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CONTROL-VOLUME BASED NAVIER-STOKES EQUATION SOLVER

VALID AT ALL FLOW VELOCITIES

S.-W. Kim*

Institute for Computational Mechanics in Propulsion

Lewis Research Center

Cleveland, Ohio 44135

SUMMARY

A control-volume based finite difference method to solve the Reynolds

averaged Navier-stokes equations is presented. A pressure correction

equation Valid at all flow velocities and a pressure staggered grid layout

are used in the method. Example problems presented herein include: a

developing laminar channel flow, a developing laminar pipe flow, a

lid-driven square cavity flow, a laminar flow through a 90-degree bent

channel, a laminar polar cavity flow, and a turbulent supersonic flow over

a compression ramp. A k-c turbulence model supplemented with a near-wall

turbulence model was used to solve the turbulent flow. It is shown that the

method yields accurate computational results even when highly skewed,

unequally spaced, curved grids are used. It is also shown that the method

is strongly convergent for high Reynolds number flows.

*Work funded under Space Act Agreement C99066G.
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Nomenclature

coefficient for incremental u-velocity

coefficient for incremental v-velocity

constant coefficient for fp equation (-0.025)

constant coefficient for fp equation (-0.00001)

constant coefficient for f_ equation

turbulence model constants for _ equation, (2-1,2)

constant coefficient for eddy viscosity equation (-0.09)

normal distance from wall

wall damping function for eddy viscosity equation

wall damping function for _w equation

turbulent kinetic energy _!

effective thermal conductivity (-km_ t)

thermal conductivity

turbulent thermal conductivity (-CpPt/a T)

outward normal vector, (-{nx, ny})

pressure

production rate of turbulent kinetic energy

gas constant.

Reynolds number

turbulent Reynolds number (-k2/(VCl))

temperature

friction velocity (-J(_w/P))

velocity vector (=_u,v})

cartesian coordinates (-ix,y})

wall coordinate (-u_dn/w)

dissipation rate
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#
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_t

V

vt

(_,_)

P

ak

oT

a_

fw

dissipation rate of turbulent kinetic energy

dissipation rate inside the near-wall layer

von Karman constant (-0.41)

molecular viscosity

effective viscosity (-_+_t)

turbulent viscosity

kinematic viscosity of fluid

turbulent eddy viscosity

curvilinear coordinates

density

turbulent Prandtl number for k-equation

turbulent Prandtl number for energy equation

turbulent Prandtl number for _-equation

wall shearing stress

dissipation function for energy equation

Superscripts

A

n

!

non-dimenslonal value normalized by the free stream value

iteration level

current value

incremental (or corrective) value

Subscripts

nb

P

neighboring grid points, (-{E, W, S, N})

grid point

Mathematical symbol

X summation



INTRODUCTION

A control-volume based finite difference method to solve the Reynolds

averaged Navier-Stokes equations for all fl0w velocities is presented. The

method is an extension of the pressure correction method (SIMPLE) which is

used primarily to solve incompressible flows [1,2]. Numerical methods based

on the pressure correction method have been used extensively to solve

complex turbulent flows [3], including chemically reacting turbulent flows

[4], due to their strongly convergent nature. In the present study, a

pressure correction equation which is valid at all flow velocities is used

for numerical calculations of incompressible and compressible flows.

Many finite difference methods to solve the compressible flow

equations are based on the flux-splitting method. The Beam-Warming method

[5] and the McCormack method [6] are the representatives of the

flux-splitting methods. The flux-splitting methods were originally

developed to solve the Euler equations and then extended to include the

viscous term to solve the Navier-Stokes equations. The most distinguishing

practical difference between the pressure correction methods and the

flux-splitting methods lies in the way the diffusion term is treated. In

the former class of methods, the diffusion term has been incorporated into

the stiffness matrix while, in the latter class of methods, the diffusion

term has been incorporated into the system of equations as the load vector

term. For turbulent flows with extensive recirculation zones, the pressure

correction methods may be numerically more stable conceptually. However,

the pressure correction methods have mostly been used for incompressible

flows and the flux splitting methods have mostly been used for compressible

flows. Therefore, definitive advantages and disadvantages of these two

classes of methods can not be discussed with confidence as yet.
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The original numerical method based on the SIMPLE algorithm [2] is

used to solve the Navier-Stokes equations whose domain can be discretized

using orthogonal grids. A fully staggered grid layout [i] has been used in

the method. However, in many flow problems of practical importance, the

boundary geometries are complex and arbitrary shaped blockages may exist

inside the flow path. A number of papers to extend the pressure correction

methods for flows with arbitrary geometries and for compressible flows have

appeared in recent years [7-13].

