P4
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

-3

NASA Technical Memorandum 101466
ICOMP-89-2

On the Equivalence of Gaussian Elimination
and Gauss-Jordan Reduction in
Solving Linear Equations

(FASA-TM-1014€6) CN TEE ECUIVAIENCE OF N8G-2(710

CACSSIAN ELIFINRIICK AMLD GAGES-3CERLAN

FRDOCTICN IN SCLVIXG 1LINERE (L2TICHS

- (MASR) <2 E CSCL 12A Unclas
G3/64 019C177

Nai-kuan Tsao
Wayne State University
Detroit, Michigan

and Institute for Computational Mechanics in Propulsion

Lewis Research Center
Cleveland, Ohio

February 1989

CASE WESTERN
RESERVE UNIVERSITY

https://core.ac.uk/display/42828759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On the Equivalence of Gaussian Elimination and Gauss-Jordan Reduction in Solving Linear Equations

Nai-kuan Tsao*
Wayne State University
Detroit, Michigan 48202

and Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio 44135

Abstract

A novel general approach to round-off error analysis using the error complexity concepts is
described. This is applied to the analysis of the Gaussian Elimination and the Gauss-Jordan scherme
for solving linear equations. The results show that the two algorithms are equivalent in terms of
our error complexity measures. Thus the inherently parallel Gauss-Jordan scheme can be imple-

mented with confidence if parallel computers are available.

*This work was supported in part by the Space Act Agreement C99066G while the author was visiting ICOMP, NASA
Lewis Research Center.

1. Introduction

In past dccades, the backward error analysis of Wilkinson[3] has enabled us to gain much insight
into the behavior of round-off error propagation in numencal algebraic algonithms. One 1s required,
naturally, to possess varying degrees of mathematical sophistication in order to apply his approach

to the analysis of numerical algorithms on hand.

The algorithms of Gaussian Elimination (GE) and Gauss-Jordan reduction (GJ) are well known
in solving linear equations. The numerical stability of Gaussian Elimination with partial pivoting
is shown in [3], and the stability of Gauss-Jordan reduction is shown in [4], all using Wilkinson's
approach. The results show that in Gaussian Llimination the computed solution x of a given sys-
tem Ax = b is the cxact solution of some neighboring system (4 + [)x = b with a reasonablc¢ bound
for I, whercas in Gauss-Jordan reduction the computed solution X 1s such that each component

of X belongs to the exact solution of a different neighboring system.

In this paper we cxtend the error complexity concepts in [2] to division operation and apply
it to the analysis of the Gauss-Jordan and Gaussian Elimination algonthms to show from an al-
ternative point of view that the two algorithms are indeed equivalent in terms of our error com-
plexity measures. Thus one can implement the inherently parallel Gauss-Jordan reduction
algorithm in with confidence for parallel computers. Some preliminary results are presented in
Section 2. They are applied in Scction 3 to the error complexity analysis of the two algorithms for

solving linear system of cquations.

2. Some Preliminary Results

Constder the simple problem of evaluating the 3 by 3 determinant

ayy dyp 413
2.h det(A) = |1 @3 D34,
a3| 433 d33

A straightforward algorithm would cvaluate (2.1) as

det(d) = ay1(ay,a33 — ay3a37) + a)5(ay3a3) — ay1a33) + ay3(ay1 437 — ay,a31).

On the otherhand, one can also cxpress (2.1) as

(22) dCt(A) = (11 |d,22a”33

where
o = o — 2V = (a _a3la)_ 1 (a _a31a)(a __a2la)
2= G2 a;, 42, 433 337 g, 413 o 327 gy @12\%3 T g 43k

Expanding (2.2), we have

a a

d i) a3 31 21
et(A) = ay(ay; — a, ap)azz — a, a;3) — ay(az; — a, a;)(ay3 — ;. a;3)

Which is equivalent to (2.1) once the term

a az)
a ay, a3 a a3

is cancelled out. This is of course unlikely in actual computation duc to round-off errors. Thus

the latter approach is more likely to incur round-off errors during the computational process.

Our approach in the error analysis of different algorithms designed for the same problem stnives
to provide such information as the number of round-off error occurrences as well as the extra terms

created during the computational process for easy comparison and at the same time enable us to

gain more insight into the details of how cach algorithm works.

