
N89-19840
ORIGINAL PAGE IS
OF POOR QUALITY

GARBAGE COLLECTION CAN BE MADE REAL-TIME AND VERIFIABLE

James H. Hino
Integrated Inference Machines, Inc.

1468 East Katella Avenue
Anaheim. CA 92805

ABSTRACT

An ef f ic ien t means of memory reclamation (also
known as Garbage Collection) i s essential for Machine
In te l l igence a p p l i c a t i o n s where d y n a m i c s t o r a g e
allocation i s desired o r required. Solutions for real-
time systems must introduce very small processing
overhead and must also provide for the verification of
the sof tware in order to both meet the application
t ime budgets and to verify the correctness of the
sof tware. This paper proposes Garbage Collect ion
techniques for symbol ic processing systems which
may simultaneously meet both real-time requirements
and ver i f icat ion requirements .

T h e proposed memory reclamation technique takes
advantage of the s t rong points of both the earlier
Mark and Sweep technique and the more recent Copy
C o l l e c t i o n a p p r o a c h e s . A t l e a s t o n e prac t ica l
implementa t ion of these new G C techniques has
already been developed and tested o n a very-high
performance symbolic computing system.

Complete GC processing of all generated garbage has
been demonstrated to require as l i t t le as a few
mil l iseconds to perform. This speed enables the
effect ive operat ion of the GC funct ion as e i ther a
background task o r a s an actual par t of the
application task, itself.

INTRODUCTION

Scient is ts and engineers may argue over the true
na ture of in te l l igence ; whether it be human o r
a r t i f i c i a l .

However, there is little argument that the capture and
recording of useful knowledge does require more
memory and more s torage space than does the

numerical or a lpha-numeric data entries.

T h e p r a c t i c a l a p p l i c a t i o n of new M a c h i n e
Intel l igence technology to today 's and tomorrow's
Aerospace and Defense problems has become ; in

important strategic issue to all of us. Application
sof tware programs are , therefore , becoming larger
and more complex.

r e l a t i v e l y s t r a i g h t - f o r w a r d r e p r e s e n t a t i o n o f

Charles L. Ross
Integrated Inference Machines, Inc.

1468 East Katella Avenue
Anaheim, CA 92805

W e mus t be c o n c e r n e d with the h igh-pr ior i ty
problems of (I) developing effective software which
c a n per form i t s t asks quick ly enough to mee t
demanding mission requirements; of (2) developing
these programs in a timely and affordable manner;
and of (3) ver i fy ing the cor rec tness and the
predictability of the final operational programming.

S imul taneous so lu t ions to all of these needs i s
extremely challenging. The first priority need must
be meet ing the an t ic ipa ted mission requi rements .
T h o s e r e q u i r e m e n t s i n c l u d e the c a p a b i l i t y o f
combined appl icat ion sof tware / hardware processor
systems to produce essential information in time to
make cr i t i ca l d e c i s i o n s or t o cont ro l d y n a m i c
p r o c e s s e s .

Rea l - t ime, knowledge -based sys tems programs, in
particular, must accept a wide variety of types of data,
inc luding both numer ica l in format ion and non-
numerical in format ion .

Non-numerical o r symbolic data representat ions can
easily include data items and associated data values
which can vary enormously in terms of memory
storage needs. A considerable waste of available real
system memory capaci ty can occur unless dynamic
memory allocation of variable size memory blocks is
supported. Several languages including C, LISP, and
ADA allow for dynamic allocation and de-allocation of
m e m o r y .

For C, this task is left up to the programmer to handle
as a part of the creation of the application software.
In LISP, the task has been assigned to the designers of
the L I S P e n v i r o n m e n t (i n c l u d e s the o p e r a t i n g
system) for a particular processor. This choice has
off-loaded this demanding task from each individual
programmer. Thereby reducing the possibility of
unanticipated program f laws from this potential error
s o u r c e .

I n the ADA language, the assumption is made that
e i ther the appl ica t ion program or i ts opera t ing
s y s t e m (o r b o t h) may pe r fo rm the nicniory
re c I il m a t i o n f ti n c t i on , si nce t h e
ADA Language Reference Manual does not specify
that an ADA implrment;ition niusi handle i t .

