
MONOTONICALLY IMPROVING APPROlUMATE ANSWERS

TO RELATIONAL ALGEBRA QUERIES t

Kenneth P. Smith
J. W. S. Liu

1304 W. Sprinfield Avenue
Department of Computer Science

University of Illinois
Urbana, Illinois 61801

(217k333-0135
{kamith, janeliu}@p.ca.uiuc.edu

I IEASA-CB- 18 48 74) EC LCizCYICdl L P I E E l W Y I YG 889-207 17
AEPBCXIHAIB ILkSEEPS TC B E L A ' J I C B A I ALGBBBA
E;G€EIES (X l l i n c i r G n i v .) iC; f CSCL 12A

Unclas
(33164 6198953

t This work was partially supported by NASA Contract No. NASA NAG 1 613 and
US Navy ONR Contract No. NO0014 87-K-0827.

https://ntrs.nasa.gov/search.jsp?R=19890011346 2020-03-20T02:40:26+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42828757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Monotonically Improving Answers to Relational Algebra Queries

ABSTRACT

We present here a query processing method that produces approximate answers to

queries posed in standard relational algebra. Thia method is monotone in the sense that
the accuracy of the approximate result improves with the amount of time spent
producing the result. Thia strategy enables ua to trade the time to produce the result
for the accuracy of the result. An approximate relational model that characterizes
approximate relations and a partial order for comparing them is developed. Relational
operators which operate on and return approximate relations are defined.

1. INTRODUCTION

In recent years, an increasing amount of attention has been directed toward the design of
database systems suited for real-time applications, such aa machine vision, multiple robots,
avionics, and air traffic control. Such databases can be used to support shared data access by
processes in hard real-time systems. In a (hard) real-time system, every real-time process must
meet ita time constraint, which is typically specified in terms of its deadline. It is essential for
the process to complete its execution and produce its result by its deadline. Otherwise, a timing
fault is said to occur, and the result produced by the process is of little or no use. Unfortunately,
many factors can cause processes to miss their deadlines. Take factors involving a database
system for example. Over a period of time, the number of processes and the amount of data
accessed by them may vary. Consequently, the number of concurrent queries that are made to

the database and the external deadlines by which the queries must be answered may vary. These
variations make it difficult to predict the amount of time needed to answer the queries and to

schedule the processes requiring the answers to meet all deadlines.

One effective approach to avoidance of timing faults is to trade result accuracy for
computation time. Such a tradeoff can be realized by using imprecise computation techniques
[la]. In this approach, every (hard real-time) process ia designed to be monotone, that is, the
accuracy of its intermediate result improves with the amount of time it executes to produce the
result. The final result produced by the process upon ita completion ia the desired, exact result.
Intermediate, approximate results produced by each process at appropriate instances of the
process’s execution are recorded. If it is necessary to terminate the process prematurely at its
deadline, the last approximate result produced made available. In this way, graceful

degradation and scheduling flexibility are achieved.

We refer to algorithms that produce approrimate results of increasing accuracy with
increasingly longer running time as monotone algorithms. Clearly, the impreck computation
approach is feaaible only when there are monotone algorithms. While monotone algorithms exist
in problem domains such aa numerical computation, statistical estimation and prediction, sorting
and searching, etc., they do not exint in the query processing domain. The problem of providing
monotone query processing algorithms waa fist addremed in [5,6]. Specifically, Buneman and

Davidson present in [e] a query processing algorithm that produces approximate answers of

increasing accuracy with increaaing query processing time. Their algorithm uses a set of rules
written prior to the submission of the query. The rules capture relationships among the data and
allow approximate answers to be derived.

1

In this paper, we present a monotone algorithm that produces improving approximate
answers to queries posed in standard relational algebra. Our method diiers from Buneman and
Davidson's in that the approximate answers are derived directly from the query expression
without use of rules. We do this by first developing an approximate relational model. The model
defines the approximations of any standard relation, a partial-order relation over the set of all

such approximate relations, and the approximate results of each relational operator. We assume

here that time for data retrieval, not processing time, contributes to most of the delay in
generating any answer. We show how to derive an approximation of the ha l answer, using
whatever data has presently been retrieved. AE more data arrive, this approximate answer is

improved according to the partial order relation. We also show how rules, such as Buneman and
Davidson's, can be easily integrated into our method.

