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Abstract 

Expert systems can be used to govern the intelli- 
cent control of vehicles, for example the Robotic Air Vehi- 
:le (RAV) which is currently a research project a t  the Air 
Force Avionics Laboratory. Due to the nature of the RAV 
system the associated expert system needs to perform in a 
demanding real-time environment. The use of a parallel 
processing capability to support the associated expert sys- 
tem’s computational requirement is critical in this applica- 
tion. Thus, algorithms for parallel real-time expert sys- 
tems must be designed, analyzed and synthesized. The de- 
sign process incorporates a consideration of the rule-set/ 
face-set size along with representation issues. These is- 
sues are looked at  in reference to information movement 
and various inference mechanisms. Also, examined is the 
process involved with transporting the RAV expert system 
functions from the TI Explorer, where they are imple- 
mented in the Automated Reasoning Tool (ART), to the 
iPSC Hypercube, where the system is synthesized using 
Concurrent Common LISP (CCLISP). The transformation 
process for the ART to CCLISP conversion is described. 
The performance characteristics of the parallel implemen- 
tation of these expert systems on the iPSC Hypercube are 
compared to the TI Explorer implementation. 

Introduction 

Artificial Intelligence (AI) is concerned with the 
designing of computer systems tha t  exhibit intelligent 
characteristics of human behavior. These methods are 
used irhen other direct approaches start to deteriorate due 
to a lack of generality of solution. Examples of such be- 
ha\.ior include language understanding, reasoning, and 
problem solving (Barr and Feigenbaum, 1981). These 
problems are  studied in AI by using a computational 
model. Many computational models exist for AI problems. 
A computational model is a formalism used to describe a 
method of solution. These models present different ways 
to represent the problem domain. Examples of these mod- 
els include production systems, wniantic networks, frames, 
and logic (Fischler and Firschcin. 1987). 

A specializaed area of AI called expert systems 
de~.elopment has had considerable success with a multi- 
tude of applications. Many applications use production 
s)’stems or rule-based system structures employing com- 
mercial expert system shells. These structures apply heu- 
ristics to solving the problem along with algorithmic meth- 
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ods. The success of these expert systems is directly related 
to the quantity and quality of the associated knowledge 
base (rules and facts). 

Real-time applications exist that involve “hard” 
problems that currently defy generic algorithmic ap- 
proaches. Thus, problem solving paradigms from Artificial 
Intelligence (AI) are being applied to these applications 
using expert system structures. Due to the computational 
complexity, however, these approaches have poor com- 
puter performance characteristics (Gupta, 1986). Parallel 
processing seems to offer a possibility to improve expert 
system computational performance for hard real-time 
problems. 

Parallel processing is the use of more than one 
processing element to compute the solution to a problem. 
By using more processing elements, it is hoped that the 
time to solve the problem is reduced over the time to solve 
the problem on a single processor. There are several ways 
to achieve performance improvements in computer sys- 
tems besides parallel architectures: faster hardware tech- 
nology, improved serial architectures, better algorithms 
and code optimization. There are several reasons, how- 
ever, for looking toward parallel architectures. First, paral- 
lel architectures can evolve as fast as  hardware technolo- 
gies become available. Second, many problems associated 
with AI are computationally “hard” (exponential time-or- 
der) or NP-complete. If a problem is NP-complete, this 
implies that time-order improvements in solution algo- 
rithms are unlikely due to many years of computational 
studies (Aho, Hopcroft, and Ullman, 1974). It should be 
noted that parallelism can not produce olynomial time 
solutions to exponential time problems &orman, 1985). 
But, it is possible to improve the constant term of the time 
complexity. Also, the exponential time bound is often 
times worst case. In AI problems, the use of heuristics can 
reduce the time complexity of state space searches in spe- 
cific applications. Third, some problems seem to lend 
themselves to parallel solutions because the problems de- 
compose easily into independent, computationally equiva- 
lent pieces. Production systems, for  example, seem to fall 
into this category because of the large number of rules that 
must be matched during each production cycle. 

This paper discusses real-time processing with 
application to the Robotic Air Vehicle (RAV) expert sys- 
tems. Consideration is given to parallel search algorithms 
and associated knowledge-based structures in the design 
and implementation of a parallel processing expert sys- 
tem. Experimental and theoretical results are presented. 

Real-Time Processing 

There are  several important issues in the analy- 
sis and design of real-time computer applications. One of 
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the important characteristics is the critical nature of the 
system execution speed in reference to external events. 
This can be viewed in terms of the response time of the 
system to a particular input. For a real-time system, “the 
time needed to make a calculation has to be less than the 
time from when the need for the calculation is recognized 
until the time when the response is needed to take action” 
(Norman, 1985). This can vary with the system, but the 
time is generally relatively small. Relatively small is defi- 
nitely less than a second and often in the milliseconds or  
less (Ward and Mellor, 1985). 

