QTAL = QTAL + QEI(I)*ELSI(I)*WIDTH
ELSE
XII = (TEMPS(JNTL) - TVU)¥ELSI(I)
XII = XII/(TEMPS(JINTL)-TEMPS (IJNTM))
QTAL = QTAL + QEI(I)*XII*WIDTH
END IF
END IF
CONTINUE
DO 936 I = JNTM,JINT
IF(I .EQ. JNTM) THEN
QEI(I) = - AREA(I) * QMAX/AREAT/ELSI(I)/WIDTH
IF(TS .GT. 7000) THEN
END IF
ELSE
QEI(I) = - AREA(I)*QMAX/AREAT/ELSI(I)/WIDTH
END IF
CONTINUE
NRESIS = 1
ELSE
GO TO 2300
END IF
ELSE IF(QTAL .LE. QMAXT .AND. JNT .GE. JFNT-1) THEN
...ARTIFICIAL THERMAL RESISTANCE, WHICH CALCULATED FROM........
...VAPOR FLOW, IS IMPOSED AT LIQUID-VAPOR INTERFACE.......ce0..
CALL COUPLE (JINT,QT,TVU, JFNT)
NRESIS = 2
END IF
ELSE
GO TO 2200
END IF
END IF
IF(TS .EQ. NPRINT) THEN
WRITE(6,790) TVU
WRITE(2,775) TVU
END IF
DO 945 J = 1,INT
DO 946 I = 1,NEL
IF(GNDI(J) .EQ. GND(I,1l) .AND. GNDI(J+1) .EQ. GND(I,2
)) THEN
IES(I,D) =1
QE(I,IES(I,1)) = QE(I,IES(I,1)) - QEI(J)
END IF
CONTINUE
CONTINUE
FIRTS = FIRTS + 1
DEFO = (ALPAR/DIST*%2)*DELT
IF(TS .GE. MN) THEN
GO TO 2000 ORIGINAL PAGE IS
ELSE OF POOR QUALITY
GO TO 550 :
END IF
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ELSE
DEFO = (ALPAR/DIST**2)*DELT
IF(TS .GE. MN) THEN
GO TO 2000
ELSE
GO TO 550
END IF
END IF

2000 CONTINUE

2 FIRTS1l = FIRTS - 1.

775 FORMAT(F8.2)

790 FORMAT(/2X,'TEMPV = ',F8.3,2%,'[R]")

Covevennnnne PRINT DATA FbR RESTARTING FROM LAST RUN.cecoivanannns

CALL DATAOUT(TA, JK,JNT,TIMEN,FIRTS,TVU,QT,TEMPD)
STOP )
END

SUBROUTINE ELMDM(X,Y,M)

Jededke R h etk kT dehvekde ke bkt Ak khh kAR bbb hh b rh Ak hhLhn

* THIS SUBROUTINE CALCULATES ELEMENT DATA SUCH %
* AS AREA, B(I)B(J) + C(I)C(J), B(DC(I) - B(HC(I) *
* C1(I,J) AND CM(I,J), AND FORMS MATRICES S622, S262 *

* AND S226 ‘ *
Yevek Rk el h ket R R R ARkt he e hh et

OO0 0Onn0

COMMON/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT,VOLSPR,WIDTH,QE(140,3) ,NRESIS,RESIS, IX
/ELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3) ,EAREA(140) ,NPP1,
IES(140,2) ,ESL(140,3) ,BETA,XC(140,3) ,YC(140,3) ,DEFO,
NE (140) , TLENG, PNOD(5,30) ,EBC(3,3),CM(3,3) ,GNDB(70)
DIMENSION X(3), Y(3)

rReR

C....TO CALCULATE THE AREA AND BASIC MATRIX OF THE ELEMENT....

XY = X(2) * Y(3) - Y(2) * X(3)

YX o= X(1) * (Y(2) - Y(3)) + Y(L) * (X(3) - X(2))
XPY = XY + YX

EAREA(M) = .5 * ABS(XPY)

B(M,1) = Y(2) - Y(3)

B(M,2) = Y(3) - Y(1)
B(M,3) = Y(1) - Y(2)

cM,1) = X(3) - X(2)

C(M,2) = X(1) - X(3)

c(4,3) = X(2) - x(1)

ESL(le) = SQRT(B(M,3)**2+C(M,3)*#2)
ESL(M,2) = SOQRT(B(M,1)**2+C(M,1)**2)
ESL(M,3) = SQRT(B(H,z)**2+C(M’2)#*2)
RETURN
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END

SUBROUTINE CONCP (X,Y,TEMP,M,DUMK,NLEM)

c 2 9% 7 7 ¥ 9% e Yo sk T P e vk v ve S e ve slr st o e e S e s ol S de Yo St Yo de e s ve e stok e e dededlede dese st e Yoot

C * THIS IS MAIN SUBTROUTINE TO EVALUATE CONDUCTION *
C * AND CAPACITANCE MATRIX FOR EACH ELEMENT *

C e ve 7e F 3o e o s Yo st v e v Fe v Fe ve ve e ve de ok v o ok de sl de vl de Yo e st s v s e sk e s S de v s e de oot

COMMON/MATG/ AMC(140,151) ,RM(140),THETA(140),FLD(140),
AM(140,140) ,BM(140),C13(3,3),K13(3,3)
/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD, TEMPG1(140),THETAG(140),
THETAF (140) , THETAO (140) , THETTO (140) , THETAB (70) , TEMPD
/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT, VOLSPR,WIDTH,QE(140,3) ,NRESIS,RESIS, IX
/ELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3) ,EAREA(140) ,NPP1,
1ES(140,2),ESL(140,3) ,BETA,XC(140,3),YC(140,3) ,DEFO,
NE (140) , TLENG, PNOD(5,30) ,EBC(3,3),CM(3,3) ,GNDB (70)
DIMENSION X(3),Y(3),TEMP(3),KN(3),DUMK(140)
REAL RN

Fereeeerer

C TO CALCULATE ELEMENT CONDUCTION [K] AND CAPACITANCE [C]
C MATRIX ON ELEMENT BY ELEMENT BASIS

C.....TO PROVIDE COMMON MATRIX DATA.....

IF(DUMK(M) .EQ. 4.) THEN
CALL FICLAY (TEMP,N)
ELSE

C....CALCULATE NODAL CONDUCTIVITY AND VOLUMETRIC SPECIFIC HEAT....
CALL PROPTY (TEMP,CEE,KN,NLEM,N)
C....CALCULATE CONDUCTION[KIJ] AND CAPACITANCE{CIJ] MATRIES....

CALL CKAN (CEE,RN,TEMP,M)
END IF
RETURN
END

SUBROUTINE FICLAY (TEMP,M)

sk ¥ 3% 7 3o v 3 o Yo v vt S de do e S e S et Y Yo ve Yo e ve sk Yok e ks sk e de st ok e e v s de s oS s ek s e

C
C * THIS SUBROUTINE EVALUATES CONDUCTION AND CAPACITANCE

C * MATRIX IN FICTITIOUS-LAYER WHICH HAS BEEN ARTIFICIALLY *
C * CREATED TO SMOOTH OUT THE EFFECT OF THE ABRUPT CHANGE

C * OF TEMPERATURE AT THE BOUNDARY OR FOR HEAT PIPE SHELL. *
C

e Yo v e Yo v ve Yo vle s sk v s Yo v Yo v v e Yoo Yo Yo de e e o de dle s Yo e dle e e e S s v st at e Yo de Yo e Yo Y st e v sy

IMPLICIT REAL (R)
COMMON/MATG/ AMC(140,151) ,RM(140),THETA(140) ,FLD(140),

& AM(140,140) ,BM(140),C13(3,3),K11(3,3)
& /PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
& BOLT,VOLSPR,WIDTH,0QE(140,3) ,NRESIS,RESIS, IX

ORIGINAL PAGE IS
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& JELMT/ NEL,NP,GND(lao,S).B(140,3),c(140,3),EAREA(1a0),NPPl,
& 1ES(140,2),ESL(140,3) ,BETA,XC(140,3),YC(140,3) ,DEFO,
& NE(140),TLENG, PNOD(S 30) EBC(3, 3),CM(3,3), GVDB(?O)

DIMENSION TEMP(3)
CALL PROSHEL (TEMP,KFIC,CFIC)
DO 100 I = 1,3
DO 110 J = 1,3
EBC(I,J) = (B(M,I)*B(M,J) + C(M,I)*C(N, J))/EAREA(M)
IF(I .EQ. J) THEN
CM(1,J) = EAREA(M) /6.
ELSE
cM(I,J) = EAREA(M)/12.
END IF
RIJ(I,J) = KFIC * EBC(I,J)/4./KREF
CIJ(1,J) = CFIC * CcM(I,J)/VOLSPR
110 CONTINUE
100 CONTINUE
RETURN
END

SUBROUTINE PROSHEL (TEMP,KFIC,CFIC)

Fededrdededede et deh e des e A dedede e dede o e oot dede sk e e e e de sk e ve e e de e b deo

* SUBROUTINE CALCULATES CONDUCTIVITY AND SPECIFIC HEAT FOR *
* HEAT PIPE SELL BASED ON AVERAGE TEMPERATURE. *

Yo feve st e dedesedhde st dedeveseseseve st dratdedest ks et A s de ks e e dese s b de ket de e ek

O0O00

IMPLICIT REAL (R)
DIMENSION TEMP (3)

C.;.....CONDUCTIVITY AND SPECIFIC HEAT FOR HASTELLAY X.........

DATA TK1l,TK2,TR3,TR4/373.,573.,773.,973./
& K1 ,K2 ,K3 ,K4 /11.1,14.7,20.6,22.8/
& CcP1,CP2,CP3/498.,582.,699./

& TC1,TC2,TC3/588.,923.,1143/

ROU = 8220.

TAVG = (TEMP (1)+TEMP (2)+TEMP(3))/3.

