
Knowledge-Based Graphical Interfaces
for Presenting Technical Information

Steven Feiner

Department of Computer Science
Columbia University

New York, NY 10027

feine@cs.columbia.edu

Abstract

Designing effective presentations of technical information is
extremely difficult and time-consuming. Moreover, the
combination of increasing task complexity and declining job
skills makes the need for high-quality technical presentations
especially urgent. We believe that this need can ultimately be
met through the development of knowledge-based graphical
interfaces that can design and present technical information.
Since much material is most naturally communicated through
pictures, our work has stressed the importance of well-
designed graphics, concentrating on generating pictures and
laying out displays containing them.

We describe APEX, a testbed picture generation system that
creates sequences of pictures that depict the performance of
simple actions in a world of 3D objects. Our system supports
rules for determining automatically the objects to be shown in
a picture, the style and level of detail with which they should
be rendered, the method by which the action itself should be
indicated, and the picture’s camera specification. We then
describe work on GRIDS, an experimental display layout
system that addresses some of the problems in designing
displays containing these pictures, determining the position
and size of the material to be presented.

Keywords: knowledge-based graphics, user interface design,
graphical layout, design grids

1. Introduction

Technical information design and delivery systems based on
paper and microfilm are gradually being replaced by
computer-based systems. Conventional approaches to
designing the user interfaces to these new systems and the
information that they manage typically rely on handcrafted
dialogues and parameterized displays. As a consequence, they
are expensive and time-consuming to produce, much like the
older systems that they replace.

One way to improve the interface design process is to use
graphical editors, rather than programming, to specify the
appearance and interaction capabilities of the user interface.
This concept was developed in systems such as [HANA80;
FEIN82; WONG82; BUXT83; GREE85; OLSE851 and has
since been borrowed and popularized by the recently
introduced Hypercard [GOOD87].

1.1. Editor-Based Design

Editor-based systems have shown some dramatic results in
allowing users, both programmers and nonprogrammers, to
design certain kinds of interfaces in less time than it would
take using conventional methods. In addition to increasing
design throughput, editor-based systems can also increase
design quality by encouraging successive refinement. If some
part of the initial design is deemed inadequate it may be
relatively easy to modify it.

IGD (Interactive Graphical Documents) [FEIN82; FEIN88al is
an early example of an experimental editor-based interface
design system. Its users create interactive graphical
hypermedia presentations that are designed and presented on a
high-resolution color monitor. Pictures and typeset text are
created with one editor and incorporated into a presentation
with another. A display from a sonar maintenance and repair
manual created with IGD is shown in Figure 1. This display,
as well as the rest of the manual, was designed by a team of
authors and illustrators who used the system’s graphical
editors, rather than a programming language. The same
graphical editor that is used to specify the visual appearance of
the display is also used to determine the display’s interactive
capabilities. For example, the designer can graphically select
objects and make them into buttons that when touched cause
actions to be performed, such as jumping to a new display. The
editor provides a display of the manual’s structure that allows
users to both build and view interconnections between all of
the displays.

The author’s current work is supported in part by the Defense Advanced
Research Projects Agency under Contract NooO39-84-C-0165, the New
York State Center for Advanced Technology under Contract NYSSTF-
CAT(87)-5, and an equipment grant from the Hewlett-Packard Company.
The IGD and APEX systems were supported in part by the Office of Naval
Research under Contract NOGO14-78-C-0396 and the National Science
Foundation under Grant INT-7302268-A03.

1.2. Problems with Editor-Based Design

Our experience, and that of users of commercial systems like
Hypercard, have shown that systems of this sort are powerful
tools for trying out interface ideas. Unfortunately, there are

253
PRECEDING PAGE BLANK NOT FILMED

https://ntrs.nasa.gov/search.jsp?R=19890010480 2020-03-20T03:51:25+00:00Z

ORIGINAL PAGE IS
OF POOR QUALITY

b
Objecfs
User knowledge

and displays includes [ZDYB8 1; FRIE84: MACK86;
AREN88; NEAL881.