Another critical characteristic is limited mem- 
ory capacity. Real-time softivare typically needs to run in 
a n  environment where the size of the program can become 
a problem. A third consideration is the correctness and 
integrity of real-time software. The system needs to run 
correctly and without failure a high percentage of the time 
(h’ard and Mellor, 1985). These represent the most critical 
issues dealing with real-time systems. In addition, real- 
time expert systems must also focus on efficient memory 
interfacing, integration with specific application software 
processes, efficient inferencing mechanisms, and external 
temporal commands and events. 

The problem with a real-time system on a serial 
architecture is that the execution time and space require- 
ments are relatively fixed for a given operation. A desir- 
able feature of a real-time system would be a variable 
time and space performance based on the need. With par- 
allel architectures this could be possible. If a problem 
needed a faster solution based on the time requirement, 
then more processors could be added to produce the ap- 
propriate speedup. This could only be done if the speedup 
were predictable. 

The need for production systems lvithin real- 
time systems is growing. With parallel processing of pro- 
duction systems, the execution speed is increasing. For 
real-time systems this speedup needs to be predictable, so 
that at  any given moment more processors can be brought 
to bear on a problem to decrease the coefficient of the 
time complexity of the solution. 

An example of a real-time application, which is 
a current research project at  the Air Force Avionics Labo- 
ratory, is the Robotic Air Vehicle (RAV). It is an  air vehi- 
cle with the capability of autonomous flight operation. 
This vehicle needs the capability for the “intelligent” con- 
trol of an  air vehicle, the capability to plan and replan 
missions, and the capability to access flight data on vari- 
ous geographical locations (airbases, airports, cities, etc). 
By “intelligent” it is meant that the system can react to 
conditions rather than f ly  on a rigid preprogrammed flight 
path. A diagram of the system can be seen in Figure 1. 
This system is a n  example of hierarchical control which 
may permit real-time performance due to its decomposi- 
tional structure. This is also known as meta-level expert 
s)’steni organization. Thus, the course granularity of the 
niultple expert system frameivork provides yet another 
source of parallelism. 

This study focuses on the “intelligent” flight 
control components of the system. This component was 
selected for the feasibility study due to its reliance on pro- 
duction systems and its maturity in relation to the entire 
research project (Shakley, 1987a). The control of the vehi- 
cle can be thought of as a search through a finite state- 
space over a time period of the vehicle’s operation. The 
problem of intelligent control of a robot is a control-type 
NP-complete problem that is best suited to be solved by a 
production system in real-time. Therefore, this system 
makes a n  excellent tool for the study of parallel AI search 
techniques for real-time applications. 

The RAV system is an  example of a n  intelligent 
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Figure 1. RAV System Diagram. 
(McNulty, 1987: 1327). 

real-time robotic control system implemented using a n  ex- 
pert or production system (McNulty, 1987). The purpose 
of this investigation is to try to increase the performance 
of the expert system by reanalysis, redesign and 
reimplementation of the system on appropriate parallel ar- 
chitectures. The hypothesis of this study is that the per- 
formance of the RAV expert system can be improved in a 
predictable and linear manner. 

This research is also intended to be a feasibility 
study of the various issues involved with implementing a 
parallel expert system. These include implementing an  ex- 
pert system written in Automated Reasoning Tool (ART) 
on a TI Explorer and on the iPSC Hypercube using Con- 
current Common LISP (CCLISP). ART is a knowledge en- 
rineering language used in the development of expert sys- 
;ems. CCLISP is a dialect of Gold’s Common LISP that 
has been enhanced to allow for message passing on the 
iPSC Hypercube. LISP was chosen since it was available 
on both the TI Explorer and iPSC Hypercube making the 
transportation of the code from one machine to the other 
easier. This study is most interested in examining the exe- 
cution speed of real-time systems that use production sys- 
tem structures. Achieving execution “speedup” rests on 
the use of parallel algorithms. The results are not intended 
to specify final real-time execution times, but rather pre- 
sent an analysis of speedup possibility due to parallel proc- 
essing of production systems. 

The current knolvledge base for the RAV has 
been obtained from TI through the Air Force Avionics 
Laboratory. This includes a basic demonstration routine. 
Portions of this demonstration are used to exercise the sys- 
tem. The control for the expert system is developed using 
the basic principles of production system control for an 
inference engine. The current RAV software uses the 
Automated Reasoning Tool (ART) as the inference engine 
(PrlcNulty, 1987). ART can not be used with the parallel 
en\.ironnient since i t  is not available for the iPSC Hyper- 
cube. The inference engine is implemented on the TI Ex- 
plorer Lisp machines where it can be tested against the 
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knoivledge base and the rule execution timing results can 
be compared to the ART ir.ference engine. The parallel 
expert systcni i s  impleme!lted 03 the Intel iPSC Hypercube 
with up to 31 p:oces:ing t=.Icmcr.ts ( E s )  to explore larp,er 
degrees of paralklisni. 

