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Summary

Simple, mixed finite element models are devel-
oped for the free-vibration analysis of curved, thin-
walled beams with arbitrary open cross section. The
analytical formulation is based on a linear, Vlasov-
type, thin-walled beam theory with the effects of
flexural-torsional coupling, transverse shear deforma-
tion, and rotary inertia included. The fundamen-
tal unknowns consist of seven internal forces and
seven generalized displacements of the beam. The
element characteristic arrays are obtained by using a
modified form of the Hellinger-Reissner mixed vari-
ational principle. The modification consists of aug-
menting the functional of that principle by two terms:
(1) the Lagrange multiplier associated with the con-
stant condition relating the rotation of the cross sec-
tion and the twist degrees of freedom, and (2) a reg-
ularization term that is quadratic in the Lagrange
multiplier. Only C° continuity is required for the
generalized displacements. The internal forces and
the Lagrange multiplier are allowed to be discontin-
uous at interelement boundaries.

Numerical results are presented to demonstrate
the high accuracy and effectiveness of the elements
developed. The standard of comparison is taken to
be the solutions obtained by using two-dimensional
plate/shell models for the beams.

Introduction

Since the development of the comprehensive the-
ory of combined torsion and bending of thin-walled
beams by Vlasov in the 1930’s (see Vlasov 1961),
extensive literature has been devoted to the appli-
cation and adaptation of the theory to a variety
of equilibrium, stability, and vibration problems of
thin-walled structures. Reviews of the many con-
tributions on this subject are given in a number of
survey papers (see, for example, Nowinski 1966 and
Panovko and Beilin 1969) and monographs (Gjelsvik
1981; Kollbrunner and Basler 1969; Vlasov 1961;
and Zbirohowski-Koscia 1967). Several finite element
models, based on Vlasov’s theory, have been pro-
posed in the literature for the equilibrium, stability,
and vibration analysis of thin-walled beams. (See At-
tard 1986; Barsoum and Gallagher 1970; Epstein and
Murray 1976; Friberg 1985; Kiss 1986; Krajcinovic
1969; Mei 1970; Rozmarynowski and Szymczak 1984;
Tralli 1986; and Wekezer 1987.) Also, a number of
commercial programs have thin-walled beam mod-
els in their element libraries. (See, for example,
Kiss 1986.) However, except for the hybrid model
and the modified displacement model described in
Kiss (1986) and Tralli (1986), all the other finite
element models developed are based on a standard

displacement formulation that requires C! continu-
ity for the torsional degrees of freedom. Despite the
documented advantages of mixed formulations in fi-
nite element modeling, to date no publications exist
in which mixed finite elements are used for modeling
thin-walled beams. The present study attempts to
fill this void. Specifically, the objectives of this pa-
per are: (1) to present simple and efficient mixed fi-
nite element models for the free-vibration analysis of
curved thin-walled beams with arbitrary open cross
section, and (2) to demonstrate the effectiveness of
these elements by means of a numerical comparison
with results of two-dimensional models.

To sharpen the focus of the study, only prismatic
thin-walled beams with open cross section are consid-
ered. The wall thickness is assumed to be constant,
and the material is linearly elastic and isotropic. The
analysis can be extended to anisotropic beams with
variable geometric and material characteristics.

Symbols

A cross-sectional area

Ay, Az effective shear areas in y- and
z-directions, respectively

By, bimoment

b flange (or web) dimension

E Young’s modulus

[F] linear flexibility matrix for an
individual element

G shear modulus

{H} vector of internal force
parameters

Iy, I, Iy, second moments of cross
section (moments and product
of inertia)

Iy, Ly, Ly second sectorial moments of
cross section

J Saint-Venant torsion constant
of cross section

K kinetic energy

L beam length

l length of individual finite
element

(M] consistent mass matrix for
individual element

My, M., M; bending and twisting moments

m number of displacement nodes

in element
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shape functions used for
approximating generalized
displacements

shape functions used for
approximating internal forces
and Lagrange multiplier

axial force

elemental matrices associated
with constraint condition and
regularization term in the
functional, respectively

transverse shear forces

radius of curvature of center-
line of beam

strain-displacement matrix for
individual element

first sectorial moment of cross
section

number of parameters used in
approximating each of internal
forces and Lagrange multiplier
within individual elements

wall thickness
total strain energy
complementary strain energy

strain energy associated with
normal stresses (N, M, M,,
and B,)

