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N 0 MEN C L AT URE 

= width of separated shear layer 
= airfoil chord 
= section drag coefficient 
= skin-friction coefficient 
= section lift coefficient 
= section moment coefficient about quarter-chord point 
= distance of separated shear layer from airfoil surface 
= laminar length of the bubble 
= turbulent length of the bubble 
= linear stability theory amplification factor 
= streamwise coordinate from the stagnation point 
= streamwise velocity inside the boundary layer 
= normal distance from the surface 
= dissipation coefficient 
= pressure coefficient 
= momentum thickness growth factor for free shear layer 
= step size for shear layer Runge-Kutta integration 
= inviscid velocity decrease as C1 -+ 00 

= amplitude of Coles’s wake function in Green’s profiles 
= boundary-layer shape factor, (61 / 6 2 )  
= boundary-layer shape factor, (63/62) 
= Gaster’s pressure gradient parameter 
= chord Reynolds number, (Umc/v )  
= laminar length Reynolds number, ( U s ! l / v )  
= momentum thickness Reynolds number, (U62 / u )  
= scaling factor to match pressure gradients at laminar separation 
= velocity at the edge of the boundary layer/inviscid velocity 
= freestream velocity 
= distance from S R  to first airfoil coordinate after SR 
= laminar fraction within one boundary-layer step 
= angle of attack relative to the chord line 
= boundary-layer displacement thickness 
= boundary-layer momentum thickness 
= boundary-layer kinetic energy thickness 
= kinematic viscosity of air 
= dimensionless streamwise coordinate inside the bubble 

Subscripts: 
S = laminar separation point 
R = turbulent reattachment point 
T = transition point 
T E  = trailing edge 
TS = turbulent separation 

... 
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I. SUMMARY 

The present effort to develop a computationally efficient model for laminar separation 

bubbles began approximately a year and a half ago. At the present stage, the development 

of laminar separation bubbles in low-turbulence flow over smooth airfoils has been found 

primarily dependent on three physical factors: chord Reynolds number, boundary-layer 

development upstream of laminar separation, and pressure recovery gradient along the 

bubble. These variables can be conveniently grouped into a single dimensionless quantity, 

Gaster’s1 pressure gradient parameter. A general, semi-empirical bubble model has been 

developed and incorporated into the airfoil design and analysis program of Eppler and 

Somers.2 The essential feature of this model is the linking of transition to the development 

of the separated laminar shear layer which, in turn, depends on local and global flow 

characteristics through an iteration on Gaster’s parameter. This has been achieved with 

a minimum computational penalty over the existing program. 

In its present form the model still requires some amount of refinement. The data base 

used to develop the transition criterion is very limited and mainly from one facility. The 

agreement of the predicted pressure distribution in the laminar part of the bubble with 

available measurements has allowed the calculation of the development of the shear layer 

in the direct mode. The Stewartson3 profiles upon which the closure relationships between 

the integral boundary-layer parameters used in the present model are based, however, may 

be poor approximations for the velocity profiles in the laminar part of the bubble. As a 

consequence, the model is at present unable to sufficiently resolve the transition length as 

a function of angle of attack. 

Using Green’s4 two-parameter family of reversed profiles, Fitzgerald and Mueller5 have 

obtained good agreement with LDV measurements inside the bubble. Closure relationships 

based on these profiles have therefore been developed and compared with the corresponding 

relationships based on the Stewartson profiles. It is hoped that the greater flexibility of 

the Green’s profiles, afforded by their dependence on an additional parameter, will enable 
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the model to follow more closely the behavior of the bubble in differing flow conditions. 

Once the transition location and growth of 6 2  in the laminar part of the bubble have been 

modelled accurately and with sufficient generality, the problem of predicting the growth 

in 62 in the turbulent part can be addressed with confidence that it will lead to accurate 

drag predictions. 
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11. RESEARCH DESCRIPTION 

The goal of this research is to accurately predict the characteristics of the laminar 

separation bubble and its effects on airfoil performance. Toward this end, a computational 

model of the separation bubble has been developed and incorporated into the Eppler and 

Somers2 airfoil design and analysis program. Thus far, the focus of the research has been 

limited to the development of a model which can accurately predict situations in which 

the interaction between the bubble and the inviscid velocity distribution is weak, the so- 

called short bubble. In this section, a summary of the research performed in the past nine 

months is presented. The bubble model in its present form is then described. Lastly, the 

performance of this model in predicting bubble characteristics is shown for a few cases. 

Summary of Research 

As described in Ref. 6, the first activity in the development of a short-bubble model 

was to insert the model of H ~ r t o n , ~  modified according to suggestions by Roberts,* into the 

Eppler and Somers program. Not unexpectedly, the performance of this model was found 

unsatisfactory. As shown in Fig. 1, the aerodynamic performance of the Eppler 387 airfoil 

predicted by the original version of the Eppler and Somers program, where the analysis 

method switches from the laminar to the turbulent boundary-layer equations at laminar 

separation, does better than the modified version when compared with the experimental 

data  of McGhee et al.’ This is only partly due to an inaccurate transition prediction since, 

as shown in Fig. 2, Schmidt’s’’ empirical transition criterion does capture the lowest-order 

behavior of the bubble. The large region of separation predicted in the mid-ce range (Fig. 

1) is not observed experimentally. It is thought to be a result of predicting too large of an 

increase in 6 2  along the bubble. 