Parallel Search 

‘The advent of parallel computer architectures 
have address-d tiiz possibility of faster execution of many 
computer applications. Paral!el architectures have brought 
about new proS!err.s as well as the old in terms of software 
analysis and ciesign. For an  application to be implemented 
on parallel architecture, a way must be found to decom- 
pose the prabkm into component parts. Several important 
issues are concerned with this decomposition. First, the 
work must be distributed as evenly as possible for an  equi- 
table load balancing. Second, the communication between 
the pieces need: to be kept to a minimum. This is to re- 
duce the cominciication overhead associated with the vari- 
ous processore communicating with each other. However, 
when this communication occurs, the processors need to 
be synchronized with respect to each other. This is to pre- 
vent problems with updating shared variables that can pro- 
duce erroneous or  unpredictable results. Proper synchroni- 
zation also prevents the occurrence of deadlock between 
processor: (Ishida and Stolfo, 1985). 

Speedup is the most common performance 
measvrement (metric) in parallel computing. This is the 
ratio of the run time of the concurrent software running on 
n nodes over the the run time of the best serial solution. 
An application is said to be “perfectly parallel” or have a 
linear speedup if this ratio is n. Often the speedup ap- 
proaches the linear speedup, but does not reach it due to 
the communications overhead between the processing ele- 
ments (Gupta, 1986). Although rare, speedups have been 
observed greater than n. This is called super linear speedup. 
At first this seems to be absurd, but upon further study it 
does seem reasonable. Super linear speedup usually oc- 
curs when the application is so large on a serial system 
that certain overheads are incurred, but when placed on 
many processors none of the pieces is large enough to in- 
cur the same overhead. Thus super linear speedup is ob- 
served(Kornfeld, 1981). In addition, there is usually a 
point at which the addition of more processors does not 
improve the speedup (Gupta, 1986). 

Communications overhead is a large concern is 
parallel computing. Communication takes several forms. 
The first is the Lime to set the job up on the parallel system 
or  the time f3 distribute the work. The seccnd involves the 
time needed io collect the results of the jcb. The third is 
the communication needed between the processors during 
the running of the job. An important measiirement is the 
time a processor is communicating versus processing. This 
measurement along with the setup time and cleanup time 
gives a good indication of the overhead associated with the 
parallel process. 

Load balancing is another important criteria for 
parallel computing. This is the percentage of the total 
processor power that is used during the job. A perfect load 
balance would be one in which all the processors are busy 
all the time. This perfect balance is im?sossible due to two 
factors. First, &pending on  the connect.ior. network fqr the 
processors, setup and cleanup processer: Frovidn f3r times 
when not a!! the processors are busy. Second, ’ihtre is usu- 
ally some frar t im of the job that is inhertiltly sc~ial. This 
part of the job has to be performed on one yoczvsor while 
the other prxessors  are idle. These two factor; r re  innate 
to the problem. Poor Icad ba!e?+ig C P G  z!:o be designed 
into a problem due to ‘F imprope. drcocposition. This bal- 
ancing can occur in two ways, either static or  dynamic. 

D) namic load balancing i \  ail;ipting thc load to the current 
state of processing. This is a dit t icult task cluc to the addi- 
tion o\crliead incurred a d  the mcta-levcl control needed. 

Several ct!ic,r pei.forniance measurements are 
ncedecl to baseline ii prodiirtion system. These include 1 )  
the number of productions or  rules, 2) the number of 
\\.orking niemory elements or  facts, 3) the composition of 
the rules \vhich includes the number of clauses in the LHS 
and KHS of the rsle, and 4)  the average nLmber of rules 
eligible to be se!ectea 3n 2 +\.en cycle. Tkrse are but a 
few basic compr,r?-;n;s, c,ther characteristics der?*nd on the 
q’steni and iqrerence engine being examined. 

Since production systems are a type of search, 
parallel decolnposition techniques for search problems can 
be applied to production systems. So, production systems 
can be decomposed along the control functions like a 
branch-and-bound or i t  can be decomposed by its data. In 
the case of a production system the data can be thought of 
as t\vo parts (Figure 2). The first part is t k  facts or  the 
bvorking memory (WM). Although the wcrking memory 
can have several meanings in this context i t  reiers to the 
initial facts and axioms as well as the facts 8dded due to 
the firing of rules. The second part is the rules or the pro- 
duction memory (PM). These two parts are not always dis- 
tinct, but can overlap. For example, the result of a rule 
could be the addition of a new rule. The reasons for mak- 
ing the distinction in the types of data is that in some cases 
i t  is much easier to decompose the rules than it is to de- 
compose the facts. The latter requires C:?:a dependencies 
to be worked out while the former requires less restrictive 
decomposition considerations. 

