NASA Contractor Report 181786
ICASE REPORT NO. 89-11

1

nULTIGRID SOLUTION OF THE NAVIER-STORES
EQUATIONS ON TRIANGULAR MESHES

Dimitri J. Mavriplis
Antony Jameson
Luigi Martine11i

```
(MASA-CR-1E17E6) MULIIGGID SCIUTICE OF THE N89-2CCSE
AAVIEE-SICKES ECCIIICNS CA TEIADGOLAR MESHES
final befort fleftitete for coffuter
Afflications in Ecience anc frcineering) Unclas
#7% CSCL 01A G3/02 01954&3
```

Contract Nos. NAS1-18107 and NAS 1-18605
February 1989

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

N/SA

National Aeronautics and Space Administration

Langley Rescarch Center

Hampton, Virginia 23665

MULTIGRID SOLUTION OF THE NAVIER-STOKES EQUATIONS ON TRIANGULAR MESHES

Institute for Computer Applications in Science and Engineering NASA Langley Research Center
Hampton, VA
A. Jameson and L. Martinelli
Princeton University, Princeton, NJ

Dimitri J. Mavriplis

Abstract

A new Navier-Stokes algorithm for use on unstructured triangular meshes is presented. Spatial discretization of the governing equations is achieved using a finite-element Galerkin approximation, which can be shown to be equivalent to a finite-volume approximation for regular equilateral triangular meshes. Integration to steady-state is performed using a multi-stage timestepping scheme, and convergence is accelerated by means of implicit residual smoothing and an unstructured multigrid algorithm. Directional scaling of the artificial dissipation and the implicit residual smoothing operator is achieved for unstructured meshes by considering local mesh stretching vectors at each point. The accuracy of the scheme for highly stretched triangular meshes is validated by comparing computed flat-plate laminar boundary-layer results with the well known similarity solution, and by comparing laminar airfoil results with those obtained from various well-established structured quadrilateral-mesh codes. The convergence efficiency of the present method is also shown to be competitive with those demonstrated by structured quadrilateral-mesh algorithms.

[^0]
1. INTRODUCTION

The use of unstructured triangular meshes in two dimensions and tetrahedral meshes in three dimensions has proven valuable for computing inviscid compressible flow about complex geometries $[1,2,3]$. Unstructured meshes also provide a natural setting for the use of adaptive meshing, which has been shown to provide large increases in efficiency and accuracy $[3,4]$. However, triangular and tetrahedral meshes have seldom been employed for computing viscous flows. Solutions of the full Navier-Stokes equations on triangular meshes can be found in the literature $[3,5,6,7]$. However, these are often limited to low-Reynolds-number flows, and/or the accuracy and efficiency of these methods is inferior to that of existing quadrilateral mesh solvers. Consequently, numerous attempts at solving viscous flows for non-simple configurations have resorted to hybrid structured-unstructured meshing strategies, where structured quadrilateral meshes are employed in the viscous regions, and unstructured meshes are employed in the inviscid regions. While such strategies have proven valuable for computing flows over various types of configurations [8], they lack the generality required for arbitrarily complex geometries. The use of completely unstructured meshes in both viscous and inviscid flow regions, as proposed in [9], holds the promise of producing a more general and flexible method for computing viscous flows over truly arbitrary configurations, while providing an ideal setting for the use of adaptive meshing techniques through the viscous layers, as well as in regions of strong viscous-inviscid interactions.

For high-Reynolds-number flows over streamlined bodies, viscous effects are confined to thin boundary-layer and wake regions. As the Reynolds number increases, the viscous regions generally become thinner, and the gradients in the normal direction within these regions increase. To accurately resolve such flows, a small mesh spacing is required within the viscous regions. Since the flow gradients are predominantly in the normal direction, it proves economical to refine the mesh only in this direction, retaining a large spacing in the tangential direction. This approach is often employed for quadrilateral meshes, and may result in rectangular cells in the viscous regions with aspect ratios up to $10,000: 1$ for Reynolds numbers of 10 million. Clearly, for such cases, refinement in both normal and tangential directions would be prohibitively expensive. Thus, a directional refinement or stretching of the mesh must be employed for triangular meshes as well. This results in highly skewed triangles in the viscous regions, which may potentially degrade the accuracy and efficiency of the scheme.

In this work, a Navier-Stokes solver for unstructured triangular meshes is described. A previously developed unstructured multigrid algorithm [10] is employed to accelerate the convergence of the solution to steady-state. Our objective is to demonstrate that by carefully tailoring the scheme for directionally stretched meshes, accurate and efficient solutions can be obtained which are competitive with those produced by current state-of-the-art structured quadrilateral-mesh Navier-Stokes solvers. While the solutions presented in this paper consist of laminar flow cases computed on regular stretched triangulations, this represents the necessary first step for validating the proposed algorithm, and establishes the feasibility of computing viscous flows on highly stretched unstructured meshes which contain a smooth variation of elements through the viscous and inviscid regions.

2. DISCRETIZATION OF THE GOVERNING EQUATIONS

In conservative form, the full Navier-Stokes equations read

$$
\begin{equation*}
\frac{\partial w}{\partial t}+\frac{\partial f_{c}}{\partial x}+\frac{\partial g_{c}}{\partial y}=\frac{\sqrt{\gamma} M_{\infty}}{R e_{\omega}}\left[\frac{\partial f_{v}}{\partial x}+\frac{\partial g_{v}}{\partial y}\right] \tag{1}
\end{equation*}
$$

where \mathbf{w} is the solution vector and f_{c} and g_{c} are the cartesian components of the convective fluxes

$$
w=\left(\begin{array}{l}
\rho \tag{2}\\
\rho u \\
\rho v \\
\rho E
\end{array}\right] \quad f_{c}=\left(\begin{array}{l}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
\rho u E+u p
\end{array}\right] \quad s_{c}=\left[\begin{array}{l}
\rho v \\
\rho v u \\
\rho v^{2}+p \\
\rho v E+v p
\end{array}\right]
$$

In the above equations, ρ represents the fluid density, u and v the x and y components of fluid velocity, E the total energy, and p is the pressure which can be calculated from the equation of state of a perfect gas

$$
\begin{equation*}
p=(\gamma-1) p\left[E-\frac{\left(u^{2}+v^{2}\right)}{2}\right] \tag{3}
\end{equation*}
$$

The viscous fluxes f_{v} and g_{v} are given by

$$
f_{v}=\left[\begin{array}{l}
0 \tag{4}\\
\sigma_{x x} \\
\sigma_{x y} \\
u \sigma_{x x}+v \sigma_{x y}-q_{x}
\end{array}\right] \quad g_{v}=\left[\begin{array}{l}
0 \\
\sigma_{x y} \\
\sigma_{y y} \\
u \sigma_{y x}+v \sigma_{y y}-q_{y}
\end{array}\right]
$$

where σ represents the stress tensor, and \mathbf{q} the heat flux vector, which are given by the constitutive equations for a Newtonian fluid

$$
\begin{gather*}
\sigma_{x x}=2 \mu u_{x}-\frac{2}{3} \mu\left(u_{x}+v_{y}\right) \\
\sigma_{y y}=2 \mu v_{y}-\frac{2}{3} \mu\left(u_{x}+v_{y}\right) \\
\sigma_{x y}=\sigma_{y x}=\mu\left(u_{y}+v_{x}\right) \tag{5}\\
q_{x}=-k \frac{\partial T}{\partial x}=-\frac{\gamma}{\gamma-1} \frac{\mu}{\operatorname{Pr}} \frac{\partial \frac{\rho}{\partial x}}{q_{y}=-k \frac{\partial T}{\partial y}=-\frac{\gamma}{\gamma-1} \frac{\mu}{P r} \frac{\partial}{\partial y}}
\end{gather*}
$$