2. Automating Picture Generation

Our work in picture generation has resulted in the creation of a
testbed system, described here, that creates sequences of
pictures that depict the performance of simple actions in a
world of 3D objects [FEIN85]. APEX (Automated Pictorial
Explanations) is designed to mediate between an AI problem
solver and conventional graphics software, as shown in Figure
2. The problem solver has expertise about a maintenance and
repair domain and can develop a plan for fixing a piece of
broken equipment that involves rigid body transformations
(translation and rotation) of its parts. The graphics software is
capable of drawing pictures of scenes whose contents and
camera specification are explicitly described to it.

APEX takes as input the same information about the objects in
the world and what the user knows about them that is provided
to the problem solver, as well as the plan for the actions to be
performed on the objects that is determined by the problem
solver. APEX produces as output the specifications for a set of
pictures to be generated by the graphics software that can be
used to explain these actions to the repair person.

~i~~~~ 1. An interactive display from a manual created with
IGD.

several difficulties with using them for creating large-scale
systems. The first is caused by the need for customization.
Editor-based interface design systems require that the interface
designer anticipate all users, information, and situations that

Problem Solver b APEX b Graphics Software b
Pictures Problem Picture

Solution Specifications

will be handled. One attempt to meet this need relies on the
careful crafting of different sets of responses and presentations
for a small number of equivalence classes. For example, users
might be divided into novices, intermediates, and experts, and
parts of the presentation designed differently to accommodate
each. Rough equivalence classes like these, however, do not
adequately reflect the large, heterogeneous, and changing user
population that a large-scale system may have.

Rather than simply passing the entire existing environment of
objects along with a camera specification to the graphics
software, APEX instead builds a new environment. The goal is
to create an environment whose picture will be more effective
at communicating desired information than a picture of the
original environment. Although the new environment is based
on the original environment, objects may be selectively
included, excluded, or even created from scratch. For
example, an object may be left out if it is not related to the task
to be illustrated, resulting in a simpler, less cluttered picture. A second problem is raised by the need for immediacy.

Timely, on-the-fly presentations of unanticipated information
are essential for C3, as well as for technicaldocumentation, if

and presentation needs. If a human designer is involved in

time for presenting information will be unacceptable.

We believe that the ultimate solution to these problems is the
automated generation of both the form and content of the
information delivered. In the research reviewed in this paper
we have concentrated on the design of explanatory pictures and
the layout of displays containing these pictures. Thus,

these applications are to cope with unanticipated information APEX for determining the objects

adapting the system when such situations arise, the turnaround
to be added to the new environment, the style and level of

which the action itself should be indicated, and the picture’s
camera specification. We refer to this process of building a
new environment to
depiction [FEIN87].

with which they be the method by

a more effective picture as

2.1. Depicting Objects

although our work has been in a maintenance and repair
domain, our emphasis has not been on determining what
actions to perform (Le., on automated troubleshooting), but
rather on explaining to the viewer how to perform those

APEX starts with an initially empty environment and adds the
following kinds of objects, which it selects by processing the
objects in the original environment.

actions. Related work on automating the generation of pictures

Figure 2. APEX converts the problem solver’s plan into specifications of pictures to be drawn by the graphics software.

254

ORIGINAL PAGE IS
OF POOR QUALITY

Frame objects. Each of APEX’s pictures is designed to show a
particular action being performed. The empty picture
crystallizes around a small set of objects that directly
participate in the action. We call these the picture’sframe
objects since they are specified by the action frame [MINS75]
being depicted.

Context objects. Next, APEX adds objects that will provide
context for those objects that are already included. The objects
in APEX’s world form a hierarchy. Context objects are
selected by traveling up the hierarchy starting with each object
that was originally included in the picture. Objects
encountered are added to the picture up until the first object
with which the user is already familiar.

