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On the Equivalence of Gaussian Elimination and Gauss-Jordan Reduction in Solving Linear Equations 

Nai-kuan Tsao* 
Wayne State University 
Detroit, Michigan 48202 
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Abstract 

A novel general approach to round-off error analysis using the error complexity concepts is 

described. This is applied to the analysis of the Gaussian Elimination and the Gauss-Jordan scheme 

for solving linear equations. The results show that the two algorithms are equivalent in terms of 

our error complexity measures. Thus the inherently parallel Gauss-Jordan scheme can be imple- 

mented with confidence if parallel computers are available. 

'This work was supported in part by the Space Act Agreement C W G  while the author was visiting ICOMP, NASA 
Lewis Research Center. 



1. Introduction 

dct(A) = 

In past dccadcs, the backward error analysis of \Vilkinson[3] has cnablcd us to gain much insight 

into thc behavior of round-off error propagation in numcrical algebraic nlgorithmg. One is required, 

naturally, to  possess varying degrees of mathematical sophistication in order to apply his approach 

to the analysis of numerical algorithms on  hand. 

‘11 ‘I2 ‘I3 

‘21 ‘22 ‘23 

‘31 ‘32 ‘33 

’l’he algorithms of Gaussian I’limination (GI?)  and Gauss-Jordan reduction (GJ) arc well known 

in solving linear equations. The numerical stabhty of Gaussian Elimination with partial pivoting 

is shown in [3] , and the stability of Gauss-Jordan reduction is shown in [4] , all using Wilkinson’s 

approach. ‘Ihc results show that in Gaussian Iilimination the computed solution x of a given sys- 

tem Ax = b is the exact solution of some neighboring system ( A  + h)x = b with a reasonable bound 

for E,  whereas in Gauss-Jordan reduction thc computed solution X is such that each component 

o f  X bclongs to the exact solution of a diffcrerit ncighboring system. 

In this paper we cxtcnd thc crror complexity conccpts in 123 to division operation and apply 

it to the analysis of the Gauss-Jordan and Gaussian Elimination algorithms to show from an al- 

ternative point of view that thc two algorithms arc indccd equivalent in terms of our error com- 

plexity measures. Thus one can implement the inherently parallel Gauss-Jordan reduction 

algorithm in with confidence for parallcl computers. Some prcliminary rcsults are prcsentcd in 

Section 2. They are applied in Scction 3 to  the error complcxity analysis of thc two algorithms for 

solving linear system of equations. 

2. Some Preliminary Results 

Considcr the simple problem o f  evaluating thc 3 by 3 dctcnninmt 

A straightforward algorithm would evaluate (2.1) as 



c 

l e  

O n  the otherhand, one can also express (2.1) as 

(2.2) dct(A) = UI , ‘“22a”33 

where 

Expanding (2.2), we have 

Which is equivalent to (2.1) once the term 

‘21 ‘31 
Q 1 1 ~ ‘ 1 2 ~ u 1 3  

is canccllcd out. This is of course unlikely in actual computation due to round-off errors. Thus 

the latter approach is more likely to incur round-off errors during the computational process. 

Our approach in the error analysis of different algorithms designed for the same problem strives 

to provide such information as the number of round-off error occurrences as well as the extra terms 

created during the computational process for easy comparison and at the same time enable US to 

gain more insight into the details of how each algorithm works. 

Given a normalized floating-point system with a t-digit base p mantissa, the following equations 

can be assumed to facilitate the error analysis of general arithmatic expressions using only 

+, -, x , or / operations[3]: 

where 
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for rounded operations 
IAI 51 + u ,  U S  

for chopped operations 

and x and y are given machine floating-point numbers and /7(.) is used to denote the computed 

floating-point result of the g i im arbwment. We shall call A the unit A -factor. 

In general one can apply ( 2 . 3 )  repeatedly to a sequence of arithmetic steps, and the computed 

result z can be expressed as 

(2.4) 

where each z,,, or zd, is an exact product of error-free data, and Ak stands for the product of k pos- 

sibly different A-factors. We should emphasize that all common factors between the numerator and 

denominator should have been factored out before z can be expressed in its final rational form of 

(2.4). Following [I ] ,  we shall henceforth call such an exact product of error-free data a basic term, 

or simply a term. 'I'hus ,I(z,,) or A(&)  is then the total number of such terms whose sum constitutes 

z,, or z,, respectively, and u(z,,) or o(zd,) gives the possible number of round-off occurrences during 

the computational process. We define the following two measures: 

maximum error complexity: 

cumulative error complexity: 

i= I j= I 



IliITerent algorithms used to compute the s m c  z can then be compared using the above error 

complexity measures and the number of basic terms created by each algorithm. 