As described earlier the concurrr ncy available 
in decomposing the functions is limited. This is Fe:lic*Aar 
true for production systems where o w  90% df the rime is 
spent in the match function (Gupta, 198f).  So th? main 
emphasis is placed on the decomposition of the data. The 
methods for implementing a production system tend to 
center around ways to decompose the rules (PM) and the 
facts (WM). This has lead to several algorithms to accom- 
plish this decomposition and their placement on separate 
processors. Examples include a Full Distribution of Rules, 
the Original DADO, Miranker’s TREAT, and Fine Grain 
RETE (Shakley, 1987a). These algorithms are generally a t  
the level where the underlying inference engine structure is 
unimportant. The methods are more concerned with the 
dependencies of the rules on each other and the facts 
(WM). The initial prototype knowledge structure consisted 
of a frame-based data structure of facts and a list struc- 
ture of rules. The impact of this selection is analyzed in a 
subsequent section. 
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Figure 2.  Production System Components. I 
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The main striictiir~' of the piloting conlrol is a 
Li!crcd series of t\vo expert s!steiiis. Eicli ris::ei-t system 
1i;i s sc \.e ra i 50 mpo lie ii t s n rg n ii i zcd by f i i  nc t i o n3 I i ty (Fig LI re 
3 ) .  These crniponents provide a source of data independ- 
ence of rille, and \vrir!-.ing memory. The syste.71 contains 
311 "average cize" production ami \\orking memory. The 
s!-steni Cont3i:iS over 350 rules. The working memory con- 
sists of schemata uhich are frame-like structures. Each 
frame contains slots that hold the indi-ridual facts. There 
are approsima'ely 160 schemata. The average number of 
slots per frame is approximately ten, therefore the total 
number of facts i s  cbout five times the number of rules. 

The requirement for a n  inference engine is to 
perform the basic production system cycle: match, select, 
and act. [This cycle is embodies the resolution process 
(Kilsson, 19SO).] This inference engine softivare should be 
able to match the rules of the RAV expert system with the 
facts in \\orking memory. I t  should select one of these 
rules and add the results of the RHS of the selected rule to 
the \\orking memory. 

The current RAV system implemented on the TI 
Explorer uses the Automated Reasoning Tool (ART) for 
this process. The lack of availability of ART on the iPSC 
Hypercube reqiiirer that ancther control procers imple- 
mentation be rievelqped. However, the new irnpl, -menta- 
tion should be cxnpatible nith the ART rules and working 
memory structure. 

ART is a very complex and extensive tool. To 
try to rebuild the generic ART system on the hypercube 
would require a prohibitive development time. Therefore, 
simplicity of design is a critical component. The new con- 
trol process should only provide the functionality of ART 
that the RAV requires. 

The previous designed inference engine was 
modified for parallel implementation. The algorithm for 
the parallel design is presented in Figure 4. The actual 
change in the design to the seria! inference cngine is 
small. The changes occur in the select and act phase. Each 
processing element (PE) or node of the parsllel design 
needs to report the rule selection to the system. The PE 
then has to coordinate with the system in order to act to 
update the working memory. Three alternative.: seem ap- 
propriate: a star, a binary tree, or  a ;panning tree. With 
the star, one node acts as the central point with all other 
nodes communicating with that node. This would require 
longer than nearest neighbor communication or one node 
hops. The binary tree can be implemented with nearest 
neighbor communication, but only on higher dimension 
cubes. The spanning tree (Figure 5 )  offers the appropriate 
functionality with nearest neighbor communication. A rule 
selected on node 14 would be sent ta node 6. At pode 6, 
this received rule would be added to the agenda and node 
6 would select a rule. This continues up the tree until node 
0 receives all the selected rules from its children. It then 
selects a n  overall rule and passes it down the tree to all its 
children. Each child then passes the selected rule to its 
children until all nodes receive the selected rule for firing. 
The communication network for the flow of information is 
designed as 2 spanning tree. The reason for this type of 
tree is becaus? it preserves nearest neighboi connections 
and :he height of the tree is the logarithm base 2 of p 
uhere p is the number of PES. A node only communicates 
wit\ other nodes a distance of one away and the length of 
a path from the bottom of the tree to the top is the dimen- 
sion of the cube. 

The oa!y design aspect remaining is the method- 
ology of placing rules of the RAV production system com- 
ponents on the parallel system's PES. The first design to 
place the rules on the PES, decomposed the rules by com- 

RAV Components 

PES VCES 

Autopilot Airwork 
Commnav Airwork-New 
Departures Autopilot 
Hold-Arc Elevation 
Ir: tercepts Heading 
Intercepts-New Speedbrake 
Landings Throttle 
Mission 
Recover 
Takeoffs 
Targrts 
Targe t-All 

Figure 3. RAV Components. 

1. Initialize: Place a copy of the simple inference engine 
on each PE. Place a copy of WM on each PE. Place a 

subset of the PM on each PE. 

2.  Repeat until done; 

3 .  Match and select on each PE. 

4 .  Report selection up tree. 

5 .  Overall selection made at  root node. 

6 .  Broadcast WM change to all PES. 

7. end repeat; 

Figure 4 .  Parallel Inference Engine Algorithm. 

ponent on the different PES. This was unsatisfactory since 
this produced an  uneven load balance. Therefore, a more 
appropriate decomposition of the rules was to equally dis- 
tribute the rules to the various PES (Figure 6) . 