strain energy associated with
torsional shear stresses (M;)

displacement components in
coordinate directions

axial and transverse displace-
ments at y=2z=0

vector of nodal displacements

orthogonal coordinate system
with ¢ passing through cen-
troids of cross sections

transverse shear strains (see
egs. (A2), appendix A)

penalty parameter
extensional strain

extensional strain of centerline
of beam

¢ contour coordinate used
in evaluating sectorial
coordinate w

6° rate of twist of beam

KD, KD, K curvature changes and twist of
beam

A Lagrange multiplier

{7} vector of Lagrange multiplier
parameters

P mass density of material

normal and shearing stresses
on cross section

Oz3102y30z2

v Poisson’s ratio of the material
9, 80,90 rotation components

0 strain parameter

Q frequency of vibration, Hz

w sectorial coordinate (warping
of cross section for a unit rate
of twist)

0 =d/dz

Range of indices:

i, ltos

i, j ltom

Subscripts:

2d two-dimensional model result

s shear center

Superscript:

t matrix transposition

Mathematical Formulation

The analytical formulation is based on a linear
form of Vlasov’s thin-walled beam theory with the ef-
fects of flexural-torsional coupling, transverse shear
deformation, and rotary inertia included. A mixed
formulation is used in which the fundamental un-
knowns consist of the seven generalized displace-
ments and seven internal forces. The generalized
displacements consist of the axial and transverse dis-
placement components of the centroid u®, v°, and
w®; the three rotation components ¢2, ¢9, and ¢7;

and the rate of twist of the beam 6°. The seven in-
ternal forces consist of the axial force N,; the two



transverse shear forces @, and Q,; the two bend-
ing moments M, and M,; the twisting moment M,;
and the bimoment B,. The sign convention for the
generalized displacements and internal forces is given
in figure 1. The fundamental equations of the thin-
walled beam theory used herein are summarized in
appendix A. In order to reduce the continuity re-
quirements for all the generalized displacements to
C°, a modified form of the Hellinger-Reissner mixed
variational principle (Washizu 1974) is used in the de-
velopment of the element characteristics. The mod-
ification amounts to augmenting the functional of
that principle by two terms: the Lagrange multiplier
associated with the constraint condition relating ¢?
and 6°, and a regularization term that is quadratic
in the Lagrange multiplier. (See appendix A.) For
a detailed discussion of the augmented (perturbed)
Lagrangian formulation, see Fortin and Glowinski
(1983).

The shape functions used in approximating the
internal forces and the Lagrange multiplier are se-
lected to be the same but are different from those
used in approximating the generalized displacements.
Moreover, the continuity of both the internal forces
and the Lagrange multiplier is not imposed at in-
terelement boundaries.

The finite element equations for each individual
element can be cast in the following compact form:

R H RN N

where {H}, {A}, and {X} are the internal force
parameters, Lagrange multiplier parameters, and
nodal displacements, respectively; [F] is the
matrix of linear flexibility coefficients; [S] is the
strain-displacement matrix; [P] and [@Q] are matrices
associated with the constraint condition and the reg-
ularization term in the functional, respectively (see
appendix A); [M] is the consistent mass matrix;  is
the frequency of vibration; € is a penalty parameter
associated with the regularization term; and a dot
(+) refers to a zero submatrix. The formulas for the
elemental arrays [F], [S], [P], [Q], and [M] are given
in appendix B.

If the internal force parameters and the La-
grange multiplier parameters are eliminated from
equations (1), one obtains the following equation in
the nodal displacements {X }:

o |

ISV P17 S — e[QIPITHQF) {X } = @* [MI{X} (2)

Comments on Perturbed Lagrangian
Formulation

The following three comments regarding the per-
turbed Lagrangian formulation used herein seem to
be in order:

1. The governing finite element equations of the
perturbed Lagrangian formulation (egs. (1)) include
both those of the Lagrange multiplier approach and
the penalty method as special cases as follows:

(1) By letting the penalty parameter € go to
infinity, equations (1) reduce to those of the Lagrange
multiplier approach.

(2) By eliminating the Lagrange multiplier
terms from equations (1), the resulting equations are
identical to those of the penalty method.