Given a normalized floating-point systemn with a ¢-digit base § mantissa, the following equations

can be assumed to facilitate the error analysis of general arithmatic expressions using only

+, —, x , or [operations[3]:

(23) ﬂ(x#Y):(x#Y)A, #G{+,—,X,/}

where

Al % B]" for rounded operations
Al<l+u u<

[f]_’ for chopped operations

and x and y are given machine floating-point numbers and fI(.) 1s used to denote the computed

floating-point result of the given argument. We shall call A the unit A -factor.

In general one can apply (2.3) repeatedly to a sequence of arithmetic steps, and the computed

result z can be expressed as

Az,)
Z ZniAa(zm)

_ Zn _ =l

(24) zZ = —Z—d— = 7(24)
Z 2407

J=1

where each z, or z, is an exact product of error-free data, and A* stands for the product of k pos-
sibly diffcrent A-factors. We should emphasize that all common factors between the numerator and
denominator should have been factored out before z can be expressed in its final rational form of
(2.4). Following [1], we shall henceforth call such an exact product of crror-free data a basic term,
or simply a term. Thus A(z,) or A(z,) is then the total number of such terms whose sum constitutes
z, or z,, respectively, and o(z,) or o(z,) gives the possible number of round-off occurrences during

the computational process. We define the following two measures:

maximum error complexity:

(2.5) a(z)) = max o(zn), olz4) = max o(zg)

cumulative error complexity:

Mz,) Mzy)
(2.6) 520 =) oz, s(z)=) alzy).
i=1 j=1

Different algorithms used to compute the same z can then be compared using the above error

complexity measures and the number of basic terms created by each algonthm.

For convenience we will use chy(z) and ch(2) to represent the 3-tuples {A(z), o(z,), s(z,)} and

{A(z), 6(z,), 5(z,)} , respectively, so that the computed z of (2.4) is fully characterized by

ch(z) = chy(2)
chz)
The unit A-factor ts then charactenized by
(2.7a) - ch(A) = {1,1,1} = {A}.

Onc can also obtain casily using (2.5) and (2.6) that

(2.7b) ch(AYy = ch'(A) = (A} = (1,i}}.

In division-free computations any computed z will have only the numerator part ch,(z). The

following lemma is useful in dealing with intermediate computed results:
Lemma 2.1 Given x and y with thetr associated ch(x) and ch (),

(1) if z= xp, then

chy(2) = chy(x)chy(p) = chy(p)chy(x)
= {'l(xn)}-(yn)» U(xn) + 0()},1), s(xn)’l(yn) + l(xn)x(yn)}v

(1) if z=x + p, then

Chn(z) = chy(x) + ch,(y) = ch(¥) + Chn(x)
= {Mx,) + A(y,), max(a(x,), o(y,), s(x,) + s(,)}

Proof. The results can be obtained easily by expressing x and y as

A(x,) M)
Yo Z xniAa(xm), p= ZynjAa(vn,-)
i=1 Jj=1

and applying (2.5), (2.6) and the definition of i(z) to find ch(2). Q.LE.D.
For gencral floating-point computations, we have the following lemma:

l.emma 2.2 Given x and y with their associated

Chn(x) _ {'l-(xn)v U(xn)v S(xn)}
chix) — {Alxg), o(xy), s(xz)} '

h(y) = C/In(y) _ {40, o), s)}
chfy) {400, o(a), S0}

ch(x) =

(1) if z= fI(x + y) and there is no common factors between x, and y,, then

1o = ch,(z) chx)ch,(N{A} + chy)ch,(x){A}
ch(2) = chfz) chfx)chyy)

A(zp) = A(xX,) A + AR)A(xy),

Mzy) = A(x DAy,

o(z,) = 1 + max(o(x,) + 6(py), o) + o(xy).

0(zg) = o(xg) + o(py),

J(Zn) = ’Z'(Xn)j(yd) + ;“(Vd)-r(xn) + 'i-()'n)s(xd) + '{(xd)“(yn) + /{(Z,,),
s(zg) = Mxg) sy + A1)s(xg);

(1) if z= fI(x x p) and there is no common factors between x, and y, or between y, and x, | then

ch(2) chy(x)ch,(){A}

ch(z) = chz) - chx)ch{y)

where

Mzp) = Axp)A(Wn),

Mzg) = AxDAWa),

a(z,) = 1 + a(x,) + 6(1,),

6(zy) = o(xg) + o(y,

5(zp) = A0x)3() + A0n)s(X,) + A(2p),
5(zg) = Mx)s0a) + Apa)s(xg);

(iti) if z = fI(x/y) and there is no common factors between x, and y, or between x, and y, , then

chy(d) chy(x)ch0)(8)
T chfz) chy(y)chhx)

ch(2)

where

Azp) = Axp)A(Vy),

)-(Zd) = 'l(xd)’l(yn)w

o(z,) = o(x,) + o(vg) + 1,

o(zy) = a(xg) + o),

5(2p) = Axp)sg) + Aa)s(x,) + A(2,),
5(zg) = Mxg)s(y) + A(r)s(x)-

Proof. first we apply (2.3) to cach case and obtain

z=flx#y) = (x#p)A, #e{+,—,x, [}

The results can then be obtained easily by using Iemmas 2.1 and 2.2. Q.E.D.