A number of grid layouts have been proposed and tested to identify the

most suitable one to solve the Navier-Stokes equations defined on

arbitrary, complex geometries. In Reference 7, the standard fully staggered

grid layout, Figure l-(a), was used to solve the Navier-Stokes equations

defined on curved geometries. This grid layout can not be used to solve

flows inside 90-degree bent ducts (see Reference 8 for details). A

collocated grid layout, Figure l-(b), was used in References 9 and I0. In

Reference 9, the velocity - pressure decoupling was prevented by including

an artificial viscosity, while in Reference I0, the same purpose was

achieved by evaluating the incremental velocities at mld-sides of the

control volume. In Reference 8, the standard fully staggered grid was used

and the velocity vector was located at all grid points except at the

pressure grid point (see Figure l-(c)). In this case, the number of degrees

of freedom for velocity is doubled while that of pressure remains the same

as in the original case. Note that the accuracy of numerical solutions

depends not only on the number of velocity grid points but also on the

number of pressure grid points. Hence the accuracy can not be improved as

much as the doubled number of velocity grid points might suggest. In

References 12 and 13, the velocities were located at the same grid points
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and the pressure was located at the centroid of the cell formed by the four

adjacent velocity grid points (see Figure l-(d)). This grid layout has been

used successfully in penalty finite element methods for a long time [14].

It was first used in the control-volume based finite difference method in

Vanka et. al. [12]. They mentioned that it was not easy to obtain

convergent solutions due to the velocity-pressure decoupllng. The mechanism

that yields the velocity-pressure decoupled solution was heuristically

shown in Reference [8]. In Reference 13, the velocity-pressure decoupling

was eliminated by using a non-conforming domain for the mass imbalance

calculation. In the present study, the velocity-pressure decoupling was

eliminated by moving the off-diagonal terms to the load vector term. The

resulting system of equations was solved using the Tri-Diagonal Matrix

Algorithm (TDMA) [i]. Thus any uncertainty that may arise due to the use of

a non-conforming domain for the mass imbalance calculation does not exist

in the present method.

A few different numerical procedures have also been used to solve the

pressure correction equation for compressible flows. The SIMPLE-R [i] and

the SIMPLE-C [15] were used in References Ii and 13, respectively. The

pressure, velocity, and density were corrected based on the incremental

pressure (or pressure correction) in References ii and 13. In the present

study, only the pressure and velocity were corrected from the incremental

pressure as in the standard SIMPLE method [i]. Density was obtained from

the equation of state for perfect gas so that the same numerical procedure

could equally be applicable for numerical computations of chemically

reacting turbulent flows in the future. The numerical procedure to solve

the pressure correction equation for compressible flows may need to be

studied further in the future.



A k-e turbulence model supplemented with a near-wall turbulence model

was used in the present study. Establishment of the near-wall turbulence

model and its application to fully developed turbulent channel and pipe

flows can be found in Reference 16. It has been shown in the reference that

the near-wall turbulence model can resolve the over-shoot phenomena of the

turbulent kinetic energy and the dissipation rate in the region very close

to the wall. Thus significantly improved computational results for the

near-wall turbulence structure were obtained. It is also shown in Reference

17 that the turbulence model yields correct location of the shock for a

transonic flow over an axisymmetric curved hill with shock wave - turbulent

boundary layer interaction [18].

A number of flow cases have been solved to test the accuracy and the

convergence nature of the present numerical method. The example flows

presented herein include: a developing laminar channel flow, a developing

laminar pipe flow, a lid-drlven square cavity flow [19-21], a

two-dimenslonal laminar flow in a 90-degree bent channel, a polar cavity

flow [22], and a turbulent supersonic flow over a compression ramp [23-24].