Our work complements the primary/alternate approach [7,8]. Thia approach to providing
approximate answers requires the scheduling' of 811 alternate computation that takes a shorter
amount of time to complete when the available time is insufficient to complete the desired
primary computations. The processing time required to support such a scheduling decision is
often too high to make this approach practical. Our work also complements the recent efforts in

design of concurrency control and database management methods suited for real-time
applications [9,10].

The remaining part of this paper ia organired as follows. In Section 2, we describe our

approximate relational model. What approximate -ers are and in what sense one answer is
better than another are discussed. In Section 3, we d e h e relational algebra operators which
operate on and return approximate relations. In Section 4, we present our algorithm for deriving
approximate answers to relational algebraic queries. In Section 5, we summarire our results and
present our conclusions.

I

2. AN APPROXIMATE RELATIONAL MODEL

Our definition of an approximate relation ia based on the notion of supersets and subsets of
tuples in a relation; this idea draws strongly on the work in [SI. Specifically, a relation is a set of
tuples. Both supersets and subsets of the relation are useful, meaningful approximations. We

know that any tuple not in a superset of a relation certainly does not belong to the relation. On
the other hand, all tuplea in a subset of a relation certainly belong to the relation. Given a

superset and a subset of a relation, they partition the set of all tuples into three blocks with
respect to the membership in the relation: tuples certainly in (that is, they are in the subset),

2

tuples certainly out (that is, they are not in the superset), and tuples whose memberships are
uncertain (that is, they are in the difference of the superset and the subset.) We use two of these
blocks as the two parts of our approximate relation: the ones which are certainly in and the
uncertain ones. A traditional, standard relation is simply one in which the uncertain block is

empty. I

An approximate relation R of a standard relation S is a subset of the Cartesian product of a

set of domains with the following property: Thia subset is partitioned into two blocks, C and P.
C contains tuples with certain membership in the standard relation S. P contains tuples with
uncertain membership in S. By uncertain membership, we mean that the tuples in P are not
known to be in S and are not known to not be in S. These are possible tuples. We denote the
approximate relation R by the 2-tuple (C,P). When it in necessary to distinguish the blocks C

and P of tuples that characterize diierent approximate relations Ri, identified by some index i ,

we denote these seta as Ci and Pi, respectively.

Example 1: Consider a guest list for an office party. You and your friend are putting on
I
l a party for some people in your office. You each invite several people. As you prepare to
I

i

1

go shopping, you try to prepare a final guest list. You are certain of the people you have
invited, but uncertain exactly whom else from your office your friend has invited. The
guest l i t may be represented in an approximate relation R, where C, contains the guests

you invited and P, contains the remainder of the office, since all are candidate guests.

Figure 1 shows R,. Your office includes Bill, Joyce, Jorge, Jane, Sue, Jim, Mike, and

Fred; and you have personally invited Bill, Joyce, Jorge, and Jane. Figure 2 shows what

I

~

a standard relation representing the actual guest list approximated by R, might be. R,
approximatea the actual guest list, since ita certain tuples form a subset of the guest lit,
and its certain and uncertain tuplea together form a superset of the guest list.

i
i

For any standard relation S, there is a set of approximate relations that can approximate
it. In particular, we say that an approximate relation Ri is an approzimation of a standard

relation S if ita mrbaet of certain tuples in a subset of S and Ri itself in a superset of S. la other
I
1

words, Ci C S, and Ci u Pi 2 S. Given a set El of approximations of S, there is a partial order

relation 2 defined over R The approximate relation Ri is said to be better than or equal to the

approximate relation Ri, denoted as Ri 2 R j , if the subset of certain tuples of Ri contains the

subset of certain tuples of Ri and the 8ubset of pmible tuples of Ri is contained in the subset of

possible tuples of R j . In other words, Ci 2 Ci and Pi C Pi. Furthermore, we require that

Ci - Ci be a subset of the tuples in Pi. The tuples in Ci - Cj can be thought of as migrating

a

from the uncertain part of R j into the certain part of Rj as the approximation improves.