3. Error Complexity Analysis of the Two Algorithms

Given

Ax= b

where

and)y - AN by X

(121022 azvv b2 ,\‘2
A = - . - y b: . y "7: N y

dypdyg - Ayy by Xy

it is desired to find x. We shall assume that 4, b are error-free with A(a,) = A(h) = | and pivoting
is not necessary. For simplicity, the & vector is appended to A as the (N + 1)-st column of A. Thus

initially the augmented matnx is such that

gifi=j=1,
c/l(al-j')z{1 /

¢, otherwise .

where

(—:l = {)‘]’—&17‘;]} = Cl = {/3.1,0'1,51} = {1,0,0}

The use of ¢, to distinguish ch(ay,) from all others is to facilitate the task of identifying common

factors as we shall sce later. The two algonithms arc as follows:

Algorthm GE.

1. {begin Reduction to Triangular Form}
fori=1to N—1do
fork=i+1to Ndo
aki =ﬂ(al(|/au)
forj=i+1to N+ 1do
i a, :ﬂ(ak/ _.alu X alj)
2. {begin liack-Subshtuhon}
xy = flayy. /)
fori= N —1downto | do
for j= N downto i+ 1 do
al.N+l =ﬂ(al,N+1 - au x Xj)

xl = ﬂ(al,NH/au)

Algorithm GJ.

1. {begin Reduction to Diagonal Form)
fori=1to N do
for k=110 N (except i) do
akl :ﬂ(a/n/au)
forj=i+1toN+1do
. al({ zﬂ(akj — 4 X alj)
2. {begin Solving Diagonal System}
fori=1to Ndo

xl Zﬂ(al.IW l/au)

A closer examination of the two algorithms reveals that the computed lower triangular part of
the matrix A are identical. The only difference between the two lies in the solution of the upper
triangular systems: in Algorithm GE the back-substitution scheme is used, whereas in Algorithm
GJ a forward-elimination scheme is used to reduce the upper triangular form to diagonal form for

the final solution. Thus crror-wise the Algorithm Gl is equivalent to the following modificd one:

Algorithm GJm.

1. {begin Reduction to Upper Trangular Form}
same as in Algonthm GE.
2. {begin Reduction of Upper Trangular to Diagonal Form)
fori=1to N—14do
fork=110ido

;41 =ﬂ(ak,¢<l/aul,1+l)
forj=i+2to N+ 1do

. B akj ':jz(alu - ak,H-l X al+lx/)
3. {begin Solving Diagonal System}
same as in Step 2 of Algorithm GJ.

We first give a detailed analysis of Step | of both Algorithm GE and Algorithm GJm for

N =3. Applying (2.3) to Step 1, we obtain, after the first iteration for i = 1 is completed, the fol-

lowing computed results:

ap 4 a3 apy
’ ’ s ’
Ay Ay dp3 Ay
a3 a3 d'y3 'y

wherc

3
, an A , @11 A — apra);4

2
T =g, Cy=(ayd —d' ;A7) =

k=23, j=234
a, ; 23

Applying Lemmas 2.1 and 2.2 to the above cquation, we obtain the following matnix for ch(a,):

8 aoaq o q
aldl 6 2 9
€ g a9 q
afd) @ 9 9

T

where

€)= (A 63,5} = & = {35, 53, 5y} = .G {A) + ;¢ {AY = {111} + (1,33} = {2,34}.

Note since @, is the common denominator of all newly computed results, hence ¢ 1s also present
as the denominator of all computed items. Again ¢, is used to distinguish ch(a’,,) from the rest of

ch(a’).