γ is the ratio of specific heats of the fluid, M_{∞} the freestream Mach number, $\mathrm{Re}_{\boldsymbol{\omega}}$ the Reynolds number based on the airfoil chord, and Pr the Prandtl number. The coefficient of viscosity μ varies with the temperature of the fluid, and is calculated as

$$
\begin{equation*}
\mu=K T^{0.72} \tag{6}
\end{equation*}
$$

where K is a constant. Equation (1) represents a set of partial differential equations which must be discretized in space in order to obtain a set of coupled ordinary differential equations, which can then be integrated in time to obtain the steady-state solution.

The spatial discretization procedure begins by storing flow variables at the vertices of the triangles. The stress tensor σ and the heat flux vector q must be calculated at the centers of the triangles. This is achieved by computing the required first differences in the flow variables (from equations (5)) at the triangle centers. For a piecewise linear approximation of the flow variables in space, the first differences are constant over each triangle, and may be computed as

$$
\begin{align*}
& w_{x}=\frac{1}{A} \iint \frac{\partial w}{\partial x} d x d y=\frac{1}{A} \int w d y=\frac{1}{A} \sum_{k=1}^{3} \frac{w_{k+1}+w_{k}}{2}\left(y_{k+1}-y_{k}\right) \tag{7}\\
& w_{y}=\frac{1}{A} \iint \frac{\partial w}{\partial y} d x d y=\frac{1}{A} \int w d x=\frac{1}{A} \sum_{k=1}^{3} \frac{w_{k+1}+w_{k}}{2}\left(x_{k+1}-x_{k}\right) \tag{8}
\end{align*}
$$

where the summation over k refers to the three vertices of the triangle. The flux balance equations are obtained by a Galerkin finite-element type formulation. The Navier-Stokes equations are first rewritten in vector notation

$$
\begin{equation*}
\frac{\partial w}{\partial t}+\nabla \cdot F_{c}=\frac{\sqrt{\gamma} M_{-}}{R e_{\infty}} \nabla \cdot F_{v} \tag{9}
\end{equation*}
$$

where the bold typeset denotes vector quantities. Multiplying by a test function ϕ, and integrating over physical space yields

$$
\begin{equation*}
\frac{\partial}{\partial l} \iint_{\Omega} \phi w d x d y+\iint_{\Omega} \phi \nabla \cdot F_{c} d x d y=\frac{\sqrt{\gamma} M_{\infty}}{\mathrm{Re}_{\infty}} \iint_{h} \phi \nabla \cdot \mathbf{F}_{v} d x d y \tag{10}
\end{equation*}
$$

Integrating the flux integrals by parts, and neglecting boundary terms gives

$$
\begin{equation*}
\frac{\partial}{\partial t} \iint_{h} \phi w d x d y=\iint_{h} \mathbf{F}_{c} \cdot \nabla \phi d x d y-\frac{\sqrt{\gamma} M_{\infty}}{\operatorname{Re}_{\infty}} \iint_{h} F_{v} \cdot \nabla \phi d x d y \tag{11}
\end{equation*}
$$

In order to evaluate the flux balance equations at a vertex P, ϕ is taken as a piecewise linear function which has the value 1 at node P, and vanishes at all other vertices. Therefore, the integrals in the above equation are non-zero only over triangles which contain the vertex P, thus defining the domain of influence of node P, as shown in Figure 1. To evaluate the above integrals, we make use of the fact that ϕ_{x} and ϕ_{y} are constant over a triangle, and may be evaluated as per equations (7) and (8). The convective fluxes \mathbf{F}_{c} are taken as piecewise linear functions in space, and the viscous fluxes F_{v} are piecewise constant over each triangle, since they are formed from first derivatives in the flow variables. Evaluating the flux integrals with these assumptions, one obtrins

$$
\begin{equation*}
\frac{\partial}{\partial t} \iint_{G} \phi w d x d y=\sum_{\infty=1}^{n} \frac{\mathbf{F}_{c}^{A}+\mathbf{F}_{c}^{B}}{6} \cdot \Delta \mathbf{L}_{A B}-\frac{\sqrt{\gamma} M_{\infty}}{R \mathbf{R}_{\infty}} \sum_{\infty=1}^{n} \frac{\mathbf{F}_{v}^{v}}{2} \cdot \Delta \mathbf{L}_{A B} \tag{12}
\end{equation*}
$$

where the summations are over all triangles in the domain of influence, as shown in Figure 1. $\Delta_{A B}$ represents the directed (normal) edge length of the face of each triangle on the outer boundary of the domain, $\mathbf{F}_{c}^{A} \mathbf{F}_{c}^{B}$ are the convective fluxes at the two vertices at either end of this edge, and F_{v}^{*} is the viscous flux in triangle e. If the integral on the left hand side of equation (12) is evaluated in the same manner, the time derivatives become coupled in space. Since we are not interested in the time-accuracy of the scheme, but only in the final steady-state solution, we employ the concept of a lumped mass matrix. This is equivalent to assuming w to be constant over the domain of influence while integrating the left hand side. Hence, we obtain

$$
\begin{equation*}
\Omega_{p} \frac{\partial w_{p}}{\partial t}=\sum_{c=1}^{n} \frac{\mathbf{F}_{c}^{A}+\mathbf{F}_{c}^{B}}{2} \cdot \Delta \mathbf{L}_{A B}-\frac{\sqrt{\gamma} M_{\infty}}{\operatorname{Re}_{\infty}} \sum_{c=1}^{n} \frac{3}{2}\left(\mathbf{F}_{v}^{e} \cdot \Delta \mathbf{L}_{A B}\right) \tag{13}
\end{equation*}
$$

where the factor of $1 / 3$ is introduced by the integration of ϕ over the domain, and Ω_{p} represents the surface area of the domain of influence of \mathbf{P}. For the convective fluxes, this procedure is equivalent to the vertex finite-volume formulation described in [1,10]. For the viscous fluxes, in the case of equilateral triangles, this formulation can be shown to be equivalent to a finitevolume formulation where the control volume is taken as the hexagonal cell formed by joining the centroids of all triangles with a vertex at P, as shown in Figure 2. For a smoothly varying regular triangulation, the above formulation is second-order accurate.

