
ORIGINAL PAGE IS
OF POOR QUALITY

N89-19842

A Parallel Expert System for the Control of a Robotic Air Vehicle*

Donald J. Shakley
Avionics Laboratory
Air Force Wright Aeronautical Laboratories
Wright-Patterson AFB, OH 45433

Abstract

Expert systems can be used to govern the intelli-
cent control of vehicles, for example the Robotic Air Vehi-
:le (RAV) which is currently a research project a t the Air
Force Avionics Laboratory. Due to the nature of the RAV
system the associated expert system needs to perform in a
demanding real-time environment. The use of a parallel
processing capability to support the associated expert sys-
tem’s computational requirement is critical in this applica-
tion. Thus, algorithms for parallel real-time expert sys-
tems must be designed, analyzed and synthesized. The de-
sign process incorporates a consideration of the rule-set/
face-set size along with representation issues. These is-
sues are looked at in reference to information movement
and various inference mechanisms. Also, examined is the
process involved with transporting the RAV expert system
functions from the TI Explorer, where they are imple-
mented in the Automated Reasoning Tool (ART), to the
iPSC Hypercube, where the system is synthesized using
Concurrent Common LISP (CCLISP). The transformation
process for the ART to CCLISP conversion is described.
The performance characteristics of the parallel implemen-
tation of these expert systems on the iPSC Hypercube are
compared to the TI Explorer implementation.

Introduction

Artificial Intelligence (AI) is concerned with the
designing of computer systems tha t exhibit intelligent
characteristics of human behavior. These methods are
used irhen other direct approaches start to deteriorate due
to a lack of generality of solution. Examples of such be-
ha\.ior include language understanding, reasoning, and
problem solving (Barr and Feigenbaum, 1981). These
problems are studied in AI by using a computational
model. Many computational models exist for AI problems.
A computational model is a formalism used to describe a
method of solution. These models present different ways
to represent the problem domain. Examples of these mod-
els include production systems, wniantic networks, frames,
and logic (Fischler and Firschcin. 1987).

A specializaed area of AI called expert systems
de~.elopment has had considerable success with a multi-
tude of applications. Many applications use production
s)’stems or rule-based system structures employing com-
mercial expert system shells. These structures apply heu-
ristics to solving the problem along with algorithmic meth-

* Research supported by thc Air Force Wright
Aeronautical Laboratories and the Strategic
Defense I ni t i a t i \,e.

l i

PRECEDING PAGE BLANK NOT FILMED

Gary B. Lamont
Electrical and Computer Engineering
Air Force Institute of Technology

Wright-Patterson AFB, OH 45433

ods. The success of these expert systems is directly related
to the quantity and quality of the associated knowledge
base (rules and facts).

Real-time applications exist that involve “hard”
problems that currently defy generic algorithmic ap-
proaches. Thus, problem solving paradigms from Artificial
Intelligence (AI) are being applied to these applications
using expert system structures. Due to the computational
complexity, however, these approaches have poor com-
puter performance characteristics (Gupta, 1986). Parallel
processing seems to offer a possibility to improve expert
system computational performance for hard real-time
problems.

Parallel processing is the use of more than one
processing element to compute the solution to a problem.
By using more processing elements, it is hoped that the
time to solve the problem is reduced over the time to solve
the problem on a single processor. There are several ways
to achieve performance improvements in computer sys-
tems besides parallel architectures: faster hardware tech-
nology, improved serial architectures, better algorithms
and code optimization. There are several reasons, how-
ever, for looking toward parallel architectures. First, paral-
lel architectures can evolve as fast as hardware technolo-
gies become available. Second, many problems associated
with AI are computationally “hard” (exponential time-or-
der) or NP-complete. If a problem is NP-complete, this
implies that time-order improvements in solution algo-
rithms are unlikely due to many years of computational
studies (Aho, Hopcroft, and Ullman, 1974). It should be
noted that parallelism can not produce olynomial time
solutions to exponential time problems &orman, 1985).
But, it is possible to improve the constant term of the time
complexity. Also, the exponential time bound is often
times worst case. In AI problems, the use of heuristics can
reduce the time complexity of state space searches in spe-
cific applications. Third, some problems seem to lend
themselves to parallel solutions because the problems de-
compose easily into independent, computationally equiva-
lent pieces. Production systems, for example, seem to fall
into this category because of the large number of rules that
must be matched during each production cycle.

This paper discusses real-time processing with
application to the Robotic Air Vehicle (RAV) expert sys-
tems. Consideration is given to parallel search algorithms
and associated knowledge-based structures in the design
and implementation of a parallel processing expert sys-
tem. Experimental and theoretical results are presented.

Real-Time Processing

There are several important issues in the analy-
sis and design of real-time computer applications. One of

‘9

https://ntrs.nasa.gov/search.jsp?R=19890010471 2020-03-20T03:51:02+00:00Z

the important characteristics is the critical nature of the
system execution speed in reference to external events.
This can be viewed in terms of the response time of the
system to a particular input. For a real-time system, “the
time needed to make a calculation has to be less than the
time from when the need for the calculation is recognized
until the time when the response is needed to take action”
(Norman, 1985). This can vary with the system, but the
time is generally relatively small. Relatively small is defi-
nitely less than a second and often in the milliseconds or
less (Ward and Mellor, 1985).