Landmark objects. Although the context objects are helpful,
they are often not sufficient to help locate the frame objects
and may themselves be difficult to recognize. Therefore,
APEX’s picture-making strategy searches for landmark objects
that could serve as a reference in locating those objects that
have been included in the picture thus far. It does this by
examining the objects that are near the important objects and
selecting those that have significantly different appearance as
determined by their shape, size, or the material from which
they are made.

Similar objects. APEX searches the environment for nearby
objects that are similar in appearance to those already included.
These are added to the picture to help eliminate the chance that
the viewer will confuse them with the objects included so far.

Supplementary objects. Additional objects are added in order
to assure that the picture looks correct. For example, objects
that physically support objects that are already in the picture
are added so that the supported objects don’t seem to be
floating unsupported.

Meta-objects. In order to show the action being performed in a
picture and to help distinguish the objects affected, APEX
creates additional objects that are added to the picture. These
meru-objecrs are arrows that are used to show translational and
rotational motion. At the same time, the position of the arrow
also indicates the object being moved.

2.2. Depicting Properties

When APEX adds an object to the picture it also determines
several properties: camera specification, rendering style, and
level of detail.

Camera specification. The picture’s camera specification is
modified for each added object to determine how much of the
object should be visible. APEX’s rules force frame objects,
context objects, landmarks, similar objects, and meta-objects to
be entirely visible. Supplementary objects, on the other hand,
either cause no change in the camera specifications or may
cause relatively small changes to enable some portion of them
to be visible.

Rendering style. APEX selects the rendering style used for
each object. Currently only two styles are employed. The

first, the “regular” rendering style, causes objects to be
depicted with their actual material properties. This is used for
frame objects, context objects, and meta-objects. A
“subdued” rendering style is assigned to all other objects that
are added to the picture to indicate that they are less important.
APEX currently realizes a subdued style by blending the
object’s material properties (which determine its rendered
color) with the properties of its parent.

Level of detail. APEX determines the level of detail to be used
in rendering an object. Only enough detail is used to
disambiguate an object from others that are similar in
appearance to it. Much work on APEX was devoted to
developing a method for determining automatically physical
approximations of objects that could be used to depict them at
different levels of detail.

Figure 3 shows a picture designed by APEX to show the
viewer that they are to open the drawer of the center equipment
cabinet by pulling on its middle handle. The cabinet itself was
included to serve as context for the drawer that is part of it.
The small cabinet on the wall was added as a landmark and the
floor was included as a supplementary (supporting) object.
The large cabinets on both sides were added because of their
similarity to the center cabinet, while the top and bottom
handles were included because of their similarity to the middle
handle. Just enough detail was used in depicting objects to
disambiguate them from those objects that were decided to be
similar to them. A meta-object arrow shows that the drawer is
to be pulled out.

Depiction is a general concept whose application is not limited
to making pictures of 3D environments. In other work, we have
applied it to the creation of editable graphical histones for user
interfaces. We have designed a graphical editor that displays a
pictorial “comic strip” history of the user’s interactions
[KURLSS]. Each “panel” of the history is created using rules
similar to those used by APEX to determine automatically the
objects to include and how they should be rendered. Unlike
APEX, multiple actions are compacted into a single panel
when appropriate. The user can interact graphically with the
history to review their session and to undo, modify, and redo
past actions.

Figure 3. A picture designed by APEX to show how to open
the center cabinet’s drawer using its middle handle.

255

In order to create a coherent and effective presentation, not
only must pictures (and text) be created, but they must be
combined together on the display in a process known as
display layout. Our current work in display layout treats some
of the problems in determining the position and size of
material that is to be presented to the user. We have developed
a testbed system called GRIDS (GRaphical Interface Design
System), which lays out displays containing pictures and text,
determining the size and position of the parts from which they
are composed [FEIN88c].