As discussed in Ref. 6, the excessive increase in 62 is a consequence of the shape 

assumed for the recovery pressure distribution in the turbulent part of the bubble. More 

specifically, if the boundary-layer assumptions and Horton’s assumption of a constant 
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( C D / H S ~ )  are valid, then the increment in momentum thickness between transition and 

reattachment is directly proportional to the area under the pressure recovery curve between 

these two points. In Fig. 3, the inviscid pressure distribution for the Eppler 387 airfoil at 

(L: = 0’ is shown together with two possible bubble geometries. For a fixed transition point, 

it can be seen how the area under the Stratford pressure distribution, originally proposed 

in this context by van Ingen,” is less than that under the linear distribution assumed by 

Horton. That  the area is less is also a consequence of the greater steepness of the Stratford 

curve as compared to the locus of possible reattachment points used by Horton, shown as 

a dotted line. The more favorable correlation of the Stratford recovery with the bursting 

behavior of bubbles, as discussed by van Ingen and Boermans,’2 provides another reason 

for its use against Horton’s. The Stratford curve has been included in the program and 

is used to numerically integrate the energy integral equation to obtain the increment in 

62. The effect of this modification on the drag polar is shown in Fig. 4. The unrealistic 

separation is greatly reduced. The predicted bubble geometry is not very different from 

that of Fig. 2 except for a slight shortening of the bubble. 

Inviscid us. Experimental Pressure Distribution 

At this point, it was thought that  part of the cause for the discrepancy in drag predic- 

tion could be the inability of the present model to account for viscous/inviscid interaction. 

Therefore, before the influence of the separation bubble on the drag could be investigated, 

it was necessary to isolate this from the inability of the boundary-layer method to account 

for the effects of viscosity on the pressure distribution. This was accomplished by employ- 

ing experimental pressure distributions, also from Ref. 9, as input to  the boundary-layer 

analysis. 

The effects of using the experimental pressure distribution (the “inviscid” behavior 

in the bubble region approximated by joining a straight line between the separation and 

reattachment points) for the conditions of Fig. 4 are shown in Fig. 5. The drag is 

underpredicted at the lower angles of attack and the region of turbulent separated flow is 

moved to lower ce’s. In Fig. 6, the laminar separation point is followed more closely than 
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it was with the inviscid distribution and, therefore, the overall gross behavior of the bubble 

is reproduced better. It is particularly interesting that the transition correlation, although 

resulting in a decreasing bubble length, does not reproduce the gradual vanishing into 

natural transition with increasing angle of attack. Thus, in addition to Schmidt’s transition 

correlation, that  of O’Meara and MuellerI3 and that of Horton,’ both also described in 

Ref. 6, were tried. Neither of these, however, improved the prediction. 

In order to determine the importance of bubble length in predicting the drag, the ex- 

perimental bubble lengths were matched at all angles of attack by artificially adjusting the 

transition points. In this case, the drag was underpredicted at  the higher angles of attack. 

These numerical experiments led to two important conclusions. First, as is apparent by 

examination of the experimental pressure distributions presented in Figs. 7-9, Hortori’s 

assumption of a constant pressure in the laminar part of the bubble, while possibly a good 

assumption for short leading-edge bubbles in high Reynolds number flows, is inadequa t,e 

for the longer mid-chord bubbles. For this reason, van Ingen and Boermans’s’2 velocity 

distribution in the laminar part of the bubble was included in the model, 

U 
- = .978 + .022 exp( -4.4541 - 2.51’) 
US 

where 
s - ss 

(R63 ) S (62)  S 
t =  

Second, even at low Reynolds numbers, it does not seem necessary to employ potential 

flow/boundary layer iteration. Although there are differences between the inviscid and 

experimental pressure distributions at a given angle of attack, these are largely due to the 

fact that  the influence of the boundary layer on the zero-lift angle of attack has not been 

taken into account. Since aerodynamic characteristics are usually compared at the same ce 

rather than at the same a, however, the constant difference in angle of attack between the 

inviscid and experimental lifts poses no obstacles to comparing drag predictions obtained 

with the inviscid pressure distribution to the experimental drag polar. In the non-linear 

ce-range, of course, such a comparison cannot be made without considering the effect of the 
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turbulent separated region progressing upstream from the trailing edge. Eppler’s correction 

to the aerodynamic properties in the presence of turbulent trailing-edge separation is quite 

reliable and has been used extensively in the past. To analyze weakly interacting bubbles, 

therefore, use of the inviscid pressure distribution should provide satisfactory results even 

at very low Reynolds numbers. 

Reattachment Region 

In the results presented above, turbulent separation is erroneously predicted at the 

higher lift coefficients. In addition to an overprediction of the increase in 62 along the 

bubble, this may be the result of a lack of generality with the turbulent boundary-layer 

method used in the Eppler and Somers program. More specifically, the region downstream 

of reattachment is characterized by a relaxing turbulent boundary layer. This is the most 

difficult kind of boundary layer to analyze in that it is highly nonequilibrium and history 

effects play a dominant role. The analysis method used in the program is based on empirical 

equilibrium relationships between the integral parameters and cannot, therefore, account 

for any turbulence lag. 

As shown in Ref. 4 for a turbulent shear layer forming a free stagnation point behind 

a base, some pressure recovery occurs downstream of the stagnation point. The same 

behavior is observed in a reattaching laminar separation bubble. In the measurements 

of Ref. 9, the intersection of the pressure recovery distribution in the turbulent part  of 

the bubble with the inviscid pressure distribution occurs downstream of the reattachment 

location actually observed with oil flow. 7 shows, the pressure 

distribution exhibits a characteristic “undershoot,” or additional rise over the inviscid 

value, for a distance of 10% of chordlength or more downstream of reattachment. This 

may be indicative of the extent of the relaxing region. To explore the effect of such a. 

relaxing boundary layer, the method of Felsch, Geropp, and Waltz1* was implemented 

as it incorporates non-equilibrium contributions in empirical relationships that  are very 

similar to  those of Eppler. This had been previously done by Miley.15 As shown in Fig. 10, 

a reasonably good prediction is obtained with this method. Before a complete assessment 

Furthermore, as Fig. 
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of this method can be made, however, it is first necessary to establish the accuracy of the 

momentum-thickness growth prediction within the bubble. 