Another critical characteristic is limited mem-
ory capacity. Real-time softivare typically needs to run in
a n environment where the size of the program can become
a problem. A third consideration is the correctness and
integrity of real-time software. The system needs to run
correctly and without failure a high percentage of the time
(h’ard and Mellor, 1985). These represent the most critical
issues dealing with real-time systems. In addition, real-
time expert systems must also focus on efficient memory
interfacing, integration with specific application software
processes, efficient inferencing mechanisms, and external
temporal commands and events.

The problem with a real-time system on a serial
architecture is that the execution time and space require-
ments are relatively fixed for a given operation. A desir-
able feature of a real-time system would be a variable
time and space performance based on the need. With par-
allel architectures this could be possible. If a problem
needed a faster solution based on the time requirement,
then more processors could be added to produce the ap-
propriate speedup. This could only be done if the speedup
were predictable.

The need for production systems lvithin real-
time systems is growing. With parallel processing of pro-
duction systems, the execution speed is increasing. For
real-time systems this speedup needs to be predictable, so
that at any given moment more processors can be brought
to bear on a problem to decrease the coefficient of the
time complexity of the solution.

An example of a real-time application, which is
a current research project at the Air Force Avionics Labo-
ratory, is the Robotic Air Vehicle (RAV). It is an air vehi-
cle with the capability of autonomous flight operation.
This vehicle needs the capability for the “intelligent” con-
trol of an air vehicle, the capability to plan and replan
missions, and the capability to access flight data on vari-
ous geographical locations (airbases, airports, cities, etc).
By “intelligent” it is meant that the system can react to
conditions rather than f ly on a rigid preprogrammed flight
path. A diagram of the system can be seen in Figure 1.
This system is a n example of hierarchical control which
may permit real-time performance due to its decomposi-
tional structure. This is also known as meta-level expert
s)’steni organization. Thus, the course granularity of the
niultple expert system frameivork provides yet another
source of parallelism.

This study focuses on the “intelligent” flight
control components of the system. This component was
selected for the feasibility study due to its reliance on pro-
duction systems and its maturity in relation to the entire
research project (Shakley, 1987a). The control of the vehi-
cle can be thought of as a search through a finite state-
space over a time period of the vehicle’s operation. The
problem of intelligent control of a robot is a control-type
NP-complete problem that is best suited to be solved by a
production system in real-time. Therefore, this system
makes a n excellent tool for the study of parallel AI search
techniques for real-time applications.

The RAV system is an example of a n intelligent

180

I
Passive

Navigation

Control
Expert
System

L’ehicle
Control

System

Figure 1. RAV System Diagram.
(McNulty, 1987: 1327).

real-time robotic control system implemented using a n ex-
pert or production system (McNulty, 1987). The purpose
of this investigation is to try to increase the performance
of the expert system by reanalysis, redesign and
reimplementation of the system on appropriate parallel ar-
chitectures. The hypothesis of this study is that the per-
formance of the RAV expert system can be improved in a
predictable and linear manner.

This research is also intended to be a feasibility
study of the various issues involved with implementing a
parallel expert system. These include implementing an ex-
pert system written in Automated Reasoning Tool (ART)
on a TI Explorer and on the iPSC Hypercube using Con-
current Common LISP (CCLISP). ART is a knowledge en-
rineering language used in the development of expert sys-
;ems. CCLISP is a dialect of Gold’s Common LISP that
has been enhanced to allow for message passing on the
iPSC Hypercube. LISP was chosen since it was available
on both the TI Explorer and iPSC Hypercube making the
transportation of the code from one machine to the other
easier. This study is most interested in examining the exe-
cution speed of real-time systems that use production sys-
tem structures. Achieving execution “speedup” rests on
the use of parallel algorithms. The results are not intended
to specify final real-time execution times, but rather pre-
sent an analysis of speedup possibility due to parallel proc-
essing of production systems.

The current knolvledge base for the RAV has
been obtained from TI through the Air Force Avionics
Laboratory. This includes a basic demonstration routine.
Portions of this demonstration are used to exercise the sys-
tem. The control for the expert system is developed using
the basic principles of production system control for an
inference engine. The current RAV software uses the
Automated Reasoning Tool (ART) as the inference engine
(PrlcNulty, 1987). ART can not be used with the parallel
en\.ironnient since i t is not available for the iPSC Hyper-
cube. The inference engine is implemented on the TI Ex-
plorer Lisp machines where it can be tested against the

ORIGINAL PAGE IS
OF POOR Q U A L I N

ORIGINAL PAGE IS
OF POOR QUALITY

knoivledge base and the rule execution timing results can
be compared to the ART ir.ference engine. The parallel
expert systcni i s impleme!lted 03 the Intel iPSC Hypercube
with up to 31 p:oces:ing t=.Icmcr.ts (E s) to explore larp,er
degrees of paralklisni.

Parallel Search

‘The advent of parallel computer architectures
have address-d tiiz possibility of faster execution of many
computer applications. Paral!el architectures have brought
about new proS!err.s as well as the old in terms of software
analysis and ciesign. For an application to be implemented
on parallel architecture, a way must be found to decom-
pose the prabkm into component parts. Several important
issues are concerned with this decomposition. First, the
work must be distributed as evenly as possible for an equi-
table load balancing. Second, the communication between
the pieces need: to be kept to a minimum. This is to re-
duce the cominciication overhead associated with the vari-
ous processore communicating with each other. However,
when this communication occurs, the processors need to
be synchronized with respect to each other. This is to pre-
vent problems with updating shared variables that can pro-
duce erroneous or unpredictable results. Proper synchroni-
zation also prevents the occurrence of deadlock between
processor: (Ishida and Stolfo, 1985).