ORIGINAL PAGE IS
OF POOR QUAL

1 ead
3. Automating Display Layout

I I I

GRIDS takes as input information about the objects to be
displayed, the user, and the display hardware. It uses this to
determine a layout that will be applied to each screenful of
objects. Its approach is based on the idea of grid-based layout
developed by graphic designers [HURL78; MULL811. A
design grid, consisting of proportionally-spaced horizontal and
vertical lines, is imposed on the space to be laid out. The lines
describe a set of rectangular gridjiefds. The fields are
separated vertically and horizontally by equal-sized spaces and
the array of fields is surrounded on all four sides by margins.
Objects are sized and positioned on the grid in such a way that
they are aligned with the grid lines. Thus each object is
positioned in a part of the grid that is an integral number of
fields in height and width.

3.1. Designing a Layout

Our system generates a grid and determines how objects will
be placed using it. Its approach is briefly reviewed here and
described in more detail in [FEIN88c]. First a grid is created,
based on input information about the material to be laid out,
the display, and the user. For example, the user's distance
from the display constrains the sizes of the fonts and pictures
that can be used, while the size and aspect ratio of the physical
display constrain both the size and relative position of the
objects to be laid out. These in turn help determine the size of
the grid's fields, margins, and inter-field spaces.

Next, the grid that the system produces is used in conjunction
with input information about the objects to be laid out to
generate a prototype display layout. An important part of this
input information is a grammar that describes the kinds of
objects that will be included in the actual displays. The actual
objects that will be presented in a particular display are
instances of the general classes of objects that are the
grammar's terminals. The system currently supports pictures,
body text blocks, and headings. These objects are further
specialized by designating limits on their expected size and
content. The grammar also specifies grouping relationships
among these objects. For example, the grammar may specify
that displays can contain pictures that are each related to a
block of text that serves as its caption. Finally, the prototype
display layout is used to determine how to lay out input
instances of the objects described by the display grammar to
form the actual displays.

The GRIDS testbed is implemented in OPS5 [FORGgl] and
generates output in PostScript [ADOB85]. Figure 4 shows an
example of a layout designed by GRIDS, with and without the

I Head

Figure 4. A display layout designed by GRIDS, with and
without the grid used to generate it.

grid that was used to generate it. The outermost rectangles
indicate the boundaries of the physical display. (The grid does
not actually appear in the layout presented to the user.)
GRIDS currently does not lay out actual pictures and text, but
rather works with the approximations shown in the figure:
rectangular shaded areas for pictures and numbered lines for
text.

By generating a grid first and using it to produce multiple
layouts, we gain one of the important advantages of grid-based
design: consistency [MULLgl]. Each display to be laid out is
not optimized as an individual design problem, but bears a
visual relationship to the other displays. Not only do we gain
efficiency in not having to redesign each display afresh, but the
use of a common layout format visually enforces the
relationship between the displays. The limited selection of
sizes and positions used within a single display also helps
establish intra-display consistency.

4. Conclusions

We have described work in two aspects of automatically
generating presentations of technical information. APEX
creates sequences of explanatory pictures, while GRIDS
designs and lays out displays containing separately created
pictures and text. An important underlying theme of both

256

systems is that to ensure a consistent presentation, a common
set of design rules should be provided or generated first, and
then used to create individual pictures and displays.

The projects described here are partial, testbed
implementations of a general conceptual architecture for
generating both layout and information content automatically
[FEIN88b]. Much work remains to be done to eventually
develop robust, knowledge-based design systems that can
produce timely, high-quality technical presentations that are
customized to the needs of particular users.

References

[ADOB85]

[AREN88]

[BUXT83]

[FEIN82]

[FEIN85]

[FEIN87]

[FE I N8 8 a]

[FEIN88b]

[FEIN88c]

[FORGX I I

Adobe Systems Inc. PostScript Language
Reference Manual. MA: Addison-Wesley,
1985.
Arens, Y., Miller, L., and Sondheimer, N.
“Presentation Planning Using an Integrated
Knowledge Base.” Proc. ACMISIGCHI
Workshop on Architectures for Intelligent
Interfaces: Elements and Prototypes,
Monterey, CA, Mar 29-Apr 1, 1988,93-107.