Low-Level Design & Implementation 

The parallel inference engine was implemented 
in CCLISP on the iPSC Hypercube. Since the serial infer- 
ence engine was implemented on the TI Explorer using 
Common Lisp the changes needed due to language differ- 
ences were minimal. CCLISP (Broekhuysen, 1987b) was 
not as extensive as Common Lisp on the TI Explorer (Ex- 
plorer, 1985). For example, CCLISP did not support CAD- 
DDR, but this was easily changed. The language issues 
simply did not provide a major obstacle. There was, how- 
ever, major effort involved in implementing a parallel in- 
ference engine. This centered around the communication 
betbveen nodes. 

The parallel design of the inference engine re- 
quired that the selected rule frcm all the nodes be col- 
lected a t  one node for the final selection, and then that 
selection needs to be passed to all the other nodes. This is 
accomplished with a spanning tree. 
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Figure 5 .  Spanning Tree Connections. 
(Brandenburg and Scoit, 1986). 

n Inference Engine 

I Figure 6 .  Rule Distribution. I 

The algorithms for determining the parent and 
children nodes of the tree dependencies uses a logical “or” 
of the binary node numbers. This was difficL!: tL‘ imple- 
ment in LISP, so a tatie look-up was used. This proved to 
be very simply and efficient, but somewhat inflexible since 
only node zero can be used as the root node. 

The message passing within CCLiSP presented 
some problems. There were several ways to pass mes- 
sages. They ranged from low level message passing to high 
level fast loading (FASL) node streams. The low level 
message passing required that the length of the message 
length be known. This proved to be a major limitation, 
given that the messages to be passed would be variable 
length rules. Therefore, the high level FASL node streams 
were selected for their abstraction. These streams did pro- 
vide a problem. There was no defined way to d:, a receive- 
lvait. This allows a process to enter receive m c k  cnti! 9 
message is received. This process is very convenis t  for 
synchronizing nodes. This functior. k d  to be bui!: s k : g  2 
loop doing repeated receives until a message was receiyea 
from another node. One other note concerning this proc- 
ess. The documented function ’listen’ was not imple- 
mented (Broekhuysen, 1987b). This would have provided a 
method to test the message buffer for an incoming mes- 
sage without actually doing a read. 

The changes to the actual serial inference en- 
pine \Yere small and confined to a small number of mod- 
ules. The first module had to be changed to provide the 
proper termination test. This is important to insure that the 
individual nodes terminated only when no overall rule was 
available, not just when the node found no matches. The 
other module had to be changed to incorporate the com- 
munications with the other nodes. Severa! other routines 
ivere needed to assist this latter module to makc the com- 
mu ti ica t ion. 

The RAV system consisted of the original com- 
ponents of the W.V expert system designed by TI. In its 
original form i t  consisted of a series of plans, needs, and 
schemata which was a higher level abstraction than the 
ART rules (McNulty, 1987). The plans and needs were 
then “compiled” into ART rules for execution using soft- 
\Yare developed by TI (Lystad, 1987). The only way to get 
the schemata and rules from the RAV Plans m d  Needs 
\vas to compile them into files rather than into the ART 
system. From there, the rules and schemata ar? then trans- 
formed into a format that the serial and eventually the 
parallel inference engine could accept. This transformation 
was partially automated with a routine and further trans- 
formed by hand to come up with the final format compat- 
ible with the implemented inference engine. The total 
translation was not done programmatically due to the com- 
plexity of the software involved to parse and recggnize the 
various ART syntax forms. 

Experiinental Analysis of Results 

The only test suite available was a demcrstra- 
tion developed by TI midway through the development of 
the system. In fact, the expert system used in this study 
was not complete and was only a demonstration prototype 
(Graham, 1987). This demonstration was considerably 
lengthy and required the perfect execution of all the rules 
and implementation of all associated ART functionality. 
The alternative \vas to develop small prearranged sets of 
facts that would trigger a subset of rules. This was the 
preferable choice since the inference engine could not deal 
with all the rule formats in their entirety. The complete 
demonstration was not used, therefore a full comparison 
of the systems could not be done. 

The code and expert system for the parallel 
RAV system was transported to the iPSC Hypercube from 
the TI Explorer to a microVAX to a VAX across the DE- 
feme Data Network (DDN) to the AFIT VAX and fically 
to the iPSC Hypercube (Shakley, 1987a). This was perhaps 
the most “trying” of the problems associated with this 
\vhole implementation. This was because of the many ma- 
chines that had to be traversed to get the code from the TI 
Explorer tc the iPSC. This was only done after the tape- 
to-tape transfer failed due to a mismatch in tape-formats. 

