
N89-19889
ORhNAL PAGE IS
OF POOR QUALITY

DEVELOPMENT OF A PERSONAL-COMPUTER-BASED
INTELLIGENT TUTORING SYSTEM

Stephen J. Mueller
Computer Sciences Corporation

1651 1 Space Center Blvd.
Houston. Texas 77058

A large number of Intelligent Tutoring Systems (ITSs)
have been built since they were first proposed in the
early 1970's. Research conducted on the use of the
best of these systems has demonstrated their
effectiveness in tutoring in selected domains.
Computer Sciences Corporation, Applied Technology
Division, Houston Operations has been tasked by the
Artificial Intelligence Section at NASA/Johnson Space
Center (NASA/JSC) to develop a prototype ITS for
tutoring students in the use of the CLIPS [11 language:
CLIPSIT (CLIPS Intelligent Tutor). For an ITS to be
widely accepted, not only must it be effective, flexible,
and very responsive, it must also be capable of
functioning on readily available computers.

While most ITSs have been developed on powerful
workstations, CLIPSIT is designed for use on the IBM
PC/XT/AT personal computer family (and their
clones). There are many issues to consider when
developing an ITS on a personal computer such as the
teaching strategy, user interface, knowledge
representation, and program design methodology.
Based on experiences in developing CLIPSIT, this
paper reports results on how to address some of these
issues and suggests approaches for maintaining a
powerful learning environment while delivering
robust performance within the speed and memory
constraints of the personal computer.

CHOOSING A DEVELOPMENT
ENVIRONMENT

One of the major goals of Intelligent Computer Aided
Instruction (ICAI) is to improve the quality of
education and training especially for the average and
below average student. For this to happen,
educationally effective tutors must be made widely

535

PRECEDiNG PAGE BLANK NOT FILMED

available to end users, be affordable, and run on
inexpensive computers. Strategies for cost effective
development of ICAI programs for small computers
include choosing a language and an environment for
developing the ICAI based on availability, language
and development costs, and performance
requirements.

The delivery environment chosen for CLIPSIT was
the IBM PC/XT/AT family of computers using the
languages CLIPS, C, and a commercially available
graphics package. There were a number of reasons
for which CLIPS was chosen. The first reason is that
CLIPS is an expert system building tool written in C
which can be compiled to create a runtime executable.
A typical development strategy for ICAI is to develop
a prototype first using an artificial intelligence (AI)
language or programming environment and then
rewrite the runtime programs in a general purpose
language (such as C) to achieve optimal performance
and transportability and to minimize distribution costs
[2]. By using the CLIPS language, this rewriting phase
could be eliminated thereby saving valuable resources.

A second reason CLIPS was chosen as the development
language is its availability to developers and students.
CLIPS is available at no cost to anyone currently
working on a federal government contract. Since the
intention is to distribute a copy of CLIPSIT along with
the CLIPS language, the student would have easy
access to the required software. ,,

A third reason is the high performance and
extensibility of CLIPS. External functions can easily
be written in C and called from the CLIPS production
rules. The ability to write user defined functions was
invaluable to the teaching expert whose job it was to

https://ntrs.nasa.gov/search.jsp?R=19890010518 2020-03-20T03:48:48+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42829006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

manipulate the windows and menus of the user
interface as well as communicate with the tutorial
parser.

The IBM PC family of computers was also chosen as
the development and delivery vehicle for a number of
reasons. Most students have access to personal
computers either at home or school or business.
Availability is one of the most important requirements
for realizing the utility of an ITS. Inexpensive
personal computers now have the power required for
many ICAI applications whereas previously most
applications were developed on specialized AI
workstations. Intelligent tutors are just one example
of ICAI where remarkable progress is being made on
personal computers. As processing power and
memory capacity costs continue to decline,
inexpensive machines will be capable of supporting
significant ITSs. Finally, the CLIPS language is a very
effective tool on the personal computer and the C
Ianguage compiIers necessary to take advantage of its
extensibility are readily available.

CLIPSIT APPROACH

CLIPSIT is a knowledge-based system which tutors
students in the concepts and syntax of the CLIPS
language. The primary goal of the CLIPSIT tutor is to
provide a proof of concept which can demonstrate that
a usable tutor can be developed on a personal
computer. Once completed, CLIPSIT will provide
approximately 10 lessons with each lesson containing
about 10 problems. The program currently consists of
about 75 generalized rules written in CLIPS and a high
quality user interface written in C and a commercial
graphics package. Rules comprising CLIPSIT
represent the following typical functional modules in
an intelligent tutoring system: a domain expert, a
diagnostic expert, a teaching expert, and a student
model. The functional components of CLIPSIT are
shown in (Figure 1) and described in more detail on
the following pages.