3. ARTIFICIAL DISSIPATION

In principle, the physical viscous terms of the Navier-Stokes equations are capable of providing the numerical scheme with the dissipative property necessary for stability and capturing discontinuities. However, for high-Reynolds-number flows, this can only be achieved by
resorting to extremely small mesh spacings throughout the domain. Thus, in practice, it is necessary to introduce artificial dissipative terms to maintain stability in the essentially inviscid portions of the flow field, and to efficiently capture discontinuities. These additional dissipative terms must be carefully constructed to ensure that the accuracy of the scheme is preserved both in the inviscid region of the flow field where the convective terms dominate, as well as in the boundary-layer and wake regions where the artificial dissipation terms must be much smaller than the physical viscous terms. Previous Navier-Stokes solutions on highly stretched structured meshes [$11,12,13$] have demonstrated the need for different scalings of the artificial dissipation terms in the streamwise and normal directions within the regions of viscous flow. However, for unstructured meshes, directional scaling is significantly more difficult to achieve since no mesh coordinate lines exist. In fact, unstructured meshes have traditionally been considered to be truly multi-dimensional isotropic constructions with no preferred directions. However, as stated previously, the efficient solution of high-Reynolds-number viscous flows requires the use of meshes with highly stretched elements in the boundary-layer and wake regions, since these physical phenomena are highly directional in nature. For such meshes, even in the unstructured case, a direction and magnitude of stretching can be defined for each mesh point, as shown in Figure 3. This stretching vector, denoted as s, need not necessarily line up with any of the mesh edges. For the meshes employed in this paper, which are directly derived from structured quadrilateral meshes by splitting each quadrilateral into two triangles, the stretching magnitude and direction may be taken as the aspect-ratio and the major axis of the generating quadrilateral element for each triangular element respectively. In the more general case, the generation of directionally stretched unstructured meshes [9,14] requires the definition of local stretching vectors throughout the flow field. These can in turn be used to scale the dissipation terms. It is important to note that these stretching vectors represent grid metrics which do not depend on the flow solution.

The artificial dissipation operator on unstretched unstructured meshes has previously been constructed as a blend of an undivided Laplacian and biharmonic operator in the flow field. Since the biharmonic operator may be viewed as a Laplacian of a Laplacian, the dissipation operator may be reformulated as a global undivided Laplacian operating on a blend of the flow variables and their second differences :

$$
\begin{equation*}
D(w)=\Omega \alpha\left[u_{x z}+u_{y y}\right] \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
u=\kappa_{2}^{\prime} w-K_{4} \nabla^{2} w \tag{15}
\end{equation*}
$$

In the above equations, Ω represents the area of the control volume, which is of order Δx^{2}, and $\nabla^{2} w$ denotes the undivided Laplacian of w. The first term in the above equation constitutes a relatively strong first-order dissipation term which is necessary to prevent unphysical oscillations in the vicinity of a shock. To preserve the second-order accuracy of the scheme, this term must be turned off in regions of smooth flow. This is accomplished by evaluating κ_{2}^{\prime} at mesh point i as

$$
\begin{equation*}
\left(\kappa_{2}^{\prime}\right)_{i}=\kappa_{2} \frac{\sum_{k=1}^{n}\left[p_{k}-p_{i}\right]}{\sum_{k=1}^{n}\left[p_{k}+p_{i}\right]} \tag{16}
\end{equation*}
$$

Hence κ_{2}^{\prime} is proportional to an undivided Laplacian of the pressure, which is constructed as a summation of the pressure differences along all edges meeting at node i, as depicted in Figure
3. This construction has the required property of being of order unity near a shock and small elsewhere. κ_{2} is an empirically determined coefficient which is taken as 0 for subcritical flows, and as $1 / 2$ for transonic and supersonic flows. In equation (14), the overall scaling of the dissipation is performed by the factor α, which has previously been taken as proportional to the maximum eigenvalue of the Euler equations for inviscid flow calculations [4]. Directional scaling of the dissipation may thus be achieved by replacing equation (14) by

$$
\begin{equation*}
D(w)=\Omega\left[\alpha_{1} u_{\xi \xi}+\alpha_{2} u_{\eta \eta}\right] \tag{17}
\end{equation*}
$$

where α_{1} and α_{2} represent the different scalings in the ξ and η directions respectively. Here, ξ denotes the direction of the mesh stretching, and η the direction normal to ξ. Appropriate expressions for α_{1} and α_{2} remain to be determined, as well as the discretization procedure for the above operator on unstructured meshes.

On structured meshes, the dissipation is often scaled by the maximum eigenvalue of the Euler equations in each mesh coordinate direction, which is given by

$$
\begin{equation*}
\lambda_{\xi}=[|u|+c] \Delta \eta \quad \lambda_{\eta}=[|\nu|+c] \Delta \xi \tag{18}
\end{equation*}
$$

where u, v, and $\Delta \xi, \Delta \eta$ represent the local fluid velocity components and the mesh spacing respectively, in computational space, and c denotes the local speed of sound. However, for efficient multigrid convergence, a more even distribution of the dissipation is required in the two mesh coordinate directions, and the above scaling is replaced by [11,13]:

$$
\begin{equation*}
\bar{\lambda}_{\xi}=\phi(r) \lambda_{\xi} \quad \bar{\lambda}_{\eta}=\phi\left(r^{-1}\right) \lambda_{\eta} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(r)=1+r^{2 / 3} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
r=\frac{\lambda_{\eta}}{\lambda_{\xi}}=\frac{[|\nu|+c] \Delta \xi}{[|u|+c] \Delta \eta} \tag{21}
\end{equation*}
$$

On unstructured meshes, we begin by constructing an isotropic value of the maximum eigenvalue at each mesh point as

$$
\begin{equation*}
\lambda=\int_{\Omega \Omega}|\mathbf{u} x \mathrm{~d}||+c| d| | \tag{22}
\end{equation*}
$$

where the integration is performed around the boundary of the control volume for the particular mesh point being considered, and the bold typeset denotes vector quantities. The discrete approximation to the above integral yields the final form for λ

$$
\begin{equation*}
\lambda=\sum_{A=1}^{n}\left|u_{A B} \Delta y_{A B}-v_{A B} \Delta x_{A B}\right|+c_{A B} \sqrt{\Delta x_{A B}^{2}+\Delta y_{A B}^{2}} \tag{23}
\end{equation*}
$$

where $\Delta x_{A B}$ and $\Delta y_{A B}$ represent the x and y increments along the outer edge $A B$ of element e, as shown in Figure 1, and $u_{A B}, v_{A B}$, and $c_{A B}$ represent averaged values along the edge AB. By considering the equivalent integration around the control volume on a structured quadrilateral mesh, it can be seen that λ approximates the sum of the eigenvalues in the two space dimensions, i.e.

$$
\begin{equation*}
\lambda \approx \lambda_{\xi}+\lambda_{n} \tag{24}
\end{equation*}
$$

Furthermore, the magnitude of the stretching vector s on the unstructured mesh can be considered to be closely related to the cell aspect-ratio. Thus, by analogy with the structured mesh case

$$
\begin{equation*}
s \approx \frac{\Delta \xi}{\Delta \eta}=\frac{\lambda_{\eta}}{\lambda_{\xi}} \tag{25}
\end{equation*}
$$

where s represents the magnitude of s, and the second approximation assumes that the magnitude of the speed of sound c is much greater than the streamwise and normal velocities u and v in the viscous flow regions. Thus, equations (24) and (25) permit an estimate of the values of the maximum eigenvalues in the directions parallel and normal to the local mesh stretching vector, given the values of λ and s. From equations (19) through (21), the α_{1} and α_{2} coefficients of equation (17) are constructed as

$$
\begin{equation*}
\alpha_{1}=\phi(s) \frac{1}{s+1} \lambda \quad \alpha_{2}=\phi\left(s^{-1}\right) \frac{s}{s+1} \lambda \tag{26}
\end{equation*}
$$