Given a standard relation S, let v be the Cartesian product of all domains in the scheme of

S. Therefore, v is the set of all possible tuples which could be in S, or the "universe" of tuples
for S. We asaume that v is finite throughout our discussion. Let R , is the approximate relation

(0, v). In other words, R , is the approximate relation which represents total uncertainty about

S; no tuples are known to be in S or not in S . R , is the least, or the worst possible,

approximation of S . That is, R , 5 Rj for all approximate relations Rj of S . In contrast, S itself

is not an approximate relation, but it can be considered am one, (Ts, 0), where Ts is the set of all

tuples in S. Clearly, S is the best approximation of S, that is, S 2 R j for all approximate

relatiom Rj of S.

Consider the partial ordered set 61 of approximate relations of a standard relation S and
any two approximate relations R j and Rj inR. An approximate relation RjhRj is said to be a

greatest common lower bound of R j and Rj if RjhRj .< Ri , RjhRj 5 R j , and there is no other

approximate relation Rk in 61 such that RihRj C Rk 5 Rj and R j . We note that for any two

approximate relations R j = (Cj, Pi) and Rj = (Cj, Pi), the approximate relation RihRj =

(Cj n Cj, Pi u Pi) is the unique greatest common lower bound of Rj and R j . Similarly, the

approximate relation RjVRj = (Ci U Ci, Pi n Pi) is a least common upper bound of Rj and R j .
In other wordn, RjVRj 2 R j , RiVRj 2 R j , and there is no other approximate relation Rk in R
such that RjVRj > Rk 2 R j and R j . In the set R, the relation RjVRj is the unique least

common upper bound of Rj and R j . Therefore, the partial ordered set (R, <) of approximate

relations of S is a lattice. The relation R , defined above is ita least element, and the relation S is
ita greatest element.

W p l e a: The approximate relation R 2 in Figure 3 Mer8 from R , in Figure 1 in that

Sue's tuple is moved from the uncertain part in R , to the certain part in R,. In Figure 4,

R3 ham the value of R,, except that Fred's tuple ham been deleted from the uncertain part.

Both R 2 and R , are approximatiom of the gucst liat S in Figure 2. R , > R l and
R3 2 R,. R 2 and R , are both better approximations of S than R,, although they are not

mutually comparable by the partial order defined above.

8. RELATIONAL ALGEBRA AND MONOTONICITY

It is not p d b l e to apply standard relational algebra operations to approximate relations.
They cannot handle uncertain tuples. We must define new approximate operations, each of
which accepts approximate relation(s) aa operands and produces an approximate relation aa its
answer. Furthermore, we are concerned with the quality of the answer produced by any
operation. For this reason, we define here the monotonicity property of approximate operations.
Unlike traditional monotonicity [ll], which is concerned with the size of the results, monotonicity
is defined here in terms of the goodness of results. Intuitively, an operation is monotone if a

better set of operands wil l usually produce a better result, and never a worse one. More
formally, monotonicity of an approximate relational algebra operation is defined aa follows: Let
7(R1, . . . , R,) be such an operation, ita argumenta and rault being approximate relations. Let

Ri, . . . , R t - and Rt, . . . , R , 2

' be two sets of arguments to 7. We say that 7 is monotone if' Rf 2 R f , for every i, implies that

dRt, . . . , R:) 2 $ R ; , . . . , R i) .

In the following we define a complete set of monotone relational algebra operations for
approximate relations. We describe approximate union, set difterence, selection, projection, and
Cartesian product operators. (Joins can be derived from selection and Cartesian product.
Intersections can be derived from set difterence). For each, we give a proof of monotonicity. Our
approximate operations are similar to the operatiom presented in (121, the daerences being that
they do not consider monotonicity and we do not consider disjunctive information.

Union

The union of two approximate relations, R , 3: (C,, P,) and R, = (C,,.P2), is illustrated by

Figure 5. The numbers in Figure 5 represent the 9 C ~ M S for each tuple t in u with respect to the
approrimate union of R , and R,. They, aa listed below, are also used in the examples

illustrating other operations.