The student interaction with the tutor occurs through a
two-window user interface which presents a problem
description in one window and accepts student
responses in the other. Student responses are analyzed
by the tutor and compared against expected student
responses. The student is notified immediately of any
discrepencies found in his syntax or logic by the tutor.
Student responses which deviate from the expected
response are compared to anticipated errors in a bug I

catalogue. Those bugs which are not present in the
bug catalogue are handled by special diagnostic rules.
Each problem presented to the student is stored in a
separate file along with the appropriate lesson text and
is presented upon request by the student model. These
files contain such information as expected responses,
expected errors and error messages, teaching
strategies, and problem description facts which
describe the allowable variations to the "correct"
expected responses the student is permitted to make.
At the completion of a problem, all facts pertaining to
the current problem are purged and a new problem is
presented. By modularizing problems, a general set of
(domain) rules can exist to analyze each specific set of
problem facts. Modularization has the additional
benefit of eliminating the need for problem specific
"buggy rules" [31 which would greatly increase the
size of the rule base and inhibit performance.

DOMAIN EXPERT

The domain expert contains the knowledge that the
student needs to learn. This knowledge is used to solve
probIems generated by the teaching expert in order to
provide a basis for error analysis by the diagnostic
expert. As tokens are entered by the student, (tokens
are definable characters that serve to delimit the
contents of an input string) they are checked against
the predefined expected response for that token. More
specifically, the domain expert reads in problem
description facts as well as a skeleton solution
containing the expected student responses. As long as
the student response continues to match the expected
response, the student is left alone. Should the student
response differ from the expected response, additional
analysis is made to determine if the response is indeed
an error or simply another equally valid approach to
solve the problem. When the student response is
determined to be valid, the fact database is updated to
reflect the current approach. However, if the student
response is determined to be an error, then an error
fact is created for the diagnostic expert to analyze.

Many features are built into CLIPSIT which provide
the student with the freedom to use his own creative
instincts to solve a problem. This is a tremendous
advantage over forcing the student to follow a strict
one-to-one mapping between a student response and an
expected system response. One example of the
flexibility of the tutor is in regard to the naming of
pattern variables in CLIPS. Should the student choose
to name a variable something other than what the
system expects, this should be (and is) allowed. Also,

536

in many cases, the order of patterns in a rule is
arbitrary. By reading the problem description facts
from the problem file, the domain expert knows which
patterns can be interchanged. Additionally, there are
times when the tokens in a pattern can be arranged
arbitrarily such as when the student is applying logical
field constraints. All of these variations to the
expected system responses are supported given that the
student's solution is an equally valid solution to the
problem.

TEACHING STUDENT DIAGNOSTIC
EXPERT + MODEL + EXPERT

Since a fast response time is of utmost importance for
a tutor to hold the student's attention, only one
skeleton solution is provided. That is, there is only
one acceptable logic path for the student to follow. In
order to make one skeleton solution span the entire set
of possible solutions, the problem must be very
narrow in scope. All of the problems in CLIPSIT are
worded in such a way that there is basically only one
way to solve the problem given the normal creative
variations mentioned above. By limiting the scope, the
number of solutions becomes very manageable and the
expected student responses can be predicted with great
accurracy. The obvious benefit of this approach is the
improved response time obtained by requiring less
rules and facts to describe and analyze the problem.

DOMAIN
EXPERT

DIAGNOSTIC EXPERT

The diagnostic expert provides error analysis for the
student responses. Once an error has been
encountered by the domain expert, that error is
intercepted by the diagnostic expert to try and
determine the cause of the student's misconception.
Based on the error analysis, the diagnostic expert
hypothesizes what misconceptions the student may
have. These hypotheses are recorded in the current
state of the student model.

There are three sources of error diagnosis in
CLIPSIT: a bug catalogue containing a list of expected
errors for a particular problem, a set of logic checking
rules which uses the problem description information
to analyze the consistency of the student response, and
a catch-all set of rules which detects simple syntax
errors and misspellings.

The bug catalogue is generated from experience
gained in teaching classes on CLIPS and noting various
student errors and misconceptions. The advantage of
this approach is that, although cumbersome, empirical
data such as this can be easily obtained from these

classes.[4] Approximately fifteen CLIPS classes have
been presented to date to draw upon for information.
The bug catalogue consists of a table of expected
errors for each token in the student response. For
every expected error in the bug catalogue, there exists
a corresponding diagnostic message. In this way, a
very specific diagnostic message is presented to the
student directly applicable to the current problem.

The logic checking error rules are basically inverses
of many of the domain rules. These rules analyze the
expert skeleton solution and problem description facts
and can recognize inconsistencies in the student
thought process. For example, if the student had used
a variable to represent the price of a pair of shoes in
one pattern, and then tried to use that variable to later
represent a coat, the error would be caught. Every
diagnostic rule has the ability to generate specific
error messages for the particular student response
being analyzed. The general logic checking rules
contain a skeleton error message with appropriate
slots to be filled in with diagnostics specific to a
particular problem.