As the bubble model does not account for any pressure interaction in the reattachment 

region, a method more sophisticated than that of Eppler may not be necessary. It will 

depend on the impact of the relaxing region on the growth of 62. If the inviscid pressure 

distribution is employed downstream of its intersection with the Stratford recovery, how- 

ever, it seems almost certain that boundary-layer parameter values different from those 

actually measureci at reattachment will be necessary to start  the turbulent calculations, 

regardless of the boundary-layer method used. An indication for what these values should 

be is provided by Eppler’s “bubble analog,” used in the unmodified version of the program 

to monitor whether or not a bubble might cause a significant drag increase. It is based 

on the pressure increase over which H32, as calculated from the turbulent boundary-layer 

method, reaches the value 1.60 from the point of laminar separation, ( H 3 2 ) ~  = 1.515095. 

Since a value of 1.58 marks the upper limit for possible turbulent separation, according 

to Eppler,IG in the present version of the bubble model a similar value is used at  the 

“reattachment” point, ( H 3 2 ) ~  = 1.57. As ( 6 2 ) ~  is calculated by the bubble model, the 

turbulent closure relationships can be used to obtain the values of the other boundary-layer 

parameters at reattachment, ( H I ~ ) R ,  ( c , ) ~ ,  and (Co),. 

Figs. 11 and 12 show the predictions obtained using Eppler’s turbulent boundary-layer 

method from the reattachment point as predicted by the bubble model. Each of these is 

compared with the correspoP,ling predictions assuming transition at laminar separation. 

By comparing Fig. 12 to Fig. 4,  the effects of the changes to the bubble model discussed 

above can be seen clearly. Using Eq. (1) instead of Horton’s constant pressure plateau has 

decreased the value of UT. As a consequence, the increment in momentum thickness in 

the turbulent part  of the bubble and, therefore, the drag predicted, are smaller. A smaller 

value of ( 6 2 ) ~  and use of ( H 3 2 ) ~  = 1.57 instead of 1.51 have eliminated the premature 

turbulent separation. The decrease in bubble length with angle of attack causes the drag 

increment due to the bubble to  decrease correspondingly. As with the method of Ref. 14, 
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no conclusions can be reached about Eppler’s method until the accuracy of the momentum 

thickness growth prediction along the bubble can be relied on for any bubble geometry. In 

any case, during the development of the bubble model Eppler’s turbulent boundary-layer 

correlations have been used. 

Having obtained a first estimate for the adequacy of using the inviscid pressure distri- 

bution and for the accuracy of the momentum-thickness growth prediction within a given 

bubble geometry, the prediction of the geometry itself appears to be the most important, 

aspect of the bubble problem. Predicting bubble size is strongly dependent on predicting 

transition. 

Trans it io n 

The starting point in the development of a general and accurate transition crite- 

rion was to compare Eppler’s empirical criterion for attached boundary layers to the e” 

r n e t h ~ d . ’ ~ ~ ~ ’  The development of the amplification factor, n, can be expressed as a function 

of variables similar to the ones used by Eppler to describe the boundary-layer development, 

namely Rs2 and H12. The success of both methods suggests that  Eppler’s transition curve 

should lie quite close to the linear stability curve corresponding to a value of n = 10, say, 

when the two methods are plotted together in terms of these variables. In addition, as the 

en method is easily extendable to separated boundary layers, such as the family of reversed 

Falkner-Skan, or S t e ~ a r t s o n , ~  profiles, it was hoped to extrapolate Eppler’s criterion to 

separated flow by following the corresponding n-contour. Conversely, as the best value of 

n for use in separation bubbles is still being debated in the literature,lg it was thought 

that  such an  extrapolation might help resolve this issue. 

Rather than developing the function n(Rs2,H12),  it was chosen to  use that given by 

Drela.20 Fig. 13 shows contours of constant n, for 0 5 n 5 63, as well as Eppler’s transition 

criterion, for 2.24 < HI2 < 4, on the same Rg? vs. H l z  plot. H12 is plotted as a reversed 

axis for ease of comparison with corresponding values of H32. The disagreement between 

the n = 9 curve and that of the Eppler criterion is surprising. The only region where the 

two criteria are close is near zero pressure gradient. The  absence of a clear correlation 
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prompted a search for experimental values of Rg,, and HI2 measured at transition inside 

separation bubbles. Only a few points have been found, mostly from the measurements of 

Brendel and Mueller.’l 

As shown in Fig. 13, a first attempt of obtaining a transition criterion for separated 

boundary layers is provided by extending Eppler’s transition criterion from H12 = 4 to a 

much lower value of Rg- at H I 2  = 20. Since the data from Mueller’s group comes from a 

wind tunnel, Eppler’s criterion was extrapolated directly as it is believed to better reflect 

the transition locus for free flight. The high values of n apparently necessary to reach 

the extrapolation to separated flows of Eppler’s criterion simply reflect the limitations of 

the en method. It is generally accepted that linear stability theory correctly models the 

transition process for approximately 70% of the distance between neutral stability (n  = 0) 

and fully turbulent flow. The actual “transition region,” however, is usually defined as the 

region between the first appearance of turbulent spots and fully turbulent Thus, 

a value close to n = 10 can be regarded as marking the boundary between the linear 

amplification region and transition onset in accordance with this definition. While the 

value of n at the end of the transition region is still probably close to 15 or 20, and not 

63 ,  this value is reached through a non-linear transition process which is not modelled by 

linear stability theory. In fact, in practice an intermittency function is usually employed 

from the point marking the end of the linear amplification region in order to mimick the 

non-linear transition process before the fully turbulent calculations begin. 

Eppler’s curve and its extrapolation, on the other hand, are closer to the end of the 

whole transition region and the beginning of the full turbulent calculations. As explained 

in Ref. 25, for the transition of attached boundary layers the turbulent calculations are 

commenced using the laminar boundary-layer parameter values at the transition point. 

The distance it takes for the parameters to reach the turbulent values accounts to some 

extent for a “transition region.” As the change in parameter values is very quick, however, 

this distance is much shorter than the one over which an intermittency function is usually 

used. As the Reynolds number decreases, transition occurs in increasingly adverse pressure 
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gradients and over a longer region of the airfoil surface. Thus, the discrepancy between 

Eppler’s transition criterion and the e9 curve in Fig. 13 increases until laminar separation 

precedes transition. The criterion for separated boundary layers shown here is therefore 

considered a physically plausible extension of Eppler’s criterion. Although the transition 

criterion shown does not follow the behavior of the constant n contours, it has thus far 

given the best correlation with experimental bubble lengths when used in conjunction with 

the bubble model that  will now be described. 