1) t E C, and t E C,
2)
3)
4)

6)
7)
8)
9)

f E P, and f E C,
t e R , and t E C,
t E C, and t E P,

t e R , and t EP,
t E C, and t e R ,
t E P, and t e R,
t e R , and t e R ,

5) t E P i a n d t E P ,

6

The approximate union, RT = R, U R,, is defined as follows:

CT = c1 u c,
P, = (P, u P,) - c,

where "U" and "-It in the right hand side of the equations denote standard set union and
standard set dserence, not the approximate operations being defined here. As can be seen in
Figure 5, CT consists of the tuples in cases 1, 2, 3, 4, and 7 listed above. P, consists of the

tuples in cases 5, 6, and 8.

We want to show that the union operation is monotone, that is, the better the operands are,
the better the result will be. To do so, let R,, R,', R,, R i , RT, and RT' be approximate

relations. Also, let R,' >R, and R,' 2 R,. R T = R1 U R, and RT' = R: U Rd. We show

below that RT' > RT by showing that (1) C,' 2 C T and (2) P T ' C P T .

TO show that CT' 2 C,, we consider a9 arbitrary tuple t in CT. By definition, t is in C,

or C p Since R1' 2 R, and R,' 2 R,, we know that C,' 2 C, and C,' 2 C,. Therefore t is also

in C,' or C,', and t f CT'. In other words, an arbitrary tuple in CT is always also in C,', and

hence C,' 2 C,. Similarly, to show that P,' E PT, we consider an arbitrary tuple t in Pr'.

t E P,' U Pi, and t 4 CT' by definition. Since R,' > R1 and R,' 2 R,, P1' C P, and P i C P,.
Therefore t E P, or t E P,. We have already shown that C,' 2 CT. If follows that t 4 CT.

Therefore, t E (P1 U P,) - C,, which is P T . Since an arbitrary tuple in PT' is always also in

P T , we know that P T ' 5 P T .

Set Difference

The diEerence of two approximate relations is illustrated by Figure 8. The approximate set

Merence, RT = R, - R,, in d&ed aa follows:
CT = C1- R,
pT (pl - R2) u (P2 n R1)

where rlU", "-", and "n" in the right hand side of the equations denote standard set union, set
Merence, and set intersection. As can be seen in Figure 6, CT consists of the tuples in case 7

listed above. P T consists of the tuples in cases 4, 5, and 8.

TO show that the Werence operator defined here is monotone, we let R,, R,', R,, R,', RT,

and RT' be approximate relations and R,'> R, and R i > R,. RT = R, UR, and

RT' = R,' U Ri . Again, we want to show that RT' 2 RT by showing that (1) CT' 2 CT and (2)

PT' s P p To begin, we prove an intermediate result: If Ri > Rj, then Ci U Pi E Cj U Pi. In
other words, Ri s Ri. To show that this is true, we note that since Pi E Pi, there are no tuples

6

in Pi that are not dm in Pi. Moreover, ci - ci
although Ci 2 Cj, there ia no tuple in Ci that b not also in Pi or Cj.

a set of (migrated) tuples in Pi. Therefore,

TO show that CT' 2 CT, let t be an arbitrary tuple in CT. t E C,, and t 4 R2 by
definition of RT. Since R1' 2 R, and therefore C,' 2 C,, t E C,'. By the result above, if

t e R2, then t 4 R,', since R,' 2 R p It follows that t E C,' - R,', which is CT'. Since any

arbitrary tuple in CT iS akso in CT', we have CT' 2 CT. Similarly, if t is an arbitrary tuple in

PT', by definition of PT', either t E P, - R2, or t E P2 fl R,. If t E P, - R2, we wish to show

that t E P,' - R,' also.. We know that P,' P, and R,' 2 R, by the result above. Therefore,

t E Pi-R;. Similarly, if t E P2 nR, , i t must also be in P,'nR,'. Therefore,

t E (PI - R2) U (P2 n Rl), which is PT. Hence, we have PT'

Selection

PT.