Buxton, B. “Toward a Comprehensive User
Interface Management System.” Computer
Graphics, 17:3, July 1983,35-42.
Feiner, S., Nagy, S., and van Dam, A. “An
Experimental System for Creating and
Presenting Interactive Graphical Documents.”
ACM Trans. on Graphics, 1:l January 1982,
59-77.
Feiner, S. “APEX: An Experiment in the
Automated Creation of Pictorial
Explanations.” IEEE Computer Graphics and
Applications, 5:11, November 1985,29-38.
Feiner, S. A framework for automated picture
generation. Columbia Univ. Dept. of Comp.
Sci. Tech. Rep. CUCS-277-87, 1987.

Feiner, S. “Seeing the Forest for the Trees:
Hierarchical Display of Hypertext Structure.”
Proc. COIS88 (ACM-SICOISIIEEE Comp.
Soc. Conf. on Offrce Info. Sys.), Palo Alto,
March 23-25, 1988, 205-212.
Feiner, S. “An Architecture for Knowledge-
Based Graphical Interfaces.” Proc.
ACMISIGCHI Workshop on Architectures for
Intelligent Interfaces: Elements and
Prototypes, Monterey, CA, Mar 29-Apr 1,

Feiner, S. “A Grid-Based Approach to
Automating Display Layout.” Proc. Graphics
Interfuce ’88, Edmonton, June 6-10, 1988
(Morgan Kaufmann, Palo Alto, 1988), 192-
197.
Forgy, C. OPSS User’s Manual. Computer
Science Technical Report CMU-CS-81-135,
Carnegie-Mellon University, July 1981.

1988, 129-140.

[FRIE84]

[GOOD871

[CREE851

[HANA80]

[HURL7 81

[KURL88]

[MACK861

[MINS75]

[MULL811

[NEAL881

[OLSE85]

[WONG82]

[ZDYBgl]

Friedell, M. “Automatic Synthesis of
Graphical Object Descriptions.” Computer
Graphics, 18:3, July 1984, 53-62.
Goodman, D. The Complete Hypercard
Handbook, NY: Bantam Books, 1987.
Green, M. “The University of Alberta User
Interface Management System.” Computer
Graphics, 19:3, July 1985,205-213.
Hanau, P. and Lenorovitz, D. “Prototyping
and Simulation Tools for User/Computer
Dialogue Design.” Computer Graphics, 14:3,

Hurlburt, A. The Grid. NY: Van Nostrand
Reinhold Co., 1978.
Kurlander, D. and Feiner, S. “Editable
Graphical Histories.” To appear in Proc.
I988 IEEE Comp. SOC. Workshop on Visual
Languages, October 10-12, 1988, Pittsburgh,
PA.
Mackinlay, J. “Automating the Design of
Graphical Presentations of Relational
Information.” ACM Trans. on Graphics, 5:2,

Minsky, M. “A Framework for Representing
Knowledge.” In P. Winston (ed.), The
Psychology of Computer Vision, McGraw-Hill,

Muller-Brockmann, J. Grid Systems in
Graphic Design. Niederteufen, Switzerland:
Verlag Arthur Niggli, 198 1.
Neal, J. and Shapiro, S. “Intelligent Multi-
Media Interface Technology.” Proc.
ACMISIGCHI Workshop on Architectures for
Intelligent Interfaces: Elements and
Prototypes, Monterey, CA, Mar 29-Apr 1,

Olsen Jr., D., Dempsey, E., and Rogge, R.
“Input/Output Linkage in a User Interface
Management System.” Computer Graphics,

Wong, P., and Reid, E. “FLAIR - User
Interface Dialog Design Tool.” Computer
Graphics, 16:3, July 1982, 87-98.
Zdybel, F., Greenfeld, N., Yonke, M., and
Gibbons, J. “An Information Presentation
System.” Proc. IJCAI 8I , Vancouver, August

July 1980,271-278.

April 1986, 110-141.

1975,211-277.

1988,69-91.

19~3, July 1983, 191-197.

24-28, 1981,978-984.

257