STUDENT n
:

STUDENT
COMPUTER
INTERFACE

Figure 1. TYPICAL INTELLIGENT TUTORING SYSTEM (ITS)
ARCHITECTURE

The third set of diagnostic rules provides a low level
of analysis capable of detecting simple syntax errors
and misspellings. Their main purpose is to provide a
catch-all for errors which have filtered through the
tutor and remain undiagnosed. The objective of the
knowledge engineer is to minimize the number of
times these rules are required to execute by improving
the effectiveness of the bug catalogue and logic
checking rules.

537

The error messages provided by the three diagnostic
rule sets vary in their levels of specificity. The
expected error rule set provides the most specific
messages followed by the logic checking rules and
finally the catch-all rules. Since the goal of the
diagnostic system is to provide the most meaningful
diagnosis available for a student response, a hierarchy
of priorities among the three diagnostic rule sets was
created. Whenever an error is detected, there is the
possibility that a rule in all three diagnostic rule sets
could be activated. Since the nature of the error
messages becomes more general as the priority of the
diagnostic rule set decreases, it is important to enable
the rule with the best (most specific) message . By
implementing this priority system the student is always
assured of getting the best diagnosis possible. One
advantage of this three level error detection system is
that the knowledge engineer can continue to collect
expected errors for the bug catalogue as the tutor
matures and easily add them to the system at any time.
Improving the bug catalogue's ability to detect errors
allows the tutor to divert the error analysis from less
specific logic checking and catch-all rules to the most
specific expected error rules.

TEACHING EXPERT

The teaching expert is a set of specifications of what
instructional material the tutor should present and how
the material should be presented. All problems in
CLIPSIT have a tutoring strategy specified within the
problem description facts. Although this approach
restricts adapting the problem presentation to more
closely match the ability of a particular student, the
immediate benefit of less code and faster response time
achieved by not having to compute a presentation
strategy, is a viable tradeoff on personal computers.
There are three basic strategies available to the
knowledge engineer in CLIPSIT for presenting a
problem. Selection of one of these three strategies
depends on the complexity of the problem to be
presented and the current lesson.

The first strategy is to provide the student with
examples and a list of candidate responses available for
use in the solution. Since the first hurdle of the student
is determining what the immediate goal is, that is,
determining the desired response from the instruction
[5] , a list of solution components provides the student
with adequate goal reinforcement. Additionally,
many teachers agree that certain classes of students are
competent to solve sets of problems only after an
example is done for them. By reinforcing the goal

with examples, performance improves significantly.
From the standpoint of the diagnostic expert, this
approach is also beneficial since it now has a clear
understanding of what the correct solution must be.
For example, if the student is given a problem
description and asked to generate a fact to represent
some aspect of the problem, the student could generate
many valid representations by choosing endless
different names for the same item. By naming the
tokens in the problem for the student, a finite and
manageable solution set is now available and the
student has gained valuable insight by example.

A second strategy for presenting the problem is to use
a template. Problems can be presented to the student
as a puzzle where the tutor supplies some of the
solution pieces and the student supplies the rest. The
earlier lessons and problems would provide more
pieces of the puzzle than the later problems. The
template is very useful, once again, for reinforcing the
students understanding of what the problem is really
asking for. It also provides a means for the teaching
expert to lead the student down the desired solution
path, thereby providing for faster and easier error
diagnosis.

The third strategy, if it can be called that, is to simply
turn the student loose to take whatever approach he or
she chooses. Since this method is by far the most
difficult to provide diagnostic analysis for, the
problem must be worded in such a way that the correct
solution can be readily anticipated by the tutor.

All strategies have the benefit of coaching messages
generated by the diagnostic rules. A student is given
three attempts to provide the anticipated response for
the solution. If the student has not determined the
correct response by the third attempt, he is given the
answer.

STUDENT MODEL

The student model is the representation of the student's
understanding of the domain knowledge as perceived
by CLIPSIT. The student model is used to assess the
student's comprehension of the problem goals and to
make decisions about what strategy should be followed
to correct any perceived student misconceptions. By
comparing the student performance against the
expected responses of the tutor, (also known as the
"overlay model" [6]) , CLIPSIT can determine which
teaching goals the student has failed to grasp.

538

Every problem file in the problem set available to the
student contains information about the teaching goals
it is trying to present. Certain problems are
designated by the problem description facts for each
lesson as being either required or remedial. As the
student progresses through the required problems, any
deficiency inferred by the diagnostic rules is recorded
in the student model. On the basis of the student's
performance, the system selects the next problem to
present. If sufficient deficiencies have been recorded
for a particular goal, a remedial problem is
immediately presented to the student before the next
required problem.