The selection of some value for an attribute of an approximate relation is illustrated by
Figure 7. The approximate selection, RT = uVdIJf R,, is defined aa follows:

CT =u..11Jf c,
PT =@..11&

where udId denotes the traditional selection operator that treats C, and P, as traditional,

exact relatione. To show that the aelection operation b monotone, let R,, R,', RT, and RT' be

approximate relations. Let R,' 2 R,, RT = udIJt R,, and RT' = udeJt R,' for some value

'vd' and attribute 'att'. That RT' 2 RT follows directly from C,' 2 C,, P,' P,, and the

definition of the approximate selection.

Projection

The approximate projection, RT = xJf R,, b defined aa follows:
CT =xJf c1
PT ' X J f

where xJf denotea the traditional projection operator operating on C, and P, aa if these subsets

were exact relations. Since tuples (certain and uncertain) in R, and RT are in 1-1

correspondence under the definition of the projection operation, any improvement to R, will be

directly reflected by an improvement in RT.

Cartesian Product

The approximate carh ian product, RT = R, X R2, is defined aa follows:
CT = c, x c2

PT = (R , x R,) - CT

where "X" denotes the traditional Cartesian product of sets. To show that the approximate
Cartesian product is a monotone operator, we consider three pairs of approximate relations:

R,, R,', R,, Rz), RT, and RT'. Again, let RL)> R , and Rz)> R,. RT = R , X R,, and
RT'= R,'X R i . We want to show that R T ' L RT. We note that CT' has four parts:

(C, X C2), (CL) - C,) X C,, C, X (Ci -CJ, and (CL) - C,) X (Cz) - C,). Since the first part

by itself equala C T , CT'Z CT. From the result proved for the set difference operation,
R,' C R,, and Rz) R,. Therefore, (R; X R23 (R , X R2), because X is monotonic in the
traditional sense. Since CT' 2 CT, a tuple in PT' (that is, in (RL) X R23 - CT') is also in P, .
SO, PT' PT, a d RT' 2 RT.

4. APPROXIMATE QUERY ANSWERING

In this section we describe how to process relational algebra queries 80 that the answer
improves monotonically as additional information becomes available. To explain our algorithm,
we fist note that any relational algebra query can be represented as a tree. Each leaf node
represents a base relation read by the query proceseor from the database, it being the operand of

some relational algebra operation. Each non-leaf node in the tree represents the result of a

relational algebra operation, ita child(ren) being the operand(s). The root node represents the
final result of the query. For example, the query

RT = g J t - d R . u (Rw x R,)

can be represented by the tree shown in Figure 8. The operation marked below each node is the

operation by which that node's value is calculated.

Query answers are typically derived in the following manner: First, each leaf node is
evaluated by hitwing a read request to the database for the base relation it represents. When all
operands represented by its children are available, a node at the next higher level is evaluated.
This process repeats until the root node, the query m e r , is evaluated. The value given to the
root node at the end of the query evaluation procwa is the exact answer to the query. No
intermediate, approximate answer in produced however; no answer for the query exists until
every node below the root in fully evaluated. In particular, no answer can be produced until all
read requests are granted. If any base relation is not immediately accessible, no answer is
available until it becomes accessible. If any base relation is totally inaccessible, no answer is ever
produced. As discussed earlier, this all-or-nothing query processing strategy does not degrade

8

gracefully.

Our query processing strategy ditfers from the traditional strategy in an important aspect: a
series of approximate answers are produced, each integrating the effect of additional base relation

d a t a None but the hal, exact answer requires all base relation data be available before it can
be produced. In terms of our approximate relational model, the value of the root is set to a series
of approximations R,, . . . ,R, of the final exact answer A to the query. The fist answer

R, = (0, u) is the least approximation of A. u is the set of all tuples that might be in A The

last answer and best approximation R, is the exact answer A obtained by the traditional

algorithm. These two answers, plus intermediate answers in the series are a chain, that is,

R, 5 R, 5 * 5 R,,, 5 R, in the lattice of approximations of A. If query processing is

prematurely terminated (due to a deadline, for instance,) some approrimate answer Rk in the

chain wil l be produced, where k increases monotonically with time.