REYNOLDS AVERAGED NAVIER-STOKES EQUATIONS FOR COMPRESSIBLE FLOWS

The compressible turbulent flow equations are given as;

a a

--(pu) + --(pv) - O.
ax ay

(1)

a a a a

--(puu) +--(p_) =_(rxx) +--(rxy)
ax ay ax ay

ap

ax
(2)



a a a a ap

--(puv) +--(pvv) ---("yx) + --(ryy)
ax ay ax ay ay

(3)

a a[keaTl [ko T1
ax(pCpuT ) +--(pCpvT) ( axJ +ay ax ayL ayj

ap ap
+u--+v--+_

ax ay

(4)

where

au 2#e

rxx - 2#e
ax 3

(v'V),

rxy - ryx - #e +
I

av 2#e

ryy - 2# e
ay 3

(v'V),

@ - #e 21-- I + 2 -- + + --
Layj axj

2#e

3
---(v.v) 2,

au av

VoV -- __ + --,

ax ay

and the density is obtained from the perfect gas law given as p-pRT. The

turbulent Prandtl number (aT) of 0.75 was used for the energy equation in

the present calculations. The compressible turbulent flow equations for

axisymmetric case can be found in Reference 17.

The molecular viscosity and the thermal conductivity were obtained



from the Sutherland's laws given as [25];

_o IT + S)

(5)

where #o - 1.716 x 10 .5 Kg/m-sec, To - 273.1 ° K, S - 110.6 ° K; and

k o IT + S)

<6)

where k o - 0.0264 Kg/m-K, To - 273.1 ° K, and S - 194.4 ° K.

TURBULENCE EQUATIONS

A k-¢ turbulence model supplemented with a near-wall turbulence model

is described below [16,17]. The turbulent kinetic energy equation for the

entire flow domain is given as;

_(puk) + i(pvk) - _ Pe + _ Pe-- + pPr -- pc
ax ay ax ay ay

(7)

where the production rate of turbulent kinetic energy (Pr) is the same as

the dissipation function for the energy equation (@).

The dissipation rate inside the near-wall layer is given as;

(W -- w

f_

(B)

where

9



c_f3/4k3/2
¢i

fe - i- exp(-AcRt)

k2
Rt ---

c_f 3/2
Ac

2_2

(9)

The dissipation rate given as eq. (8) is used for eq. (7) in the

near-wall region. The dissipation rate for the rest of the flow domain is

obtained by solving the convectlon-diffusion equation for the dissipation

rate equation given as;

--(pu_) +--(pvc) -- #e + e PCl PC2--

3x 3y 8x k k

(IO)

The turbulence model constants used are given as: ak-0.75 , a¢-i.15,

ci-1.39, and c2-1.88. These turbulence model constants approximately

satisfy the near-wall equilibrium turbulence condition and an

experimentally observed decay rate of the grid turbulence [26]. Further

discussion on the establishment of these constants can be found in

References 27-28.

The eddy viscosity inside the near-wall layer is given as;

i0



k 2

u t - cpf fp- (ii)

where fp-l-exp(AiJR t + A2Rt 2) . The wall damping function fp is a linear

function of the distance from the wall in the viscous sublayer and becomes

unity in the fully turbulent region. The eddy viscosity, given as eq. (ii),

grows in proportion to the cubic power of the distance from the wall. The

eddy viscosity in the rest of the flow domain is given as;

k 2

v t = cpf- (12)

The partition between the near-wall region and the fully turbulent outer

region can be located between y+ greater than i00 and less than 300

approximately. Details on the k-_ turbulence model supplemented with the

near-wall turbulence model can be found in References 16 and 17.

NUMERICAL METHOD

In the present method, all flow variables, except pressure, have been

located at the same grid points and the pressure node has been located at

the ¢entroid of the cell formed by the four neighboring velocity grid

points. Note that in the control-volume methods based on pressure

correction methods, the discrete system of equations is derived by

integrating the governing differential equations over the control volume

[I]. For flows with arbitrary geometries, the number of interpolations to

obtain flow variables at the cell boundaries for the present grid layout is

as small as for any of the grid layouts discussed previously. Enhanced

convergence rate is partly attributed to the grid layout which requires

ll



fewer interpolations.