Next, the discretization of the scaled Laplacian of equation (17) on unstructured meshes must be considered. Previously, for inviscid flows [1,4], the unscaled Laplacian of equation (14) was approximated as an accumulated edge difference in computational space, ie.

$$
\begin{equation*}
u_{x x}+u_{y y}=\frac{1}{\Omega} \sum_{k=1}^{n}\left[u_{k}-u_{i}\right] \tag{27}
\end{equation*}
$$

where $k=1, \ldots, n$ represents the n neighbors of node i, and the difference is taken along all edges meeting at node i. For a cartesian grid, this reduces to the familiar five point Laplacian finitedifference formula. Equation (17) can easily be approximated on a cartesian mesh aligned with the ξ and η coordinate directions, simply by multiplying the constructed second differences in the ξ and η directions by α_{1} and α_{2} respectively. For more general unstructured mesh topologies, a finite-volume approximation to the scaled Laplacian of equation (17) yields the following discretization formula for the dissipation operator (see Appendix A)

$$
\begin{equation*}
D\left(w_{i}\right)=\Omega\left[\alpha_{1} u_{\xi \zeta}+\alpha_{2} u_{\eta \eta}\right]=\sum_{k=1}^{n}\left[u_{k}-u_{i}\right]\left[\alpha_{1} \cos ^{2} \theta_{k}+\alpha_{2} \sin ^{2} \theta_{k}\right] \tag{28}
\end{equation*}
$$

where θ_{k} represents the angle between the kth mesh edge at node i, and the principal stretching direction ξ, as shown in Figure 3. From the above equation, it can be seen that if the kth mesh edge coincides with the ξ or η directions, then the difference along that edge is multipiied by α_{1} or α_{2} respectively, and if $\alpha_{1}=\alpha_{2}$, then the above discretization reduces to the isotropic accumulated edge difference previously employed. Since in practice α_{1} and α_{2} vary throughout the mesh, equation (28) is replaced by

$$
\begin{equation*}
\left.D\left(w_{i}\right)=\sum_{k=1}^{n}\left[u_{k}-u_{i j}\right] \frac{A_{k}+A_{i}}{2}\right] \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k}=\alpha_{1 k} \cos ^{2} \theta_{k}+\alpha_{2 k} \sin ^{2} \theta_{k} \tag{30}
\end{equation*}
$$

and the i and k subscripts refer to variables evaluated at nodes i and k, thus ensuring a conservative formulation of the dissipation operator.

4. INTEGRATION TO STEADY-STATE

The discretization of the spatial derivatives transforms equation (1) into the set of coupled ordinary differential equations

$$
\begin{equation*}
\Omega_{i} \frac{d w_{i}}{d t}+\left[Q\left(w_{i}\right)-D\left(w_{i}\right)\right]=0, \quad i=1,2,3, \ldots, n \tag{31}
\end{equation*}
$$

where n is the number of mesh nodes. The residual $Q(w)$ represents the discrete approximation to the convective fluxes. $D(w)$ now represents the dissipative terms, i. e. the discrete approximation to the viscous fluxes, as well as the artificial dissipation terms. These equations are integrated in time using a five-stage hybrid time-stepping scheme given by

$$
w^{(0)}=w^{n}
$$

$$
\begin{aligned}
w^{(1)} & =w^{(0)}-\alpha_{1} \frac{\Delta t}{\Omega}\left[Q\left(w^{(0)}\right)-D_{0}\right] \\
w^{(2)} & =w^{(0)}-\alpha_{2} \frac{\Delta t}{\Omega}\left[Q\left(w^{(1)}\right)-D_{1}\right] \\
w^{(3)} & =w^{(0)}-\alpha_{3} \frac{\Delta t}{\Omega}\left[Q\left(w^{(2)}\right)-D_{2}\right] \\
w^{(4)} & =w^{(0)}-\alpha_{4} \frac{\Delta t}{\Omega}\left[Q\left(w^{(3)}\right)-D_{3}\right] \\
w^{(5)} & =w^{(0)}-\alpha_{3} \frac{\Delta t}{\Omega}\left[Q\left(w^{(4)}\right)-D_{4}\right] \\
w^{n+1} & =w^{(5)}
\end{aligned}
$$

where

$$
\begin{gathered}
D_{0}=D_{1}=D\left(w^{(0)}\right) \\
D_{2}=D_{3}=\beta D\left(w^{(2)}\right)+(1-\beta) D_{0} \\
D_{4}=\gamma D\left(w^{(4)}\right)+(1-\gamma) D_{2}
\end{gathered}
$$

w^{n} represents the value of the solution vector at the nth time step, and $w^{(q)}$ represents the value at the qth stage within a time step. The dissipative operator $D(w)$ is evaluated only at the first, third, and fifth stages of the scheme, and is employed to construct the subscripted D_{q} operator which represents a linear combination of present and previous evaluations of $D(w)$. This scheme represents a particular case of a large class of multi-stage time-stepping schemes where the coefficients are chosen in order to maintain good stability properties when the viscous terms are dominant, and to ensure large damping of high-frequency errors, which is crucial for a rapidly convergent multigrid method [11]. The values of these coefficients are taken as

$$
\beta=0.56 \quad \gamma=0.44
$$

and

$$
\alpha_{1}=1 / 4 \quad \alpha_{2}=1 / 6 \quad \alpha_{3}=3 / 8 \quad \alpha_{4}=1 / 2 \quad \alpha_{5}=1
$$

4.1. Local Time-Stepping

Convergence to the steady-state solution may be accelerated by sacrificing the time accuracy of the scheme, and advancing the equations at each mesh point in time by the maximum permissible time step in that region, as determined by local stability analysis. Stability limitations due to both the convective and diffusive characters of the Navier-Stokes equations must be considered. The local time step is thus taken as

$$
\begin{equation*}
\Delta t=C F L\left(\frac{\Delta t_{c} \Delta t_{v}}{\Delta t_{c}+\Delta t_{v}}\right) \tag{33}
\end{equation*}
$$

where CFL is the Courant number for the particular time-stepping scheme, and Δt_{c} and Δt_{v} represent the individual convective and viscous time-step limits respectively. The convective time-step limit has previously been derived for Euler solutions on unstructured meshes [4], and is given by

$$
\begin{equation*}
\Delta t_{c}=\frac{\Omega}{\lambda_{c}} \tag{34}
\end{equation*}
$$

where λ_{c}, previously denoted simply as $\lambda_{\text {, represents the maximum eigenvalue of the inviscid }}$ equations averaged around the boundary of the control volume, as given in equation (23), and Ω denotes the area of the control volume. The viscous time-step limit is taken as

$$
\begin{equation*}
\Delta t_{v}=K_{v} \frac{\Omega}{\lambda_{v}} \tag{35}
\end{equation*}
$$

where K_{v} is an empirically determined coefficient which determines the relative importance of the viscous and inviscid time-step limits in the final expression, and has been taken as 0.25 in this work. λ_{ν} represents the maximum eigenvalue of the diffusive operator of the Navier-Stokes equations, averaged about the boundary of the control volume. For the structured mesh case, $\lambda_{\nu \xi}$ and λ_{m} in the two mesh coordinate directions have been derived in [11]. For example,