Laminar Separation Bubble Model 

Encouraging as the insight gained from a study of the transition problem may be, in 

order to utilize a criterion such as the one shown in Fig. 13, it is necessary to calculate the 

development of the separated laminar boundary layer. The fastest known way to do this 

is by means of a global displacement-thickness iteration algorithm coupled with inverse 

boundary-layer formulations for the laminar and turbulent parts of the bubble. While 

such an algorithm is certainly much faster than a finite-difference approach, an even faster 

means is highly desirable for use in a design code such as the one of Eppler and Somers. 

Thus, an approximation to a n  interaction method has been attempted and is currently 

under development. 

Initial Bubble Model 

Van Ingen and Boermans’s velocity distribution in the laminar part of the bubble, 

Eq. (l), matches the measured pressure distribution quite well, in some cases. This 

distribution, unlike IIorton’s constant-pressure plateau, allows a slight pressure recovery 

after laminar separation, quickly approaching a limiting value. Using detailed pressure 

distributions in the bubble region available from recent wind-tunnel tests of the NASA 

NLF( 1)-1015 airfoil in the NASA-Langley Low-Turbulence Pressure Tunnel, the accuracy 

of Eq. (1) was checked for several different conditions. It was found that, as the pressure 

gradient along the bubble decreases, the pressure distribution tends to fall below van 

Ingen’s curve while, as the pressure gradient steepens, it becomes flatter, closer to ‘Torton’s 
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approximation and above van Ingen’s curve. It is therefore postulated that Eq. ( 1 )  can be 

improved by relaxing the amount of pressure recovery between separation and transition, 

- = (1 - DU) + DU exp(-4.454E - 2.5E2) (3 )  
U 
U S  

The steeper the pressure gradient along the bubble, the smaller the value DU. 

The behavior of the velocity distribution as described above is consistent with am 

inviscid velocity calculated over an ever thickening displacement surface in a steepening 

a.dverse gradient. A first approximation to the development of the laminar shear layer that 

would reflect this behavior was therefore attempted. The growth in 62 is obtained from a. 

generalization of Schmidt’s’’ self-similar free shear layer solution, 

where Cg, is also a function of the pressure gradient along the bubble. Assuming that 

skin friction is negligible, the variation in H12 is obtained from the momentum integral 

equation, 
U d62 dU 
62 ds ds 

HI2 = -2 - - [ -1-1 (5) 

A check for transition is made at  each downstream increment from separation by calculating 

Rg, and by comparing it to the transition criterion shown in Fig. 13, 

Since the exact functional dependence of DU and Cg, on the dimensionless pressure gradi- 

ent between laminar separation and turbulent reattachment is not known, many candidate 

functions were tested. Although in some cases excellent agreement between the calculated 

and the measured drag polars was obtained for one airfoil, the bubble model so configured 

lacks generality. 

Pressure Distribution in the Laminar Part of the Bubble 

By comparing measured bubble geometries to the ones predicted with the above model, 

it was realized that the boundary-layer development upstream of separation may have an 
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even stronger influence 

parameter includes the 

than was taken into account. Thus, as Gaster’s’ pressure gradient 

value of momentum thickness a t  separation, 

it was thought that this might bc a better independent parameter than simply the average 

pressure gradient along the bubble, 

In dimensionless variables P becomes 

and embodies all three factors on which the bubble depends. Having specified this inde- 

pendent parameter, it is necessary to determine whether a unique relationship links DU 

and P .  To this end, these variables have been extracted directly from the experimental 

pressure distributions of the NLF(1)-1015 and the E387 airfoils. As Fig. 14 shows, the 

collapse of the points around a unique relationship is acceptable. The width of the scatter 

is of the same order of magnitude as that caused by reading error. The solid line is a 

quadratic least-squares fit that  has been included in the model, 

DU = 0.0609691 + 0.304819.P + 0.507176P2 (10) 

Van Ingen and Boermans’s12 original value of DU = 0.022 falls in the middle of the 

variation in DU shown in Fig. 14. In the near future it is planned to utilize available 

experimental data, such as that  of Refs. 26,27 ,  and 28, to confirm and refine this functional 

dependence. 

When the velocity distribution defined by Eqs. (3) and (10) is used in conjunction with 

the approximate development of the separated laminar shear layer described above, large 

discontinuities in the boundary-layer paran,eters appear at the point of laminar separation. 

Upon examination of the bubble velocity distribution near the point of laminar separa.tion, 
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unlike in the experimental distribution, it was noticed that a discontinuity in the velocity 

gradient was present. In order to match the gradients at laminar separation, a further 

unknown is therefore introduced in the original velocit,y distribution of van Ingen and 

Boermans’s, Eq. ( 1 ) .  Specifically, the product [(Rb2)s(62)s] in Eq. (2) serves simply as 

a scaling factor between the physical variable s and the universal dimensionless variable 

c.  Thus, the scaling factor is now solved for as that which yields a velocity distribution 

in the laminar part of the bubble whose gradient is continuous with the gradient of the 

inviscid velocity distribution at separation. By forward-differencing the velocity gradient at’ 

separation, the boundary-layer edge velocity a small distance D L  downstream of separation 

is simply 

For this value of the velocity, Eq. (3) becomes 

!k.k = ( 1  - D U )  + DU exp 
US 

Eliminating U D L  between these two equations leads to an explicit expression for the scaling 

factor, 

This factor is of the same order of magnitude as [(Rs3)s(62)s]. 