2. The perturbed Lagrangian formulation, in ad-
dition to reducing the continuity requirements for
the generalized displacements in the element devel-
opment, alleviates two of the drawbacks of the La-
grange multiplier approach and the penalty method,
namely:

(1) The regularization term in the functional
results in replacing one of the zero diagonal blocks in
the discrete equations of the Lagrange multiplier ap-
proach by the diagonal matrix [P]/e in equations (1).

(2) The constraint condition relating the ro-
tation of the cross section ¢2 and the rate of twist
6° (see appendix A) is enforced exactly in the func-
tional rather than approximately as in the penalty
method. However, the presence of the regularization
term results in replacing the constraint condition by
the perturbed condition (on the element level):

By +ierxy=o Q

3. An important consideration in the perturbed
Lagrangian formulation is the proper selection of the
penalty parameter e. With the foregoing mixed mod-
els, the penalty parameter can be chosen indepen-
dently of the element size without adversely affect-
ing the performance of the model. The accuracy of
the solution increases with increasing value of the
penalty parameter. However, for very large values
of ¢, ill-conditioning of the equations occurs, thereby
increasing the round-off errors. In the present study,
for convenience, the penalty parameter ¢ was chosen
to be equal to the extensional stiffness of the beam
EA.

Numerical Studies

To test and evaluate the performance of the fore-
going mixed models, a large number of vibration
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problems of thin-walled beams with open cross sec-
tion have been solved by using these models. For
each problem, comparison was made with solutions
obtained by using two-dimensional plate/shell ele-
ments in modeling the beam, and also with previ-
ously published solutions whenever available. Herein,
the results of two sets of free-vibration problems are
discussed. The two problems are: (1) a straight can-
tilever beam with symmetric and unsymmetric chan-
nel cross sections; and (2) a semicircular beam with
a Z-shaped section (Z-section) and clamped ends. A
classical Rayleigh-Ritz solution along with test re-
sults for the first problem are given by Gere and Lin
(1958). Also, a finite element solution for the same
problem based on displacement models is given by
Mei (1970).

In each case, the structure was analyzed us-
ing (1) the mixed one-dimensional models developed
herein, and (2) two-dimensional plate/shell models
based on a Sanders-Budiansky type of shell theory
with the effects of transverse shear deformation and
rotary inertia included. (See Noor and Andersen
1982 and Noor and Peters 1983 for a description
of the finite element model used.) In the one-
dimensional models, Lagrangian interpolation func-
tions were used for approximating each of the gen-
eralized displacements, internal forces, and Lagrange
multiplier. The polynomial functions for the internal
forces and the Lagrange multiplier were one degree
lower than those of the generalized displacements.
The characteristics of the finite element models in
the numerical studies are summarized in table 1. In
all the solutions presented herein, only the displace-
ment boundary conditions are enforced and the force
boundary conditions are not applied. Typical re-
sults are presented in figures 2 through 7 for the
cantilever beams with channel sections and in fig-
ures 8 through 12 for the semicircular beams with
Z-sections. Also, table II lists the minimum six fre-
quencies obtained by the thin-walled beam and two-
dimensional models for the unsymmetric channel sec-
tion and Z-section.

Cantilever Beams With Channel Cross
Sections

The first problem set considered is that of the
cantilever beams with the symmetric and the unsym-
metric channel cross sections shown in figure 2. The
vibration mode shapes for the beam with symmet-
ric channel section, obtained by the two-dimensional
model, are shown in figure 3. The ratios of the
strain energies associated with normal stresses and
torsional shear stresses to the total strain energy,
U, /U and U, /U, for the first six vibration modes
are shown in figure 4. Note that U, is associated
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with N, M,, M., and B, ; and U, is associated
with M,. Except for the second and sixth modes
of the beam with symmetric channel section, all the
other modes exhibit strong flexural-torsional cou-
pling. This strong coupling cannot be predicted by
ordinary beam models in which B,, is neglected. For
all the six modes, the transverse shear strain energy
was found to be negligible (less than 0.6 percent of
the total energy).

Figures 5 and 6 give an indication of the accu-
racy and convergence of the first six frequencies ob-
tained by using the M3-2 and M4-3 models. (See ta-
ble I.) The standard for comparison was taken to be
the two-dimensional-model solution obtained using
a 20 x 12 grid of M9-4 elements (20 elements along
the beam length). As can be seen from figures 5
and 6, the frequencies predicted by the mixed mod-
els were highly accurate and converged rapidly with
the increase in the number of elements. Thus, the
converged frequencies obtained by the thin-walled
beam model were close to those obtained by the two-
dimensional model. The maximum error in the low-
est six frequencies obtained by the converged thin-
walled beam models was less than 1 percent.