$$
\begin{equation*}
\lambda_{\nu \xi}=\frac{\sqrt{\gamma} M_{\infty}}{\operatorname{Re} \Omega}\left[\frac{\gamma \mu}{\operatorname{Pr} \rho} \Delta \xi^{2}+\frac{\mu}{3 \rho} \Delta \xi \Delta \eta\right] \tag{36}
\end{equation*}
$$

with a similar expression for λ_{m}. If the cross terms are neglected, λ_{ν} for unstructured meshes may thus be approximated as

$$
\begin{equation*}
\lambda_{\nu}=\frac{\sqrt{\gamma} M_{-}}{\operatorname{Re} \Omega} \int_{\delta \Omega} \frac{\gamma \mu}{\operatorname{Pr} \rho} d l^{2} \tag{37}
\end{equation*}
$$

where the integration is performed along the boundary of the control volume. In discrete form, the expression for λ_{ν} becomes

$$
\begin{equation*}
\lambda_{\nu}=\frac{\gamma^{3 / 2} M_{\omega}}{\operatorname{Re} \operatorname{Pr} \Omega} \sum_{\Omega=1}^{n} \frac{\mu_{A B}}{\rho_{A B}}\left[\Delta x_{A B}^{2}+\Delta y_{A B}^{2}\right] \tag{38}
\end{equation*}
$$

where $\mu_{A B}$ and $\rho_{A B}$ represent averaged values of viscosity and density along the outer edge $A B$ of each element e. (c.f. Figure 1)

4.2. Implicit Residual Smoothing

The stability range of the basic time-stepping scheme can be increased by implicitly smoothing the residuals. Thus the original residuals R may be replaced by the smoothed residuals \bar{R} by solving the implicit equations

$$
\begin{equation*}
\bar{R}_{i}=R_{i}+\varepsilon \nabla^{2} \bar{R}_{i} \tag{39}
\end{equation*}
$$

at each mesh point i , where $\nabla^{2} \bar{R}_{i}$ represents the undivided Laplacian of the residuals, and ε is the smoothing coefficient. For highly stretched structured meshes, the use of individual smoothing coefficients in the ξ and η mesh coordinate directions which vary locally throughout the mesh, has been found to result in significantly improved convergence rates [11,13]. The use of locally varying smoothing coefficients has the effect of making the scheme more implicit in the direction normal to the boundary layer, or normal to the mesh stretching direction, and less implicit in the tangential direction. The implementation of implicit residual smoothing with locally varying coefficients on unstructured meshes is accomplished by rewritting equation (39) as

$$
\begin{equation*}
\bar{R}_{i}=R_{i}+\varepsilon_{\xi} \bar{R}_{i_{k j}}+\varepsilon_{\eta} \bar{R}_{i_{m}} \tag{40}
\end{equation*}
$$

where ξ and η now represent the directions tangential and normal to the local mesh stretching vector, as described previously. By analogy with the structured mesh case [11], and making use of equation (25), the smoothing coefficients are taken as

$$
\begin{align*}
& \varepsilon_{\xi}=\max \left[\frac{1}{4}\left[\left(\frac{C F L}{C F L^{*}} \frac{1}{s+1} \phi(s)\right)^{2}-1\right], 0\right] \tag{41}\\
& \varepsilon_{\eta}=\max \left[\frac{1}{4}\left[\left(\frac{C F L}{C F L^{*}} \frac{s}{s+1} \phi\left(s^{-1}\right)\right)^{2}-1\right], 0\right] \tag{42}
\end{align*}
$$

where CFL and CFL* are the Courant numbers of the smoothed and unsmoothed schemes respectively, s denotes the magnitude of the mesh stretching vector, and ϕ is given by equation (20). Since equation (40) now contains a directionally scaled Laplacian, it can be discretized on
an unstructured mesh in a manner analogous to that employed for the directionally scaled dissipation operator, as given in equation (28). For economy, the resulting set of algebraic equations are solved only approximately by performing two Jacobi iterations.

4.3. Multigrid Algorithm

The idea of a multigrid algorithm is to accelerate the convergence of the fine mesh solution by efficiently damping out the low-frequency error components by means of time-stepping on coarser meshes. A multigrid method for unstructured meshes has previously been developed for inviscid flow calculations [10]. It assumes the various coarse and fine meshes of the sequence to be completely independent from one another, and computes the patterns for transferring the flow variables, corrections and residuals back and forth between the various meshes in a preprocessing operation, where an efficient tree-search algorithm is employed. For viscous flow calculations, a full multigrid (FMG) algorithm is employed, where the initial flow field on the fine grid is obtained by interpolating a flow solution which has been converged on the previous coarser grid with a small number (10 to 20) of multigrid cycles. Better convergence and additional robustness can also be obtained if the previously employed V-cycle is replaced by a W-cycle, which performs one time step on each mesh when proceeding from fine to coarse meshes, and no time stepping but merely prolongation of the corrections when proceeding from coarse grids to fine grids. It also proves useful to implicitly smooth the corrections after the prolongation operation, when proceeding from coarse to fine meshes. The constant coefficient implicit smoothing operator of equation (39) is employed for this operation, using a value of $\varepsilon=0.2$, and the resulting equations are solved approximately using two Jacobi iterations.

5. RESULTS

The intent of this work is to provide a validation of the basic algorithm described above for triangular meshes, and to demonstrate that accurate and efficient solutions can be obtained on triangular meshes with highly stretched elements. This is best accomplished by computing solutions with the present scheme on triangular meshes which are directly derived from structured quadrilateral meshes, and comparing the accuracy and efficiency of these solutions with those obtained on equivalent quadrilateral meshes with proven structured-mesh Navier-Stokes solvers [11,12,13].

5.1. Low Reynolds Number Cases

The first series of test cases involve very low Reynolds number flows over a NACA0012 airfoil which have been computed by various authors for the GAMM workshop on the Solution of Compressible Navier-Stokes Flows [15]. For these cases, the thin-layer assumption does not hold, and the flow is dominated by viscous effects, thus providing a means of validating the discretization of the full Navier-Stokes viscous terms implemented in this work. The mesh employed for these calculations is depicted in Figure 4. It contains 20,800 points and 41,600 triangles, and is derived from a 320×64 structured quadrilateral C-mesh with 192 points on the airfoil, and 64 points in the wake. The far-field boundary is located 15 chords out from the airfoil, and the mesh spacing in the normal direction at the wall is 0.002 chords, resulting in relatively low cell aspect ratios of the order of $10: 1$ on the airfoil surface, and $100: 1$ in the wake region. For all these cases, a constant temperature wall boundary condition is prescribed along the airfoil surface, where the temperature is taken as the adiabatic free-stream temperature.

In the first test case, the Mach number is 0.8 , the incidence is 10°, and the Reynolds
number is 73. The Mach number contours of the computed solution are depicted in Figure 5, where a rapid growth of the boundary layer along the upper airfoil surface is observed, and locally supersonic flow is attained only in a small pocket outside the edge of the viscous layer on the upper surface. This low Reynolds number flow provides a test of the scheme near the Stokes limit of extremely viscous flow. The computed flow field pattern and the lift and drag values are within the same range as the results reported in the workshop [15]. A reduction of the density residuals of 4 orders of magnitude over 200 multigrid cycles was achieved for this case, employing 5 meshes in the multigrid sequence, as shown in Figure 8.