Present Bubble Model 

Eppler’s boundary-layer analysis method employs two coupled governing ordina.ry dif- 

ferential equations, the momentum and energy integral equations, together with appropri- 

ate closure  relation^.'^ As discussed by Drela,’@ contrary to simpler, one-equation methods 

such as that of Thwaites, in two-equation methods the shape factor is not uniquely related 
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to  the pressure gradient parameter. This allows methods such as Eppler’s and Drela’s to 

accurately analyze the non-similar boundary-layer developments characteris tic of aerody- 

namic flows, provided that the assumed family of velocity profiles approximates the actual 

flow reasonably well. Since the discontinuities in boundary-layer parameters a t  laminar 

separation did not disappear after matching velocity gradients, it was decided to implement, 

the same Runge-Kutta method used by Eppler to  analyze attached boundary layers, 1,o- 

gether with the closure relationships based on the Stewartson profiles developed by Drela, 

to analyze the laminar part of the bubble. Instead of implementing this boundary-layer 

method in the inverse mode as it is usually done, however, the generality provided by the 

two-parameter family of velocity distributions suggests that it might be used in the direct 

mode. 

In the present version of the bubble model, the development of the separated 1a.minar 

shear layer is calculated exactly, within the approximation of the pressure distribution 

and of the assumed Stewartson3 profiles. Since 62 and 63 are obtained directly from the 

governing equations, 

d62 - C f  62 dU 
- - - - (HI2 + 2)--- 
ds 2 U ds 

63 dU - d63 = c D - 3 - -  
ds U ds 

the transition criterion is expressed in terms of Rg2 as a function of H32, instead of H12, 

This criterion is similar to  Eq. (6)  and is very preliminary. Once transition is detected, 

a Stratford pressure distribution joins (ST, U T )  to  (SR, U R ) ,  on the inviscid pressure dis- 

tribution. The increment in 62 in the turbulent part of the bubble is found by using 

the Stratford curve in the integrated form of the energy integral equation as previously 

discussed. 

To account for the pressure gradient the bubble is actually trying to overcome, the 

model is closed by introducing a simple local iteration algorithm. The pressure gradient 
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at laminar separation is used to obtain an initial guess a t  P, from which an initial velocity 

distribution, shear layer development, and transition and reattachment points are obtained. 

The resulting pressure gradient along the bubble, &A%, is used to obtain a second 

estimate a t  P and the bubble calculations repeated. The third and subsequent iterat,es 

are obtained by means of a relaxed Newton’s method operating on the diflerence between 

subsequent pressure gradients. The procedure converges very quickly to a pressure gradient 

along the bubble exactly equal to the one used to calculate the development of the laminar 

part. In drag polar analyses, it has been found helpful and efficient to utilize the converged 

value of pressure gradient a t  one angle of attack as the initial guess for the subsequent 

angle of attack. 

Preliminary Results 

The laminar separation bubble model described above promises to be very general 

and very accurate. In fact, it is formulated in terms of the governing equations and of very 

general and flexible functions whose dependence on local and global flow characteristics 

has been determined. The transition criterion, which controls the size of the bubble, is 

inextricably linked to the development of the separated laminar boundary layer and to 

conditions at  separation such that,  as (&)s increases, the difference [ ( H 3 2 ) T  - ( H 3 2 ) ~ ]  

approaches zero. The development of the separated laminar boundary layer, in tjurn, 

is driven by a velocity distribution function which is completely determined by Gaster’s 

pressure gradient parameter and by the velocity gradient a t  laminar separation. This 

version of the bubble model, however, is limited in that its accuracy depends on the 

accuracy with which the family of reversed profiles used in deriving the closure relationships 

H 1 2 ( H 3 2 ) ,  C f ( H 3 2 ,  Rh2), and Co(H32,Rh2) reproduces the actual flow. As discussed by 

Fitzgerald and M ~ e l l e r , ~  LDV measurements inside the bubble show velocity profiles that 

are quite different from the Stewartson profiles, whose use in the present model could 

therefore explain the difficulties encountered. This problem is currently being addressed. 

The most convenient way to illustrate how the transition criterion, Eq. (16), is used 
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is by plotting it together with the shear layer development on the same plot that  Eppler 

uses to describe the boundary-layer development. Since H32 and Ra2 are calculated at, 

each point along t,he boundary layer, by connecting subsequent (H32 ,  &?)-pairs on a plot 

whose axes measure the variation of these two variables, the boundary-layer development! 

from the stagnation point to the trailing edge can be described in a very concise way. In 

addition, since all the separation and transition criteria are expressed in terms of these two 

variables, such a plot is especially useful. Fig. 15 shows the boundary-layer development for 

the E387 airfoil at CY = -2.3" and R = 300,000. The transition criteria and the bondary- 

layer separation conditions are indicated on the plot. While the actual development of the 

shear layer between separation and transition is plotted, a straight line joins transition 

to reattachment. The upper surface has a mid-chord bubble which causes a moderate 

increase in Ra?, while the lower surface has a short leading-edge bubble. The intersection 

of the curve defining the development, of the laminar part of the bubble with the transition 

criterion occurs outside of the range of the plot. 

Fig. 16 shows the pressure distribution corresponding to  the boundary-layer devel- 

opment of Fig. 15. The close agreement with the experimental pressure distribution at 

CY = -2" shows how the shift in zero-lift angle should not be regarded as strong vis- 

cous/inviscid interaction. The bubbles sizes, shapes, and locations are matched quite well. 

Fig. 17 shows the complete viscous analysis summary for the same angle of attack. To 

provide a better feel for the physical behavior of the bubble, the same graph of Fig. 15 

is shown together with distributions of boundary-layer properties plotted as functions of 

arc length. The main shortcoming of the present model can be seen in the distribution 

of momentum thickness; its growth in the laminar part of the bubble is smaller than the 

resolution of the plotter, such that a horizontal line is shown. This prediction is believed 

erroneous. As all the boundary-layer variables are coupled, although the governing mo- 

mentum and energy integral equations are believed correct, the wrong closure relations 

would cause the free shear layer development to be in error. As a result. the transition 

location may be wrong. In fact, the present model does not predict the gradual vanishing 
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of the bubble into nat,ural transition as the pressure gradient increases as is observed in 

the experiments. 