IF(TAVG .LT. TK1) THEN
KFIC = K1

ELSE IF(TAVG .GE. TK! .AND. TAVG .LT. TK2) THEN
KFIC = K1+(K2-K1)*(TAVG-TK1)/(TK2-TK1)

ELSE IF(TAVG .GE. TK2 .AND. TAVG .LT. TK3) THEN
RFIC = K2+(K3-K2)*(TAVG-TK2)/(TK3-TK2)

ELSE IF(TAVG .GE. TK3 .AND. TAVG .LT. TK4) THEN
KFIC = K3+ (K4-K3)*(TAVG~-TK3) /(TR4~-TK3)

ELSE
KFIC = K&

END IF

IF(TAVG .LT. TCl) THEN
CFIC = ROU * CPl

ELSE IF(TAVG .GE. TCl .AND. TAVG .LT. TC2) THEN
CFIC = ROU *(CP1+(CP2-CP1)*(TAVG-TCl)/(TC2-TCl))

ELSE IF(TAVG .GE. TC2 .aND. TAVG .LT. TC3) THEN
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CFIC = ROU *(CP2+(CP3~CP2)* (TAVG-TC2)/(TC3~-TC2))

ELSE

CFIC = ROU * CP3

END IF
RETURN
END

SUBROUTINE PROPTY (TEMP,CEE,KN,NLEM,N)

o o's Y S de se de s o Y s vt de e sk v de e Ve Yo vl sk dh v de e ekt e st de dede e vk deskse e ek

THIS SUBROUTINE CALCULATES CONDUCTIVITY AND *
VOLUMETRIC SPECIFIC HEAT AT NODE IN ELEMENT *
WHICH HAS PHASE CHANGE *
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IMPLICIT REAL (K)
COMMON/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD, TEMPG1 (140) ,THETAG(140),

FPRrRrRRrRreeRR

THETAF (140) , THETAO (140) , THETTO (140) , THETAB (70) , TEMPD

/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT,VOLSPR,WIDTH,QE(140,3) ,NRESIS,RESIS, IX

/ELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3),EAREA(140),NPP1,
1ES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3),DEFO,
NE (140) , TLENG,PNOD(5,30) ,EBC(3,3),CM(3,3) ,GNDB (70)

/SPLIN/TINE (3),TIMER (20) ,QSTAG(20) ,XP1(25),CP1(4,25) ,ND1,
XP2(60) ,CP2(4,60) ,ND2,XP3(25),CP3(4,25) ,ND3, TS,
XP4(25) ,CP4(4,25) ,ND&4,XP5(15) ,CP5(4,15) ,ND5,XP6(15),
Cp6(4,15) ,xp7(15) ,CcP7(4,15) ,ND7,XP8(15),CP8(4,15),
ND6,ND8,XP9 (15),CP9(4,15) ,ND9,XP0(15),CPO(4,15) ,NDO,
ELSS{30),TESL(30)

DIMENSION TEMP(3) ,KN(3),KFN(3),KLN(3),KSN(3),ENTP(3)

160

TMEP = TMEL + DETP
TMES = TMEL - DETP
DO 50 I =1,3
RFN(I) = O.
RLN(I) = 0.
KSN(I) = 0.
50 CONTINUE
Do 1001 = 1,3
IF(TENP(I) .LT. TMES) THEN
TEMPS=TEMP (I) .
KSN(I) = PCUBIC (TEMPS,NDS,XP5,CP5)/KREF
CSN = PCUBIC(TEMPS,ND7,XP7,CP7)
ROUSN = PCUBIC (TEMPS,ND6,XP6,CP6)
ENTP(I) = CSN * ROUSN * TEMP (I)
ELSE IF(TEMP(I) .GT. TMEP) THEN
TEMPL=TEMP (I)
KLN(I) = PCUBIC(TEMPL,ND8,XP8,CP8)/KREF
CLN = PCUBIC(TEMPL,NDO,XPQ,CPO)
ROULN = PCUBIC(TEMPL,ND9,XP9,CP9)
CSN = PCUBIC(TMES,ND7,XP7,CP7)
ROUSN = PCUBIC(TMES,ND6,%P6,CP6)

ENTP (I) = CSN*ROUSN¥TMES+HRSL+~CLN*ROULN®(TEMP{I) -TMEP)

ELSE
KSS = PCUBIC(TMES,ND5,XP5,C?5)
CSN = PCUBIC(TMES,ND7,XP7,CP7)
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ROUSN = PCUBIC(TMES,ND6,XP6,CP6)
KLP = PCUBIC(TMEP,ND8,XP8,CP8)
KFN(I) = (KSS + (KLP - KSS$)*(TEMP(I) - TMES)/(2.*DETP))/KREF
ENTP (1) =CSN*ROUSN*TMES + HRSL*(TEMP(I) - TMES)/(2.*DETP)
END IF
CONTINUE
DETX = 0.
DETY = O.
DO 200 I = 1,3

DETX = DETX + (B(M,I)*TEMP(I))/(2.*EAREA(M))
DETY = DETY + (C(M,I)*TEMP(1))/(2.*EAREA(M))
CONTINUE
IF(DETX .NE. 0. .AND. DETY .NE. 0.) THEN
ENTPX = 0.
ENTPY = O.

Do 300 I = 1,3
ENTPX = ENTPX + (B(M,I)*ENTP(I))/(2.*EAREA(M))
ENTPY = ENTPY + (C(M,I)*ENTP(I))/(2.%EAREA(M))
CONTINUE :
IF(NLEM .EQ. 1) THEN ) .
CEE = ((ENTPX**2 + ENTPY**2)/(DETX**2 + DETY**2))/VOLSPR
ELSE
CEE = ((ENTPX*DETX + ENTPY*DETY)/(DETX**2 + DETY**2))/VOLSPR
END IF
ELSE
IF(TEMP (1) .LT. TMES) THEN
CEE = CSN*ROUSN/VOLSPR
ELSE IF(TEMP(1) .GT. TMEP) THEN
CEE = CLN*ROULN/VOLSPR
END IF
END IF
DO 400 I = 1,3
KN(I) = KFN(I) + KLN(I) + KSN(I)
CONTINUE
RETURN
END

SUBROUTINE CRAN(CEE,KN,TEMP,M)

Sedevededesededtvedede vtk ve sk vede s desede o e de sk desde st sede e de ook e ek
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C * THIS SUBROUTINE CALCULATES CONDUCTION *
C * AND CAPACITANCE MATRICES FOR ELEMENT *

C * WHICH HAS PHASE CHANGE.

C Jevrsedevedk ettt edtvesee sttt dede st de b dese e v de s oo ek

IMPLICIT REAL (K)
COMMON/MATG/ AMC(140,151) ,RM(140),THETA (140),FLD(140),

AM(140,140),BM(140),C13(3,3),K13(3,3)

/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT,VOLSPR,WIDTH,QE(140,3) ,NRESIS,RESIS, IX

/ELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3),EAREA(140) ,NPP1,
IES(140,2),ESL(140,3),BETA,XC(140,3),YC(140,3) ,DEFO,
NE(140) ,TLENG,PNOD(5,30) ,EBC(3,3),CM(3,3),GNDB(70)

/SPLIN/TIME(3),TIMER(20),QSTAG(20),%P1(25),CP1(4,25) ,NDI,
XP2(60),CP2(4,60) ,ND2,XP3(25),CP3(4,25) ,ND3,TS,

PR RRRRR
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XP4(25),CP4(4,25) ,ND4,XP5(15) ,CP5(4,15) ,ND5,XP6(15),
CP6(4,15) ,XP7(15),CP7(4,15) ,ND7,XP8(15) ,CP8(4,15),
NDé6,ND8, XP9 (15) ,CP9(4,15) ,ND9,XP0(15) ,CPO(4,15) ,NDO,
ELSS(30),TESL(30)

DIMENSION KN(3),TEMP(3)

TAVG = (TEMP(1) + TEMP(2) + TEMP(3))/3.
VOIDF = .684

RSW = PCUBIC(TAVG,ND3,XP3,CP3)

KSW = KSW/KREF

CPSW = PCUBIC(TAVG,ND4,XP4,CP4)

DENSW = 8027.

CPSW = CPSW*DENSW/VOLSPR

REE = 0.

DO 100 I = 1,3

KEE = KEE + KN(I)

100 CONTINUE
KEE = KEE/3.
KEE = KEE™* ((REE+KSW)~-(1-VOIDF) * (KEE-KSW)) /

&

((KEE+KSW) + (1-VOIDF) * (KEE-KSW) )

CEE = (VOIDF*CEE)+(1-VOIDF) *CPSW
DO 2001 = 1,3

210

DO 210 I = 1,3
EBC(I,J) = (B(M,I)*B(M,J) + C(M,I)*C(M,J)) /EAREA(M)
IF(I .EQ. J) THEN
CM(I,J) = EAREA(M)/6.
ELSE
CM(I,J) = EAREA(M)/12.
END IF
CIJ(1,I1) = CEE*CM(I,I)
KIJ(I,J) = KEE*EBC(I,J)/4.
CONTINUE

200 CONTINUE
RETURN
END

SUBROUTINE THIRDB(THETAC,L,CONF,M)

c ofe e e ¥e e Fo e vle 3k Yo ve vle T v Yo T e sie e 't oo S e e 9l vl T e v e st e st v e v st S e s e Yo e ek e e S s e el e e sl s vede st v et
* THIS SUBROUTINE CALCULATES ELEMENT MATRICES DUE TO SURFACE *
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C
C * INTEGRALS FOR CONVECTIVE BOUNDARY CONDITIONS *
C

IMPLICIT REAL (K)

COMMON/MATG/ AMC(140,151) ,RM(140),THETA(140),FLD(140),

PR RRRRRR

AM(140,140),BM(140),C13(3,3),KR13(3,3)
/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD, TEMPG1 (140),THETAG(140),
THETAF (140) , THETAO (140) , THETTO (140) , THETAB (70) , TEMPD
/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT,VOLSPR,WIDTH,QE (140,3) ,NRESIS,RESIS, IX
/JELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3) ,EAREA(140) ,NPP1,
IES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3) ,DEFO,
NE(140), TLENG,PNOD(5,30) ,EBC(3,3),CM(3,3) ,GNDB(70)
DIMENSION CONF(2,3),CONK(3,3),IE(2)
Bl = (DIST/KREF)*HTC(M,IES(M,L))
IF(IES(M,L) .EQ. 1) THEN
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IE(L) = 3
ELSE
IE(L) = IES(M,L) -1
END IF
DO 100 I = 1,3
IF(I .EQ. IE(L)) THEN
CONF(L,I) = O.
ELSE
CONF(L,I) = BI * ESL(M,IES(M,L)) * THETAC/2.
END IF
Do 110 J = 1,3
IF(I .EQ. IE(L) .OR. J .EQ. IE(L)) THEN
CONK(I,I) = 0.
ELSE IF(I .EQ. J) THEN
CONK(I,J) = BI*ESL(M,IES(M,L)}/3.
ELSE
CONK(I,J) = BI*ESL(M,IES(M,L))/6.
END IF
110 CONTINUE
100 CONTINUE
DO 200 I = 1,3
DO 210 J = 1,3 .
KIJ(I,]) = K1J(I,J) + CONK(I,T)
210 CONTINUE
200 CONTINUE
RETURN
END

SUBROUTINE SECNDB(L,QEF,M,NFLUX)

C dedededededede v oo vedede Yokt dede ek dedededededdede s vt e R de e dede dr e e dedkve ek fe ek dedeh Ak k

C * THIS SUBROUTINE CALCULATES ELEMENT MATRICES DUE TO SURFACE *
C * INTEGRALS FOR B.C.'S OF SECOND KIND, AND HEAT FLUX(QE) IS *

C * CONSTANT BETWEEN NODES *
c o 7 Y vo st 3t v ¥o ¥ Se vl v ot v v e oo ot e v Yo Y st e e Yo v Ye st s ot Y 't Ve e sle e e S de e ab Yo de S e o e v e s v e s de v s dle e et

IMPLICIT REAL (K)
COMMON/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD, TEMPG1(140), THETAG(140),
THETAF (140) , THETAO(140) , THETTO (140) , THETAB (70) , TEMPD
/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT,VOLSPR,WIDTH,QE (140,3) ,NRESIS,RESIS, IX
/ELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3),EAREA(140) ,NPP1,
IES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3),DEF0,
NE (140) , TLENG, PNOD(5,30) ,EBC(3,3),CH(3,3) ,GNDB(70)
DIMENSION IE(2),QEF(2,3)
INTEGER GND
IF(IES(M,L) .EQ. 1) THEN

RPRRRRR

IE(L) = 3
ELSE
IE(L) = IES(M,L) - 1
END IF
Covinnnnn CONSTANT HEAT FLUX..v'vvnn..
C ESL = LENGTH OF SIDE




DLQE = DIMENSIONLESS CONSTANT HEAT FLUX ON SIDE OF ELEMENT

IF(NFLUX .EQ. 1) THEN

IF(IES(M,L) .EQ. 1) THEN
QES = QE(M,IES(M,L))

ELSE
QS = QE(M,IES(M,L))
CALL FLUXD(M,QES)

END IF

ELSE
QES = QE(M,IES(M,L))

END IF

DLQE = QES*DIST/(RKREF*(TMEL - TEMPI))

IF(IES(M,L) .EQ. 1) THEN
QEF(L,1)=(ESL(M,IES(M,L))/2.) *DLQE
QEF(L,2) = QEF(L,1)

QEF(L,3) = 0.