The pressure correction equation for compressible flows is described

below. As in the standard pressure correction method [I], the dehsity, the

velocities, and the pressure are decomposedas;

* (13)p -- p + p'

* , (14)
U--U +U,

* v' (15)V-- V + ,

* , (16)p-p +p

where the superscript * denotes the current values of the flow variables

which may not satisfy the conservation of mass equation yet. The discrete

momentum equation for u-veloclty can be written as;

ap

Apup - _ AnbUnb - -- + Sv u
ax

(17)

where Ap is the coefficient of the u-veloclty at the grid point P, Sv u is

the load vector originating from the curvillnear grid structure, and the

pressure gradient was left in continuous form deliberately. Substituting

eqs. (13-16) into eqs. (17) yields;

a(p*+p')

Ap(u*p+U'p) - X Anb(U*nb+U'nb) -- + Svu (18)
ax

The discrete u-momentum equation based on the current flow variables which

may not satisfy the conservation of mass equation can be written as;
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ap*

ApU*p - _ AnbU*nb -- -- + Svu
3x

(19)

Subtracting eq. (19) from eq. (18) yields;

3p'

U r m -- AH

3x

(20)

where Au-I/A p. In deriving eq. (20), the summation over the neighboring

grid points and the load vectors in eqs. (18) and (19) have been neglected.

The relationship between the incremental v-velocity and the pressure

gradient in the y-coordinate direction can be obtained by the same

procedure and is given as;

3p'

V e w -- Av --

3y

(21)

The incremental pressure is related to the incremental density as;

p' - p'RT (22)

where eq. (22) has been obtained from the equation of state. The

conservation of mass equation is given as;

v.(pv) - o

or,

v.(p'V*) + v-(p*v') + v.(p'v') - -v.(p*v*) (23)
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Substituting eqs. (20-22) into (23) yields, after some rearrangement;

(24)

where the higher order perturbation term v'(p'V') has been neglected in

deriving eq. (24). The last term in eq. (24) represents the mass imbalance.

Integrating eq. (24) over a pressure control volume yields;

f{ a,7 . a,7 ap']
(25)

where the Green-Gauss theorem has been made use of to invert the volume

integration into a surface integration. The discrete control volume

equation for eq. (25) can be written as;

App'p - AEP' E + AWP' W + Asp' s + ANP' N +Scp, + Svp, (26)

where SCp, is a load vector of the mass imbalance and

SVp,-Afap'/a_+A_ap'/a_ contains all the contributions made by the

curvillnear grid. Note that the variable load vector Svp, is a null vector

in the first sweep. After the first sweep, the Svp, term was updated in

each sweep using the incremental pressure obtained in the previous sweep.

The other flow equations were solved by the same procedure as that of



the pressure correction equation. However, the load vector Sv i

(i=u,v,t,k,_) is not a null vector and was evaluated only once in each

iteration. The upwind difference approximation [I] has been used to solve

the pressure correction equation; and the power law difference

approximation [I], for the other flow equations. The incremental pressure

is obtained by solving eq. (26), and the corresponding incremental

velocities are obtained from eqs. (20-21). The flow variables are updated

by using eqs. (14-16), and these updated flow variables are used in

computing the new current flow variables by solving eqs. (2-4) together

with the turbulence equations. The discrete finite difference system of

equations was solved iteratively using the TDMA until the residuals became

smaller than the prescribed convergence criteria. Each iteration consisted

of 7 sweeps of the pressure correction equation and 3 sweeps for the rest

of the flow equations in the flow direction and in the transverse

direction, respectively. The convergence criteria used are;

AA

C

R I - Iv'PVlc < e I (27)
c-I

- (a n+l - a n ) An+l
R2 I i,j i,j / i I < e2'

J-I,N, (28)

where N c is the number of control volumes for the pressure correction

equation; the subscript i-(u, v, p, T, k, _} denotes each flow variable;

the subscript j denotes each grid point; N denotes the number of degrees of

freedom for each flow variable; and A i denotes the maximum magnitude of the

i-th flow variable. The iteration was terminated when either eq. (27) or

eq. (28) was satisfied.

Each flow variable was updated using an under-relaxation factor [I].

15



The under-relaxation procedure was incorporated into the systems of

equations for all flow equations except that of the pressure correction

equation. The pressure correction equation was solved without

under-relaxation; however, the pressure was obtained by adding the

incremental pressure multiplied by an under-relaxation factor. No symptom

that might lead to a velocity-pressure decoupled solution was observed in

the present method. For incompressible flows, R-l.0xlO 15 has been used in

eq. (24) or in eq. (25). Thus, elimination of the velocity pressure

decoupllng mechanism is achieved by the numerical method itself and has

nothing to do with the inclusion of the convection term into the pressure

correction equation.