The algorithm starts with the query represented as a tree, as would be provided by a

parser. In this tree, all operations are approximate ones ILB defined in Section 3. Each node of
the tree has a value, which is initially set to Ro for all nodes. At any time, if query processing

terminates, the value of the root node is returned by the query processor as the answer.

After read requests begin to be answered, the leaf nodes begin to asaume their exact values
as read from the databarre. When the read request of a leaf node N is answered, the effect of the
new value of N is propopted upward to the root as follows: The value returned by the read
operation is interpreted as an approximate relation with no uncertainty, that is, no tuples in the
P portion. TI& value and the value of the sibling of N, if N has a sibling, are taken as the
operands of the approximate operation whose result is represented by their parent node N'. The
resulting approximate relation is the new value of N'. This improved value is propagated
upward in the tree in like manner until the value of the root node is updated and improved.

Let IU coneider the example in Figure 8 once more. If R, ia returned from the database,

this value ia interpreted as an approximate relation and represented by node 1. The approximate
selection operator is applied to obtain a new value for node 4. Finally, the approximate union of
node 4 and node 5 is evaluated to obtain the new value of the root node, node 6. We are sure

that this newer value of node 6 is better than the older one because (1) the value returned from
the database for node 1 is better than the initial value R,, and (2) approximate selection and

approximate union are monotonic. Again, monotonicity is defined here in terms of the quality of
results.

7- .

We can improve this basic algorithm, taking advantage of the expressiveness of the
approximate relational model. Two ways are described below:

Better answers can be obtained sooner by making use of partial information from the
database. Relations are sometimes horizontally partitioned across a file system that may be
distributed across a network. Instead of requiring each read request to return the entire base

relation, we may allow approzimate reads. Each approximate read returns a fragment of the

requested base relation if the entire relation is inaccessible at the moment. The returned

fragment can be interpreted aa an approximate relation and used to improve the value of the
root node. An the value of the leaf node improves, due to the arrival of more fragments, the
value of the root can be improved by the propagation mechanism just described. In general, any
approximation better than the current value of a leaf node can be used to improve the current
value at the root node. "Smart" query processors might search the database for ways to

construct better approximations of the leaf nodes from data available elsewhere in the database if
the base relations are inaccessible. In the semantic data model, information in the schema can
designate the subset and superset relationship between da ta If a relation known to be a subset
or superset were available in lieu of the requested relation, it could be used as an approximation
of the leaf node.

In addition to the basic propagation mechanism which starts at leaf nodes, we can make use
of partial information to improve the value of non-leaf nodes in the same manner. If a set of

available tuples is known to be a superset of node 4 in Figure 8, for example, it can be used to
improve the value of node 4. The improvement can be propagated upward aa usual to the root
node. The rules of [e] implement this in the caw of the root node.

If non-leaf nodes are updated directly as described above rather than by propagation
beginning at the leaf nodes, one principle must be obaerved to preserve monotonicity. This

principle is that upward propagation must stop if the new value is not better than the current
value of a node. For inatance, if node 4 has been directly updated, an improvement in node 1
should not be propagated to it unlesa the result of the approximate selection using the improved
value of node 1 an operand is better than the current value of node 4.

We have developed a method for producing approximate answers to relational algebraic
queries. This method is based on a set of new relational algebra operators each of which accepts

10

approximate relatiom as ita input and produces an approximate relation as ita result. For each
operation, we show that improving the operands will never degrade the result. Thus, an
improvement in the operands of an expression containing these operators as primitives will lead
to an improvement in the result of the expression. Our method can be viewed as a way of
integrating approximate information from the database into the answer, by propagating
improved information through the operators in the query expression to reduce the uncertainty in
the result. The rules of Buneman and Davidson’s approach [e] provide a method of integrating
approximate information to form the answer. Their method ia a special case of ours in which the
answer is improved directly, without employing the relational operators in the query expression.