ELSE IF(IES(M,L) .EQ. 2) THEN
QEF(L,1) = 0.
QEF(L,2)=(ESL(X,IES(M,L))/2.)*DLQE
QEF(L,3) = QEF(L,2)

ELSE
QEF(L,1)=(ESL(M,IES(M,L))/2.) *DLQE
QEF(L,2)=0.

QEF(L,3) = QEF(L,1)

END IF

RETURN

END

SUBROUTINE RADB(L,TS,NTS,RADF,M,RADK)

c Je s dededededededededede sk e dede v dede e dedede e dede e dedr e o e de e ek bsbab ek e bk vk K de st ek e bk ek

C * THIS SUBROUTINE CALCULATES ELEMENT MATRICES DUE TO SURFACE *

C * INTEGRALS FOR B.C.'S OF RADIATION. *
Cc Fedessdededevese e Feedee ke dedesevede st de e N dededhdevededesh et vkt kvt dedrdese s

IMPLICIT REAL (K)
COMMON/MATG/ AMC(140,151) ,RM(140),THETA(140),FLD(140),
AM(140,140) ,BM(140),C1J(3,3),K1J(3,3)
/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD, TEMPG1 (140), THETAG(140),
THETAF (140) , THETAO(140) , THETTO (140) , THETAB (70) , TEMPD
/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT,VOLSPR,WIDTH,QE(140,3) ,NRESIS,RESIS, IX
/ELMT/ NEL,NP,GND(140,3),8(140,3),C(140,3),EAREA(140),NPP1,
I1ES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3) ,DEFO,
NE (140) , TLENG, PNOD(5,30) ,EBC(3,3),CM(3,3) ,GNDB (70)
DIMENSION IE(2),RADF(2,3),RADK(3,3)
INTEGER GNDN,GND1,GND2,GND, TS

PR eR

RADC = (DIST/KREF) *EMIS¥*BOLT
DELTT = TMEL - TEMPI
IF(IES(M,L) .EQ. 1) THEN
IE(L) = 3
ELSE
IE(L) = IES(M,L) -1
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END IF
THETAR = (TEMPR - TMEL)/(TMEL - TEMPI)

eeseeeess sCONSTANT BETA.evvovannrnseaseonncns oo

ETC = ESL(M,IES(M,L))*THETAR
IF(IES(M,L) .EQ. 1) THEN
GND1 = GND(M,1)
GND2 = GND(M,2)
ELSE IF(IES(M,L) .EQ. 2) THEN
GND1 = GND(X,2)
GND2 = GND(M,3)
ELSE
GND1 = GND{M,1)
GND2 = GND(M,3)
END IF
IF(TS .LE. NTS) THEN
DTHETA = DELTT * (THETAG(GND1) + THETAG(GND2))/2.
ELSE
DTHETA = DELTT * (THETAO(GND1) + THETAO(GND2))/2.
END IF
RBETAC = RADC * ((DTHETA+TMEL)**2 + TEMPR*¥*2)* (DTHETA+TMEL+TEMPR)
DO 100 I = 1,3
IF(I .EQ. IE(L)) THEN
RADF(L,I) = O.
ELSE
RADF(L,I) = ETC * RBETAC /2.
END IF
DO 110 J = 1,3
IF(I .EQ. IE(L) .OR. J .EQ. IE(L)) THEN
RADK(I,J) = 0.
ELSE IF(I .EQ. J) THEN
RADK(I,J) = RBETAC*ESL(M,IES(M,L))/3.
ELSE
RADK(I,J]) = RBETAC*ESL(M,IES(M,L))/6.
END IF
CONTINUE
CONTINUE
DO 200 I = 1,3
DO 250 J = 1,3
KIJ(1,J) = KIJ(I,J) + RADK(I, J)
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE FLUXD(M,QES)
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* WHEN HEAT FLUX DEPEND ON TIME, CALCULATE HEAT FLUX ON BOUNDARY *
* SUR”ACE BY LIWEAR IVTERDDLxTIOV *
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COMMON/ELMT/ NEL,NP GnD(140,3) ,B (140, 3) C(140,3) ,EAREA(140) ,NPP],
& IES(140,2) ,E5L(1%0,3),B XC(140,3),YC(140,3) ,DEFOC,
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NE(140) , TLENG, PNOD(5,30) ,EBC(3,3),CM(3,3) ,GNDB(70)
/SPLIN/TIME(3), TIMER(20),QSTAG(20),XP1(25),CPl(4,25) ,ND1,
XP2(60),cr2(4,60) ,ND2,XP3(25),CP3(4,25),ND3, TS,

cp6(4,15) ,XP7(15),CP7(4,15) ,ND7,%XP8(15),CP8(4,15),

R R R

ELSS(30),TESL(30)
INTEGER NL,NU,NTIME,TS,GND,PNOD,K,KM1,KNM2

IF(TS .LT. 3) THEN
LTS = TS
ELSE
LTS = 3
END IF
R =2
KMl = 1
KM2 = RM1 - 1
50 IF(GND(M,3) .EQ.-PNOD(1,KM1) .AND. GND(M,2) .EQ. PNOD(1,K))
& THEN
IF (KMl .EQ. 1) THEN
XI = TESL(1)/(2.*TLENG)
ELSE
XI = (TESL(KM2) + ELSS(KM1)/2. )/TLENG
END IF
ELSE
Ka
KM1
KM2 =
GO TO 50
END IF
QSCALE = PCUBIC(XI,ND1,XP1,CP1)
TMI = TIME(LTS)
QSFLUX = PCUBIC(TMI,ND2,XP2,CP2)
QES = ABS(QSCALE) *QSFLUX
RETURN
END

K+ 1
=K~-1
1 -1

SUBROUTINE SPLINE(N,XI,C)
Fedesededededededestdesedededdededed sk e e e e Yoo s s de e el dede st e e e Y e de b e dedede e e e de et et

* SUBROUTINE SPLINE USES GAUSS ELIMINATION TO CALCULATE C2,I = *
* SI WITH GIVEN THE NUMBER S Cl I FI AND C2 I = Sl C2 N+l SN+1
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DIMENSION XI(60),C(4,60),D(60),DIAG(60)
DATA DIAG(1),D(1)/1.,0./
NP = N+l
DO 10 ¥ = 2,NP
D(M) = XI(M) - XI(M-1)
DIAG(M) = (C(l,M) - C(1,M-1))/D(M)
10 CONTINUE
DO 20 M = 2N
C(2,4) = 3.7 D{M)*DIAG(M*+1) + D(M+1)*DIAG(M,)
DIAG(M) = 2.%(D(M) =~ D(M+1))
20  CONTINUE

XP4(25) ,CP4(4,25) ,ND4,XP5(15) ,CP5(4,15) ,ND5,XP6(15),

ND6,ND8, XP9 (15) ,CP9(4,15) ,ND9,XP0(15),CPO(4,15),NDO,
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PO 30 M = 2,N
G = - D(M+1) /DIAG(M-1)
DIAG(M) = DIAG(M) + G*D(H-1)
c(2,n) = c(2,H) + G*C(2,M~1)

CONTINUE
DO 40 M = 2,N
NP = NP - 1

c(2,NP) = (C(2,NP)-D(NP)*C(2,NP+1))/DIAG(NP)
CONTINUE
RETURN
END

SUBROUTINE CALCF (N,XI,C)

*:’c****:’c:’rf:*'lh‘:**:‘r****7’:**)’:7’:1‘:7‘:****:‘::':****:’n‘t****‘k**v‘:*:‘r*****:‘:****"n‘e

* WITH FI STORED IN Cl,I AND SI STORED IN C2,I,

* CALCULATES C3,I, C4,1 ,I = liciuieeesnnenns N
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10

C Fer Yoy

c* THIS SbBROUTINE FORMS THE GLOBAL COLUMN VEC*ORS[FLD] *

C

10

19

20

30

DIMENSION XI(60),C(4,60)

DO 10 I = 1,N
DX = XI(I+1) - XI(I)
DIVDF1 = (C(1,I1+1) - C(1,I))/DX
DIVDF3 = Cc(2,I) + €(2,I+1) - 2.*DIVDFl
c(3,1) = (DIVDFl - C(2,I) - DIVDF3)/DX
C(4,1) = DIVDF3/DX/DX

CONTINUE

RETURN

END

FUNCTION PCUBIC(XBAR,N,XI,C)

DIMENSION XI(60),C(4,60)
I1=1

DX = XBAR - XI(I)

1IF(DX) 10,30,20

IF(I .EQ. 1) GO TO 30
I1=1-1

DX = XBAR - XI(I):
IF(DX) 10, 30, 30
I=1+1

DX = DDX

IF( I .EQ. N) GO TO 30
DDX = XBAR - XI(I+1)
IF(DDX) 30,19,19

PCUBIC = C(1,I)+DX*(C(2,1)+DX*(C(3,I)+DX*C(4,1)))
RETURN

END

SUBROUTINE FORMF (L, CONF,QEF,RADF,M)

Kk sdeseYede Yoy eyt Yo T see vr e Test Y Yo e Yo e s ot Yo e sk oty
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SUBROUTINE *

*
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COMMON/MATG/ AMC(140,151),RM(140),THETA(140),FLD(140),
AM(140,140) ,BM(140),C1J(3,3),KIJ(3,3)
/ELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3),EAREA(140) ,NPP],
IES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3),DEFO,
NE (140) , TLENG,PNOD(5,30) ,EBC(3,3),C(3,3) ,GNDB (70)
DIMENSION CONF(2,3),QEF(2,3),RADF(2,3)
INTEGER GND
DO 100 I = 1,3
II = GND(M,I)
FLD(II) = FLD(II) + CONF(L,I) + QEF(L,I) + RADF(L,I)
CONTINUE
RETURN
END

SUBROUTINE FORMGM(P,TS,NTS,M)

Jeve e e veve ek de e ve e de e e de Fe o vestFede e e e ek e e dede dede sk dede e e dede et

* FORMS SYSTEM MATRICES AM(I,J) AMD BM(I) *
e v ve e v Fe vo e v v o oo T v v oo oo dfe e v e sk de do e Sie v dle Yo v de S e e e e e v st at et