COMPUTATIONAL RESULTS

The numerical method described in the previous sections was tested and

evaluated by solving a number of flow cases. Example flows presented herein

include: a developing laminar channel flow, a developing laminar pipe flow,

a lld-drlven square cavity flow [19-21], a two-dimenslonal laminar flow

through a 90-degree bent channel, a laminar polar cavity flow [22], and a

supersonic flow over a compression ramp with shock wave - turbulent

boundary layer interaction [23-24]. It is shown from the first three flow

cases that the present method does not yield any velocity-pressure

decoupled solution, and in fact, there was no symptom of the

veloclty-pressure decoupllng for any of the flow cases considered. The rest

of the flow cases were considered to test the accuracy, the convergence

nature, and the applicability of the present method to flow problems of

practical importance. Further application of the numerical method as well

as the turbulence model to a shock wave - turbulent boundary layer

16



interaction in a transonic flow over an axisymmetric curved hill [18] can

be found in Reference 17.

Developing Laminar Channel Flow

A developing laminar channel flow at Re-25 is considered below. The

Reynolds number is based on the inlet velocity and the channel width. The

exit boundary was located at seven channel widths downstream of the inlet.

Uniform velocity was prescribed at the inlet boundary; and vanishing

gradient boundary condition for velocities, at the exit boundary. The flow

domain was discretized by an equally spaced mesh as well as by an unequally

spaced mesh with 41 grid points in the flow direction and 26 in the

transverse direction in each case. The unequally spaced mesh is shown in

Figure 2-(a). The convergence criteria used were el-e2-1.0xl0 "4 and the

converged solution was obtained after approximately 410 iterations. The

residuals at the time of convergence were Ri-9.4x10 "5 and R2-1.1xl0 "4 The

calculated velocity profile at the exit boundary is compared with the exact

solution in Figure 2-(b). It can be seen in the figure that the present

method almost yields the exact solution.

Developing Laminar Pipe Flow

A developing laminar pipe flow at Rem25 was solved to test the

possible existence of the velocity-pressure decoupling for the axisymmetric

flow case. The Reynolds number is based on the inlet velocity and the

radius of the pipe. The exit boundary was located at seven radii downstream

of the inlet. An equally spaced mesh and an unequally spaced mesh with

41x26 grid points were used as in the previous case. The unequally spaced

mesh is shown in Figure 3-(a). The boundary conditions, the initial guess,

17



and the convergence criteria used are the same as in the previous channel

flow case. The converged solution was obtained after approximately 170

iterations and the residuals at the time of convergence were Ri-4.2xlO'4

and R2-9.1x10 "5. Again, it can be seen in Figure 3-(b) that the present

method almost yields the exact solution.

Lid-Dr%yen Scuare Cavity Flow

A lid-driven cavity flow at Re-1000 is considered below to further

confirm that the present numerical method is free of the velocity -pressure

decoupllng mechanism. As a remark, the computational results obtained by

the finite difference methods using fine grids can be found in References

19 and 20 and those obtained by a finite element method can be found in

Reference 21. The computational domain was discretlzed by an unequally

spaced 81 X 81 mesh with concentration of the grid points in the near wall

region. The boundary conditions and the initial guess used are the same as

in Reference 21. The converged solution was obtained after approximately

590 iterations for el-e2-1.OxlO -4. The residuals at the time of convergence

were Ri-2.0xl0 "4 and R2-1.0xl0 "4. The calculated streamline contour is

shown in Figure 4. It can be seen in the figure that the secondary vortices

in the bottom corners were accurately resolved by the present method.

Two-Dimenslonal Laminar Flow Th[Qugh a 90-Degree Bent Channel

A two-dlmenslonal laminar flow through a 90-degree bent channel for

Re-1000 is considered below. The Reynolds number is based on the channel

width and the bulk velocity. It is shown from this flow case that the

present numerical method can solve flows with arbitrary geometries as

easily as flows with rectangular geometries. Note that the numerical

18



methods adopting the fully staggered grid layout and solving for the

cartesian velocities can not be used to solve this flow case. The inlet

boundary was located at 5 channel widths upstream of the curved section;