Our method has the advantage that very small changes from the traditional database
architecture are required to implement it. In particular, no change to the underlying database is
required, only the interpretation of data by the query procemor and the interpretation of answers
by the application need be changed. Our approximate relational model gracefully extends the
traditional relational model and accounb for uncertainty. When there ia no uncertainty, the
models are identical. Propagation of improvemento leada to higher query processing overhead
than the traditional method. The evaluation of thia overhead and ways to reduce it are subjects
of our current investigation.

[l] Lin, K. J., S. Natarajan, J. W.S. Liu, and T. Krauakopf, Concord: a system of imprecise
computations, Proceeding8 of the 1087 IEEE Comp~ac, Japan, October, 1987.

[2] Liu, J. W. S., K. J. Li, and S. Natarajan, Scheduling real-time, periodic jobs using
imprecise resulta, Proceeding8 of the IEEE Red-Time Sy8tems Symporium, San Jose,
California, December 1987.

[3] Chung, J. Y., J. W. S. Liu, and K. J. Li, Scheduling periodic job8 that allow imprecise
results, to appear in IEEE Tranuactiona on Computrrr.

(41 Chung, J. Y. and J. W. S. Liu, Performance of algorithms for scheduliig periodic jobs to
minimire average error, to appear in Proceeding8 of the IEEE 9th Real-Time Systems

Symporium, Huntsville, Alabama, December 1988.

[SI Davidson, S. B., and A Wattem, Partial Computation in Real-Time Database Systems,

Proceeding8 of The Fifth Workuhop on Real-Time Sofcware and Operating Systems, pp.
117-121, May 1988.

11

Buneman, P., S. Davidson, and A. Wattera, A Semantics for Complex Objects and
Approrimate Queries, Proceedings of The Seventh Symposium on the Principles of Database

Systems, pp. 305-314, March 1988.

Lieatman, A. L. and R. H. Campbell, A faulttolerant scheduling problem, IEEE
Transactions on Software Engineering, vol. SE-12, No. lo., pp. 1089-1095, Oct. 1986.

Lesser, V., J. Pavlin, and E. Durfee, Approximate Processing in Real-Time Problem

Solving, A I Magazine, Vol. 9, Number 1, Spring 1988 pp. 49-61.

Vrbsky, S., and K. 'J. Lin, Recovering I m p r e k Transactions with Real-Time Constraints,
Proceedings: The Seventh Symposium on Reliable Distributed Systems, pp. 185-193,

October 1988.

R. Abbott and H. Garcia-Molina, What .ia a real-time database system?, Fourth Worbhop

on Real-Time Software and Operating Systems, pp. 134-138, July 1987.

Ullman, J., Principles of Database and Knowledge Baaed Systems, Vol. 1, pp. 121-122

Computer Science Press, Rockville, Maryland, 1988.

Liu, K. and R. Sunderraman, On Representing Indefinite and Maybe Information In
Relational Databases, Proceeding8: The Fourth International Conference on Data

Engineering, pp. 250-257, February 1988.

12

I Name I Phone No. I
Bill

Joyce

Jorge

Jane

Sue

Jim

Mike

333-8100

333-8100

371-2302

325-2971

254-2663

327-1342

254-0048

Fred

Figure 1: An example: an approximate relation R1

578-9976

Name

Bill
Joyce

Jorge

Jane

Sue

Figure 2: An example: the actual guest lint

Phone No.

333-8100

333-8100

371-2302

325-2971

254-2663

18

I Name I Phone No. I
Bill

Joyce

Jorge

Jane

Sue

333-8100

333-8100

371-2302

325-2971

254-2663

Jim

Mike

Fred

Figure 3: Approximate relation R,

327-1342

254-0048

578-9976 1
Name

Bill
Joyce

Jorge

Jane

Sue

Jim

Mike

Figure 4: Approximate relation R,

Phone No.

333-8100

333-8100

371-2302

325-2971

2542663

327-1342

254-0048

14

9

(...

....
..

1 R

Figure 5. Union of R and R,

C T

. * * ,
e C

9

A R*

Figure 6. Set difference of R, and R,

........... 0

RT = R 1 - R,

16

1 R

Figure 7. Selection fiom R,

........... 0

11

Figure 8. The tree representation of a query

18