The effect of the magnitude of the penalty pa-
rameter on the accuracy of the lowest six frequencies
obtained by the mixed models is depicted in figure 7.
As can be seen, the accuracy of the frequencies ob-
tained by the mixed models is fairly insensitive to the
choice of ¢ in the range of ¢/EA from 1073 to 102.
The upper limit of ¢ is a function of the number of
significant digits in the computer.

Semicircular Beams With Z-Sections

The second problem is that of the clamped semi-
circular beams with the Z-sections of equal and un-
equal flanges. (See fig. 8.) Henceforth, the equal
and unequal flange sections will be referred to as
the “symmetric and unsymmetric Z-sections.” Be-
cause of the spanwise symmetry of the structure, only
half the beam was modeled. The vibration mode
shapes associated with the lowest six frequencies for
the beam with symmetric Z-section are shown in fig-
ure 9. These mode shapes are obtained by the two-
dimensional model. The ratios of the strain energies
U, /U and U,, /U obtained by the thin-walled beam
model for the six vibration modes are shown in fig-
ure 10. Again, for all six modes the transverse shear
strain energy was found to be less than 0.6 percent
of the total energy.

An indication of the accuracy and convergence of
the frequencies obtained by the M3-2 and M4-3 mod-

els for the beams with symmetric and unsymmetric -

sections is given in figures 11 and 12. Although the
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frequencies predicted by the thin-walled beam mod-
els converge rapidly with increasing the number of
elements, the errors in the converged frequencies ob-
tained by the thin-walled beam model are greater
than those for the straight beam described in the
previous subsection. The maximum error in the low-
est six frequencies for the beam with unsymmetric
Z-section was of the order of 7.5 percent. (See fig. 12
and table II.) The accuracy degradation for the beam
with unsymmetric Z-section may be attributed to the
cross-sectional distortions that are more pronounced
in the mode shapes of the semicircular beam than in
those of the straight beam.

Concluding Remarks

Simple, mixed finite element models are devel-
oped for the free-vibration analysis of curved, thin-
walled beams with arbitrary open cross section. The
analytical formulation is based on a linear, Vlasov-
type, thin-walled beam theory with the effects of
flexural-torsional coupling, transverse shear deforma-
tion, and rotary inertia included. The fundamental
unknowns consist of seven internal forces and seven
generalized displacements of the beam. The element
characteristic arrays are obtained by using a modified
form of the Hellinger-Reissner mixed variational prin-
ciple. The modification consists of augmenting the
functional of that principle by two terms: (1) the La-
grange multiplier associated with the constraint con-
dition relating the rotation of the cross section and
the twist degrees of freedom, and (2) a regularization

term that is quadratic in the Lagrange multiplier.
Only C° continuity is required for the generalized
displacements. The internal forces and the Lagrange
multiplier are allowed to be discontinuous at interele-
ment boundaries.

The high accuracy and effectiveness of the mixed
models developed are demonstrated by means of nu-
merical examples of thin-walled beams with symmet-
ric and unsymmetric cross sections. The standard of
comparison in these examples is taken to be the solu-
tions obtained by using two-dimensional plate/shell
models for the beams. The accuracy of the mixed
models developed is dependent on the cross-sectional
distortions during the beam deformations. As the
cross-sectional distortions increase, the degradation
of accuracy becomes more pronounced.
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Appendix A
Fundamental Equations of Thin-Walled Beam Theory Used in Present Study

The fundamental equations of the linear, Vlasov-type theory of curved thin-walled beams are given in this
appendix. A right-handed orthogonal coordinate system is used with the z-axis passing through the centroids
of the cross sections. (See fig. 1.) The beam is assumed to be curved in one direction only (in the zz-plane).

Displacement Assumptions

Based on the assumption that the projection of each cross section on a plane normal to the initial centroidal
axes does not distort during deformation, the displacement field in the plane of the cross section (yz-plane) is
represented by

0
u(z, y, 2) uf -z -y w
v(z,y,2) p= 0 3+ -2 - - ¢2 - b0 (A1)
w(z’ Y, z) ,wO Y ' : ’
¢3

where 40, v0, and w0 are the axial and transverse displacement components at y = z = 0; ?9, ¢2, and ¢9

are the rotation components about the coordinate axes; 60 is the rate of twist of the beam; and w is the
sectorial coordmate war;onng of the cross section for a unit rate of twist). The seven generalized displacement

parameters u?, v0 , wo 0 and 69 are functions of z only.