I:or convenience we will use ch,(z) and ch,(z) to  represent the 3-tuples {A(zd), u(zd), .T(z,)} and 

{I(z,), ~ ( z , , ) ,  s(zn)} , respectively, so that the computed z of (2.4) is fully charactcrkd by 

The unit A-factor is then charactcn/.cd by 

( 2 . 7 ~ )  . &(A) = { 1 , 1 , 1 }  E {A} 

One can also obtain easily using (2.5) and (2 .6)  that 

(2.7b) C/[(A’) = &A) = {A}’ = { 1 ,i,il. 

In division-frcc computations any computed z will have only the numerator part ch,,(z). The 

following lemma is useful in dealing with intcrmediatc computed results: 

Lxmma 2.1 Given x and y with their associatcd ch,,(x) and ch,,b), 

(ij if z = xy, then 

(ii) if z = x y ,  then 

I’roof. The results can be obtained easily by expressing x and y as 
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i= 1 j= 1 

and appl)ing ( 2 . 5 ) ,  ( 2 . 6 )  and the dclinition of 2(zJ t o  find ch,,(z). Q.I<.II. 

For general floating-point computations, we haw the following lemma: 

I cmma 2 .2  Given x and y with thcu associatcd 

( i )  if z =fl (x  t y )  and there is no commun factors between xd and yd, then 

where 

(ii) if z =/I(x x y )  and there is no  common factors bctwccn x, and y d  or  bctwecn y, and x, , then 

where 
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(i) if z =fl (x /y)  and there is no common factors between x, and y,, or bctwcen x, and yd , then 

whcrc 

Proof. first we apply ( 2 . 3 )  to cadi case and obtain 

‘The results can then be obtained easily by using Ixmmas 2.1 and 2.2. Q.L.D. 

3.  Error Complexity Analysis of the Two Algorithms 

Given 

A x = h  

where 
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A =  , h =  

it is desired to  find x. We shall assume that A ,  b are error-free with ).(a,,) = A(h,) = 1 and pivoting 

is not necessary. For simplicity, the b vector is appended to A as the (,V + 1)-st column of A .  ' Ihus 

initially the augmented matrix is such that 

C] i f i = j =  1, 

cl othcnvisc . ch(ui/) = 

where 

The use of C, to distinbwish ch(a,,)  from all othcrs is to  facilitate the task of identifying common 

factors as we shall see later. The two algorithms arc as folloLvs: 

Algorithm GE. 

1 .  {begin Reduction to  Trianbwlar 170rm} 
for i =  1 to A'- I do 

f o r k = i +  1 t o N d o  
= f l ( " k , / " , < )  

f o r j = i +  1 t o  A'+ 1 do 
' k  = f l ( " k ,  - . "k t  x 

2. { bcgin dack-Substitution} 
xN 7 fl('N,N+ I /'N.V) 

for I = A'- 1 downto 1 do 
f o r i  = iV doxnto i + 1 do 

' , .N+I = f l ( " , . N + l  - a<, x x,) 
x, = fl(',*N+ I/',,) 

Algorithm GJ. 

1. {begin Reduction to  Diagonal Form} 
for i = 1 to  .V do 

for k = 1 to A' (except i ) do 

f o r j =  i +  1 to i V +  1 do 
' k ,  = f l ( ' k , / ' t , )  

' h i  = f l ( a k ,  - ' k ,  ' ! I )  

2. {begin Solvtng Diagonal System} 
for i = 1 t o  N do 
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A closer examination o f  the two algorithms reveals that the computed lowcr triangular part of 

the matrix A arc identical. ‘l‘lic only JifTcrencc bctwccn the two lics in the solution of the upper 

triangular systcms: in lUgorithm GI: the back-substitution schcme is used, whcrcas in Algorithm 

GJ  a forward-elimination scheme is used to reduce the upper triangular form to diagonal form for 

the final solution. Thus error-wise thc Algorithm GJ is equivalent to thc following modified one: 

Algorithm GJm. 

1. 

2. 

{begin Reduction to  Upper Triangular Form} 
same as in Algorithm <;E. 
{begin Reduction of Upper ’I‘riargwlar to Diagonal Iiorm) 
for i = 1 to  N - I do 

for k = 1 to  i do 
a&,,+ 1 = fl(ak,- I/% I , , +  I)  

f o r j = i + 2 t o  ,\‘+ 1 do 
= j 7 ( “ k f  - a k , , + l  at+  I,,) 

3. {begin Solving Diagonal System} 
same as in Step 2 of Algorithm GJ. 

We first give a dctailcd anallsis of Step 1 of both Algorithm <;I< and Algorithm CiJm for 

N = 3 .  Applying ( 2 . 3 )  to Step 1, we obtain, after the first iteration for i = 1 is completed, the fol- 

lowing computed results: 

“ I 1  ‘12 ‘13 “I4  

“’21 “ 2 2  “ 2 3  “ 2 4  

“’31 “ 3 2  “’33 a‘34 

wherc 

Applying Iammas  2.1 and 2.2 to the above equation, wc obtain thc following matrix for &(a,,): 
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where 

3 - 
c2 = { A 2 ,  a2, . T ~ }  = C2 = 7f2, .T,) = clCi { A }  + clcl  { A }  = { l , l , l }  + { 1,3,3) = { 2,3,4}. 