COMMON/MATG/ AMC(140,151) ,RM(140),THETA(140),FLD(140),
AM (140, 140) ,BM(140),C13(3,3),K13(3,3)
/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD, TEMPG1(140),THETAG(140),
THETAF (140) , THETAO (140) , THETTO (140) , THETAB (70) , TEMPD
/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT,VOLSPR,WIDTH,QE(140,3) ,NRESIS,RESIS, IX
" /ELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3),EAREA(140) ,NPP1,
IES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3) ,DEFO,
NE (140) , TLENG,PNOD (5, 30) ,EBC(3,3),CM(3,3),GNDB (70)
DIMENSION THETAI(140)
INTEGER GND,P,TS
REAL KIJ
IF(TS .LE. NTS) THEN
DO 100 I =1,3
II = GND(M,I)
THETAI(II) = (TEMPG1(II) - TMEL)/(TMEL - TEMPI)
CONTINUE
DO 200 I =1,3
II = GND(M,I)
DO 210 J = 1,3
JJ = GND(M,T)
KIJ(I,J) = KIJ(I,J)*WIDTH/DIST
CIJ(1,J) = CIJ(I,J)*WIDTH/DIST
AM(II,JI) = AM(II,JJ) + (KIJ(I,J)*BETA + CIJ(I,])/DEF0)
BM(II) = BM(II)+(CIJ(I,J)/DEFO-(1.-BETA)* RIJ(I,J))*THETAI(JI)
CONTINUE
CONTINUE
DO 300 I = 1,NP
BM(I) = BM(I) + FLD(I)*WIDTH/DIST
CONTINUE
ELSE
DC 400 I = 1,3
II = GND(M, 1) ORIGINAL PAGE IS
DC 410 J = 1,3 OF POOR QUALITY
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JJ = GND(M, )
RIJ(I,J) = KIJ(I,J])*WIDTH/DIST
C1J(1,3) = C13(1,J)*WIDTH/DIST
AM(II,J3) = AM(II,JJ) + 3.*KIJ(I,J)/4. + CI1J(I,])/DEFO
BM(II) = BM(II) + (CIJ(I,J)/DEFO)*THETA0(JJ)
& - KIJ(I,J)*THETTO(JJ) /4.
410 CONTINUE ’
400 CONTINUE
DO 420 I = 1,NP
BM(I) = BM(I) + FLD(I)*WIDTH/DIST
420 CONTINUE
END IF
RETURN
END

SUBROUTINE GLOBMAX (TEMP,TEMPC,M,DUMK,NLEM,NFLUX,NRAD,NTS, IFN)

C************ﬁ*******************************************#******ﬂ**

C* THIS SUBROUTINE ASSUMBLE ELEMENT MATRIX AND BOUNDARY CCNDITION *

C* INTO GLOBAL SYSTEM MATRIX[AMC] EXCEPT SPECIFIED TEMPERATURE. *
CHde ik ddcde ok dorkied dde it dedesedodr ok oA e d s g ob sk de e de Ao e dea e e e S gt ek

COMMON/MATG/ AMC(140,151) ,RM(140),THETA(140),FLD(140),
AM(140,140),BM(140),C1J(3,3),K1J(3,3)

/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD,TEMPG1(140),THETAG(140),
THETAF (140) , THETAO (140) , THETTO (140) , THETAB (70) , TEMPD

/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT,VOLSPR,WIDTH,QE (140,3) ,NRESIS,RESIS, IX

JELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3) ,EAREA(140) ,NPP1,
1ES(140,2) ,ESL(140,3),BETA,XC(140,3),YC(140,3) ,DEFO,
NE (140) , TLENG,PNOD(5,30) ,EBC(3,3),CH(3,3) ,GNDB (70)

/SPLIN/TIME(3),TIMER (20) ,QSTAG(20),XP1(25),CP1(4,25),ND1,
XP2(60) ,CP2(4,60) ,ND2,XP3(25),CP3(4,25) ,ND3, TS,
XP4(25) ,CP4(4,25) ,ND4,XP5(15) ,CP5(4,15) ,ND5,XP6(15),
CP6(4,15) ,XpP7(15),cp7(4,15) ,ND7,XP8(15),CP8(4,15),
ND6 ,ND8,XP9 (15) ,CP9 (4,15) ,ND9,XPO(15),CPO (4,15) ,NDO,
ELSS(30),TESL (30) '

INTEGER M,NLEM,L,P,IFN,TS

DIMENSION TEMP (3),DUMK (140),CONK(3,3),RADK(3,3),CONF(2,3),

& QEF(2,3),RADF(2,3),TEMPC(140,3)

RPRRIRRIRRIRRRRR

C ...oooee...TO OBTAIN ELEMENT DATA........ ceean

CALL CONCP(X,Y,TEMP,M,DUMK,NLEM)

C******#**************k*********************************

C TO EVALUATE SURFACE INTEGRAL (CONVECTION , HEAT FLUX,
C RADIATION BOUNDARY CONDITIONS)

C***#************************ﬁﬁ********************ﬁ****

DO 100 I =1,3
DO 150 7 = 1,3
CONK(I, D)
RADK(I, J)

150 CONTINUE

-

0.
0.



170

100 CONTINUE
DO 200 I
FLD(I)
200 CONTINUE
DO 300 L = 1,2
DO 350 I = 1,3
CONF(L,I) = 0.
QEF(L,I) = 0.
RADF(L,I) = 0.
350 CONTINUE
IF (HTC (M, IES(M,L)) .GT. 0.) THEN
THETAC = (TEMPC(M,IES(M,L)) - TMEL)/(TMEL - TEMPI)
CALL THIRDB (THETAC,L,CONF,M)
END IF
IF(QE(M,IES(,L)) .NE. O.) THEN
CALL SECNDB(L,QEF,M,NFLUX)
END IF
IF (HTC (¥, IES(M,L)) .GE. 0. .AND. NRAD .EQ. 1) THEN
CALL RADB(L,TS,NTS,RADF,M,RADK)
END IF .

1,NP
0.0

C .....TO ASSEMBLE THE GLOBAL COLUMN VECTOR [FLD] .....

CALL FORMF (L,CONF,QEF,RADF,M)
300 CONTINUE

CALL FORMGM(P,TS,NTS,M)
RETURN
END

SUBROUTINE FIRSTBC(IFN)

oo fook oSt vk Yok Tt Ao Yoo e de Yo ve st ve e Yo dede de e vt e oo et ek s e dedededededey
* THIS SUBROUTINE ENTERS THE SPECIFIED BOUNDARY *
* TEMPERATURES IN A SYSTEM OF EQUATIONS. *

***************************k#********************

aOO0O0

COMMON/MATG/ AMC(140,151),RM(140),THETA(140),FLD(140),
AM(140,140) ,BM(140),C13(3,3),K1J(3,3)
/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD, TEMPG1 (140),THETAG(140),
THETAF (140) , THETAO (140) , THETTO(140) , THETAB (70) , TEMPD
JELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3) ,EAREA(140) ,NPP1,
IES(140,2) ,ESL(140,3),BETA,XC(140,3),YC(140,3) ,DEFO,
NE(140) , TLENG, PNOD(5,30) ,EBC(3,3),CH(3,3) ,GNDB (70)
INTEGER GNDB
DO 100 I = 1,IFN
11 = GNDB(I)
IF(I1 .LT. 0) THEN
GO TO 100
ELSE

BM(II) = THETAB(I) ORIGIN
DO 110 J = 1,NP OF poc;‘RL ggfﬁ;&
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IF(II .EQ. J) THEN
AM(II,0) = 1.
ELSE
BM(J) = BM(J) - THETAB(I)*AM(J,II)
AM(II,I) = 0.
aM(J,1I) = 0.
END IF
110 CONTINUE
END IF
100 CONTINUE
RETURN
END

SUBROUTINE RESIDUL (RMAX)

C e ¥e o v'e e 3 3 e St 3t e vle dle e e oo ofe e v v v Yo e e e e e v ole e dle s v de ok Yo de de de e st Fede e e e e sk de e e de e

C * THIS SUBROUTINE CALCULATE RESIDUALS AT EVERY NODES *
C ek vedede e veddedrve sk dedeok sk sese e e dedededede e Yotk ek st e e b devese e de e dedke s de e e e e

COMMON/MATG/ AMC(140,151) ,RM(140) ,THETA(140) ,FLD(140),
AM(140,140) ,BM(140),CIJ3(3,3),KRIJ(3,3)
/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD, TEMPG1(140),THETAG(140),
THETAF (140) , THETAO (140) , THETTO (140) , THETAB (70) , TEMPD
/ELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3) ,EAREA(140) ,NPP1,
IES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3) ,DEFO,
NE (140) , TLENG,PNOD(5,30) ,EBC(3,3),CM(3,3),GNDB (70)
DO 100 I = 1,NP
DO 110 J = 1,NP
RM(I) = RM(I) + AM(I,J)*THETA(JD)
110 CONTINUE
RM(I) = RM(I) - BM(I)
100 CONTINUE
RMIN = 10000.
RMAX = 0.
DO 200 I = I,NP
IF(ABS(RM(I)) .GT. RMAX) THEN
RMAX = ABS(RM(I))
END IF
IF(ABS(RM(I)) .LT. RMIN) THEN
RMIN = ABRS(RM(I))
END IF
200 CONTINUE
RETURN
END

R RR R

SUBROUTINE CHLSKY(TS,NTS, THETAX)

C oot int oo i dedede e st e e e e e e b vk st e et
C * THIS SUBROUTINE SOLVES THE SYSTEM OF EQUATION *
C =
C°

* BY USING CHOLESKY DECOMPOSITION

METHOD
YooYt Yevedr st vrae st s sedent sevrdevesestYrdedede vt Yot s st

<

COMMON/MATG/ AMC(140,151) ,RM(140),THETA(140) ,FLD’140),

»
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110
100 CONTINUE

AM(140,140),BM(140),€13(3,3),K1J(3,3)
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/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD, TEMPG1(140),THETAG(140),
THETAF (140) , THETAO (140) , THETTO (140) , THETAB (70) , TEMPD

JELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3) ,EAREA(140) ,NPP1,
IES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3) ,DEFO,
NE(140) , TLENG, PNOD(5,30) ,EBC(3,3),CM(3,3) ,GNDB (70)

DIMENSION THETAX(140)
INTEGER TS
DO 100 I = 1,NP

DO 110 J = 1,NP

AMC(I,J) = AM(1,D)

CONTINUE

C..TO SUBSTITUE RM(I) OR BM(I) INTO THE NPPITH COLUMN OF MATRIX AMC (NP,NPP1)..

DO 120 I = 1,NP
IF(TS .LE. NTS) THEN

AMC(I,NPP1) = aMC(I,NPP1) - RM(I)

ELSE

AMC (I,NPP1) = AMC(I,NPP1) + BM(I)

END IF

120 CONTINUE

C....TO CALCULATE FIRST ROW OF UPPER UNIT TRIANGULAR MATRIX....

DO 200 J = 2,NPP1
AMC(1,3) = aMC(1,3)/aMCc(1,1)

200 CONTINUE

c....TO CALCULATE OTHER ELEMENTS OF U AND L MATRICES....

320

310

340

330
300

C....TO SOLVE FOR THETAX(I) BY BACK SUBSTITUTION....