Strain Assumptions

The following expressions are used for the three nonzero components of the strain field in the plane of the
cross section:
Ex = 62 - yrcg + z;cg - wwo
Yoy = 72y - zrc? (A2)
Tzz = '72z + y"’?

where €0 is the extensional strain of the centerline; rcg and k2 are the curvature changes in the y- and 2-
directions, respectively; K,? is the twist; and '72y and '722 are the transverse shear strains. The strain parameters
62, k9, fcg, '722, 72y, IG?, and 49 are functions of z only and can be expressed in terms of the displacement and
rotation components as follows:

0
52 =8ul + %
0
W) =o0g0— b2
K3 = 04}
Yoy = 00" — 2 > (A3)
0 u® 0 0
Yz = _E+aw +¢y
0
ic? = 3¢2 + %’-
$0 = 96° J

where @ = d/dz and R is the radius of curvature of the centerline of the beam. Also, the following constraint
condition is used to relate #° and ¢0

82 —6° =0 (A4)

P Py




Constitutive Relations
The relations between the internal forces and the strain components are given by

P
N, 1 A . . ~Su «0
M\ _ -y — I, —Iy. I, v
M, (= /Aaz 2 dA=F I, I, $ 0 ; (A5)
B, w Symm I, o
[ 40
and
'721/ )
Qy 1 - " Ay - -
Q: ;= / -1 { a”’ } dA=G| - A, - 9, 3 (A6)
M; Al 2 Yy rz . . J
RO
t

where A is the cross-sectional area; S, is the first sectorial moment of the cross section; Iy, I, and Iy, are the
second moments of the cross section (moments and product of inertia); J is the Saint-Venant torsion constant;
Iy, Ly, and I, are the second sectorial moments of the cross section (sectorial moments of inertia); E and
G are the Young’s and shear moduli of the material, respectively; N is the axial force; My and M, are the
bending moments; B, is the bimoment; Q, and Q. are the transverse shearing forces; and M; is the twisting
moment. The definition of the sectorial properties of the cross section is given by Friberg (1985), Heins and
Wang (1978), Vlasov (1961), and Zbirohowski-Koacia (1967).

Variational Functional

The functional used in the element development is given by
l 1
— Y 0 _ a0 = )2
W_WHR+/0A(3¢, 6°) dz 26/0(,\) dz

where A is the Lagrange multiplier, ¢ is a penalty parameter, ! is the length of the element, and THR is the
functional of the Hellinger-Reissner mixed variational principle. The expression for 7gg is

)
TR = / (V - U° + K)ds (A7)
where 0
(N )? 52 )
¢ ’7.9:1/
Mz Kzg Qy
V= N SR e 2. (A8)
KO
t
Bw \ ¢0
Nz \? ( Nz )
-1
l Mz A * "Sw Mz
U == > L _II”z I;” g >
2F y  THlwy
M, Symm I, My
\ Bw \ Bw J
t 1 . .
1 [ 9y Ay Qy
+ el Q: 31; : Q- (A9)
M, Symm % My




K= ’5’92 {A [(uo)z + ()2 + (w0)2] + (L +1I.) (¢2)2 +1, (¢2)2 L1, (¢2)2 21,8040
+2 (Swuo - Iwy¢2 + Iwzd’g) 00 + Iw(00)2} (AlO)

where p is the mass density of the material. Note in equations (A5) through (A10) that y and z are centroidal
coordinates. (See fig. 1.) The sectorial properties of the cross section are evaluated using the centroid as the
pole and the origin of the contour coordinates ¢ as the lower free end of the cross section. (See fig. 1.) A
FORTRAN program for evaluating the sectorial properties is listed by Coyette (1987).
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Appendix B
Formulas for Coefficients in Governing Equations for Individual Elements

The explicit forms of the elemental arrays [F], [S], [P], [@Q], and [M] are given in this appendix. For
convenience, each of these arrays is partitioned into blocks according to contributions from individual nodes,
internal forces, or Lagrange multiplier parameters. The expressions of the typical partitions (or blocks) are
given in table BI. Note that the order of internal force parameters is N, M,, M,, B,, Q,, Q., and M;; the

order of the generalized displacement coefficients is u®, %, w®, ¢3, ¢3, ¢2, and 6°.