(G a r ba ge C o I I e c I ion)

167

https://ntrs.nasa.gov/search.jsp?R=19890010469 2020-03-20T03:51:07+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42829055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Early experiments to allow programmers to allocate
and de-allocate storage in LISP was disasterous. It
proved to be extremely difficult for the programmer
to know when all necessary data items are no longer
referenced by any system process, program, or other
data item. Some of the more intractable problems
found in some C programs may be a by-product of the
rel iance o n the appl icat ion programmer to program
this funct ion, without leaving an unsuspected trap
under cer ta in p rogram condi t ions . When large,
complex programs are wri t ten by many individual
programmers, the risk may substantially increase.

Some of the extra power and flexibility of the LISP
l a n g u a g e a d d s to the c rea t ion of cons iderable
temporary results in main memory. Much of which is
quickly no longer referenced and is, therefore, no
longer required. This increases the importance of
solving the GC problem. If memory is not reclaimed,
free memory locations will soon become unavailable
and program execution will stop.

This paper describes an approach to the design of a
real-time GC mechanism. The proposed approach was
demonstrated in the demanding LISP environment. I t
should be effective for ADA, as well. The performance
tests were run using an implementation of the design
for a uniprocessor architecture. The results should be
appropriate for single processor systems or a system
consis t ing of several individual processors, each of
wh ich a r e running separa te appl ica t ion programs
which co-operate together to meet a collective series
of concurrent mission information processing needs.

The described approach may or may not be directly
t ransfer rab le to the des ign of a mult i -processor
sys tem, o r be opt imum for such a configurat ion.
A d d i t i o n a l o n - g o i n g research wi l l a s s e s s such
feasibil i ty and effectiveness.

STORAGE MANAGEMENT

Both da ta and program s ta tements in LISP are
represented in terms of symbol ic expressions (S-
expressions). S-expressions often appear as lists of
items enclosed in parentheses. An S-expression is
either an "atom", a list of S-expressions, or a "dotted-
pair" of S-expressions. An atom is either a "numeric
atom" such as an integer or a floating point number,
or a "literal atom" which is a string of characters
beginning with a a lphabet ic letter and containing
other letters, digits, or a few other characters.

Atoms may be put together to form more complicated
S-expressions using ei ther a dot ted-pair construction
or a list construction. List construction is far more
common in actual usage of LISP. S-expressions can be
fur ther combined with other S-expressions to build
larger ones. Table I shows examples of a few of the
various types of symbolic expressions, along with the
definition of a symbolic expression and a list.

A fundamental assumption of LISP is that at any point
i n a computation process all memory cells (containing
ei ther programs o r da ta) are reachable through a
chain of pointers from a fixed set of known cells or
base registers. Garbage Collection approaches must
deal with the extensive series of re!ationships of data
and programs which can exilrt at any time.

ORIGINAL PAGE IS
OF POOR QUALITY

1NFOB)IATIOR
UAAVAILABLE

MEMORY RECLAMATION APPROACHES

The three basic forms of memory reclamation are
" M a r k . and S w e e p " , " C o p y i n g Col lec t ion" , and
"Dynamic Pools". The following sections will briefly
discuss the advantages and disadvantages of each
approach for implementing real-time systems. The
concept of a "workspace" i s used in these discussions.
A workspace is the collection of programs and data for
any application as well as the entire system code. At
any t ime the workspace may contain unreferencable
objects which is called "garbage".

MARK AND SWEEP

Mark and Sweep is also known as Stop and Collect.
This technique requires that the processor perform
successive passes through all of referenced memory.
A specific data structure might be referenced several
times. In the first pass , all accessable objects are
marked. Then all marked objects are forwarded. The
forwarding phase updates all pointers to their new
locations. Finally, all marked objects are moved to
their final destinations. Since objects are copied over
each other, the application task may not run while
the garbage collection is taking place. The collection
process i s activiated when there i s insufficient free
memory to allocate an object or when requested by
the a p p l i c a t i o n (a f o r c e d o r c o m m a n d e d G C
p r o c e d u r e) .