Sotc  sincc u,,  is the common dcnorninator o f  all newly computed results, hence C, is also present 

as the dcnorninator of all computed itcms. Again C2 is used to distingwish ch(u’,,) from the rest of 

ch(a’,,). 

Similarly after the completion of the second iteration for i =  2 of Step 1 in both algorithms, 

we have the following computed rewlts: 

where 

Yote  in the abovc cxprcssion. the term a,,u,,%,,,a,, is not likely to be canccllcd out in actual com- 

putation as cxpccted in ideal computation. ‘l‘hc ch-matrix can be obtaincd from thc abovc ex- 

pression as 

where 
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In gcncral we have the following theorem: 

Theorem 3.1 The ch-matrix of the ncwly computcd part of ti, aftcr the i-th iteration of Step 

1 of Algorithm GE is complcted, is given as follows: 

f o r j = k = i +  1 

r= 1 

whcrc 

Proof. See Appendix I. 

Once we have the original system reduced t o  an upper triangular form,  the rest of  the steps in 

Algorithms GI: and GJm can bc applied. We havc thc following theorems: 

Theorem 3.2 The ch-vector of the computcd solution x using Algorithm GE is given as 

CiCi+, ... CtV 3 ,A’-i 
ch(xi)= -- - ({A} + { A }  ) {A}, 1 < i <  N .  cjci+ , . . . CN 

Proof. See Appendix 11. 

Theorem 3.3 The ch-matrix of the newly computed results, after the completion of the i-th 

iteration of Step 2 of Algorithm GJm, is given as: 



i 

i+ 1 

r=k 
Ch(Ukj) = i+ 1 , Ilkli, i + 2 s j s N + 1  

r= 1 ,r#k 

The  ch-vcctor of the computcd solution x is the samc as that given in Theorem 3.2. 

Proof. See Appendix 111. 

From Theorem 3.3 MY conclude that illgorithm GI; and Algorithm G J  arc equivalent to each 

other in t c m s  of our error complexity mcasurcs. 
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Appendix 1. 

____ Proof of ‘Thcorcm 3.1. We pro1.c by induction on  i. I:or i = 1 it is true by the rcsrilts dcm- 

onstratcd tor .1’ = 3. Assumc the truth for i - I . Yow f o r  i we havc 

By assumption, 

r= 1 r= 1 

hence 

1 Ience 

r= 1 

‘i+ 1 i f k = j = i + l ,  

otherwise. 

This proves the theorem. Q.E.D. 
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Appendix 11. 

I'roof of 'I'heorcm 3.2. We prove by backward induction on i. I:or i = A', 

x.V =f l (aN,N+l  I a N N ) .  

So that 

I3y 'I'hcorcm 3.1 we havc 

r= 1 r= 1 

I Ience 

which is truc. Now assuming thc thcorcm is truc lor xN, xN ... , x,, '1'0 obtain x, we firs 

Yo = % N + l  

f o r j  = IV downto i + 1 do 

Y N  , i I =flQN-, - 

and then compute x, =flQNJu,,). By (2.3) we have 

form 

By using Ixmma 2.2 we obtain 
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r= 1 

It is easily shown that thc solution t o  thc abovc cquation is 

r= 1 

I 'I'horefore 

Now 

hence 

Since 

r= 1 

, I  

the common factor nZ, can be cancelled and we obtain finally 
I. I 

3 N-i cici+* ... c,y 

cici+l ... CAI 
ch(xi)= _ _  - ({A} + ( A }  ) ( A > .  

16 



'l'his provcs thc thcorcm. Q.I;.D. 
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By the induction assumption 
18 

hence 

Also 

I Icncc 

and thc thcorcm is true. Assume now thc theorcm is truc for all i up to  i - I .  ],.or i we have 

I Icnce 

. 



I 

r=l ,r#k r= 1 

1 Icnce 

For 

then 

r - l  .r#k 
i i+ I 

r=k r=k - - 
i+ 1 n cr 

r=l ,r#k 
i+ 1 

( n c r ) ( ( A }  + (A)3)i-k+l 
r=k - since c ~ + ~  = c ~ + ~ .  - - 

i+ I 

r=l ,r#k 

7'hs proves the first part of the theorem. For thc computed solution x, we have x, = ~ ( u , , ~ + , / u , , ) ,  

hence 
19 



Since 

. 

N 

r= 1 ,r#i r= I 

therefore 

'I'h~s proves the theorem. Q.E.11. 
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