The code was ana!yzed for its effectiveness and 
correctness by comparing its execution with that of the 
ART system. The code peyfxms slowly compared to sys- 
tems like ART which runs at  between 2-30 rules per sec- 
ond (Gupta, 1986). On the Explorer, the inference engine 
plods along Et about one cycle every 30 seconds or 2 rules 
per minute. This is with the smaller rule base. With the 
larger rule base, the system runs one cycle every 11 3 sec- 
onds. On the iPSC Hypercube, the serial system runs at  
one cycle ir, about 11 seconds with the smaller database 
and in about 79 secmbs with h e  larger database. This 
situation involves two phenomena that need explanation. 
First, why does 60 extra rules slow the process down so 
much? The reason for this is in the format of these rules. 
They are rules that have a variable binding on the schema 
name. This means they must go through the list of schema 
names looking for a match. These rules can not take ad- 
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vantage of the indexing created by the frames. This is a 
process net handled well by the inference engine. Second, 
ivhy does the TI Explorer go slower than the iPSC Hyper- 
cube? The surface appearance is that the Common Lisp 
on the Explorer is much more extensive than that on the 
iPSC Hypercube. These would create more overhead on 
the Explorer and allow the hypercube to process faster. 

The speedups are far less than linear (Figure 7). 
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Figure 7. Speedup Graphs. 

The speedups taper off with the dimension of th? cube. 
The select time on some of the nodes exceeds the match 
time on the node. In some instances, the select time far 
exceeds the match time. There are tvv explanations for 
this phenomena. The first is that the problem size is too 
small for the higher dimension cube. This can be seen 
from the first data set. On the higher dimension cube, the 
match time is less than the select time for one series of 
communication. The result is a much longer cycle than 
nhat  would be expected from a linear speedup. The sec- 
ond cause for this slowdown is poor load balancing. Each 
node has an  equal number of ru!es and each rule gets 
checked for a match on each cycle. The reason the load is 
imbalanced is due to the compositiorl of the individual 
rules. The rules have different numbers oi clauses that 
causes each rule to have a variable length match time. 
Also, the order of the ciauses creates different match 
times. Even though a rule may have a long list of clauses 
to match, if the first one fails, then the rule matches 
quickly. Finally, the different types of matches take vary- 
ing lengths of time depending on the format of the clause. 
A match involving a schema variable match takes much 
longer than a simple slot match. 

Theoretical Analysis (Shakley, ls87b) 

The conipatational complexity of a production 
system can be divided into several compor,ents. These cor- 
respond to :he match, select, and act phases. The last com- 
ponent’s (act) comptitational complexity is easiest to ana- 
lyze. During the act phase, one rule has been selected and 

the clauses of the consequent are either added to or re- 
tracted from the fact database. Although, it depends on the 
data structure of the facts, i t  is a polynomial operation. In 
most cases, the comp!exity is either constant or linear. 
This \vould occur with any type of ipdexing ai linked list 
data structcrc of facts. The computational ccrnplexity of 
the other t\\co cxiponents  is more difficult to analyze and 
in fact depends o r  the tl-pes of clauses used within the 
rules. 

A set of parameters is needed to discuss the 
computatio:vl complexity of the productior system. These 
parameters ?re found in Figure 8. 

nR - Number of Ru;*?s 
nF - Sumber of Fact5 
IC - Maximum length G L  z .ule clause 
nA - number of antecedant clauses 
nC - number of consequent clauses 
nV -number of variables 

Figure 8.  Production System Fararneters 

The first type of production system considered 
is one with only constant terms in the rule clauses. The 
initial observation about the system is that the fact data- 
base is unordered. Therefore, the entire database must be 
searched for each clause of each rule. The worst case time 
complexity is then O(nR*nA*nF) for the match phase. 
This complexity grows as  the number and complexity of 
rules grows and as  the number of facts grows. In a 
monotonic system, one in which only facts are added, not 
retracted, this complexity grows as  the system operates 
adding more facts. 

The select phase can take two forms. In the 
first, the select phase stops whenever the first rule is 
matched successfully. The second form waits until all the 
rules have been matched, and then selects one rule from 
all the successfully matched rules. In the worst case, the 
matcher matches every rule’s clauses to every fact. There- 
fore, the two forms of the select only affect  the complexity 
of the select. In the first form, the complexity is constant 
and in the other i t  is O(nR). 

The first form has some disadvantages that 
make it unattractive. By taking the first rule that matches 
successfully, the production system is creating an implied 
order of the rules. This creates preconditions to the subse- 
quent rules. For a rule to be selected, not only does the 
condition of the rule have to be meet, but also the condi- 
tions of the previous rules can not be meet. Therefore, the 
second select form creates a certain sense of “random- 
ness’’ to select process. Therefore the overall complexity 
of a production system ivith constant clauses is 
O(nR*nA*nF) for one match, select, act cycle. It should be 
noted that the entire production system is NP-complete 
and if retractions of facts are allowed the production sys- 
tem is not even guaranteed to terminate. 