As an assessment of the generality of the present model, the NLF(1)-1015 airfoil 

was analyzed at  R = 500,000. This airfoil is particularly difficult to  analyze by any 

method due to  thc strong trailing-edge viscous/inviscid interaction induced by the large 

aft-loading. Such interaction causes a marked decrease in the aft-loading such that it is 

impossible, unlike for the E387, to find an angle of attack at  which the experimental and 

inviscid pressure distributions correspond. Another consequence of this is that  the lower 

surface bubble has a greater difficulty reattaching to the inviscid pressure distribution than 

in the actual flow. By adjusting the transition criterion, it is possible to make the lower 

surface reattach; however, although the transition prediction is not yet reliable for the 

reasons discussed above, it was desired to use exact,ly the same bubble model as for the 

E387. Therefore, rather than altering the transition criterion, the experimental pressure 

distribution was used to calculate the boundary-layer development. Fig. 18 shows this 

experimental pressure distribution, at CY = 2", together with the inviscid at CY = 1". Thc 

effect of the strong trailing-edge interaction is clearly visible. If the mismatch in the 

location of laminar separation is taken into account, the shape of the pressure distribution 

in the laminar part of the bubble is predicted quite well. Fig. 19 shows the boundary-layer 

development for this case. 

17 



. 
111. RESEARCH PLANNED 

Coupling the various parts of tht bubble model and “anchoring” the pressure distri- 

bution in the laminar part to local flow characteristics has made the model quite general. 

The weakness of such a formulation, however, is that if one part of the model is not right 

everything else is affected. Thus, before further calibration of the model can proceed, a 

better family than the Stewartson profiles must be utilized to develop alternate closure re- 

lations to the ones presently used in calculating the development of the separated laminar 

shear layer. 

Fitzgerald and Mueller5 have obtained good agreement between their measurements 

and the two-parameter profile family originally developed by Green4 for the turbulent 

reversed profiles in a reattaching shear layer downstream of a base. As shown in Fig. 20, 

the two parameters are linked to the geometrical Characteristics of the profiles. (h /b)  is 

the ratio of the distance of the shear layer from the centerline of the wake to the width of 

the shear layer and G is the amplitude of Coles’s wake function. Since there is slip along 

the centerline of such a recirculating base flow, these profiles cannot be used to develop a 

correlation for c f .  In view of the characteristically small values of c j  in the laminar part of 

the bubble, however, it still seems worthwhile to investigate the correlations for the shape 

factors and Co and compare them to those obtained with the Stewartson profiles. 

By applying the definitions for the integral thicknesses of the boundary layer and for 

the dissipation coefficient, the following relationships are obtained: 

1 + 2 g  
H12 = 

(1 - $G) - 2!(1- 2G) 

(2 - ZG + $G2)  + 4!(1- 3G + 2G2) 
H32 = (18) (1 - $G) - 2 2 ( 1 -  2G) 

7r2 G3 3 h 
2 b 

(1 - -G + 2-(1  - 2G)] R ~ ? C D  = - 2 (19) 

In order to compare these relationships to those obtained from the Stewartson profiles, it’ 

is necessary to  know how the two parameters vary inside the bubble. The values used by 
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Fitzgerald and Mueller to  fit the profiles measured inside one babble can serve as a starting 

point. The three boundary-layer variables are evaluated at  values of the parameters corre- 

sponding to the same downstream station inside the bubble and then plotted against each 

other. The same calculations are then repeated for values G and (h /6)  similar to those 

used in Ref. 5 in order to determine the sensitivity of the correlationc to these parame- 

ters, The result is shown in Figs. 21  and 2 2  where these new two-parameter correlations 

are compared to those developed by Drela from the Stewartson profiles. The solid lines 

utilize the fitted variations of G and (hlb) .  As both HI2 and H32 increase monotonically 

between separation and transition, moving to greater values of the abscissa on these plots 

corresponds to  moving downstream inside the bubble. Thus, both are very similar to the 

Stewartson correlations near separation but can be quite different further downstream. 

The new correlations are very encouraging. While H12(H32) seems quite sensitive to 

changes in the parameters, C D ( H ~ ~ , R I ; ? )  is not, thereby making the determination of its 

exact dependence on G and (h/b)  less crucial. It appears from the measurements that  the 

back-flow, proportional to G ,  may be constant within each bubble although different for 

different bubbles. As shown in Fig. 2 1 ,  the values of shape factors actually measured, 

although different in absolute value, follow the same slope, thus confirming a constant 

value of back-flow velocity. These considerations justify eliminating (h/b)  between Eqs. 

17 and 18 and expressing the closure relationships in terms of H32, calculated from the 

governing equations and G, whose behavior within each bubble appears easier to correlate 

to local flow conditions, 

3 ( 1  - G )  - H 3 2  

(1 - G)(1 - 2G) H12 = 

Thus, the unknown parts of the boundary-layer method for the laminar part  of the bubble 

have been reduced to  G and c f .  Physically grounded assumptions can be made about 

variational trends for both variables, however. For instance, it is reasonable to expect 

that ,  as the pressure gradient along the bubble increases, the strength of the recirculating 
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flow, and therefore G, increases also. With increasing back-flow, c f  becomes more negative. 

Although a precise knowledge of the function ~ f ( H 3 ~ ,  G, R6-) is lacking, an approxiIrlation 

will suffice to test whether P ,  or a suitfable alternative, can close the boundary-layer method 

by serving as independent parameter for both DU and G'. 

The introduction of an additional parameter defining the velocity profiles leads to 

a much more complex transition criterion than presently employed. Any one of the n- 

contours in Fig. 13 shows the variation of the stability characteristics of the Stewartson 

profiles with changes in the single parameter 1112. Here HI2 is a unique function of 

the pressure gradient parameter appearing in the Falkner-Skan equation and defining thc 

Falkner-Skan profiles. If an additional parameter defining a family of velocity profiles 

is added, as is the case with Green's profiles, then a linear stability analysis will yield a 

family of n-contours for each value of n. Each member of this constant-n family of contours 

corresponds to  a different value of the second parameter defining the velocity profiles. In  

physical terms, this means that the velocity profiles will become more unstable as the free 

shear layer detaches itself from the airfoil surface and as the amount of back-flow increases. 