DO 300 I = 2,NP
J =1 -
DO 310 II = J,NP

SUM = 0.
ML =J-1
DO 320 K = 1,JM1
SUM = SUM + AMC(II,R) * AMC(K,J)
CONTINUE '
AMC(II,J) = aMC(II,J]) - SUM

CONTINUE
IPL = 1 +°1
DO 330 JJ = IP1,NPP1

Su¥ = 0.
IMl = I -1
DO 340 K = 1,IM1
SUN = SUM + AMC(I,K)*AMC(XK,JJ1)
CONTINUE
AMC(I,JI) = (AMC(I,JI) - SUM)/AMC(I,I)

CONTINUE
CONTINUE

ORIGINAL PAGE IS
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THETAX(NP) = AMC(NP,NPP1)
L=NP -1
DO 400 NN = 1,L
SuM = 0.
I = NP - NN
IP1 = 1 + 1
DO 410 J = IP1, NP
SUM = SUM + AMC(1,J]) * THETAX(J)
410 CONTINUE
THETAX(I) = AMC(I,NPP1l) - SUM
400 CONTINUE
RETURN
END

SUBROUTINE INTFLUX(JFNT,JNT,TVU, TEMPV,TEMPS,QEI)

C Jededrdedevostabdesededede e dede st drde s e Feve e et vede e de sk sk e de e v g v e s e e e e st T e Ye st sk s de sk e de Yt
C * THIS SUBROUTINE CALCULATE HEAT FLUX AT LIQUID - VAPOR INT- *

C * FACE BY USING KINETIC THEORY WITH VAPOR AND INTERFACE TEMP*
C Fdekdrdedddddotddeddod etk et dedaok Rt de e e de ek e de e deede Ao dedeok e

DIMENSION GNDI(70), TEMPS(70) TEMPV(70) ,QEI(70) ,MASW(70)
INTEGER GNDI

REAL MASW

KP = 0

DO 50 I = 1,JFNT
QEI(I) = 0.

50 CONTINUE .
DO 100 I = 1,JNT
TW = TEMPS(I)
TV = TVU
CALL NAVPROP (TW,DENV,VISV,HFG,HG,PSATI,RP)
CALL NAVPROP (TV,DENV,VISV,HFGV,HG,PSATV,KP)
MASW(I) = (2.%.7*%(23./(2.%3.1416%8314,)) ** 5)* (PSATI/TW**.5
& - PSATV/TV**. 5)
QEI(I) = MASW(I) * HFG
100 CONTINUE
RETURN
END

SUBROUTINE COUPLE (JNT,QT, TVU,JFNT)

C**********ﬁ****************ﬁ****************ﬁ**********#******
C* THIS SUBROUTINE CALCULATES THERMAL RESISTANCE IN THE VAPOR *

C* SPACE BY USING KNOWN HEAT FLUX AND EVALUATES NEW HEAT FLUX *
C* AND VAPOR TEHPERATURE *

oot Yt e e de e vl aa s st sl e de s v de st e e v e de e st e e e s st s e e e s el et

© COMMON/MATG/ aMC(140,151) ,RM(140) ,THETA(140),FLD(140),

& AM(140,140) ,BM(140),C13(3,3),K1J(3,3)
& TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD, TEMPG1(140),THETAG(140),
& THETAF (140) , THETAO(140) , THETTO (140) , THETAB (70) , TEMPD
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/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT,VOLSPR,WIDTH,QE(140,3) ,NRESIS,RESIS, IX
/ELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3),EAREA(140),NPP1,
1ES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3) ,DEFO,
NE (140) , TLENG, PNOD(5,30) ,EBC(3,3),CM(3,3),GNDB(70)
/INOUT/TEMPS (70) , TEMPV (70) , TEMPVS (70) ,QEI(70),VX(70),
GNDI(70),vY1(70),vY2(70),vY3(70) ,ELSI(30),
vY4(70),VY5(70),vY6(70) ,HFG, TEMPF (70)
/SPLIN/TIME(3),TIMER (20),QSTAG(20),XP1(25),CP1(4,25) ,ND1,
XP2(60) ,CP2(4,60) ,ND2,XP3(25),CP3(4,25) ,ND3, TS,
XP4(25) ,CP4(4,25) ,ND4,XP5(15) ,CP5(4,15) ,ND5,XP6(15),
cp6(4,15) ,Xp7(15),CP7(4,15) ,ND7,XP8(15),CP8(4,15),
ND6,ND8, XP9 (15) ,CP9 (4,15) ,ND9,XP0O(15) ,CP0O(4,15),NDO,
ELSS (30) , TESL(30)
JOUTPT/MO, IDAY, IYEAR, TITLE, CASE,NUMBER,NO, TEMPCC,HTCC, IOUT,
TIMEN,DELT,DELT1,DELTP
INTEGER JNT,IX,JNTL,JFNT
REAL JCOB
DIMENSION QT (70)
INT = NUMBER OF NODE WHOSE TEMPERATURE IS GREATER THAN TSTAR
IJNTL = NUMBER OF NODE WHOSE TEMPERATURE IS GREATER THAN TVU
TEMPD = TEMP. DROP IN VAPOR SPACE [K]
RESIS = RESISTANCE IN VAPOR SPACE [K/W]
RESISN = ARTIFICIALLY ADDED RESISTANCE AT EACH NODE
TEMPF(I) = TEMP. DROP DUE TO NEW RESISTANCE AT INTERFACE
QTAL = 0.0
IF(NRESIS .EQ. 2) THEN
DO 100 I = 1,JNT
QEI(I) = QT(I)
CONTINUE
END IF
NRESIS = 2
DO 150 I = 1,JNT
IF(TEMPS(I) .GT. TVU) THEN
IJNTL = I
ELSE IF(TEMPS(I) .LT. TVU .AND. TEMPS(I-1) .GT. TVU)
&  THEN
XII = (TEMPS(JNTL) - TVU)*ELSI(I)
XII = XII/(TEMPS(JNTL)-TEMPS(I))
END IF
CONTINUE
DO 200 I = 1,JNT
IF(QEI(I) .GT. 0.) THEN
QTAL = QTAL ® QEI(I)*ELSI(I)*WIDTH
END IF
CONTINUE
QEI (JFNT) = 0.
IF(IX .LE. 1) THEN
CALL HPVAPOR (INT,TS,DIST, IND,TIME)
TEMPD = VY& (1) = VY4(INT)
RESIS = TEMPD/QTAL ORIGINAL PAGE IS
RESIS = RESIS/23. OF POOR QUALITY
END IF
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IF(IX .LE. 100) THEN
IF(TEMPD .LE. 20.) THEN
RESISN = RESIS
ELSE
RESISN = RESIS*IX*.0l
END IF
IX=IX +1
IF(IX .EQ. 100) THEN
IX = 1
END IF
END IF
DO 250 I = 1,JNT
TEMPF(I) = RESISN*QEI (I) *WIDTH*ELSI (I)
TEMPS(I) = TEMPS(I) - TEMPF(I)

250 CONTINUE
500 RESD = 0.
TELSI = 0.

RESDC = 4.5E6%*1.4%,021%2,29E11

DO 260 I = 1,JNT
RESDI = ELSI(I)*10.%**(~-5567./TEMPS(I))/TEMPS(I)
RESDV = ELSI(I)*10.%**(~5567./TVU)/TVU
RESD = RESD + RESDC* (RESDI - RESDV)
TELSI = TELSI + ELSI(I)

260 CONTINUE

JCOB = (1 - 12818.5/TVU) *TELSI

JCOB = JCOB * 10.%**(~5567./TVU)

JCOB = RESDC*JCOB/ (TVU*#2)

TVO = TVU

TVU = TVO - RESD/JCOB

IF(ABS(RESD) .LT. .0l) THEN
CALL INTFLUX (JFNT, JNT,TVU, TEMPV, TEMPS,QEI)
DO 270 I = 1,JNT

QT(I) = QEI(I)

270 CONTINUE
ELSE
GO TO 500
END IF
RETURN
END
Covvvnnn FOLLOWING SUBROUTINES ARE USED TO CALCULATE PRESSURE, VELOCITY,
C.......DENSITY, TEMPERATURE, AND QUALITY IN VAPOR SPACE........... ceeene

SUBROUTINE HPVAPOR (INTD,TS,DDIST, IND, TIME)

C Fhed Atk d R h ke dede it et e dede e e de skt e ek sk e e e vt e R ot e de e b dest s s e et st de et b e ek

C * THIS PROGRAM CALCULATES THE VAPOR TEMPERATURES, PRESSURES, DENSITIES, *
C * QUALITY, AND VELOCITY WITH CONSIDERATION OF COMPRESSIBILITY BY USING

C * THE RUNGE-KUTTA METHOD.
C T e Ve Y Y s e T ey ey S v e s e S e e e e e e e e e e e e e e e Y e e Y e Yy e S e S vt S de e s s S e e v
C VARIABLES
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C .
C DIST HEIGHT OF THE VAPOR SPACE [M]
C  INTV INCREMENT IN AXIAL DIRECTION [M]
C  MASW MASS FLOW AT WALL [KG/M**2]
C TW WALL TEMPERATURE [K]
C JNT NUMBER OF POINTS WHERE DATA ARE CALCULATED
C QW HEAT FLUX[W/M**2]
COMMON/VAPOR/ REYW(70),II,JNT,DIST,TW,QW,MASW,PSAT,YIN,Y2N,
& Y3N, Y4N, Y6N
& /INOUT/ TEMPS(70),TEMPV(70),TEMPVS(70),QEI(70),VX(70),
& GNDI (70) ,vY1(70),vY2(70),vY3(70) ,ELSI(30),
& VY4 (70),VY5(70),VY6(70) ,HFG, TEMPF(70)
DIMENSION C(24),W(5,9),TWI(70),Y(6),MACH(70),TIME(3)
INTEGER II,N,NW,IND,GNDI,TS
REAL MASW,MASWN, INTV,XEND,MACH, JCOB
EXTERNAL FCN1
o INITIAL PARAMETERS.:eelcecncnsonen
C N = NUMBER OF DIFFERENTIAL EQUATIONS
C Y(1) = PRESSURE OF VAPOR [N/M**2]
o Y(2) = VELOCITY[M/SEC.]
o Y(3) = DENSITY[KG/M**3]
C Y(4) = TEMPERATURE [K]
o Y(5) = QUALITY OF VAPOR
C Y(6) = SPECIFIC VOLUME [M*%*3/XG]
DIST = DDIST
INT = INTD
PH = 0.
N=35
NW = N
IND = 1
TOL = .0001
Cevov.vs CALAULATE INITIAL VALUES..eeeeeervann
CALL INITV
Y(4) = TEMPV(2)
Y(1) = 2.29E11/(Y(4)**.5)*10.%*(-5567./Y(4))
Y(3) = 23.%Y(1)/(8314.%Y(4))
Y(5) = 1.
Y(6) = 1./Y(3)
KP = 1
CALL NAVPROP (TEMPV (2) ,DENV,VISV,HFG,HG,PSATI,KP)
Y(2) = QEI(1)*ELSI(1)/(HFG*DIST*Y(3))
Covevnnens SET REFERENCE.VALUE TO NORMALIZE......ve...
YIN = Y(1)
Y2N = Y(2)
Y3N = Y(3)
YGN = Y(4)

ORIGINAL PAGE
IS
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YEN = Y(6)
vx(1) = 0.0
vX(2) = ELSI(1)
vY2(1) = 0.0
VY2(2) = Y(2)
DO 100 I = 1,2
vY1(D) = Y(D
vY3(D) = Y(3)
VYS4(I) = Y(4)
vY5(I) = Y(5)
VY6(I) = Y(6)
CONTINUE

TWI(1) = TEMPSQ1)
TWI(2) = TEMPS(2)

.. .CALCULATE P,V,DENSITY,T,QUALITY BY USING DVERK..... .o

DO 200 II = 3,INT + 1

Il = II -1
QW = QEI(IM1)
PH = PH + 1
IF(PH .NE. 1.)THEN
IND = 1
END IF
INTV = ELSI(IM1)
XEND = VX(II-1) + INTV
VX(II) = XEND