Similarly after the completion of the second iteration for i= 2 of Step | in both algorithms,

we have the following computed results:

ay a4 413 Ay
’ ! - ’
a) dpy do3 dpq

’

a3y A3y a3z Ay

where

r
D = a'3;A
32 — ’
Y]

” " ’ 2 .
a 3= (a'3jA — a 3pa 2]A), J= 3,4

3 3 3 3,43
_ (a334),8 — a3,0347)(@3,a, 8 — a3,a,87)8 — (a350,A — a3,0,87) (@08 — 3 1a;A7)A

3
(@yya,A — aya,A%)ay,

Note in the above expression. the term ay,a4),4,,a,, 15 not likely to be cancelled out in actual com-
putation as cxpected in 1deal computation. The ch-matnx can be obtained from the above ex-

pression as

q G €)
{4} jg_ Q o
9 ¢ a4
afd) ofdl & G
& o g b

where

&= ¢ = 5B} + o {AF = 234 °T{L 1,1} + {1,3,3)] = {8.9,48).

In general we have the following theorem:

Theorem 3.1 The ch-matrix of the newly computed part of A, after the i-th iteration of Step

1 of Algorithm GE is completed, is given as follows:

C/l(a”)=c_‘1, Ch(alj)=(.'1, 25]S1’V+1

c{A
cM%pziéi,lgi<ng,

G

C;
—;ﬂ— forj=k=i+1

[T

r=1

ch(ay) = e
;+ for other values of i+ 1 <j k< N+ 1
[e
r=1
where
- _ 3 C
Cp1 = Gy = GG{A} + ¢{A), 1<j<N-L

Proof. See Appendix L.

Once we have the original system reduced to an upper triangular form, the rest of the steps in

Algorithms GE and GJm can be applied. We have the following theorems:

Theorem 3.2 The ch-vector of the computed solution x using Algorithm GE is given as

CiCiy1---Cy

ch(x,) = qay + (AP, 1<i<N.

A
Proof. Sce Appendix I

Theorem 3.3 The ch-matnx of the newly computed results, after the completion of the i-th

iteration of Step 2 of Algorithm GJm, is given as:
11

] Jercar + (a1

r=k

c/z(ak_,-H): 0 - -, 1<k«
i+1
J ey + (ayy=+"
ch(ay) = == L l<k<i, i+2<j<N+ 1.
[la
r=1,r#£k

The ch-vector of the computed solution x is the same as that given in Theorem 3.2.

Proof. See Appendix III.

From Theorem 3.3 we conclude that Algonthm GE and Algorithm (GJ are equivalent to each

other in terms of our error complexity measures.

12

References

[1] V.B. Aggarwal and J.W. Burgmeier, A round-off error model with applications to arithmetic

expressions, SIAM J. Computing, 8(1979), pp. 60-72.

[2] N.K. Tsao, A simple approach to the crror analysts of division-free numerical algorithms,

IEEE Trans. Computers, C-32(1983), pp. 343-351.

(3] J.1I. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, NJ,

1963.

[4] G. Pecters and J.H. Wilkinson, On the stability of Gauss-Jordan climination with pivoting,

Comm. ACM, 18(1975), pp. 20-24.

13

Appendix L.

Proof of Theorem 3.1. We prove by induction on i. For i= 1 it is true by the results dem-

onstrated for N = 3. Assumc the truth for i — 1 . Now for i we have

(/d)

/. (ol
a1 = 1(a5 14"y = —@;,

i<k§N,

By assumption,

hence

ch(aS M)A} clA)

c/z(akm”)) = =
l ch(al” Dy G

Fori+1<k<Nandi+1<j< N+ 1wehave

_ a[({)}ew) (old)) _ (u[d)A (new) ag’ld)Az.

3 I7
al((?mv) zﬂ(al(g d)

Hence

, o o qlAay ¢ 2
chlaf™) = 5 — (A + == 5 ()
g g
r=1 r=1
— fk=j=i+1
- P N
_ aG{A) + qa{d)” r=1
: B Ciy1

l—l— - otherwise.
Cr

This proves the theorem. Q.E.D.

14

Appendix 11

Proof of Theorem 3.2. We prove by backward induction on i. Fori= N,

xy=flay yyi/any)-

So that

Ch(aN,N+I){A}

chixy) =
ch(ayy)
By 'Theorem 3.1 we have
N N
ch(ay yy)) = w7 chlayn) ==
[e [=
r=1 r=1
Hence
ca{A
Ch(.xN') - Af }
N
which is truc. Now assuming the theorem is true for xy, Xy, ..., X,,;, T0 obtain x, we first form
Jo= G Ny

for j= N downto i+ 1 do

yN~/+I =ﬂ(yN~/ - alj X x/)
and then compute x, = fliyy_/a,). By (2.3) we have

2
VN—j1 = IN=jA — ayA°.

By using [.emma 2.2 we obtain

15

3 G GG+rON LNV
ch(yn_js1) = AN A + 73 TG ({a)+{ay) " {A)
r=1

It is casily shown that the solution to the above equation is

G (‘j+l"'(N 3
)= T 7 ey)+ 181
STRTIRS

N—j

Therefore

N—i

Cig1Cip2-CN
ch(yx_) = l._ll A in (A} + {A}B)