Clancey et al. [7] listed four major information
sources for maintaining the student model: a) student
performance progress observed by the system; b)
direct questions asked of the student; c) assumptions
based on the student's learning experience; and d)
assumptions based on some measures of the difficulty
of the subject matter material. The prototype
CLIPSIT student model relies soley on observing past
performance. A past performance history of the
student's misconceptions is carried over to later
lessons. This information is then used to select
remedial problems when the student demonstrates
misconceptions about goals presented in previous
lessons.

USER INTERFACE

The design of the interface can make or break the
effectiveness of a tutor, regardless of the clever design
of the other components. If the user interface is
confusing or non-supportive of the tutored domain,
the effectiveness of the instruction will be diminished
or lost entirely. A powerful user interface has been
developed for CLIPSIT. The interface, written in C
and utilizing a commercial graphics package, provides
two windows for system text and user input. Window
dimensions are controllable by both the tutor and
student. Cursor keys or a mouse may be used to scroll
the windows. Additional types of pop-up windows are
available for menus, student responses, and diagnostic
and help messages.

A series of functions are available which pass student
responses to those portions of the tutor which handle
error detection and instructional strategies. These
input/output functions provide a general method for
capturing student responses token-by-token, moving
the cursor between the windows, permitting limited

student editing, writing text to windows, and special
message formatting.

SUMMARY

The basic tradeoff which greatly affected the design of
CLIPSIT was the issue of response time versus
capabilities, that is, the ability of the tutor to respond
to a student response fast enough for the student to
avoid confusion and frustration versus the amount of
flexibility and power that could be implemented. The
intent was to create the most powerful teaching
package available within a 640k memory constraint
and with an average response time of 1-2 seconds. It
was felt that a response time greater than 2 seconds
between student responses would leave the student
confused about what (if anything) was happening with
the tutor rather than concentrating on the problem at
hand. This fast response time was achieved and even
surpassed using a PC/AT class of computer. Response
times for the PC/XT class of computers usually met
this constraint but would struggle once the student
took a solution path much different from the one
anticipated.

In order to minimize response time, the key strategy
implemented was to represent as much knowledge
about the problem as possible in the problem facts
rather that make the system use many production rules
to reach similar conclusions. For example, each
problem file contains facts specifying how the
problem should be presented to the student, that is,
whether to use a template or not and how much help
should be provided. This approach greatly simplifies
the teaching expert function. The problem description
facts also specify the possible variations to the solution
that the student may make. These facts greatly
simplify the domain expert.

One of CLIPSITs greatest strengths is that all
production rules are generic in nature. By eliminating
problem specific rules, the size of the rule base
decreases and typically execution speed improves. All
problem specific facts are stored in separate problem
files and loaded only when necessary. This minimizes
the size of the fact base as well as the number of partial
rule instantiations. An additional benefit of storing
problem facts in an individual file and using generic
rules is maintainability. Separate problem files can be
generated by someone unfamiliar with CLIPSIT or
rule based expert systems. Additional problems can be
easily added, removed, or altered with no changes to
the generic rule base.

539

REFERENCES

1. "CLIPS" is an acronym for "C Language Integrated
Production System" and was developed by the
Artificial Intelligence Section, Mail Code FM72,
NASA/Johnson Space Center, Houston, Tx 77058.

2. Wallach, Brett "Development Strategies for ICAI
on Small Computers," in Kearsley, G.P., ed.,Artificial
Intelligence and Instruction: ADplications and
Meathods (Reading, MA : Addison Wesley Publishing
Co. ,1987).

3. Brown, J.S., & Burton, R.R., "Diagnostic models
for procedural bugs in basic mathematical skills,"
Cognitive Science, 2, 155-192.

4. Wenger, Etienne, "Basic Issues," Artificial
Intelligence and Tutorinp Systems, M. Morgan
,ed.,(Los Altos CA : Morgan Kaufmann Publishers,
1987).

5. Matz, M. "Towards a process model for high
school algebra errors," in D. Sleeman & J.S.
Brown,eds., Intelligent Tutorinp Svstems (New York :
Academic Press 1982).

6. Carr, b., & Goldstein, I.P., "Overlays: A theory of
modeling for computer aided instruction," Artificial
Intelligence Laboratory Memo 406 (Logo Memo 401,
Massachusettes Institute of Technology, 1977,

7. Clancey, W.J., Bamett, J.J., & Cohen, P.R.,
"Applications-oriented AI research:Education," in A.
Barr & E.A. Feigenbaum, eds., The handbook on
Artificial Intelligence (Vol2) (Los Altos, CA :
William Kaufmann, 1982).

540