X = VX(IMD)
NORMALIZE THE DEPENDANT VARIARLES........
Y(1) = VY1 (IM1)/YIN

Y(2) = vY2(IM1)/Y2N

Y(3) = vY3(IM1)/Y3N

Y(4) = VY&(IM1)/Y4N

Y(5) = VY5(IM1)

Y(6) = VY6 (IM1)/Y6N

IF(PH .EQ. l.) THEN
TW = TEMPS(II)
ELSE '
TW = TWI(II)
END IF
CALL DVERK(N,FCNL,X,Y,XEND, TOL, IND,C,NW,W, IER)
IF(IND .LT. O .OR. IER .GT. 0) THEN
WRITE(4,*) IND,IER
GO TO 300
END IF
Y1l = Y(1)*YIN
Y2 = Y(2)*Y2N
Y3 = Y(3)*Y3N
Y4 = Y(4)*Y4N
MASWN = 2.%,7%(23,/(2.7%3,1416%8314,)) "* 5% (PSAT/TW 5
- Y1/Y4%% 5)
DMAS = (MASW - MASWN)/ (MASW)
IF(ABS(DMAS) .LT. .02) THEN
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VY1(II) = Y(1)*YIN
vY2(I11) = Y(2)*Y2N
VY3(II) = Y(3)*Y3N
VY4(II) = Y(4)*Y4N
VYS(II) = Y(5)

VY6 (II) = 1./vY3(1I)
TEMPV(II) = VY4(II)
TWICII) = TW
PH = O,
ELSE
HFG = 4636437. - 180.82*TW
RESD = MASW - MASWN
JCOB = 180.82*QW/ (HFG**2)
JCOB = JCOB = 2.%.7%((23./(2.%3.1416%8314.))%*.5)
& %(2.29E11%(12818.8/TW - 1.)%*(10.%**(-5567. JTR)) /TWH%*2)
TW = TW - (RESD/JCOB)
TWI(II) = TW
GO T0 5
END IF
200 CONTINUE
300 CONTINUE
IJNT = 2*JNT/3
WRITE(6,400) TIME(3)
WRITE(6,410) QW,DIST,INTV, REYW(Z) REYW(IJNT)
WRITE(6,420)
WRITE(6,430)
DO 350 II = 1,JINT+1
MACH(II) = vY2(II)/SQRT(1.4%8314.%VY4(II)/23.)
WRITE (6,440) VX(II),vY1(II),vY2(II),vY3(1I1),vYs4(ID),
& VY5 (II) ,MACH(II)
350 CONTINUE
400 FORMAT(/2X,83('-')/28X,'**TIME = ',F9.3,2X,'SEC**'/)
410 FORMAT(4X, 'HEAT INPUT = ',F8.1,2X,'DIST = ',F6.4,2X,"'INTV = ',
& F5.3,3X%,'REYNOLD = ',F6.1,2X,F6.1/)
420 FORMAT(8X,'XL(I)',6X,'PRESSURE',4X,'VELOCITY',S5X,
& 'DENSITY',5X,'TVAP',6X, 'QUAL',5X, 'MACH'/)
430 FORMAT (10X, 'M',9X, 'N/M**2' 7X,'M/SEC',6X,'KG/M**3',7X,'K',
& 30X, /2%, 83(' N
440 TFORMAT(5X,E9.2,2X,E11.5,2X,E10.3,3X,E10.4,2X,F7.2,3X,F6.3,3%,F6.3)
RETURN
END

SUBROUTINE INITV

c Yededededevrvodestr ek ek e sedevedevedevo e de dedt Yo deves dede s Yo v e e deve deda fede et

C * THIS SUBROUTINE CALCULATES INITIAL VAPOR TEMPERARURE. *
Cc ****************ﬁ****************************************

COMMON/INOUT/ TEMPS(70),TEMPV(70),TEMPVS(70),QEI(70),VX(70),
& GNDI(70),VY1(70),vY2(70),vY3(70),ELSI(30),
& YY4{(70) . VY5(70),vY6 (70} ,HFG, TEMPF (70)
INTEGER GNDI
REAL MASW,JCOB
ORIGINAL PAGE IS

OF POOR QUALITY



100

g;?lGlNAL PAGE |s
POOR
NN = 0 QUALITY
KP = 0
PHI = 3,1416
UGAS = 8314,
TWI = TEMPS(2)
TVI = TWI - .1
CALL NAVPROP (TWI,DENV,VISV,HFG,HG,PSATW,KP)
CALL NAVPROP(TVI,DENV,VISV,HFGV,HG,PSATV,KP)
NN = NN + 1
MASW = 2.%,7%(23./(2.*PHI*UGAS)) ** 5% (PSATW/TWI** 5
- PSATV/TVI** 5)
QEIN = MASW*HFG
DQEI = (QEIN - QEI(1))/QEIN
IF(NN .LT. 5) THEN
IF(ABS(DQEI) .LT. .0l1) THEN
TEMPV (1) = TVI
TEMPV(2) = TVI
ELSE
RESD = QEI(l) - QEIN
JCOB = 2.%,7*HFG*(23./(2.*PHI*UGAS))**.5
JCOB = JCOB * 2.29E11*10.%*(-5567. /TVI)/(TVI**Z)
JCOB = JCOB*(12818.5/TvI-1.)
TVI = TVI - RESD/JCOB -
GO TO 100
END IF
END IF
RETURN
END

SUBROUTINE FCN1(N,X,Y,YPR)

Cc Fededededeslededededde ek e e ede e vt e sk s dede v Fe de dede e e de dede ek ek e de ek dede sk e ke e de e e de de e de e

C * THIS SUBROUTINE PROVIDE DERIVITIVE OF GOVERNING EQUATIONS *
C FFstddededededdohdddotiodd kb Aot R de e s A e e e R R e e e e

Re e

COMMON/VAPOR/ REYW(70),1I,JNT,DIST,TW,QW,MASW,PSAT,YIN, Y2N,

Y3N, Y4N, Y6N
/INOUT/ TEMPS(70),TEMPV(70),TEMPVS(70),QEI(70),VX(70),

GNDI(70),vY1(70),vY2(70),vY3(70),ELSI(30),
vY4(70),VY5(70) ,vY6(70) ,HFG, TEMPF (70)

DIMENSION YPR(5),Y(6)

REAL MASW

IMl = II - 1

Y(6) = VY6 (IM1)

KP = 0 :

CALL NAVPROP (TW,DENW,VISW,HFG,HGW,PSAT,KP)
MASW = QW/HFG

VW = MASW/ (DENW)

REYW(IM]1) = - DENW*VW*DIST/VISW

HCP = 904,

.THIS SUBROUTINE CALCULATES ALPAR,BETA,F2P0, AND F2Pl........

CALL FACTOR (ALPAR,BETA,F2P0,F2P1)
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THIS SUBROUTINE CALCULATES THE PROPERITIES OF SODIUM.......

TEMPK = Y (&) *Y4N

KP = 1

CALL NAVPROP (TEMPK,DDEN,VISY,HFGV,HG,DPAST,KP)
Y1 = Y(1)*YIN

Y2 = Y(2)*Y2N

Y3 = Y(3)*Y3N

Y4 = Y(4)*Y4N

Y6 = Y(6)

. RSTA = 8314./23.

SPEV = 1./%3
SPEVF = 1./((.927 - .238E-3*(Y&4 - 373))%*1000.)
IF(Y(5) .LE. 0.) THEN
SPEVG = 0.
ELSE IF(Y(5) .GT. 1.) THEN
Y(5) = 1. .
SPEVG = SPEV
SPEVF = 0.
ELSE
SPEVG = (SPEV - SPEVF)/Y(5) + SPEVF
END IF
SPERI = (SPEVG -~ SPEVF)/SPEV
RTH = (1. - RSTA*Y4/HFGY)
FIC 8.*%VISV*(F2P0 - F2P1)/(Y3*DIST*Y2)
PYl = ALPAR*MASW/ (BETA®Y2*DIST)
PY2 = 2.%HFGV
PY3 = SPERI™(HGW-HG+ (BETAXY2%**2)/2.+(VW**2)/2.)
PY4 = HFGV/ (BETA*SPEV)
PY5 = SPERI/SPEV*Y2%**2
PY6 = - PY1*(PY2 + PY3)
PY7 = PY6 - (PY4+PYS)*FIC/(8.*DIST)
PYS = ALPAR¥HFGV™Y (5) *SPEVG*RTH/ (BETA*Y1*SPEV**2)
PY9 = ALPAR*SPERI*HCP*RSTA*Y4**2/(BETA*SPEV*HFGV*Y1)
PY10 = SPERI + HFGV/(BETA*Y2*¥*2) - PY8 - PY9
PY = PY7/PY10
YPR(1) = PY/YIN

CALCULATE THE DERIVITIVE OF QUALITY.......

QUALL = (Y27%*%2)*Y(5)*SPEVG*RTH/ (Y1*SPEV**2)
QUAL2 = (-1./ALPAR + QUALL)*PY

QUAL3 = FIC*Y2**2/(8.*DIST*SPEV*ALPAR)
QUAL4 = SPERI*Y2%*2/SPEV

QUALS (QUAL2 - QUAL3)/QUAL4

QUAL6 = 2.*MASW*SPEV/(Y2*DIST*SPERI)

QUAL = QUALS - QUAL6

YPR(5) = QUAL

ORIGINAL pag
EIS
MASWSPEV/DIST OF POOR QUALITY

VELL =
VEL2 = Y2*SPERI¥*QUAL
VEL3 = Y2%Y(5) *SPEVG* (-RTH) *PY/ (Y1*SPEV)
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VEL = VEL1 + VEL2 + VEL3
YPR(2) = VEL/Y2N

C......CALCULATE THE DERIVITIVE OF DENSITY.....

ROU1 = SPERI*QUAL/SPEV

ROU2 = SPEVG*Y(5)*RTH*PY/ (Y1*SPEV**2)
ROU = -ROULl + ROU2

YPR(3) = ROU/Y3N

TY = PY*RSTA*Y&4**2/ (Y1*HFGV)

YPR(4) = TY/Y4N

RETURN

END

SUBROUTINE NAVPROP (TEMPK,DENV,VISV,HFG,HG,PSAT,KP)

C ******************#*************#***********************************
C * THIS SUBROUTINE CALCULATES THE PROPERITIES OF THE SODIUM SUCH AS *

C * THE SATURATION PRESSURE, THE DENSITY, THE VISCOSITY, THE LATENT *

C * HEAT OF VAPORIZATION, AND THE ENTHALPY. *
C ikt ded deddededed dedo ok Frk e A Aok e de e oA deode e e de e e e ek dede e dede e de ok

T = TEMPK

IF(RP .EQ. 0) THEN

PSAT = (2. 29511/r *,5)%10,**(-5567./T) ]

ELSE . ®
PSAT = O.

END IF

DENV = 2.766E-3*PSAT/T

VISV = 6.083E-9*T + 1.2606E-5

HF = 98.973 + 1.4367 * (T - 273.16)

HF = HF = 2.902E-4*(T - 273.16)**2

HF = 1000.*(HF + 2.4E4*EXP(-1.36E4/T))

HFG = 182.%*(25474.93 - .9935*T)

HG = HF + HFG

RETURN

END

SUBROUTINE FACTOR (ALPAR,BETA,F2P0,F2P1)
C SedevedededeTede et de s d s st de e de ettt Y st Yo s v st S e e s v e e et e s S de v e s st e e vt

C * THIS SUBROUTINE PROVIDES THE VALUES OF ALPAR,BETA,F2PO,
C * AND F2P1 CORRESPONDING TO THE GIVEN REYNOLDS NUMBERS.