In the next test case, the Mach number is 0.8 , the incidence is 10°, and the Reynolds number is increased to 500 . The Mach number contours of the computed solution are given in Figure 6. A slower boundary layer growth is observed for this higher Reynolds number case, accompanied by a stronger leading-edge expansion and an increased region of supersonic flow. The recompression from supersonic to subsonic flow appears to occur gradually along the upper edge of the viscous layer. Separation occurs on the top surface of the airfoil, and a large wake of low-velocity recirculating flow occurs downstream of the airfoil. Nevertheless, rapid convergence is achieved with the multigrid algorithm, as shown in Figure 8, where a reduction of 10 orders of magnitude of the density residuals is achieved in 200 cycles. The computed values of lift and drag for this case compare well with those reported in [11,15].

The third case consists of a supersonic low-Reynolds-number flow, where the Mach number is 2.0 , the incidence is 10°, and the Reynolds number is 106 . This represents a standard test case which has received wide attention in the literature, and for which experimental data is available. The density contours of the computed flow field are depicted in Figure 7, where a strong bow shock is observed, which tends to weaken in the far-field due to curvature. These computed density contours compare qualitatively with the experimental density contours and numerical solutions given in $[5,11,15]$, and the computed lift and drag values are within the same range as those reported in these references. For this case, the density residuals were reduced by 5 orders of magnitude over 200 multigrid cycles, as shown in Figure 8.

5.2. Flat Plate Boundary Layer

An assessment of the accuracy of the scheme may be performed by examining the ability of the method to reproduce the well-known compressible boundary-layer solution over a thermally insulated flat plate. The mesh employed for the boundary-layer calculation is shown in Figure 9. It represents a triangulation of a stretched cartesian grid previously employed for computing the same problem with a structured mesh solver [16]. The mesh contains 24 points ahead of the plate, 48 points along the plate in the streamwise direction, and 80 points in the normal direction. The upstream boundary is located two plate lengths ahead of the leading edge, and the upper far-field boundary is located at a distance of 2.6 plate lengths. The mesh points are clustered in the streamwise direction near the leading edge of the plate in order to better resolve the stagnation point flow in this region. The mesh point spacing at the wall is 0.0016 plate lengths, resulting in elements of aspect ratio $50: 1$ near the trailing edge of the flat plate. The computations were performed for a Mach number of 0.8, and a Reynolds number based on the plate length of 5000 . An exact analytical solution for this flow may be obtained by an application of the Howarth-Dorodnitsyn transformation to the incompressible Blasius similarity solution [17]. The transformation consists of a rescaling of the coordinate direction normal to the plate as a function of the local density variation through the layer:

$$
\begin{equation*}
\bar{Y}=\int_{0}^{-} \frac{\rho}{\rho_{-}} d y \tag{43}
\end{equation*}
$$

Comparison of computed and exact boundary-layer profiles at the station $x=0.6$, for a plate of length unity, where the Reynolds number based on x is 3000 are shown in Figures 10 through 12. The normalized streamwise and normal velocities, as well as the shear stress across the layer are plotted versus the similarity coordinate η, which varies from 0 to 1 through the layer, and is given by

$$
\begin{equation*}
\eta=\frac{\bar{Y}}{5} \sqrt{\frac{\rho_{-} U_{-}}{\mu_{\Delta} x}} \tag{44}
\end{equation*}
$$

where \bar{Y} is the transformed vertical coordinate given by equation (43). Excellent agreement between the computed and exact profiles of streamwise and normal velocity is observed from Figures 10 and 11. From Figure 12, good correlation between the computed and exact shear stress across the layer is observed. The slight overprediction of the wall shear stress observed in this figure, at $\eta=0$, could be systematically reduced by further refinement of the grid. The similarity property of the solution was also verified by examining the profiles at various different stations along the length of the plate. Good agreement was observed except for stations close to the leading edge, where effects of the stagnation point flow are still present, and for stations directly adjacent to the outflow boundary. The skin friction along the plate is plotted in Figure 13, showing good agreement between computed and exact solutions except in the aforementioned regions.

For the present calculations, the κ_{2} dissipation coefficient was set to zero since the flow is subcritical. The value of the k_{4} coefficient was taken as $1 / 256$, which resulted in artificial dissipation terms which were roughly 2 orders of magnitude smaller than the physical viscous terms in most regions of the boundary layer. Thus, for these values of the dissipation coefficients, the present mesh resolution, which from Figures 10 through 12 can be seen to yield approximately 20 points in the layer, appears to be sufficient for accurately resolving the boundary layer. A reduction of 7 orders of magnitude of the density residuals was achieved over 300 multigrid cycles for this case, employing a sequence of 4 meshes, as shown in Figure 14. Similar accuracy could be obtained when the Reynolds number was raised to 50,000 , and the mesh spacing at the wall was reduced to 0.0005 , thus increasing the aspect ratios of the cells, but retaining the same number of mesh points in the boundary layer. A somewhat slower convergence rate was observed in this case, resulting in a reduction in the residuals of 4 orders of magnitude over 300 multigrid cycles, as shown in Figure 14.

5.3. Symmetric Laminar Airfoil Case

The final test case consists of a NACA0012 airfoil at 0° incidence, with a freestream Mach number of 0.5 , and a Reynolds number of 5000 . The thermally insulated wall boundary condition is applied by prescribing zero heat flux across the airfoil surface. This represents a well documented laminar test case which has been computed independently with various structured grid codes [11,12,13]. The Reynolds number for this case approaches the upper limit for steady laminar flows prior to the onset of turbulence. For this case, separation occurs near the trailing edge, and a small symmetric recirculation bubble is formed in the trailing-edge and near-wake region. The mesh employed for this case is derived from a 320×64 structured quadrilateral C-mesh with 192 points on the airfoil, and 64 points in the wake, as is depicted in Figure 15. It is similar in nature to the mesh of Figure 4, with the exception that increased stretching is applied near the airfoil surface and in the wake for better resolution of the thin viscous regions. The normal mesh spacing at the wall is 0.0002 chords, resulting in cells with aspect ratios of the order of $100: 1$ along the airfoil. In the wake region, the element aspect
ratios were limited to $100: 1$. Figure 16 depicts the computed Mach number contours in the flow field, where the thin boundary-layer and wake regions are visible, and the recirculation bubble appears as a region of low Mach number flow. A plot of the velocity vectors near the airfoil trailing edge, as shown in Figure 17, clearly shows the recirculatory nature of the flow in this region. Plots of surface pressure and skin friction distributions are given in Figures 18 and 19 respectively. For this subcritical case, the values of the artificial dissipation coefficients were taken as $\kappa_{2}=0.0$, and $\kappa_{4}=1 / 256$. This resulted in artificial dissipation terms which were roughly 2 orders of magnitude smaller than the physical dissipation terms in the viscous layer regions of the flow. The classic trade-off between accuracy and speed of convergence was observed for this case by varying the dissipation coefficient k_{4} from $1 / 256$ to $1 / 64$. Table 1 gives an estimate of the accuracy of the solution as measured by the computed values of pressure drag, viscous drag, and separation location, versus values produced by various structured-quadrilateral-mesh Navier-Stokes solvers. The variation of the multigrid convergence rate with the change in the dissipation coefficient is illustrated in Figure 20. The scheme is robust in that it converges efficiently over a wide range of κ_{4} values, and has been found to remain stable for values as low as $1 / 640$. While the fastest convergence rate is achieved for a value of $\kappa_{4}=1 / 64$, the solution accuracy degrades slightly, the separation point having shifted from 81.4% to $\mathbf{8 3 . 4 \%}$ chord. For all cases, convergence to engineering accuracy could be achieved in less than 100 multigrid cycles, which requires roughly 7 minutes of CRAY-2 CPU time. Finally, the same test case was run on a similar mesh with a normal spacing of 0.00002 chords at the wall, with cell aspect ratios of the order of $1000: 1$ on the airfoil surface and in the wake. For a k_{4} value of $1 / 64$, a reduction of the density residuals of 4 orders of magnitude over 200 multigrid cycles was achieved, illustrating the robustness of the code in dealing with the extremely stretched elements which are necessary for solving higher Reynolds number turbulent flows.