Speedup is the most common performance
measvrement (metric) in parallel computing. This is the
ratio of the run time of the concurrent software running on
n nodes over the the run time of the best serial solution.
An application is said to be “perfectly parallel” or have a
linear speedup if this ratio is n. Often the speedup ap-
proaches the linear speedup, but does not reach it due to
the communications overhead between the processing ele-
ments (Gupta, 1986). Although rare, speedups have been
observed greater than n. This is called super linear speedup.
At first this seems to be absurd, but upon further study it
does seem reasonable. Super linear speedup usually oc-
curs when the application is so large on a serial system
that certain overheads are incurred, but when placed on
many processors none of the pieces is large enough to in-
cur the same overhead. Thus super linear speedup is ob-
served(Kornfeld, 1981). In addition, there is usually a
point at which the addition of more processors does not
improve the speedup (Gupta, 1986).

Communications overhead is a large concern is
parallel computing. Communication takes several forms.
The first is the Lime to set the job up on the parallel system
or the time f3 distribute the work. The seccnd involves the
time needed io collect the results of the jcb. The third is
the communication needed between the processors during
the running of the job. An important measiirement is the
time a processor is communicating versus processing. This
measurement along with the setup time and cleanup time
gives a good indication of the overhead associated with the
parallel process.

Load balancing is another important criteria for
parallel computing. This is the percentage of the total
processor power that is used during the job. A perfect load
balance would be one in which all the processors are busy
all the time. This perfect balance is im?sossible due to two
factors. First, &pending on the connect.ior. network fqr the
processors, setup and cleanup processer: Frovidn f3r times
when not a!! the processors are busy. Second, ’ihtre is usu-
ally some frar t im of the job that is inhertiltly sc~ial. This
part of the job has to be performed on one yoczvsor while
the other prxessors are idle. These two factor; r re innate
to the problem. Poor Icad ba!e?+ig C P G z!:o be designed
into a problem due to ‘F imprope. drcocposition. This bal-
ancing can occur in two ways, either static or dynamic.

D) namic load balancing i \ ail;ipting thc load to the current
state of processing. This is a dit t icult task cluc to the addi-
tion o\crliead incurred a d the mcta-levcl control needed.

Several ct!ic,r pei.forniance measurements are
ncedecl to baseline ii prodiirtion system. These include 1)
the number of productions or rules, 2) the number of
\\.orking niemory elements or facts, 3) the composition of
the rules \vhich includes the number of clauses in the LHS
and KHS of the rsle, and 4) the average nLmber of rules
eligible to be se!ectea 3n 2 +\.en cycle. Tkrse are but a
few basic compr,r?-;n;s, c,ther characteristics der?*nd on the
q’steni and iqrerence engine being examined.

Since production systems are a type of search,
parallel decolnposition techniques for search problems can
be applied to production systems. So, production systems
can be decomposed along the control functions like a
branch-and-bound or i t can be decomposed by its data. In
the case of a production system the data can be thought of
as t\vo parts (Figure 2). The first part is t k facts or the
bvorking memory (WM). Although the wcrking memory
can have several meanings in this context i t reiers to the
initial facts and axioms as well as the facts 8dded due to
the firing of rules. The second part is the rules or the pro-
duction memory (PM). These two parts are not always dis-
tinct, but can overlap. For example, the result of a rule
could be the addition of a new rule. The reasons for mak-
ing the distinction in the types of data is that in some cases
i t is much easier to decompose the rules than it is to de-
compose the facts. The latter requires C:?:a dependencies
to be worked out while the former requires less restrictive
decomposition considerations.

As described earlier the concurrr ncy available
in decomposing the functions is limited. This is Fe:lic*Aar
true for production systems where o w 90% df the rime is
spent in the match function (Gupta, 198f). So th? main
emphasis is placed on the decomposition of the data. The
methods for implementing a production system tend to
center around ways to decompose the rules (PM) and the
facts (WM). This has lead to several algorithms to accom-
plish this decomposition and their placement on separate
processors. Examples include a Full Distribution of Rules,
the Original DADO, Miranker’s TREAT, and Fine Grain
RETE (Shakley, 1987a). These algorithms are generally a t
the level where the underlying inference engine structure is
unimportant. The methods are more concerned with the
dependencies of the rules on each other and the facts
(WM). The initial prototype knowledge structure consisted
of a frame-based data structure of facts and a list struc-
ture of rules. The impact of this selection is analyzed in a
subsequent section.

r

Product

6

Production System

Rules Facts and Axioms

Figure 2. Production System Components. I
181

h i a l > s i s a i i d I k s i p i i of Iiifcrcucc I-iigiiic

The main striictiir~' of the piloting conlrol is a
Li!crcd series of t\vo expert s!steiiis. Eicli ris::ei-t system
1i;i s sc \.e ra i 50 mpo lie ii t s n rg n ii i zcd by f i i nc t i o n3 I i ty (Fig LI re
3) . These crniponents provide a source of data independ-
ence of rille, and \vrir!-.ing memory. The syste.71 contains
311 "average cize" production ami \\orking memory. The
s!-steni Cont3i:iS over 350 rules. The working memory con-
sists of schemata uhich are frame-like structures. Each
frame contains slots that hold the indi-ridual facts. There
are approsima'ely 160 schemata. The average number of
slots per frame is approximately ten, therefore the total
number of facts i s cbout five times the number of rules.