The second type of rule clause considered is one 
in which variables are allowed. This type of clause has the 
potential to match with many different facts. The match 
complexity of these types of clauses ?.re th: zame as in the 
previous case: O(nR*nA* nF). However, the select phase is 
more complicated. There is a svccmfully matched rule 
for each instantiation of each variable. Therefore, the se- 
lect phase has a worst case time complexity of 
O(nR*nV*nF). Where the number of variables equal the 
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number of atomic elements Lvithin the clause then nV 
equals nA times the IC. l l i is  produces a complexity of 
O(nR*nA*nF*IC). Both the preceding cases assume that 
there is no order to facts. Also, there have been no simpli- 
fying assumptions about the structure of the database. 

The first step in simplifying the fact data struc- 
ture is to provide a frame structure for the facts, an Ob- 
ject-Attribute-Value (OAV) structure. This provides a way 
of ordering the facts. In this way, the value can be ac- 
cessed by indexing into the fact data structure using the 
object and the attribute. A clause in a rule can now be 
matched in constant time, O(1). Therefore, the time to 
match is reduced to O(nR*nA). The time to select is still 
O(nR) where no variables are associated with the clauses. 
If a variable is associated Ivith the value within a clause. 
then the time to match is the same. However, the time to 
select is O(nR*nV) or O(nR*nA) since there is only one 
variable per clause. The problem arises if  variables are 
introduced into either the Object or Attribute fields of the 
clause. If both all of the OAV are variables then the sys- 
tem degenerates into the case with no ordering of the 
facts. The time complexity for the system is 
O(nR*nA*nF*lC). The ogly case left is if two of the three 
are variables. The match time O(nR*nF*nA) in the worst 
case. Each rule must be matched with each fact for each 
clause in the rule. In conclusion, this simplifying feature 
alone only save time when used with only one variable 
item per clause and that item must be the value of the 
OAV. It should be noted that if the variable is in another 
field, then the indexing scheme could be changed to ac- 
count for the change in the clause structure. 

From the previous example, it can be seen that 
better performance can be achieved if the facts can be 
organized into frame structures that allow for the indexing 
of facts. This benefit, however, only allows for a variable 
in the value field. Also, on each cycle this entire match, 
select, act cycle has to be reaccomplished. A state saving 
feature within the production system could reduce the time 
for all but the first match, select, act cycle. This data struc- 
ture stores from cycle to cycle the rules that had previ- 
ously matched. Then only those rules that were affected by 
the selected rule would need be considered on each pass. 
Therefore, each fact needs an associated list of affected 
rules. Then, when this fact was changed via a rule only the 
affected rules would need to be considered for matching. 
In the worst case, every rule affects every other rule creat- 
ing the situations in the previous cases with the appropri- 
ate time complexities. In this case, this simplification has 
no improvement. However, rare is the system where every 
rule affects every other rule. The reduction is actually 
within the coefficient of the equation. The time complexity 
for the OAV case is O(nR*nA). The coefficient of this 
complexity IS one. With the above simplification, each sub- 
sequent cycle is (l/aR)*nR*nA where aR is the number of 
affected rules. This method also reduces the cycle time for 
the multiple variable case of OAV. In the original case, the 
time complexity was O(nR*nA*nF) for each cycle of the 
production system. This still holds for the first cycle, but 
every cycle afterwards is considerably less. In fact, each 
cycle is O((l/aR) *nR*nA). This is true even for the rules 
with multiple variable clauses, since a rule can only affect 
a limited number of instantiations of a multiple variable 
clause rule. Only when a rule affects all the instantiations 
of a multiple variable clause rule is the complexity of that 
following cycle increased to O(nR*nA*nF). The state sav- 
ing technique does increase the space complexity of the 
system. Each fact has to have a list of pointers to each rule 
that is affected by the fact 

What does this all mean in picking an inference 
data structure and strategy? The answer lies in the prob- 
lem domain. It revolves around the characteristics of the 

system: the number and complexity (number of antece- 
dents) of the rules, and the number and format of the 
facts. I f  the format of the facts is “random” in that no 
ordering can occur, then the system is doomed to poor 
performance. If on the other hand the facts can be organ- 
ized into frames or some form of OAV where the value is 
the only variable field. Then an order of magnitude im- 
prevenient can be obtained. I f  variability is allowed in  
other fields of the frame, ther. poor performance is reintro- 
duced. If a state saving feature is introduced, then in the 
average case the performance can be improved on all, but 
the first cycle of the production system. This state saving 
feature, however, does require additionzl space. Therefore, 
a mixture of inferencing techniques could be the “best” 
solution. 