This process must be performed over all modifiable
objects . The process i s ver i f iable in t ime and
c o r r e c t n e s s if a f o r c e d g a r b a g e c o l l e c t i o n i s
commanded at a predictable place in the application
program. A forced garbage co l lec t ion i s of ten
desireable with this type of collection since the time
required to collect garbage increases with the amount
of garbage in the workspace.

A drawback to the Mark and Sweep technique is that
the time required for most machines can take many
seconds or even many minutes. Hardware support for
garbage collection functions, on even fast machines,
has typically still fallen short of the requirements for
real- t ime appl icat ions.

168

COPYING COLLElXION

Copying Collect ion i s a popular form of memory
reclamation used by several L ISP machines . A
copying collector splits memory into two parts, known
as hemispaces. Accessable objects are copied from one
hemispace in to the o t h e r , l eav ing a forwarding
pointer behind in i ts place. When all accessable
objects are copied, the direction of copying reverses.
The process of changing the direction of copying i s
called a "hemispace swap". This method of garbage
collection can better approach real-time since it only
copies a small amount of memory at any given time
wherein the application program is stopped.

A key problem associated with copying collection i s
tha t i t in t roduces addi t ional uncertainty in to the
appl icat ion processing time. Performance c a n be
unpredic tab le s ince the actual t ime requi red i s
dependent upon when a hemispace swap occurs.

Another parameter tha t affects the var iabi l i ty of
processing time of an application i s the amount of
information that i s being copied between hemispaces.
This quantity i s a function of how much memory is
being utilized versus how much free memory . exists,
and is not constant over time.

The final aspect of copying collection that affects the
variability of processing t ime i s that when an object
i s moved, all references to that object must traverse
an indirect pointer to reach the desired object.

It i s general ly thought that a Copying Collect ion
approach requires less overhead than a Mark and
Sweep technique s ince the Mark and Sweep process
passes through memory three times. This is not
n e c e s s a r i l y t r u e . I t d e p e n d s u p o n t h e
implementat ion, and especial ly the errect ive use or
tag bits available in a tagged architecture.

One final note of s ignif icance i s the amount of
memory required to implement a copying collection
approach. S ince the avai lable memory must be
divided into two hemispaces (a "FROM" Space and a
"TO" Space), i t can take up to twice the amount of heap
memory as other GC approaches.

DYNAMIC POOLS

Languages where commands to deal locate discarded
memory is required , can use a scheme where there
exist dynamic pools of allocated and available memory.
This scheme works well if allocations are of a constant
size. If allocations are of varying sizes, memory
f ragment at ion e x i s t s. F ragmen t a t i o n w i 1 I cause
compaction to be required. The time for compaction is
a function of how much memory is required and how
memory is fragmented. The process of searching for
free memory occurs at each allocation. This makes
ver i f ica t ion of t ime budgets d i f f i cu l t , i f not
i m p o s s i b l e .

A NEW HYBRID APPROACH

Integrated Inference Machines, Inc. has designed and
implemented a memory reclamation technique that
takes advantage of the strong points of the Mark and
Sweep and Copying Collection approaches. I t has been
called the SCORE CC. SCORE stands for Stop-and-
Col lec t , Opt imiz ing , Rea l - t ime, Ephemeral garbage
c o l l e c t o r .

The garbage collector i s a callable microcode routine
that i s invoked by a special opcode. The collector
utilizes tag bits associated with a hardware-supported
tagged architecture machine. Two bits of the 8-bit tag
associated with each word in memory i s used to
support the G C function.

The SCORE garbage collector separates memory into
"Static Space" and Heap Space. All objects in Static
Space do not move and the memory they occupy does
not need to be reclaimed. All new objects are allocated
from "Free Space" into "Heap Space". Objects in Static
Space need not be read-only, but when they are
modified to be a pointer to an object in Heap Space, the
address of this location must be saved for the garbage
collection process. Figure 1 shows how memory i s
p a r t i t i o n e d .