The requirement for a n inference engine is to
perform the basic production system cycle: match, select,
and act. [This cycle is embodies the resolution process
(Kilsson, 19SO).] This inference engine softivare should be
able to match the rules of the RAV expert system with the
facts in \\orking memory. I t should select one of these
rules and add the results of the RHS of the selected rule to
the \\orking memory.

The current RAV system implemented on the TI
Explorer uses the Automated Reasoning Tool (ART) for
this process. The lack of availability of ART on the iPSC
Hypercube reqiiirer that ancther control procers imple-
mentation be rievelqped. However, the new irnpl, -menta-
tion should be cxnpatible nith the ART rules and working
memory structure.

ART is a very complex and extensive tool. To
try to rebuild the generic ART system on the hypercube
would require a prohibitive development time. Therefore,
simplicity of design is a critical component. The new con-
trol process should only provide the functionality of ART
that the RAV requires.

The previous designed inference engine was
modified for parallel implementation. The algorithm for
the parallel design is presented in Figure 4. The actual
change in the design to the seria! inference cngine is
small. The changes occur in the select and act phase. Each
processing element (PE) or node of the parsllel design
needs to report the rule selection to the system. The PE
then has to coordinate with the system in order to act to
update the working memory. Three alternative.: seem ap-
propriate: a star, a binary tree, or a ;panning tree. With
the star, one node acts as the central point with all other
nodes communicating with that node. This would require
longer than nearest neighbor communication or one node
hops. The binary tree can be implemented with nearest
neighbor communication, but only on higher dimension
cubes. The spanning tree (Figure 5) offers the appropriate
functionality with nearest neighbor communication. A rule
selected on node 14 would be sent ta node 6. At pode 6,
this received rule would be added to the agenda and node
6 would select a rule. This continues up the tree until node
0 receives all the selected rules from its children. It then
selects a n overall rule and passes it down the tree to all its
children. Each child then passes the selected rule to its
children until all nodes receive the selected rule for firing.
The communication network for the flow of information is
designed as 2 spanning tree. The reason for this type of
tree is becaus? it preserves nearest neighboi connections
and :he height of the tree is the logarithm base 2 of p
uhere p is the number of PES. A node only communicates
wit\ other nodes a distance of one away and the length of
a path from the bottom of the tree to the top is the dimen-
sion of the cube.

The oa!y design aspect remaining is the method-
ology of placing rules of the RAV production system com-
ponents on the parallel system's PES. The first design to
place the rules on the PES, decomposed the rules by com-

RAV Components

PES VCES

Autopilot Airwork
Commnav Airwork-New
Departures Autopilot
Hold-Arc Elevation
Ir: tercepts Heading
Intercepts-New Speedbrake
Landings Throttle
Mission
Recover
Takeoffs
Targrts
Targe t-All

Figure 3. RAV Components.

1. Initialize: Place a copy of the simple inference engine
on each PE. Place a copy of WM on each PE. Place a

subset of the PM on each PE.

2. Repeat until done;

3 . Match and select on each PE.

4 . Report selection up tree.

5 . Overall selection made at root node.

6 . Broadcast WM change to all PES.

7. end repeat;

Figure 4 . Parallel Inference Engine Algorithm.

ponent on the different PES. This was unsatisfactory since
this produced an uneven load balance. Therefore, a more
appropriate decomposition of the rules was to equally dis-
tribute the rules to the various PES (Figure 6) .

Low-Level Design & Implementation

The parallel inference engine was implemented
in CCLISP on the iPSC Hypercube. Since the serial infer-
ence engine was implemented on the TI Explorer using
Common Lisp the changes needed due to language differ-
ences were minimal. CCLISP (Broekhuysen, 1987b) was
not as extensive as Common Lisp on the TI Explorer (Ex-
plorer, 1985). For example, CCLISP did not support CAD-
DDR, but this was easily changed. The language issues
simply did not provide a major obstacle. There was, how-
ever, major effort involved in implementing a parallel in-
ference engine. This centered around the communication
betbveen nodes.

The parallel design of the inference engine re-
quired that the selected rule frcm all the nodes be col-
lected a t one node for the final selection, and then that
selection needs to be passed to all the other nodes. This is
accomplished with a spanning tree.

182 ORIGINAL PAGE IS
OF POOR QUALITY

Figure 5 . Spanning Tree Connections.
(Brandenburg and Scoit, 1986).

n Inference Engine

I Figure 6 . Rule Distribution. I

The algorithms for determining the parent and
children nodes of the tree dependencies uses a logical “or”
of the binary node numbers. This was difficL!: tL‘ imple-
ment in LISP, so a tatie look-up was used. This proved to
be very simply and efficient, but somewhat inflexible since
only node zero can be used as the root node.