6. CONCLUSIONS

A new Navier-Stokes solver for use on unstructured triangular meshes has been validated by comparing various laminar flow results about simple geometries with well established numerical and analytical solutions. The accuracy and convergence efficiency of the present scheme were found to be competitive with various well known structured quadrilateral-mesh viscous-flow solvers for laminar flow cases. The present code requires approximately 0.19×10^{-3} sec/node/multigrid cycle of CPU time on a CRAY-2 supercomputer, which represents three to four times the computational effort required by equivalent structured-mesh codes. This lower computational efficiency is due in large part to the gather-scatter operations required in unstructured-mesh algorithms. In future work it will be shown how this solver can be applied to arbitrarily complex configurations which are not easily handled by structured-mesh solvers, and how the efficiency and accuracy can be improved by the use of adaptive meshing techniques. A turbulence model for use on unstructured meshes will also be sought for higher Reynolds number calculations.

7. ACKNOWLEDGMENTS

The first author wishes to thank R. Radespiel of D.F.V.L.R., Braunschweig, Federal Republic of Germany, and R. C. Swanson of the NASA Langley Research Center for their open sharing of ideas and useful suggestions. This work was performed using the computational resources of the National Aerodynamic Simulation (NAS) facility.

REFERENCES

1. Jameson, A., Baker, T. J., and N. P. Weatherill, "Calculation of Inviscid Transonic Flow over a Complete Aircraft", AIAA paper 86-0103, January 1986.
2. Stoufflet, B., Periaux, J., Fezoui, F., and Dervieux, A., "Numerical Simulation of 3-D Hypersonic Euler Flows Around Space Vehicles Using Adapted Finite Elements", AIAA paper 87-0560 January 1987.
3. Lohner, R., Morgan, K., Peraire, J., Vahdati, M., "Finite Element Flux-Corrected Transport for the Euler and Navier-Stokes Equations", Int. J. Num. Meth. Fluids, Vol 7, 1987, pp. 1093-1109
4. Mavriplis, D. J., "Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes", AIAA paper 88-3707, First National Fluid Dynamics Congress, Cincinnati, Ohio, July 24-28, 1988.
5. Bristeau, M. O., Glowinski, R., Dimoyet, B., Periaux, J., Perrier, P., and Pironneau, O., "Finite-Element Methods for the Compressible Navier-Stokes Equations" AIAA paper 83-1890, AIAA Computational Fluid Dynamics Conference, Danvers, Massachusetts, July 1983.
6. Morgan, K., Peraire, J., Thareja, R. R., and Stewart J. R., "An Adaptive Finite-Element Scheme for the Euler and Navier-Stokes Equations", AIAA paper 87-1172, AIAA 8th Computational Fluid Dynamics Conference, Honolulu, Hawaii, June, 1987.
7. Weatherill, N. P., Johnston, L. J., Peace, A. J., and Shaw, J. A., "A Method for the Solution of the Reynolds-Averaged Navier-Stokes Equations on Triangular Grids", Proceedings of the 7th GAMM Conference on Numerical Methods in Fluids, Louvain, Belgium, Sept, 1987.
8. Nakahashi, N., "FDM-FEM Zonal Approach for Viscous Flow Computations Over Multiple Bodies", AIAA paper 87-0604, January, 1987.
9. Mavriplis, D. J., Adaptive Mesh Generation for Viscous Flows Using Delaunay Triangulation", Proceedings of the Second International Conference on Numerical Grid Generation in Computational Fluid Dynamics", Edited by S. Sengupta, J. Hauser, P. R. Eiseman and J. F. Thompson, Pineridge Press Ltd., Dec 1988.
10. Mavriplis, D. J., "Multigrid Solution of the 2-D Euler Equations on Unstructured Triangular Meshes", AIAA Journal, Vol 26, No. 7, July 1988, pp. 824-831. 1988.
11. Martinelli, L., "Calculations of Viscous Flows with a Multigrid Method" Ph.D Thesis, Department of Mechanical and Aerospace Engineering, Princeton University, October, 1987.
12. Swanson, R. C., and Turkel, E., "Artificial Dissipation and Central Difference Schemes for the Euler and Navier-Stokes Equations", AIAA paper 87-1107, AIAA 8th Computational Fluid Dynamics Conference, Honolulu, Hawaii, June, 1987.
13. Radespiel, R., and Swanson, R. C., "An Investigation of Cell Centered and Cell Vertex Multigrid Schemes for the Navier-Stokes Equations", AIAA paper 89-0543, AIAA 27th Aerospace Sciences Meeting, Reno, Nevada, January, 1989.
14. Peraire, J., Vahdati, M., Morgan, K., and Zienkiewicz, O. C., "Adaptive Remeshing for Compressible Flow Computations", J. Comp. Phys., Vol 72, October, 1987, pp. 449-466
15. Proceedings of the GAMM-Workshop on Numerical Simulation of Compressible NavierStokes Flows, INRIA, Sophia-Antipolis, Notes on Numerical Fluid Mechanics, Vol. 18, Vieweg-Verlag, 1986.
16. Radespiel, R., and Rossow, C., "A Cell Vertex Finite Volume Scheme for the TwoDimensional Navier-Stokes Equations", DFVLR-IB 129-87/40, December 1987.
17. Stewartson, K., "The Theory of Laminar Boundary Layers in Compressible Fluids", Oxford Mathematical Monographs, Eds. G. Temple and I. James, Oxford University Press, 1964.