INFORUATION
UNAVAILABLE

T o begin the Mark Phase of a garbage collection
procedure, the list of objects in Static Space is added to
the "Mark Seed"(the mark seed i s typical ly the
execution stack as well as objects required to handle
asynchronous events such as errors or interrupts).
This i s required to ensure that objects in Heap Space
that are only referenced f rom Sta t ic Space are
properly marked. All objects in Heap Space are then
collected, using a modified Stop and Collect algorithm.
The mark phase is also modified to stop if an attempt to
mark an object in Static Space is made.

The Forwarding Phase operates , normally, on Heap
Space only. This a lgori thm provides compact ion
which can make objects move. Therefore, when Heap
Space is forwarded, the locations in Static Space that
reference objects in Heap Space are forwarded to
reflect the new location of the object in Heap Space.
Finally, the Compaction Phase operates normally on
Heap Space.

The setting of the boundary between Static and Heap
Space , and the t iming of the garbage col lect ion
process is a function of the application. The optimal
par t i t ioning places unmodif ied objects and objec ts
which d o not contain pointers into Static Space. All
other objects are placed into Heap Space.

For real-time applications, the timing of the garbage
collection is forced by the application program on a
regular basis. This collection i s placed at the end of
one iteration of the application. This i s typically
where required references to temporary objects is at a
m i n i m u m .

169

In order to mee t the requirements of real- t ime
appl ica t ions , s p e e d a s wel l a s ver i f iab i l i ty of
performance is required. SCORE memory reclamation
does not occur in the background. Repeated timings
of a n application, as well as the time to reclaim
garbage i s repeatable , down to the number of
machine cycles. Every run of an application with a
given environment of data inputs i s identical to the
previous and to the next. Memory locations are not
altered in ways that cannot be reproduced.

The SCORE GC also can be operated in an emphemeral
mode. In this mode, garbage collection is performed
when a small amount of memory i s used. As objects
surv ive co l lec t ion , they move in to S ta t ic Space .
Intermediate spaces can be added with different rates
of collection to provide additional ephemeral quality.

PERFORMANCE RESULTS

A single SCORE GC cycle has a minimum runtime of
under 2 milliseconds. The SCORE collector requires a
very small percentage of processing time d o perform
i t s f u n c t i o n s . A n average G C overhead of
approximate ly f i v e percent of the appl ica t ion
runtime is predicted. The average number is useful
since some tasks may create little or no garbage, while
others will generate a great deal.

Of equal importance, the resulting GC overhead for a
given application i s measureable and is repeatable.
Tables 11, 111, and IV show the results of GC tests
pe r fo rmed by the a u t h o r u s i n g a very h igh
p e r f o r m a n c e s y m b o l i c c o m p u t e r , the SM45000
(developed and manufactured by IIM).

Table I1 identifies a ser ies of benchmark programs
f rom the Gabr ie l Benchmark su i te used f o r the
evaluation. The suite contains benchmarks known to
produce little or no garbage as well as ones which
produce a s ign i f icant amount of garbage. The
benchmarks were timed for conditions of No Garbage
Collection overhead at all (Table I I) , operation of the
SCORE GC in real-time mode (Table Il l) , and operation
of the SCORE GC in the ephemeral mode (Table IV).

INFORMATION
UNAVAILABLE

170

INFOBlULTION
UNAVAILABLE

CONCLUSION

T h e power and f lex ib i l i ty of d y n a m i c memory
allocation and de-allocation can be made a part of
real- t ime systems. Memory reclamation (garbage
col lect ion) technology has advanced to the point
w h e r e f a s t , p r e d i c t a b l e m e m o r y m a n a g e m e n t
p r o c e s s i n g c a n a c c o m o d a t e these r e q u i r e m e n t s .
Ver i f iab i l i ty of t h e resu l t ing d y n a m i c memory
application software does not have to be sacrificed to
an essentially background processing task which can,
in turn, alter the dynamic memory states and defy
r e p e a t a b i l i t y .

T h e fu l l per formance of the technique makes
significant use of two of the tag bits within the 8-bit
tag field associated with each 32-bit word i n memory.

The absolute GC processing times can be reduced still
further by speeding up the symbolic processor, itself.

ORIGINAL PAGE IS
OF POOR QUALITY