The message passing within CCLiSP presented
some problems. There were several ways to pass mes-
sages. They ranged from low level message passing to high
level fast loading (FASL) node streams. The low level
message passing required that the length of the message
length be known. This proved to be a major limitation,
given that the messages to be passed would be variable
length rules. Therefore, the high level FASL node streams
were selected for their abstraction. These streams did pro-
vide a problem. There was no defined way to d:, a receive-
lvait. This allows a process to enter receive m c k cnti! 9
message is received. This process is very convenis t for
synchronizing nodes. This functior. k d to be bui!: s k : g 2
loop doing repeated receives until a message was receiyea
from another node. One other note concerning this proc-
ess. The documented function ’listen’ was not imple-
mented (Broekhuysen, 1987b). This would have provided a
method to test the message buffer for an incoming mes-
sage without actually doing a read.

The changes to the actual serial inference en-
pine \Yere small and confined to a small number of mod-
ules. The first module had to be changed to provide the
proper termination test. This is important to insure that the
individual nodes terminated only when no overall rule was
available, not just when the node found no matches. The
other module had to be changed to incorporate the com-
munications with the other nodes. Severa! other routines
ivere needed to assist this latter module to makc the com-
mu ti ica t ion.

The RAV system consisted of the original com-
ponents of the W.V expert system designed by TI. In its
original form i t consisted of a series of plans, needs, and
schemata which was a higher level abstraction than the
ART rules (McNulty, 1987). The plans and needs were
then “compiled” into ART rules for execution using soft-
\Yare developed by TI (Lystad, 1987). The only way to get
the schemata and rules from the RAV Plans m d Needs
\vas to compile them into files rather than into the ART
system. From there, the rules and schemata ar? then trans-
formed into a format that the serial and eventually the
parallel inference engine could accept. This transformation
was partially automated with a routine and further trans-
formed by hand to come up with the final format compat-
ible with the implemented inference engine. The total
translation was not done programmatically due to the com-
plexity of the software involved to parse and recggnize the
various ART syntax forms.

Experiinental Analysis of Results

The only test suite available was a demcrstra-
tion developed by TI midway through the development of
the system. In fact, the expert system used in this study
was not complete and was only a demonstration prototype
(Graham, 1987). This demonstration was considerably
lengthy and required the perfect execution of all the rules
and implementation of all associated ART functionality.
The alternative \vas to develop small prearranged sets of
facts that would trigger a subset of rules. This was the
preferable choice since the inference engine could not deal
with all the rule formats in their entirety. The complete
demonstration was not used, therefore a full comparison
of the systems could not be done.

The code and expert system for the parallel
RAV system was transported to the iPSC Hypercube from
the TI Explorer to a microVAX to a VAX across the DE-
feme Data Network (DDN) to the AFIT VAX and fically
to the iPSC Hypercube (Shakley, 1987a). This was perhaps
the most “trying” of the problems associated with this
\vhole implementation. This was because of the many ma-
chines that had to be traversed to get the code from the TI
Explorer tc the iPSC. This was only done after the tape-
to-tape transfer failed due to a mismatch in tape-formats.

The code was ana!yzed for its effectiveness and
correctness by comparing its execution with that of the
ART system. The code peyfxms slowly compared to sys-
tems like ART which runs at between 2-30 rules per sec-
ond (Gupta, 1986). On the Explorer, the inference engine
plods along Et about one cycle every 30 seconds or 2 rules
per minute. This is with the smaller rule base. With the
larger rule base, the system runs one cycle every 11 3 sec-
onds. On the iPSC Hypercube, the serial system runs at
one cycle ir, about 11 seconds with the smaller database
and in about 79 secmbs with h e larger database. This
situation involves two phenomena that need explanation.
First, why does 60 extra rules slow the process down so
much? The reason for this is in the format of these rules.
They are rules that have a variable binding on the schema
name. This means they must go through the list of schema
names looking for a match. These rules can not take ad-

183

vantage of the indexing created by the frames. This is a
process net handled well by the inference engine. Second,
ivhy does the TI Explorer go slower than the iPSC Hyper-
cube? The surface appearance is that the Common Lisp
on the Explorer is much more extensive than that on the
iPSC Hypercube. These would create more overhead on
the Explorer and allow the hypercube to process faster.

The speedups are far less than linear (Figure 7).

10
S 8
P
E 6

D
u 2

E 4

P o

I
Data Set 21 r Data Set 1
-I

1 5 10 15 20 25 30 35 40

Number of Nodes

14

P 10
s 121

0 1 2 3 4 5 6

Dimension

Figure 7. Speedup Graphs.

The speedups taper off with the dimension of th? cube.
The select time on some of the nodes exceeds the match
time on the node. In some instances, the select time far
exceeds the match time. There are tvv explanations for
this phenomena. The first is that the problem size is too
small for the higher dimension cube. This can be seen
from the first data set. On the higher dimension cube, the
match time is less than the select time for one series of
communication. The result is a much longer cycle than
nhat would be expected from a linear speedup. The sec-
ond cause for this slowdown is poor load balancing. Each
node has an equal number of ru!es and each rule gets
checked for a match on each cycle. The reason the load is
imbalanced is due to the compositiorl of the individual
rules. The rules have different numbers oi clauses that
causes each rule to have a variable length match time.
Also, the order of the ciauses creates different match
times. Even though a rule may have a long list of clauses
to match, if the first one fails, then the rule matches
quickly. Finally, the different types of matches take vary-
ing lengths of time depending on the format of the clause.
A match involving a schema variable match takes much
longer than a simple slot match.