Therefore, for a value of n = 9, for instance, each contour should follow the behavior Eq. 

(16) as (hlb),  or H32, increases and a separate transition criterion will be necessary for 

each different value of G. This issue is currently being addressed. 

Another important factor affecting the behavior of separation bubbles is the level of the 

freestream turbulence intensity. Although small in flight, this can have a strong influence 

on wind-tunnel tests. Therefore, properly accounting for it becomes indispensible for the 

development of a useful bubble model. In addition, many aerodynamic vehicles do not have 

smooth surfaces or may suffer from insect contamination. The present version of the Eppler 

and Somers code lumps both effects into a parameter which controls the position of the 

transition locus on the boundary-layer development plot. The present configuration of the 

bubble model makes the extension of this treatment of roughness/freestream turbulence 

straightforward. After the development of the bubble model has been completed and its 

generality and accuracy in low-turbulence flow over smooth surfaces have been assessed, 
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its range of application will be extended to take into account roughness and freestream 

turbulence. 

21 



IV. REFERENCES 

1. Gaster, M., “The Structure and Behaviour of Separation Bubbles,” Aeronautical 
Research Council R. & M. No. 3595, March 1967. 

Eppler, R., and Somers, D. M., “A Computer Program for the Design and Analysis 
of Low-Speed Airfoils,” NASA TM-80210, 1980. 

Stewartson, K . ,  “Further Solutions of the Falkner-Skan Equation,” Proceedings of f h c  
Cambridge Philosophica.1 Society, vol. 50, 1954, pp. 454-465. 

Green, J. E., “Two-Dimensional Turbulent Reattachment as a Boundary-Layer Prob- 
lem,” Separated Flows, AGARD Conference Proceedings No. 4,  Part  1, May 1966. 

Fitzgerald, E. J., and Mueller, T. J . ,  “Laser Doppler Velocimeter measurements of the 
Transitional Separation Bubble on an Airfoil a t  a Low Reynolds Number,” submitted 
to the A I A A  Journal. 

2. 

3. 

4. 

5 .  

6. Maughmer, M., “A Computationally Efficient Modelling of Laminar Separation Bub- 
bles,” NASA CR-182417, February 1988. 

Horton, H. P., “A Semi-empirical Theory for the Growth and Bursting of Laminar 
Separation Bubbles,” Aeronautical Research Council C. P. 1073, June 1967. 

Roberts, W. B., “Calculation of Laminar Separation Bubbles and Their Effects on 
Airfoil Performance,” AIAA Paper 79-0285, January 1979. 

McGhee, R. J., [Valker, B. S., and Millard, 13. F., “Experimental Results for the 
Eppler 387 Airfoil a t  Low Reynolds Nunibers in the Langley Low-Turbulence Pressure 
Tunnel,” NASA TM-4062, October 1988. 

Schmidt, G. S., “The Prediction of Transitional Separation Bubbles a t  Low Reynolds 
Numbers,” Ph.D. Thesis, Department of Aerospace and Mechanical Engineering, Uni- 
versity of Notre Dame, December 1986. 

7. 

8. 

9. 

10. 

11. Ingen, J. L. van, “On the Calculation of Laminar Separation Bubbles in Two- 
Dimensional Incompressible Flow,” Flow Separation, AGARD Conference Proceed- 
ings No. 168, 1975. 

Ingen, J. L. van and Boermans, L. M. M., “Aerodynamics at Low Reynolds Numbers: 
A Review of Theoretical and Experimental Research at Delft University of Technol- 
ogy,” Confereme on Aerodynamics at Low Reynolds Numbers lo4 < R < lo6, vol. I ,  
Royal Aeronautical Society (London), October 1986, pp. 1.1-1.40. 

O’Meara, M. M., and Mueller, T. J., “Experimental Determination of the Lamina.r 
Separation Bubble Characteristics of an Airfoil at Low Reynolds Numbers,” AIAA 
Paper 86-1065, May 1986. 

Felsch, K.  O., Geropp, D., and Waltz, A., “Method for Turbulent Boundary Layer 
Prediction,” Proceedings of the Stanford Conference on the Computation of Turbdent 
Boundary Layers, vol. 1, 1968, pp. 170-176. 

12. 

13. 

14. 

22 



15. 

16. 

1 7  

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

Miley, S. T., “An Analysis of the Design of Airfoil Sections for Low Reynolds Num- 
bers ,” P h . D . Thesis, Mississippi State University, 1972. 

Eppler, R. “Recent Developments in Boundary Layer Computation,” Conference on 
Aerodynamics ai Low Reynolds Numbers lo4 < R < loG, vol. 11, Royal Aeronautical 
Society (London), October 1986, pp. 12.1-12.18. 

Ingen, J. 1,. van, “A Suggested Semi-Empirical Method for the Calculation of thc 
Boundary Layer Transition Region,” Delft University of Technology, Department of 
Aerospace Engineering report VTH-74, 1956. 

Smith, A. h4. O., and Gamberoni, N.,  “Transition, Pressure Gradient, and Stability 
Theory,” Douglas Aircraft Co. report ES 26338,1956. 

Evangelista, R., and Vemuru, C. S., “Evaluation of an Analysis Method for Low-Speed 
Airfoils by Comparison with Wind Tunnel Results,” AIAA Paper 89-0266, January 
1989. 

Drela, M., “Two-Dimensional Transonic Aerodl-namic r sign and Analysis using the 
Euler Equations,” P1i.D. Thesis, MIT, 1986. 

Brendel, M., and Mueller, T. J., “Boundary Layer Measurements on an Airfoil a t  Low 
Reynolds Numbers,” Journal of Aircraft, Vol. 25, July 1988, pp. 612-617. 