Now
X = flyn-il) = 'y’\;,-:A ,
hence
ch(x)) = %{j‘i '
Since
ch(ay) = i ‘

i—

[1:

r=1

-1
the common factor []¢, can be cancelled and we obtain finally

r=1

chix) = G CN ({A) + {A}3)N_i{A}.

CiCi+1 -Cn
16

This proves the theorem. Q.E.D.

7

Appendix L

Proof of Theorem 3.3, we prove by induction on i For i = 1 we have

a](%M)A

ay

hence
ch(alie)) = ch(a5™)(a) _ CIEI_{A} .
ch(ay,) I
Also
ag-ww) =ﬂ(a§?u) —ai™ x @), 3I<j<N+L
Hence

c/z(ag-ww)) = ch(ag-’/d)){A} + (:/z(a](gew))(.‘/z(azj){A}2

2

ah . Q2
Cl{A}+ 62 {A} El {A}

(5{A) + oAy a9 (

3
= 28+ ()

and the theorem is true. Assume now the theorem is true for all i up to i — 1. For i we have

a/(f)'[f)lA
new) (old) * .
al(e,iiwl = flay ;1] 1) = RYTE I<k<i
Hence
/
ch(a D) (A}

(new)
chla; ;)=
(i) (@ iy1)

By the induction assumption
18

i

] [oray +)~

Cirl

. { =k
(1&014‘{)1)* r

Hence

ch(a ,(cnliwl)) =

) Ch(ai+1,i+l) ="

For
™) = gD — i) x apy), 1 Sk<i i+2<j<N+
then
ch(al®™) = ch(aly D) A} + cha) 3 ch(ay, H(D A’

(]—[c»({A} + Ay Ha

Ek(ncr)

_ r=k : + _r=k {A} + [A}3)1 k{
d Citl
[1a
r=1r#k
i i+
o] Jentas + (] Jortaraay + oy~
r==£& r=k
- i+
[la
r=1,r#k

i+]

] [ercay + ayy=+

r=k

i+1

, -

r=1r+k

This proves the first part of the thcorem. For the computed solution x, we have x, = fl(a y../a,),

hence

Since Gy = Ci+1'

r

19

Since

therefore

ch(d; x4 1){A)
chfx;) = _~(/z(_<;“)ﬁ_ ‘

N

([Jerccar + a)™

hldy 1) == , ch(ay) =

N
[

r=1,r+i

N

I Icr
] 3, N—i

ch(x) = "5 (A} +{A})

[1e

r=i

{a}.

This proves the theorem. Q.E.D.

20

G

i—1

it

r=1

’

NASN Report Documentation Page

National Aeronaualic:. aod
Space Admnistiaton

. Report No.

NASA TM-101466
ICOMP-89-2

2. Government Accession No. 3. Recipient's Catalog No.

. Title and Subtitle

5. Report Date

On the Equivalence of Gaussian Elimination and Gauss-Jordan February 1989

Reduction in Solving Linear Equations

6. Performing Organization Code

. Author(s)

Nai-kuan Tsao

8. Performing Organization Report No.

E-4577

10. Work Qnit No.
505-62-21

. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546-0001

15. Supplementary Notes
Nai-kuan Tsao, Wayne State University, Detroit. Michigan 48202. This work was supported in part by the
Institute for Computational Mechanics in Propulsion. NASA Lewis Research Center (work funded under Space
Act Agreement C99066G).

16. Abstract
A novel general approach to round-off error analysis using the error complexity concepts is described. This is
applied to the analysis of the Gaussian Elimination and the Gauss-Jordan scheme for solving linear equations. The
results show that the two algorithms are equivalent in terms of our error complexity measures. Thus the inher-
ently parallel Gauss-Jordan scheme can be implemented with confidence if parallel computers are available.

i

]

|

|

|

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Error analysis; Parallel algorithms; Gaussian Unclassified — Unlimited
elimination; Gauss-Jordan reduction; Linear equations Subject Category 64

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*

Unclassified Unclassified 22 A03

NASA FORM 1626 OCT 86

*For sale by the National Technical Information Service, Springfield, Virginia 22161