Theoretical Analysis (Shakley, ls87b)

The conipatational complexity of a production
system can be divided into several compor,ents. These cor-
respond to :he match, select, and act phases. The last com-
ponent’s (act) comptitational complexity is easiest to ana-
lyze. During the act phase, one rule has been selected and

the clauses of the consequent are either added to or re-
tracted from the fact database. Although, it depends on the
data structure of the facts, i t is a polynomial operation. In
most cases, the comp!exity is either constant or linear.
This \vould occur with any type of ipdexing ai linked list
data structcrc of facts. The computational ccrnplexity of
the other t\\co cxiponents is more difficult to analyze and
in fact depends o r the tl-pes of clauses used within the
rules.

A set of parameters is needed to discuss the
computatio:vl complexity of the productior system. These
parameters ?re found in Figure 8.

nR - Number of Ru;*?s
nF - Sumber of Fact5
IC - Maximum length G L z .ule clause
nA - number of antecedant clauses
nC - number of consequent clauses
nV -number of variables

Figure 8. Production System Fararneters

The first type of production system considered
is one with only constant terms in the rule clauses. The
initial observation about the system is that the fact data-
base is unordered. Therefore, the entire database must be
searched for each clause of each rule. The worst case time
complexity is then O(nR*nA*nF) for the match phase.
This complexity grows as the number and complexity of
rules grows and as the number of facts grows. In a
monotonic system, one in which only facts are added, not
retracted, this complexity grows as the system operates
adding more facts.

The select phase can take two forms. In the
first, the select phase stops whenever the first rule is
matched successfully. The second form waits until all the
rules have been matched, and then selects one rule from
all the successfully matched rules. In the worst case, the
matcher matches every rule’s clauses to every fact. There-
fore, the two forms of the select only affect the complexity
of the select. In the first form, the complexity is constant
and in the other i t is O(nR).

The first form has some disadvantages that
make it unattractive. By taking the first rule that matches
successfully, the production system is creating an implied
order of the rules. This creates preconditions to the subse-
quent rules. For a rule to be selected, not only does the
condition of the rule have to be meet, but also the condi-
tions of the previous rules can not be meet. Therefore, the
second select form creates a certain sense of “random-
ness’’ to select process. Therefore the overall complexity
of a production system ivith constant clauses is
O(nR*nA*nF) for one match, select, act cycle. It should be
noted that the entire production system is NP-complete
and if retractions of facts are allowed the production sys-
tem is not even guaranteed to terminate.

The second type of rule clause considered is one
in which variables are allowed. This type of clause has the
potential to match with many different facts. The match
complexity of these types of clauses ?.re th: zame as in the
previous case: O(nR*nA* nF). However, the select phase is
more complicated. There is a svccmfully matched rule
for each instantiation of each variable. Therefore, the se-
lect phase has a worst case time complexity of
O(nR*nV*nF). Where the number of variables equal the

184

ORIGINAL PAGE IS
OF POOR QUALITY

number of atomic elements Lvithin the clause then nV
equals nA times the IC. l l i is produces a complexity of
O(nR*nA*nF*IC). Both the preceding cases assume that
there is no order to facts. Also, there have been no simpli-
fying assumptions about the structure of the database.

The first step in simplifying the fact data struc-
ture is to provide a frame structure for the facts, an Ob-
ject-Attribute-Value (OAV) structure. This provides a way
of ordering the facts. In this way, the value can be ac-
cessed by indexing into the fact data structure using the
object and the attribute. A clause in a rule can now be
matched in constant time, O(1). Therefore, the time to
match is reduced to O(nR*nA). The time to select is still
O(nR) where no variables are associated with the clauses.
If a variable is associated Ivith the value within a clause.
then the time to match is the same. However, the time to
select is O(nR*nV) or O(nR*nA) since there is only one
variable per clause. The problem arises if variables are
introduced into either the Object or Attribute fields of the
clause. If both all of the OAV are variables then the sys-
tem degenerates into the case with no ordering of the
facts. The time complexity for the system is
O(nR*nA*nF*lC). The ogly case left is if two of the three
are variables. The match time O(nR*nF*nA) in the worst
case. Each rule must be matched with each fact for each
clause in the rule. In conclusion, this simplifying feature
alone only save time when used with only one variable
item per clause and that item must be the value of the
OAV. It should be noted that if the variable is in another
field, then the indexing scheme could be changed to ac-
count for the change in the clause structure.

From the previous example, it can be seen that
better performance can be achieved if the facts can be
organized into frame structures that allow for the indexing
of facts. This benefit, however, only allows for a variable
in the value field. Also, on each cycle this entire match,
select, act cycle has to be reaccomplished. A state saving
feature within the production system could reduce the time
for all but the first match, select, act cycle. This data struc-
ture stores from cycle to cycle the rules that had previ-
ously matched. Then only those rules that were affected by
the selected rule would need be considered on each pass.
Therefore, each fact needs an associated list of affected
rules. Then, when this fact was changed via a rule only the
affected rules would need to be considered for matching.
In the worst case, every rule affects every other rule creat-
ing the situations in the previous cases with the appropri-
ate time complexities. In this case, this simplification has
no improvement. However, rare is the system where every
rule affects every other rule. The reduction is actually
within the coefficient of the equation. The time complexity
for the OAV case is O(nR*nA). The coefficient of this
complexity IS one. With the above simplification, each sub-
sequent cycle is (l/aR)*nR*nA where aR is the number of
affected rules. This method also reduces the cycle time for
the multiple variable case of OAV. In the original case, the
time complexity was O(nR*nA*nF) for each cycle of the
production system. This still holds for the first cycle, but
every cycle afterwards is considerably less. In fact, each
cycle is O((l/aR) *nR*nA). This is true even for the rules
with multiple variable clauses, since a rule can only affect
a limited number of instantiations of a multiple variable
clause rule. Only when a rule affects all the instantiations
of a multiple variable clause rule is the complexity of that
following cycle increased to O(nR*nA*nF). The state sav-
ing technique does increase the space complexity of the
system. Each fact has to have a list of pointers to each rule
that is affected by the fact