Bell, W. A., and Cornelius, IC. C., “An Experimental Investigation of a Laminar 
Separation Bubble on a Natural Laminar Flow Airfoil,” AIAA Paper 87-0458, January 
1987. 

Hoheisel, H. et al., “A Comparison of Laser-Doppler Anemometry and Probe Measure- 
ments within the Boundary Layer of an Airfoil a t  Subsonic Flow,” Laser Anemometry 
in Fluid Mechanics - II, Selected Papers from the Second Intl. Symp. on Applications 
of Laser Anemometry to  Fluid hfechanics, Lisbon, Portugal, July 1984, LADOAN, 
pp. 143-157. 

Arnal, D., “Description and Prediction of Transition in Two-Dimensional Incompress- 
ible Flow,” Special Course on Stability and Transition of Laminar Flow, AGARL) 
Report No. 709, March 1984. 

Eppler, R. “Practical Calculation of Laminar and Turbulent Bled-Off Boundary Lay- 
ers, NASA TM-75328, 1978. (Translated from Ingenieur Archiu, Vol. 32, 1963, pp. 
221-245.) 

Gault, D. E., “An Experimental Investigation of Regions of Separated Laminar Flow,” 
NACA Technical Note 3505, September 1955. 

Mangalam, S. M., Meyers, J. F., Dagenhart, J .  R., and Harvey, W. D., “A Studv 
of Laminar Separation Bubbles in the Concave Region of an Airfoil Using Laser Ve- 
locimetry,” Second ASME Laser Velocimetry Symposium, Miami, Florida, November 
17-21, 1985. 

Crouch, J. D., and Saric, W. S., “Oscillating Hot-wire Measurements above an FX63- 
137 Airfoil,” AIAA Paper 86-0012, January 1986. 

23 



m c 

CY 

.- 
5 
5 

0 

' i  

0 



I I  
n a 
c11 
LJ 

0 I 

0 

0 

0 

0 

CJ .. 
N 

bb .- 
Ezc 



? ? 
c? 

L3 

0 
I 

3 
C 
cd 

' f  
0 
3 
4 
0 
U c;c 
L 
0 
f 
E 



L 
L 

0 
0 I 

I 

0 

m 
0 

% 
M 
II 
W cc 



c c  
0 .2 

. 
o', 
C 
r 
L 

I n 
0 
c 

X 
M 

n 
a, 
E F- 

0 



0 

0 

0 

0 

a w 
0 

I: 
4 
J 

0 

I , I i 

0 
5 
c 

6 

8 
CD 

0 0 
G N 

e 
0 



Ln w 
0 

u 
1 
H 

I I 

C 

v) 

3 

.. 
t- 



8 

I I  

d 
J < 

0 

II  
n 

k! 

3 

4 

4 
-3 

ld 

Cr-2 
3 
d 
cd 
?- 

-3 
L 

- 
0 

6 z a. 

.. 
oc) 



/ 
i 

/” 

/ , d a, 
E .- 
CI 
a, a 
X 
H 

3 



c 
c .d 
c 0 

c " 0  

.- - 
Y 
.L 2 

0 7 .  c 
c, 
.- 
s 
5 

i; 

L n  

0 
X 

M 

I I 

V 
rrl L n  c 

0. 

0 



c 
0 .d 
= o  

X 
M 

0 
I ,  

T 

\ 0 

0 
0 

0 
, 

I 

0 

.. 
d 
d 



c 
c. .d 
c 0 .- I 

6 
3 

L n  z 
x 

M 

' t  

w 
Err 
.- 



m a: 

o n 4 0  

0 
4 

........... * ......................... 4 ........................................ tl l N  





'. 
\ 

= \  
- a  
0 

1 
I 

\ 
\ 
\ 
\ 
\ 

I 

e 

I 
I 

J, 

I 
\ '  

c 
'\ ! 

1 

cc 

- . -  

\ 
\ 
\ 
\ 
\ 
\ 

- . -  
VI 

I 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

I 
\ 

. -  

' / I  
I 

I 

I /  
' I  
' I  

' I  
I/ - . -  

I 
f 

I 

I 4- 
0 
s - 

x .- 



0 

0 0 0 
d- M cv 

0 0 0 
I I I 

n 
0 

0 
LD 

0 

0 
m 
0 

I I I I 
a 
V 

0 0 0 0 ln 
c 

c c 0 0 0 N 
I I I I 

u 
P 



.. 
W 
d 
m 
m 
3 
rn 

. 
\ 
\ 
\ 
\ 

\ 

\ 
\ 
\ 
\ 
\ I 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

1 I I 
0 0 0 

- 0 = 
\ 
5 

PI 

I I 
\ 
I 
I 
\ 
\ 
\ 
I 
\ 

lu 

I 
n 

r) 

LrJ 
0 
0 

LL 
0 

I 
W 

c 1 .  I 
I 
I 
I 
I 
I 

I '  I '  1 



r 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 

0 
0 E 
P 

0 
CL) 

0 
0 
\ 
x 

0 
h 

0 

0 
CLI 

0 

0 0 0 
c cu r) 

0 0 0 

0 0 0 0 0 0 0  
C n C O f i L O r n + M  

0 0 0 0 0 0 0  
I l l 1  I l l  n 

V 0 
P 

O 

0 

a 

J 

i \ -  \.:A 
1 ' " ' 1 " " 1  
0 

c 

I 

L n  

0 
I 

0 

3 

P 
V 

Lo 

0 

0 

c 



W v 

.. 
W 
2 
m 
m 
3 
m 

I 1 1 
0 0 0 

w 
0 

N 
r) 
c - 

I 

I 

In 
0 
0 

I’ 
I’ 

I’ 

LL 
V 

N 



n 

rn 
t5 

I 
d 
J 

d- 

3 lb 

0 

u 
N 



0 

0 

c c c - c 7 
.. 
4 
N 

do .- 



b 

I 0 

0 
N 

0 

i 
I 

I 
I 

0 
c 

0 

Lo 
0 

0 

0- 3 
N 

.. 
@a 
N 