A study consisted of analyzing the various types 
of inferencing with the different types of clauses in the 
Robotic Air Vehicle Expert System. The expert consists of 
over 300 rules and over 160 frames with approximately 10 
slots per frame. The system was originally implemented 
with an unordered list of facts. The system performed 
“well” with a subset of rules and facts that did not exceed 
approximately 10 rules and 50 facts. That is rules that con- 
tained only one variable item per clause. One cycle took 
approximately 1-2 minutes. The system was then up- 
graded to a frame based data structure [In the first case, 
each slot was transformed into a single fact and treated as 
unordered]. This system performed “well” with all rules 
and frames. The system completed a cycle in approxi- 
mately 30 seconds. However, this system had problems 
with clauses that had multiple variable items. These rules 
took approximately 1 minute per rule. The cycle time was 
never calculated due to the extremely long time per rule. It 
should be noted that the rules of this type were limited in 
numbers and were less than 50. The next step was to cre- 
ate a state saving system. This system only matched and 
considered the rules that \Yere affected by the previously 
selected rule. This required that the rules be compiled into 
the data structure of the facts, so that each fact could point 
to.the rules that were affected by the modification of that 
fact. The first cycle of this system still took approximately 
30 seconds to complete without the multiple variable 
items. Then each subsequent cycle took approximately 
5-10 seconds thereafter. The sequence of different in- 
ferencing techniques confirmed to the prediction of the 
computational complexity analysis. Further, work is still 
desirable to provide an even broader base of sample data. 
This would help to confirm even further the time complex- 
i ty  analysis. 

Conclusions 

This research study investigated the feasibility 
of parallel architectures to improve the performance of po- 
tential real-time software. In particular, the feasibility of 
parallel architectures to improve the NP-complete problem 
of state space search in the form of a production system. 
The RAV expert system is an example of such a system. 

The speedup results from the inference engine 
were disappointing, however, it did show that speedups 
were possible. The speedups suffered from a combination 
of two factors. The first was a relatively small problem 
compared to the communications overhead. It was ob- 
served that for a system with greater than eight nodes, the 
time to perform the match cycle on a node was less than 
the time to communicate with the other nodes. Also, the 
speedup suffered due to a load imbalance. The method for 
decomposing the rules proved to be unsatisfactory. The 
method did not take into account the variability among 
rules. Real-time performance was not achieved as was an- 
ticipated. With improvements in the inference engine and 
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load baLincc. signil i ~ i l t i t  improvements ctiiild be possible. 
The pcrtoriiianc‘e of tlic il’SC IIypercube i n  

cornprison to the 1‘1 E\plorcr fzirl! pi.sitively . The 
il’SC t I\!~erciibr: performed ahoiit :\;ice ; I -  :;I!? as the TI 
Explorer on the inference engine. Ho\ve:.er, :his seems to 
be due to the sicil)licity of the LISP on the iPCc‘ Myper- 
cube. 

The i!?ference engine de\eloped in this study 
p r r f c r m d  ;idrLil.;,>telv. The iiiferen::e engine fircd a rule 
a’oc~i: snce every 30 seconds or at a rate of j u x  ;Ii?der 2 a 
n1;nii:c on the TI E\plorer. The engine fired n rule one 
e\ery 1 F  seconds on a single node of the iPSC Hvpercube 
or just o\’er 3 rules a minute. 

Recoinmendat ions 

This study probably raises more questions than 
it  ansivers. Beginning with the serial inference engine. An 
area of study \vould be the perforniance of in.” eerence en- 
cines. The characteristics of inferewe ecgines and their 
ierforniance \vould have been invalua!,ie ta this research. 
hlore ivork could be done to improve the inference wgine 
in this study. The inference engiqe in this stady cou!d be 
redone using the Rete algorithm. The ben~nmzrking of in- 
ference engines and inference engine techniques would be 
valuable. Also, with regard to inference engines, this study 
starteo tc automace and slrnulate the flmckxziity of ART 
on the iPSC Fypercube. The furthe- deve!opment of the 
process could provide a valuable tocl for expert system 
development. The expert system could lx developed on 
the TI Explorer using ART and transferred to the iPSC 
Hypercube for performance studies. 

There needs to be better ways to characterize 
the \vork needed to match a rule so that more effective 
iPSC Y y y x i ? b r  ! c r d  b;?l;rnrirle can be performed (Bailor 
and Seward, 19i:S) This wquld depend on the structure of 
the inference engine, th.: strwtliw L$ the rules and the 

tion GG data. An ?:tomiled x??r.\<: skolAd t e  ckveloped to 
hand12 thic Inxi balarmnq. This ;ictomzted methCil could 
be  sed fcr. adaptivf: time-bxzd b a d  balhncing. In addi- 
tion, tempo1 31 &pendency meckenisrn w?c! ke used to 
achieve this adaptive load balance. 

Ihe current study used a complete set of facts 
on each node and only one rule waz fir23 r! R time across 
the entire network. The RAV software showed promise for 
further levels of concurrency. The structure of the RAV 
expert system shows great promise in firing several rules 
in one cycle of the inference engine. This could provide a 
significant time and space savings. The RAV expert sys- 
tem is to operate in a real-time environment. This means 
a varying time requirement for operations. The implemen- 
tation of an  automatic way +C d:tnmically iccrease the 
speed of a computztion through 2. t(i~t?..-Levd of k-nowledge 
and ccntrol would be valuable t? ah5 desigr. af real-time 
softwzre. 

I structure cf * l ~  f x t s  f s :  efficient paitltioning ;.nd ditribu- 
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