What does this all mean in picking an inference
data structure and strategy? The answer lies in the prob-
lem domain. It revolves around the characteristics of the

system: the number and complexity (number of antece-
dents) of the rules, and the number and format of the
facts. I f the format of the facts is “random” in that no
ordering can occur, then the system is doomed to poor
performance. If on the other hand the facts can be organ-
ized into frames or some form of OAV where the value is
the only variable field. Then an order of magnitude im-
prevenient can be obtained. I f variability is allowed in
other fields of the frame, ther. poor performance is reintro-
duced. If a state saving feature is introduced, then in the
average case the performance can be improved on all, but
the first cycle of the production system. This state saving
feature, however, does require additionzl space. Therefore,
a mixture of inferencing techniques could be the “best”
solution.

A study consisted of analyzing the various types
of inferencing with the different types of clauses in the
Robotic Air Vehicle Expert System. The expert consists of
over 300 rules and over 160 frames with approximately 10
slots per frame. The system was originally implemented
with an unordered list of facts. The system performed
“well” with a subset of rules and facts that did not exceed
approximately 10 rules and 50 facts. That is rules that con-
tained only one variable item per clause. One cycle took
approximately 1-2 minutes. The system was then up-
graded to a frame based data structure [In the first case,
each slot was transformed into a single fact and treated as
unordered]. This system performed “well” with all rules
and frames. The system completed a cycle in approxi-
mately 30 seconds. However, this system had problems
with clauses that had multiple variable items. These rules
took approximately 1 minute per rule. The cycle time was
never calculated due to the extremely long time per rule. It
should be noted that the rules of this type were limited in
numbers and were less than 50. The next step was to cre-
ate a state saving system. This system only matched and
considered the rules that \Yere affected by the previously
selected rule. This required that the rules be compiled into
the data structure of the facts, so that each fact could point
to.the rules that were affected by the modification of that
fact. The first cycle of this system still took approximately
30 seconds to complete without the multiple variable
items. Then each subsequent cycle took approximately
5-10 seconds thereafter. The sequence of different in-
ferencing techniques confirmed to the prediction of the
computational complexity analysis. Further, work is still
desirable to provide an even broader base of sample data.
This would help to confirm even further the time complex-
i ty analysis.

Conclusions

This research study investigated the feasibility
of parallel architectures to improve the performance of po-
tential real-time software. In particular, the feasibility of
parallel architectures to improve the NP-complete problem
of state space search in the form of a production system.
The RAV expert system is an example of such a system.

The speedup results from the inference engine
were disappointing, however, it did show that speedups
were possible. The speedups suffered from a combination
of two factors. The first was a relatively small problem
compared to the communications overhead. It was ob-
served that for a system with greater than eight nodes, the
time to perform the match cycle on a node was less than
the time to communicate with the other nodes. Also, the
speedup suffered due to a load imbalance. The method for
decomposing the rules proved to be unsatisfactory. The
method did not take into account the variability among
rules. Real-time performance was not achieved as was an-
ticipated. With improvements in the inference engine and

185

load baLincc. signil i ~ i l t i t improvements ctiiild be possible.
The pcrtoriiianc‘e of tlic il’SC IIypercube i n

cornprison to the 1‘1 E\plorcr fzirl! pi.sitively . The
il’SC t I\!~erciibr: performed ahoiit :\;ice ; I - :;I!? as the TI
Explorer on the inference engine. Ho\ve:.er, :his seems to
be due to the sicil)licity of the LISP on the iPCc‘ Myper-
cube.

The i!?ference engine de\eloped in this study
p r r f c r m d ;idrLil.;,>telv. The iiiferen::e engine fircd a rule
a’oc~i: snce every 30 seconds or at a rate of j u x ;Ii?der 2 a
n1;nii:c on the TI E\plorer. The engine fired n rule one
e\ery 1 F seconds on a single node of the iPSC Hvpercube
or just o\’er 3 rules a minute.

Recoinmendat ions

This study probably raises more questions than
it ansivers. Beginning with the serial inference engine. An
area of study \vould be the perforniance of in.” eerence en-
cines. The characteristics of inferewe ecgines and their
ierforniance \vould have been invalua!,ie ta this research.
hlore ivork could be done to improve the inference wgine
in this study. The inference engiqe in this stady cou!d be
redone using the Rete algorithm. The ben~nmzrking of in-
ference engines and inference engine techniques would be
valuable. Also, with regard to inference engines, this study
starteo tc automace and slrnulate the flmckxziity of ART
on the iPSC Fypercube. The furthe- deve!opment of the
process could provide a valuable tocl for expert system
development. The expert system could lx developed on
the TI Explorer using ART and transferred to the iPSC
Hypercube for performance studies.