C Jet Yedeve Yo e dodle Yo v o veve de de v s vt e Yo e st Yo Yo e v de e ve v ok e ve v vt st de de v dese Yo e de o e st e e sese e de dese e

COMMON/VAPOR/ REYW(70),II,JNT,DIST,TW,QW,MASW,PSAT,YIN, Y2N,
& Y3N, Y4N, Y6N
REYWl = REYW(II-1)
REYW2 = REYW1%*2
IF(REYWl .LT. 2. .AND. REYWl .GT. -30.) THEN
F2P0 = 6.0995 - .42198*REYW! - 3.8013E-3 * REYW2
F2Pl = - 5.6405 - .2349%REYW]l - 5.2913E-3%REYW2
ALPAR = 1.2049 - 1,0386E~3*REYW1
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BETA = 1.5574 - 3.1837E-3*REYW1
ELSE IF(REYWl .GE. 2.) THEN
F2PQ = 6.0995 - .42198*REYWl ~ 3.8013E+3 * REYW2
F2P] = =6.548 - .1417*REYWl - .1233%*REYW2
ALPAR = 1.22 - 1.5082E-2 * REYWl + 2.6689E-3*REYW2
BETA = 1.612 ~ 5.0904E-2 * REYWl + 8.6570E-3*REYW2
ELSE IF(REYW! .LE. -30.) THEN
F2P0 = 15.34 - .223%(REYW1l + 30)

F2P1 = - 3.06
ALPAR = 1.227
BETA = 1.63

END IF

RETURN

END

SUBROUTINE NEWRA (JNT,KN,QEI,QEIN,TEMPS,TEMPV,QW)

C Jededrkvesededes s st e de s e e deve v e e e S e fe e dededese de e e e e e de e dede st de e s db e e ok
C * CALCULATE NEW WALL TEMPERATURE BY USING NEWTON-RAPHSON ¥
C * METHOD FOR NEXT ITERATION.. *

c e ot g T d ook dede e A b ek v o A e sk Yoo s e de de ek e dedest ksl de e e s e d e s de b de e Fese ek e e ek

R

100

&

DIMENSION TEMPS(70),TEMPV(70),QEI(70),QEIN(70)
REAL MASW,MASWN, JCOB

DO 100 I = 2,JNT+1
TW = TEMPS(I)
TV = TEMPV(I)
MASW = QEI(D)
MASWN = QEIN(I)
RESD = MASW - MASWN
JCOB = =364.%, 7% (SQRT(23./(2.%3.1416*8314.)))
*((2.29E11%(10.**(~5567./TW)) /TW)
*(-.9935 + (25474.93 = .9935*TW) *((12818.5=-TW) /TW**2))
+ ,9935%(2.29E11/TV)*10.%**(-5567./TV))
TW = TW - RESD/JCOB
CONTINUE :
RETURN
END

SUBROUTINE DATAIN(TA,JK,JINT, TIMEN,
FIRTS,TVU,QT,TEMPD)

C*************************************************************#**

C* THI

S SUBROUTINE READS IN INTERMEDIATE DATA FOR RESTARTING OF

C* MAIN PROGRAM FROM LAST RUN
C**********************#*****************************ﬁ***********

R R e

COMMON/P§OC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),

BOLT,VOLSPR,WIDTH,QE(140,3) ,NRESIS,RESIS, IX

/ELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3),EAREA(140) ,NPPL,

b
L

IES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3) ,DEFO,
NE(140),TLENG,PNDD(5,30) ,EBC(3,3),CM(3,3) ,GNDB(70)
/INOUT/ TEMPS(70),TEMPY (70),TEMPVS(70),QEI(70).VX(70),
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GNDI (70),vY1(70),vY¥2(70),vY3(70) ,ELSI(30),
VY4 (70), vys(/o) VY6(70) HFG, TEMPF(70)
/SPLIN/TIHE(S),LIMER(ZO) erAc(zo) XP1{(25),cPl(4,25),ND1,
XP2(60),cp2(4,60) ,ND2, xp3(25) cp3(4,25) ,ND3,TS,
XP4(25),cp4(4,25) ,ND4,XP5(15) ,CP5(4,15) ,ND5, XP6(15)
CP6 (4, 15) xp7(15) CP7(4 15) ,ND7,XP8(15), CP8(4 15),
ND6,NDS8, xp9(15) cp9(4,15) ,ND9, XPO(15) CPO(4 15) ,NDO,
ELSS(30) TESL (30)
DIMENSION TA(3,96),QT(70)
INTEGER TS, JK,JNT,NPP1,FIRTS
REWIND 8
READ(8,*) TS,FIRTS,JK,JNT,NRESIS,IX
READ(8,*) NPP1,TIMEN, RESIS TEMPD
IF(TS .LE. 3) THEN
LTS = TS
ELSE
LTS = 3
END IF
READ(8,*) (TIME(I),I=1,LTS),TVU,DEFO
READ(8,*) ((TA(I,I),I=2,3),J=1,NP)
IF(FIRTS .GT. 1) THEN
READ(8,*) ((QE(I,J]),J=1,2),I=1,NEL)
READ(8,*) (QT(1),I=1,JNT)

END IF
RETURN
END
SUBROUTINE DATAOQUT (TA,JK, JNT, TIMEN,
& FIRTS,TVU,QT,TEMPD)

PR RRRRRRRRR

C*******#**********************************************t*********

C* THIS SUBROUTINE WRITES INTERMEDIATE DATA FOR RESTARTING OF *

C* MAIN PROGRAM FROM LAST RUN *
C******************#******************************************k**

COMMON/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT,VOLSPR,WIDTH,QE(140,3) ,NRESIS,RESIS, IX

NE (140) , TLENG, PNOD(5,30) ,EBC(3,3) ,CM(3,3) ,GNDB (70)
/INOUT/TEMPS (70) , TEMPV (70) , TEMPVS (70) ,QEI(70) ,VX(70),

GNDI(70),vY1(70),vY2(70),vY3(70),ELSI(30Q),

VY4 (70),vY5(70),vY6(70) ,HFG, TEMPF (70)
/SPLIN/TIME(3),TIMER (20),QSTAG(20),XP1(25),CP1(4,25),NDI,

XP2(60),CP2(4,60) ,ND2,XP3(25),CP3(4,25),ND3,TS,

Cp6(4,15) ,%P7(15) ,CP7 (4,15) ,ND7,XP8 (15),CP8 (4,15),
ELSS(30),TESL(30)

DIMENSION TA(3,96),QT(70)
INTEGER TS, JK,JNT,NPP1,FIRTS

REWIND 8

IF(TS .LE. 3) THEN
LTS = TS

ELSE

* JELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3) ,EAREA(140),NPPL,
1ES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3),DEFO,

XP4(25) ,CP4(4,25) ,ND4,XP5(15) ,CP5(4,15) ,ND5,XP6(15),

ND6,ND8,XP9(15) ,CP9(4,15) ,ND9,XPO(15),CP0(4,15),NDO,
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LTS = 3
END IF
WRITE(8,*) TS,FIRTS,JK,JINT,NRESIS,IX
WRITE(8,*) NPPl,TIMEN,RESIS,TEMPD
WRITE(8,*) (TIME(I),I=1,LTS),TVU,DEFO
WRITE(8,*) ((TtA(1,)),I=2,3),J=1,NP)
IF(FIRTS .GT. 1) THEN
WRITE(8,*) ((QE(1,J),J=1,2),I=1,NEL)
WRITE(8,*) (QT(I),I=1,JNT)
END IF
RETURN
END

SUBROUTINE MAINOUT(TA,TSTAR,NTS,MN,NCOLT,NROWT)

C o Fe e e S v de ok vede ve de v deve o de vt fe de de de vk e sede sk de de e deab e Fede dede e Y e dedb e sk etk st e de e e e et

C * THIS SUBROUTINE PRINT OUT TEMPERATURES FOR HEAT PIPE SHELL *

C * AND WICK *
C Jo e T vo o e vk Ye vo e vt v v Yo s e vk v ve Yo s b e de e e de e de e dede s dede ke ek dede s Ao e de e dede e dedb ot et dedk e

C...

PR R RPRPRRRRRIRRRR

COMMON/MATG/ AMC(140,151) ,RM(140),THETA(140),FLD(140),
AM(140,140) ,BM(140),C1J(3,3),K1J(3,3)

/TEPS/ TEMPR,TEMPI,TMEL,DETP,DELTD,TEMPG1(140),THETAG(140),
THETAF (140) , THETAO (140) , THETTO (140) , THETAB (70) , TEMPD

/PROC/ HRSL,ALPAR,DIST,BI,KREF,ROUR,SPECR,EMIS,HTC(140,3),
BOLT, VOLSPR,WIDTH,QE (140,3) ,NRESIS,RESIS, IX

JELMT/ NEL,NP,GND(140,3),B(140,3),C(140,3) ,EAREA(140) ,NPP1,
IES(140,2) ,ESL(140,3) ,BETA,XC(140,3),YC(140,3) ,DEFO,
NE (140) , TLENG, PNOD(5,30) ,EBC(3,3),CM(3,3) ,GNDB (70)

/INOUT/TENMPS (70) , TEMPV (70) , TEMPVS (70) ,QEI(70),VX(70),
GNDI (70),VY1(70),vY2(70),vY3(70) ,ELSI(30),
VY4 (70),vY5(70),VY6(70) ,HFG, TEMPF (70)

/SPLIN/TIME(3), TIMER(20),QSTAG(20),XP1(25),CP1(4,25) ,NDL,
XP2(60),CP2(4,60) ,ND2,XP3(25),CP3(4,25),ND3, TS,
XPA(ZS),CP4(4,25),ND4,XP5(15),CP5(4,15),ND5,XP6(15),
CP6(4,15) ,XP7(15),CP7(4,15) ,ND7,XP8(15),CP8(4,15),
ND6,ND8,XP9(15),CP9(4,15) ,ND9,XP0O(15),CP0(4,15) ,NDO,
ELSS (30), TESL(30)

/OUTPT/MO, IDAY, IYEAR, TITLE, CASE,NUMBER,NO, TEMPCC,HTCC, IOUT,
TIMEN,DELT,DELT1,DELTP

INTEGER TS,PNOD,IT,IOQUT

DIMENSION TA(3,96)

weseeeses PRINT BASIC DATA ON FILE JANG....eoveeenvarnn

IF(IOUT .EQ. 1) THEN
WRITE(6,100) MO,IDAY,IYEAR
WRITE(6,110) TITLE,CASE,NUMBER
WRITE(6,120) NO
WRITE(6,130) TLENG,DIST
WRITE(6,140) WIDTH,ELSI(15)
WRITE(6,150) TEMPI,TSTAR
WRITE(6,160) TMEL,DETP,HRSL
WRITE(6,170) TEMPCC,ETCC
WRITE(6,180) TEMPR,EMIS
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WRITE(6,190) DELT,BETA,NTS,MN

WRITE(6,200) NEL,NP
“WRITE(6,210)

WRITE(6,220)

WRITE (6,230)

WRITE(6,240)

WRITE(6,250)

I0UT = 2
END IF

C.oveeeoo .PRINT TEMPERATURE DISTRIBUTIONS...covuvnans

IF(TS .LT. 3) THEN
IT = TS
ELSE
IT = 3
END IF
WRITE(6,300) TIME(IT)
WRITE(6,310)
DO 400 I = 1,NROWT
WRITE(6,320) (TA(IT,PNOD(I,J)),J=1,11)
400 CONTINUE
WRITE(6,330)
DO 420 I = 1,NROWT
WRITE(6,320) (TA(IT,PNOD(I,J)),J=12,NCOLT)
420 CONTINUE

Covvevnnnnn PRINT TEMPERATURE DISTRIBUTIONS FOR PLOT.eueevevenon..