and the exit boundary, at 15 channel widths downstreamof the curved

section. The flow domainwas discretized by 71 grid points in the flow

direction and 25 in the transverse direction. The velocity profile of a

fully developed channel flow was prescribed at the inlet boundary. The

vanishing gradient boundary condition was used for velocities at the exit

boundary. The convergence criteria used were el-e2-1.0xlO'4. The converged

solution was obtained after approximately 500 iterations. The residuals at

the time of convergence were Ri-8.3x10 "2 and R2-1.0xl0 -4. The mass flow

rate, obtained from the prescribed inlet velocity profile, through the

inlet boundary was 0.814419 Kg/m-sec and the calculated mass flow rate

leaving the exit boundary was 0.814401 Kg/m-sec. Hence the relative mass

imbalance was 2.2xi0 -5. The grids, the calculated streamline contour, and

the pressure contour in the vicinity of the curved section for Re-1000 is

shown in Figure 5.

Lamina_ Pol_r Cavity Flow

A laminar polar cavity flow at Re-60 and 350 is considered below to

test the accuracy of the present numerical method. The Reynolds number is

based on the azimuthal velocity and the radius of curvature of the lid. The

polar cavity is schematically shown in Figure 6. The experimental data can

be found in Reference 22. The flow domain was discretized by 81x81 grid

points, as in the Reference 22, with concentration of grid points in the

corner regions. The Dirichlet boundary condition for velocities was

prescribed at all boundaries. The convergence criteria used were

19



el-e2-4.0xl0"5 For Re-60, the =onverged solution was obtained after

approximately 810 iterations and the residuals were Rl-l.5xlO-3 and

R2-3.9xlO'5. For Re-350, the converged solution was obtained after

approximately 820 iterations and the residuals at the time of convergence

were Ri-7.1xlO'3 and R2-3.7xlO-5. In each case, the required computational

time was approximately 8 minutes for the CRAY/XMP at the NASA/LeRC.

The calculated azimuthal and radial velocity profiles at three

azimuthal locations for Re-60 are compared with experimental data as well

as the computational results of Reference 22 in Figures 7-(a) and 7-(b),

respectively. It can be seen that the present computational results and

those obtained using the standard SIMPLE method [22] compare favorably with

experimental data. The present method yielded a slightly better radial

velocity profile at 8-20 degrees as shown in Figure 7-(b). The calculated

streamline, pressure, and the vorticity contours are shown in Figure 8. It

can be seen from the pressure contour and the vorticlty contour that the

potential core has not been well established at Re-60.

The calculated azimuthal and radial velocity profiles at the same

three azimuthal locations for Re-350 are compared with experimental data as

well as those of Reference 22 in Figure 9. It can be seen in the figure

that both computational results are in good agreement with the experimental

data. It is mentioned in Reference 22 that the first order differencing

method yielded inaccurate computational results for the polar cavity flow

at Re-350. However, it can be seen in the figure that the present method

yielded a_ accurate computational results as those obtained using the

second order differencing method of Reference 22. It can be seen from the

pressure and the vortlcity contours that the potential core has been well

established at Re-350.
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Turbulent Supersonic Flow over a Compression Ramp

A turbulent supersonic flow over a 24-degree compression ramp is

considered below. The experimental data can be found in References [23-24].

The free stream Mach number was 2.85, the boundary layer thickness of the

approaching supersonic flow was 0.0211 meters, and the Reynolds number

based on the free stream condition and the boundary layer thickness was

1.13xlO 6 .

In the numerical calculation, the inlet boundary was located at 2.17

boundary layer thicknesses upstream of the corner; and the exit boundary,

at five boundary layer thicknesses downstream of the corner. The top

boundary was located at seven boundary layer thicknesses away from the

wall. The flow domain was discretized by 97 grid points in the flow

direction and 56 in the transverse direction. The partition between the

near-wall layer and the external region was located at approximately 4.5

per cent of the boundary layer thickness away from the wall and 14 grid

points were allocated inside the near-wall layer. The grid size in the

normal direction was increased by a factor of approximately 1.2. The inlet

boundary condition for the tangential velocity and the turbulent kinetic

energy were obtained from experimental data for a fully developed flat

plate flow [29]. The non-dimensional velocity and the turbulent kinetic

energy profiles were scaled to yield a boundary layer thickness of 0.0211

meters at the inlet boundary. Uniform static pressure and uniform enthalpy

were also prescribed at the inlet boundary. The no-slip boundary condition

for velocities, vanishing turbulent kinetic energy, and a constant

temperature which corresponds to the free stream stagnation temperature

were prescribed at the solid wall boundary. The free stream flow condition
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was prescribed at the top boundary, and the vanishing gradient boundary