There needs to be better ways to characterize
the \vork needed to match a rule so that more effective
iPSC Y y y x i ? b r ! c r d b;?l;rnrirle can be performed (Bailor
and Seward, 19i:S) This wquld depend on the structure of
the inference engine, th.: strwtliw L$ the rules and the

tion GG data. An ?:tomiled x??r.\<: skolAd t e ckveloped to
hand12 thic Inxi balarmnq. This ;ictomzted methCil could
be sed fcr. adaptivf: time-bxzd b a d balhncing. In addi-
tion, tempo1 31 &pendency meckenisrn w?c! ke used to
achieve this adaptive load balance.

Ihe current study used a complete set of facts
on each node and only one rule waz fir23 r! R time across
the entire network. The RAV software showed promise for
further levels of concurrency. The structure of the RAV
expert system shows great promise in firing several rules
in one cycle of the inference engine. This could provide a
significant time and space savings. The RAV expert sys-
tem is to operate in a real-time environment. This means
a varying time requirement for operations. The implemen-
tation of an automatic way +C d:tnmically iccrease the
speed of a computztion through 2. t(i~t?..-Levd of k-nowledge
and ccntrol would be valuable t? ah5 desigr. af real-time
softwzre.

I structure cf * l ~ f x t s f s : efficient paitltioning ;.nd ditribu-

I Bibliography
Aho, Alfreo T { . . John E Hpcrofr-, and Jeffrey D. Ullman.

Tne Cesign and Analysi; qf C’oxptii?r Algorithms.
Reading, MA: Addison-Wesley Publishing Corn
pany, 1974

&$lor, Paul D. . . id Valter D. Seward. “ A Generalized
Str2t-Cy f?r Fsrtitioning and Distributing Data
in 9 2 : ~ Zarailei Algorithms,” Unpublished re
port. School of Engineering, Air Force Institute
of Tecbnclogy (AU), Wright-Patterson AFB,
OH, June iS38.

[larr. ,-\\roii and Etl\vard A. Feigenbaum. The Hundbook o/
Artificitrl Intclligence, Voliinie 1. Standford, CA:
I leurisTech Press, 1981.

Communication Trees and Grids into bfypercubes.
iPSC Technical Report Nc 1. Intel Scientific
Computers, Beaverton, OR, 1986.

cr’s Guide Vcrsion 1.1. Cambridge, MA: Gold
Hili Computers, 19S7a.

i !, Cambridge, MA: Cold Hill Computers,
19€7b.

Ikinclenburg, Joseph E. and David S. Scot:. Embeddings o/

Droekhuysen, hlartin, editor. Concwrcnt Common Lisp Us

- -___ . Concrrrrent Coninion Lisp Reference Maniial Version

E.\-plorcr. Lisp Reference (2?4320!-0001). Te<as !iistru
ments Incorporated, Austin, TX, june 1985.

Fischler, hlartin A. and Oscar Firscheir, !ntelligence: The
Eye, the Brain, and the Conp:iter. Reading, MA:
Addison-Wesley Publishing Company, 1987.

Gupta, Anoop. Parallelisnl in Production Systems. PhD dis
sertation. Carnegie-hlellon University, Pitts
burgh, PA, March 1986.

Execution of Rules in Production System Pro
grams,” Prccecdings of the International Confer
ence on Parallel Processing 568-575 (1985).

Kornfeld, William A. “The Use of Parallelism to Imple
ment a Heuristic Search,” Proceedings of the 7th
International Joint Conference on Artbficial Intelli
gcnce 575-580 (1981).

Ljstad, Garr S. “The TI Dallas Inference Engine (TIDE)
Knowledge Representation Sys tern,” Proceeding
cf the IEEE National Aerospace and Electronics
Conference 1348-1 351 (May 1987).

McNulty, C’hrkta. “Knoivledge Engineering for Piloting
.r.=.pLrt System,” Proceedings of the IEEE National
Xzrospace and Electronics Conference 1326-1 330
(May 1987).

Nilsson, N. J. Principles of Artificial Intelligence. Palo Alto,
CA: Tioga Publishing Company, 1980.

Norman, Capt Douglas 0. Reasoning in Real-Time for the
Pilot Associate: An Examination of Model Based
Approach to Reasoning in Real-Time for Artificial
Intelligence System; u i r i g 2 Distributed Architec
ture, MS Thesis AFlT/GC,3ENG/85D-12.
S~hi)o l of Engineering, Air Force Tnstitute of
Txhnology (AU). Wright-Patterscn AFB, OH,
Zecember 1985.

T.chniques for Real-Time Applications, MS Thesis
M!T/GCS/ENG/8 7D-24. School of Engineering,

WLight-Patterson AFB, OH, December 1987a.

!:shed r.?por:. School of Engineering, Air Force
!~t! :~i :~, a: ‘rchnoloqy (AU), Wright-Patterson
.?I ?, SH-, Pererct~er 1387’;.

\\’ard, Paul T. and Stephen J. Melisv. S;riic!u;ed Develop
nient for Rcrr!-Time Sy~~cm: ‘/c;!ume 1: Introduc
t inn and Tools. Ne..\. Yc,:.%, P T : ’fourdon Press,
1985.

Ishida, Toru and Salvatore J. Stolfo. “Towards the Parallel

Shakley, F m a l d J. Parallel Artificial Inte1ligeE.e Search

Force Institute of Technology (AU),

----- . Order-of Anclysis of Production Systems. Unpub

186 ORIGINAL PAGE IS
OF POOR QUALITY