TMN = TIME(IT) - TIMEN
IF(TIME(IT) .EQ. TIMEN .OR. ABS(TMN) .LT. DELT/1000.) THEN
WRITE(7,340) TIME(IT)
WRITE(7,350) (TA(IT,J),J=1,NP)
IF(TIMEN .EQ. DELT1) THEN
TIMEN = DELTP
ELSE
TIMEN = TIMEN + DELTP
END IF
END IF .
100 FORMAT(///20X,37('*')/20X,'*',10X, 'PROGRAM - HPMAIN',9X,'*'/20X,
& '*',9%,'INPUT FILE - HPDAT',8X,'*'/20X,'*',11X,'QUTPUT - JANG',
& 11X,'*'/20%,'*',7X, 'OUTPUT FOR PLOT ~ DATA',6X,'*'/20X,'*',
& 8X,'FOR RESTART - RESTA',8X,'*'/20X,
& '*' 8X,'DATE : ',I3,'/',I3,'/',15,7X,"'*"/20%,37('*")/)
110 FORMAT(/20X,37('-')//20X,'*%*' 6X,3A9,'**'//20X,37('-")/)
120 FORMAT(/24X,'** CASE NUMBER ',16,' =**'/72('=-")//)
130 FORMAT(3X,'TOTAL LENGTH OF HEAT PIPE(TLENG)',6X,E10.3,4X,'M'/
& 3X,'HEIGHT OF VAPOR SPACE(DIST)',11X,E10.3,4X,'M")
140 FORMAT(3X, 'ELEMENT THICKNESS(WIDTH)',14X,E10.3,4X,'H'/
& 3X,'DISTANCE BETWEEN NODES(ELSI)',10X,E10.3,4X,'M'/)
150 FORMAT(3X,'INITIAL TEMP.(TEMPI)',18X,F10.3,4X,'K'/
& 3X,'TRANSIENT TEMP. OF VAPOR(TSTAR)',7X%,F10.3,4X,'K")
160 FORMAT(3X, 'PHASE CHANGE TEMP.(TMEL)',14X,F10.3,4%,'K"'/
& 3X,'TEMP. DIFFERENCE FROM TMEL(DETP)',6X,F10.3,4X, 'K'/
& 23X, 'LATENT HEAT OF PHASE CHANGE(HRSL) ',5X,E10.3,4X%,'J/KG'/)
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170
180

190

200

210
220
230
240
250
300
310
320
330
340
350

FORMAT (3%, 'REF. TEMP. FOR CONVECTION(TEMPC)',6X,F10.3,4X,'K"/
& 3X,'HEAT TRANSFER COEF. (HTC)',14X,F10.3,4X,"W/M**2%K")
FORMAT (3X, 'REF. TEMP. FOR RADIATION(TEMPR)',7X,F10.3,4X,'K"/
& 3X,'EMISSIVITY',28X,F10.3,4X/)

FORMAT (3X, 'TIME STEP(DELT)',23X,F10.3,4X, 'SECOND'/
& 3X,'IMPLICIT TIME SCHEME (BETA)',12X,F10.3,4X/
& 3X,'NUMBER OF STEP FOR IMPLICIT(NTS)',6X,I10,4X/
& 3X,'TOTAL NUMBER OF TIME STEP(MN)',9X,I10,4X/)
FORMAT (3X, 'NUMBER OF ELEMENT(NEL)',16X,110,4X/
& 3X,'NUMBER OF NODAL POINT(NP)',13X,110,4X)
FORMAT (/3X, 'INITIAL TIME',40X,'SECOND')

FORMAT (3X, 'FINAL TIME',42X,'SECOND')

FORMAT(/3X, 'SRU')

FORMAT (3X, 'CPU TIME', 44X, 'SECOND')

FORMAT (3X, 'EXPENSE', 45X, 'DOLLARS'//72('=")////)

FORMAT (2X,83('-') /26X, '** TIME = ',2X,F9.3,2X,'SECONDS**'/)
FORMAT (5X, ' LEADING EDGE (EVAPORATOR) '/)

FORMAT(1X,12F8.2)

FORMAT (/55X, ' TRAILING EDGE (CONDENSER) '/)

FORMAT (F9.3)

FORMAT(10(F8.2,1X))

RETURN

END
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APPENDIX C
SAMPLE INPUT DATA

Input data are needed for initial and boundary conditions, dimensions of the
heat pipe, information on nodal points and elements, properties, and operating
conditions of the program. Input file (HPDAT) has all these data. A grid generation
program, which was \jvritten by Dr. J. G. Hartley, was used to generate data for the

element grid. A sample for input data file HPDAT is listed in the following pages.



293.,371.,700.,1.,1.045E8,.0044,.
,10.,.025,100,2,10,1,1

1.
0
1
2
3
4
5
é

WwwhbhdoO

1 90 86
.5000E+01
2 90 87
.5000E+01
3 86 82
.5000E+01
4 86 83
.5000E+01
5 82 78
.5000E+01
6 82 79
.5000E+01

135 91 87
.4000E+01
136 91 92
.4000E+01
137 87 8:2
.4000E+01

138 87 88

.4000E+01

138
3
5
18
18

5

3
87
91
83
87
79

83

92
94
88

92

96

.000
.0000E+00

.0000

.0000E+00
.025
. 0000E+00
.025
. 0000E+00
.050
.0000E+00

.0500

.0000E+00

.0000

.0000E+00
.000
.0000E+00
.025
.0000E+00
.025
.0000E+0Q0

0

0

0
0
0

0
0
0

1 6

.0000

.0000E+00

.0000

.0000E+00

.0000

.0000E+00

.0000

.0000E+00

.0000

.0000E+00

.0000

.0000E+00

.0020

.0000E+00

.0020

. 0000E+00

.0020

.0000E+00

.0020

.0000E+00

-1-1-1-1-1-10.0.0.0. 0. 0.

90 86 82 78 74 70
66 62 58 54 50 46
42 38 34 30 26 22

18 14 10 6

0000O0O

293. .8

23

0127

.0250
0250
0500

1 -1. 0.
0500
0750

.0750

.0250
.0250
.0500

.0500

.0250

.20

.0000

.20

0500

.20

.0250

.20

.0750

.20

"~ .0500

. 20.

.0250

.20

.0000

.20

.0500

.20

.0250

. 20.

188

.0020
.0020
.0020
.0020
.0020

.0020

.0047
.0047
.0047

. 0047
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SCALE FACTOR

21 :

.0 1. .05 .87 1 .48 .15 .33

.2 .25 .25 .19 .3 .15 35 .13

4 .1 .45 .08 .5 .07 .55 .06

.6 .055 .65 .05 7 .05 75 .049

.8 .049 .85 .049 .9  .049 .95 .049

1. .049

-2.6 0.0
HEAT FLUX

19
0.0 0. 120. 10.E3 240.  30.E3 360. 50.E3
450, 75.E3  600. 100.E3 720. 120.E3 840. 140.E3
1250. 230.E3 1300. 236.E3  1350. 238.E3 1375. 239.E3
1400. 240.E3 1430. 240.E3  1450. 240.E3  1500. 240.E3
1650. 240.E3 1800. 240.E3  2000. 240.E3
0.0 0.0
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APPENDIX D
THERMAL PROPERTIES OF SODIUM

The properties of sodium in the vapor state are expressed in terms of temper-

atures, which are in degree Kelvin in the following property equations:

Saturation vapor pressure{60] [N/m?]:

P =2.29 x 10" x E‘%? x 107

Density of sodium vapor([60] [kg/m?}:

. 8 1 ~5587
= 6.335 x 10° x T-l—gxlo T

Viscosity of sodium vapor[61] [N-S/m?]:
p=6.083 x 107° x T +1.2606 x 10~°

Enthalpy of sodium vapor|60] (J/kg|:

5 -13,600.
hy =271,831. - 1,595.3 x T — 0.29024 x T? +2.4 x 10° » exp —r

hsy = 4,636,437.26 — 180.817 x T
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Thermal properties of sodium in the solid and liquid state[62,63 are tabulated

as follows:

T[K]

273.
293,
313.
333.
353.
371.

T[K]

273.
323,
371.

T[K]

100.
200.
371.

Density of solid sodium

plkg/m°]

972.5
968.4
964 .2
959.9
955.5
951.4

cp[J/kg-K]
1200.

1256.
1364.

Conductivity of

K[W/m-K]

136.
142,
141.

T[K]

283.
303.
323.
343,
363.

T[X]

298.
348.

plkg/m°]

970.5
966.3
962.1
957.7
953.2

Specific heat of solid sodium

cp[J/kg—K]

1223.
1308.

solid sodium

T[K]

150.
250,

K{W/m-X]

140.
143,



Density of liquid sodium

T[K] plkg/m>] T[K]
373. 927. 473,
573. 882. 673.
773. 834, 873.
973. 783. 1073.

Specific heat of liquid sodium

T[K] cp[J/kg-K] T[K]
371. 1385. 373.
473. 1340. 573.
673. 1279. 773.
873. 1255. 973,
1073. 1269, : 1173.

Conductivity of liquid sodium

T[K] K[W/m-K] T{K]
473, 81.5 _ 573.
673. : 71.0 773.
873. 63.9 973.
1073. 58.3

p[kg/m>]

904.
859.
809.
757.

cp[J/kg-K]

1384.
1305.
1262.
1255.
1289.

K{W/m-K]

75.7
67.2
61.0
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APPENDIX E

THERMAL PROPERTIES OF HASTELLOY X
AND STAINLESS STEEL

Thermal properties of hastelloy x[64] for heat pipe shell and type 316 stainless

steel(64] for wick screen are tabulated as follow:

Conductivity of hastelloy x

TiK] K[W/m=K]
373. 11.1
573. 14.7
773. 20.6
973. 22.8

Specific heat of hastelloy x

TIX] cp[J/kg-K]
588. 498,
923, 582.
1143. 699,

Conductivity of stainless steel

T[K] K[W/m=K] T[K] K[W/m-X]

80.4 8.3 107.6 9.7
154.8 11.5 195.2 12.8
247.3 14.2 299.3 15.2
379.1 16.5 442.5 17.5
516.5 18.4 611.1 19.8
687.8 20.8 763.7 21.7
855.7 22.8 980.9 4.7
1182.1 26.9



T[X]

71.8
162.9
270.0
435.1
736.5

1231.1

Specific heat of stainless steel

cp[J/ks-K] T{K]
286.5 114.0
367.0 197.9
433.4 337.3
500.7 587.6
561.8 967.7
648.2 1468.5

cp[J/kg-K]

329.7
392.3
465.0
540.7
604.5
690.2
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