condition was used for all flow variables at the exit boundary. The initial

guess was obtained by extending the inlet boundary condition in the flow

direction. The converged solution was obtained after approximately 1400

iterations for el-e2-4.0x10"4. At the time of convergence RI and R2 were

3.5xi0 -4 and 4.0x10 "4, respectively. The mass flow rate through the inlet

boundary, obtained from the prescribed inlet boundary conditions, was

68.434 Kg/m-sec and the calculated mass flow rate leaving the exit boundary

was 68.411 Kg/m-sec. Hence the relative mass imbalance was 3.4xi0 "4. The

required computational time was approximately 18 minutes for the CRAY/XMP

at the NASA/LeRC.

The calculated static pressure on the wall is comparedwith

experimental data as well as the computational result obtained using a

relaxation turbulence model [24] in Figure ii. In Reference 24, several

sets of computational results obtained using various turbulence models were

presented. The wall pressure obtained using a relaxation turbulence model

[24] comparedmost favorably with the experimental data. It can be seen in

the figure that the present turbulence model yielded slightly compressed

pressure distribution. The level of agreementbetween the experimental data

and all the other computational results of Reference 24 was almost the same

as that of the present computational result.

The meanvelocity profiles at s/6--2.17, 0.0, and 2.89 are compared

with experimental data as well as with those obtained using the relaxation

turbulence model [24] in Figure 12, where the distance (s) has been

measured from the corner along the surface and 6 is the boundary layer

thickness. It can be seen that the present computational results compare

more favorably with the experimental data than does the other computational
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result [24]. The level of agreement between the best computational result

in Reference 24 and the experimental data was almost the same as that of

the present case. Note that the velocity profiles obtained using the

relaxation model compared less favorably with the experimental data than

those obtained using the other turbulence models [24].

The calculated streamline contour is shown in Figure 13-(a). The

measured flow separation zone extended from s/6=-1.44 to s/6=0.5. The

present method yielded the flow reclrculation zone extending from s/6--0.72

to s/6-0.68. The levels of agreement between the measured flow

reclrculatlon zone and all the computational results, including the present

result, were almost the same. However, the relaxation model which yielded

the best wall pressure yielded the worst flow reclrculatlon zone. The

calculated static pressure contour lines are shown in Figure 13-(b), where

the pressure has been normalized by the inlet total pressure and the

incremental pressure betweenthe contour lines is 0.2. The calculated

iso-Mach lines and the turbulent kinetic energy contours are shown in

Figures 13-(c) and 13-(d), respectively. The incremental Mach number

between the iso-Mach lines is 0.2 in Figure 13-(c). It has been shown in

this example that the present computational result compared as favorably

with the experimental data as any other computational results [24].

CONCLUSIONS

A control-volume based finite difference method to solve the Reynolds

averaged Navler-Stokes equations for all flow velocities has been

presented.

It has been shown from the developing channel flow, the developing

pipe flow, and the lid-driven square cavity flow that the present numerical
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method is free of the velocity-pressure decoupllng. For the channel and the

pipe flows, the method almost yields the exact solutions. For the polar

cavity flow, the present method yielded as accurate computational results

as the second order differencing method [22]. The turbulent supersonic flow

over the 24-degree compression ramp [23-24] was solved using a k-_

turbulence model supplemented with a near-wall turbulence model, In the

method, the dissipation rate inside the near-wall region was obtained from

an algebraic equation and that for the rest of the flow domain was obtained

by solving the differential equation for the dissipation rate. This

approach was found to be more advantageous than the low Reynolds number

turbulence models since the stiff dissipation rate equation in the

near-wall region need not be solved numerically. The computational results

for the supersonic compression corner flow compared as favorably with the

experimental data as any other computational results [24].

It has also been shown that the present numerical method yields

accurate computational results even when highly skewed, unequally spaced,

curved grids were used. Equally importantly, the present method was found

to be strongly convergent for high Reynolds number flows as well as for

flows with complex geometries. This strongly convergent nature is

attributed, in part, to the use of the pressure staggered grid layout.
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