In table BI, N' and N’ are the shape functions for both the internal forces and the Lagrange multiplier;
Ni represents the shape functions for the generalized displacements; R is the radius of curvature; m is the
number of displacement nodes in the element; [I] is the identity submatrix; s is the number of parameters used
in approximating each of the internal forces and the Lagrange multiplier; [ is the length of the element; and

0 = d/dz. The range of the indices ¢ and j is 1 to s, and the range of the indices i and j is 1 to m. The dots
in the matrices refer to zero terms.

Table BI. Explicit Form of Typical Partitions of the Arrays [F}], [S], [P], (@], and [M]

Number of
Array | partitions (blocks) Typical partition (block)
EA - . -ES, - . .11
EIz _EIyz EIwz ‘ ‘
1. El, —EI, . . .
[F) 8$X 8 NN’ EIL, : : : dz
0 G4y - .
GAz M
L GJ ]
F s }lz - .
1
e .
I -0 .
(9] s Xm [N . . d| Ndz
0 g 5} -1
-5 - 0 1 -
| o - & -
b
[P] §Xs NN dzx
0
L _
[Q] $Xm [NY...8.. —1]Ni dz
0
A . . . . . =8, 1
A . . . . .
Lo A
[M] m X m , J N'Nip I+ I, : dz
0 Iy _Iyz _I"J’.'I
Symm I, L,z
| I, |




References

10

Attard, Mario M.: Lateral Buckling Analysis of Beams
by the FEM. Comput. & Struct., vol. 23, no. 2, 1986,
pp. 217-231.

Barsoum, Roshdy S.; and Gallagher, Richard H.:
Finite Element Analysis of Torsional and Torsional-
Flexural Stability Problems. Int. J. Numer. Meth-
ods Eng., vol. 2, no. 3, July-Sept. 1970,
pp. 335-352.

Coyette, J. P.: An Improved Subroutine for the Es-
timation of Torsional Properties of Thin Walled
Open Cross-Sections. Eng. Comput., vol. 4, no. 3,
Sept. 1987, pp. 240-242.

Epstein, Marcelo; and Murray, David W.: Three-
Dimensional Large Deformation Analysis of Thin
Walled Beams. Int. J. Solids & Struct., vol. 12,
no. 12, 1976, pp. 867-876.

Fortin, Michel; and Glowinski, Roland: Augmented
Lagrangian Methods: Applications to the Numeri-
cal Solution of Boundary-Value Problems. North-
Holland, 1983.

Friberg, P. O.: Beam Element Matrices Derived From
Vlasov’s Theory of Open Thin-Walled Elastic
Beams. Int. J. Numer. Methods Eng., vol. 21, no. 7,
July 1985, pp. 1205-1228.

Gere, J. M.; and Lin, Y. K.: Coupled Vibrations of
Thin-Walled Beams of Open Cross Section. J.
Appl. Mech., vol. 25, no. 3, Sept. 1958, pp. 373-378.

Gjelsvik, Atle: The Theory of Thin Walled Bars. John
Wiley & Sons, Inc., c.1981.

Heins, C. P.; and Wang, R. C.: Torsional Properties of
Open Cross Sections. Comput. & Struct., vol. 9,
no. 6, Nov. 1978, pp. 495-500.

Kiss, Ferenc: The New Family of General Beam Elements
for ASKA—Theoretical Manual. IKO Software Ser-
vice GmbH (Stuttgart), 1986.

Kollbrunner, C. F.; and Basler, K. (E. C. Glauser,
transl., and Annotations and Appendix by
B. G. Johnston): Torsion in Structures—An En-
gineering Approach. Springer-Verlag, 1969.

Krajcinovic, Dusan: A Consistent Discrete Elements
Technique for Thinwalled Assemblages. Int. J.
Soltds & Struct., vol. 5, no. 7, July 1969,
pp. 639-662.

Mei, Chuh: Coupled Vibrations of Thin-Walled Beams
of Open Section Using the Finite Element Method.
Int. J. Mech. Seci., vol. 12, no. 10, Oct. 1970,
pp. 883-891.