Figure 1
Domain of Influence of Node P and Equivalent Control Volume for a Finite-Volume Approximation to the Convective Terms

Figure 2
Equivalent Control Volume for a Finite-Volume Approximation to the Viscous Terms

Figure 3

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4
Stretched Triangular Mesh about a NACA 0012 Airfoil Employed for the Low-Reynolds Number Calculations
Number of Nodes $=20,800$, Number of Triangles $=41,600$

Figure 5
Mach Number Contours of Computed Solution and Calculated Lift and Drag Coefficients due to Pressure Forces for Case 1: Mach $=0.8, \operatorname{Re}=73$, Incidence $=10^{\circ}$

Figure 6
Mach Number Contours of Computed Solution and Calculated Lift and Drag Coefficients due to Pressure Forces for Case 2: Mach $=0.8, \mathrm{Re}=500$, Incidence $=10^{\circ}$

Figure 7
Density Contours of Computed Solution and Calculated Lift and Drag Coefficients due to Pressure Forces for Case 3:

Mach $=2.0, \operatorname{Re}=106$, Incidence $=10^{\circ}$

Figure 8
Convergence Rate as Measured by the RMS Average of the Density Residuals versus the Number of Multigrid Cycles on the Finest Mesh for the three Low Reynolds Number Cases:
Case 1: Mach $=0.8, \operatorname{Re}=73$, Incidence $=10^{\circ}$
Case 2: Mach $=0.8, \operatorname{Re}=500$, Incidence $=10^{\circ}$
Case 3: Mach $=2.0, \operatorname{Re}=106$, Incidence $=10^{\circ}$

ORIGINAL PAGE IS OF POOR QUALITY

Figure 9
Stretched Triangular Mesh Employed for the Flat-Plate Boundary-Layer Calculation Number of Nodes $=5913$, Number of Triangles $=11824$

Figure 10
Comparison of Computed and Exact Streamwise Velocity in the Boundary Layer at $R E_{x}=3000$ in Terms of Similarity Coordinates

Figure 11
Comparison of Computed and Exact Normal Velocity in the Boundary Layer at $R E_{x}=3000$ in Terms of Similarity Coordinates

Figure 12

Figure 13
Comparison of Computed and Exact Skin Friction Along the Plate for a Reynolds Number based on the Plate Length of 5000 , and a Mach Number of 0.8

Figure 14
Convergence Rate for Flat Plate Boundary Layer Calculation at Mach $=0.8$ Case 1: $R E_{L}=5000 \quad \Delta y_{\text {wall }}=0.0016$
Case $2: R E_{L}=50,000 \quad \Delta y_{\text {wal }}=0.0005$

Figure 15
Fineat Mesh Employed for the NACA0012 Airfoil Calculation at Mach $=0.5$, Re $=5000$
Number of Nodes $=\mathbf{2 0 , 8 0 0}$, Number of Triangles $=\mathbf{4 1 , 6 0 0}$

Figure 16
Mach Number Contours of the Computed Solution for Viscous Flow
Past a NACA 0012 Airfoil, Mach $=0.5, \mathrm{Re}=5000$, Incidence $=0^{\circ}$

ORIGINAL PAGE IS
OF, POOR QUALITY

Figure 17
Close-up of Computed Velocity Vectors in the Trailing Edge Region Illustrating the Laminar Separation Bubble for Flow Past a NACA 0012 Airfoil Mach $=0.5, \operatorname{Re}=5000$, Incidence $=0^{\circ}$

ORIGINAL PAGE IS OF POOR QUALITY


```
NACA 0012 AIRFOIL (VISCOUS GRID)
    *** PROGRAM NS72 5 STAGE SCHEME ***
    MACH=0.50 ALPHA=0.00 RE=0.50E+04 MGCYC=2
    VISO=1.00 VIS2 =0.00 VIS4 =0.25
```

Figure 18

Computed Surface Pressure Distribution and Calculated Pressure Force

Coefficients for Flow Past a NACA 0012 Airfoil
Mach $=0.5, \mathrm{Re}=5000$, Incidence $=0^{\circ}$

Figure 19
Computed Skin Friction Distribution and Calculated Viscous Force Coefficients for Flow Past a NACA 0012 Airfoil Mach $=0.5, \operatorname{Re}=5000$, Incidence $=0^{\circ}$

ORIGINAL PAGE IS OF POOR QUALITY

Figure 20
Convergence Rate as Measured by the RMS Average of the Density Residuals versus the Number of Multigrid Cycles on the Fine Mesh for Various Values of the Artificial Dissipation Coefficient κ_{4} Mach $=0.5, \operatorname{Re}=5000$, Incidence $=0^{\circ}$

NACA 0012			Mach $=0.5, ~ R e=5000$,	$\alpha=0^{\circ}$
METHOD	GRID	$C D_{p}$	$C D_{v}$	Separation Point
Triangle Scheme $\kappa_{4}=\frac{1}{256}$	320×64	0.0229	0.0332	81.4%
Triangle Scheme $\kappa_{4}=\frac{1}{128}$	320×64	0.0228	0.0336	82.4%
Triangle Scheme $K_{4}=\frac{1}{64}$	320×64	0.0225	0.0344	83.4%
Cell-Centered Scheme from [11]	320×64	0.0219	0.0337	81.9%
Cell-Vertex Scheme from [13]	256×64	0.0227	0.0327	81%
Cell-Centered Scheme from [13]	256×64	0.02256	0.03301	80.9%
Cell-Centered Scheme from [13]	512×128	0.02235	0.03299	81.4%

Table 1

Report Documentation Page		
1. Report No. NASA CR-181786 ICASE Report No. 89-11	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle MULTIGRID SOLUTION OF THE NAVIER-STOKES EQUATIONS ON TRIANGULAR MESHES		5. Report Date February 1989 6. Performing Organization Cod
```7. Author(s) Dimitri J. Mavriplis Antony Jameson Luigi Martinelli```		8. Performing Organization Report No. $89-11$   10. Work Unit No. $505-90-21-01$
9. Performing Organization Name and Address   Institute for Computer Applications in Science and Engineering   Mail Stop 132C, NASA Langley Research Center Hampton, VA 23665-5225		11. Contract or Grant No.   NAS 1-18107   NAS 1-18605   13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Nationa1 Aeronautics and Sp Langley Research Center Hampton, VA 23665-5225	pace Administration	Contractor Report
15. Supplementary Notes   Langley Technical Monitor:   Submitted to AIAA Journal   Richard W. Barnwe11   Final Report		
16. Abstract   A new Navier-Stokes algorithm for use on unsructured triangular meshes is presented. Spatial discretization of the governing equations is achieved using a finite-element Galerkin approximation, which can be shown to be equivalent to a finite-volume approximation for regular equilateral triangular meshes. Integration steady-state is performed using a multi-stage time-stepping scheme, and convergence is accelerated by means of implicit residual smoothing and an unstructured multigrid algorithm. Directional scaling of the aritifical dissipation and the implicit residual smoothing operator is achieved for unstructured meshes by considering local mesh sretching vectors at each point. The accuracy of the scheme for high1y sretched triangular meshes is validated by comparing computed flat-plate laminar boundary-layer results with the well known similarity solution, and by comparing laminar airfoil results with those obtained from various well-established structured quadrilateral-mesh codes. The convergence efficiency of the present method is also shown to be competitive with those demonstrated by structured quadrilateral-mesh algorithms.		
17. Key Words (Suggested by Author(s)) 18. Distribution Statement   Multigrid 02 - Aerodynamics   Navier-Stokes 64 - Numerical Analysis   Triangles         Unclassified - Unlimited		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of pages   36$\quad$22. Price   A0 3


[^0]:    This research was supported under the National Aeronautics and Space Administration under NASA Contract Nos. NAS1-18107 and NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