Noor, Ahmed K.; and Andersen, C. M.: Mixed Mod-
els and Reduced/Selective Integration Displace-
ment Models for Nonlinear Shell Analysis. Int. J.
Numer. Methods Eng., vol. 18, no. 10, Oct. 1982,
pp. 1429-1454.

Noor, Ahmed K.; and Peters, Jeanne M.: Mixed Models
and Reduced Selective Integration Displacement
Models for Vibration Analysis of Shells. Hybrid
and Mized Finite Element Methods, S. N. Atluri,
R. H. Gallagher, and O. C. Zienkiewicz, eds., John
Wiley & Sons Ltd., c.1983, pp. 537-564.

Nowinski, J. L.: Theory of Thin-Walled Bars. Applied
Mechanics Surveys, H. Norman Abramson, Harold
Liebowitz, John M. Crowley, and Stephen Juhasz,
eds., Spartan Books, 1966, pp. 325-338.

Panovko, Ya. G.; and Beilin, E. A.: Thin-Walled
Beams and Systems Consisting of Thin-Walled
Beams. Structural Mechanics in the USSR—1917-
1967, 1. M. Rabinovich, ed., Moscow Publ. House,
1969, pp. 75-98. (In Russian.)

Rozmarynowski, B.; and Szymczak, C.: Non-Linear Free
Torsional Vibrations of Thin-Walled Beams With
Bisymmetric Cross-Section. J. Sound & Vibration,
vol. 97, no. 1, Nov. 8, 1984, pp. 145-152.

Tralli, A.: A Simple Hybrid Model for Torsion and
Flexure of Thin-Walled Beams. Comput. & Struct.,
vol. 22, no. 4, 1986, pp. 649-658.

Vlasov, V. Z. (Y. Schechtman, transl): Thin-Walled
Elastic Beams. Israel Program for Scientific Trans-
lations, 1961.

Washizu, Kyuichiro: Variational Methods in Elasticity
and Plasticity, Second ed. Pergamon Press Inc.,
c.1974.

Wekezer, Jerzy W.: Free Vibrations of Thin-Walled Bars
With Open Cross Sections. J. Eng. Mech., vol. 113,
no. 10, Oct. 1987, pp. 1441-1453.

Zbirohowski-Kodcia, K.: Thin Walled Beams—From
Theory to Practice. Crosby Lockwood & Son Ltd.,
1967.



- -
- - —— v VT W T o e y—

Table I. Characteristics of Mixed Finite Element Models Used in Numerical Studies

Number of Number of parameters Number of
displacement per internal force quadrature
Model nodes (or Lagrange multiplier) points Designation
One-dimensional 3 2 3 M3-2
4 3 4 M4-3
Two-dimensional 9 4 9 M9-4

Table II. Minimum Frequencies Obtained by Two-Dimensional

and Thin-Walled Beam (Converged) Models for the Cantilever

Beam With Unsymmetric Channel Section (Fig. 2) and the
Semicircular Beam With Unsymmetric Z-Section (Fig. 8)

Minimum frequencies Minimum frequencies
for cantilever beam, Hz for semicircular beam, Hz
Mode (og Qconverged log Qconverged
1 11.64 11.66 12.14 12.48
2 19.64 19.67 23.12 23.08
3 40.94 41.09 44.14 42.71
4 58.52 58.97 50.90 50.88
5 103.6 103.9 92.71 91.42
6 113.9 114.6 100.2 92.71
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E =6.895x10'%Pa
v =0.32

P = 2600 kg/m3
L=1.016m

b =254 x 10°2m
t=6.35x10"m

Figure 2. Cantilever beams with channel cross sections used in present study. The subscript s refers to
shear center.
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i
i
HE
10 Symmetric Unsymmetric
E=7.17x10"Pa section section
v=0.3
P = 2768 kg/m3
R=1.0m
b=508x 10 °m
t=6.0x105m

Figure 8. Semicircular beams with Z-sections used in present study. The subscript s refers to shear center.
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Q4=10.70 (11.10)

Q5 =24.02 (24.17)

Qg = 51.72 (52.13)

Figure 9. Vibration mode shapes for semicircular beam with symmetric Z-section shown in figure 8.
Numbers in parentheses are converged thin-walled beam frequencies (in hertz); other numbers are
frequencies obtained by two-dimensional model.
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Q, = 63.02 (64.41)

Qg =91.41(92.12)

Qg = 128.7 (131.5)
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Figure 9. Concluded.
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