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The Response of a Laminar Boundary Layer in Supersonic Flow to 

x 

Small Amplitude Progressive Waves 

Peter W. Duck* 

Lewis Research Center 
Cleveland, Ohio 44135 

Institute for Computational Mechanics in Propulsion 

Abstract 

In this paper the effect of a small amplitude progressive wave on 

the laminar boundary layer on a semi-infinite flat plate, due to a 

uniform supersonic freestream flow, is considered. 

The perturbation to the flow divides into two streamwise zones. 

In the first, relatively close to the leading edge of the plate, on a 

transverse scale comparable to the boundary layer thickness, the 

inearised perturbation flow is described by a form of the unsteady 

compressible boundary layer equations. In the freestream 

of flow is governed by the wave equation, the solution of 

t hi s component 

which provides 

the outer velocity conditions for the boundary layer. This system is 

solved numerically, and also the asymptotic structure in the far 

downstream limit is studied. This reveals a breakdown and a subsequent 

second streamwise zone, where the flow disturbance is predominantly 

inviscid. The two zones are shown to match in a proper asymptotic sense. 

*Work funded under Space Act Agreement C99066G;  presently at 
Department of Mathematics, University of Manchester, Manchester, 
England. 
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1. Introduction 

Much work has been carried out on the response of a two-dimensional 

imcompressible laminar boundary layer on a semi-infinite flat plate to 

time-harmonic oscillatory perturbations (particularly those of infinite 

wavelength in the streamwise direction) of the freestream. Most of 

the effort has been involved with small amplitude perturbations; included 

in this category are the works of Lighthill ( 1 9 5 4 ) ,  L a m  and Rott ( 1 9 6 0 )  and 

Ackerberg and Phillips ( 1 9 7 2 ) .  Close to the leading edge, the flow is of 

Blasius type, whilst far downstream the boundary layer takes on a double 

structure, comprising an inner Stokes-type layer, and an outer Blasius-type 

layer. 

Numerical investigations to this small amplitude problem, describing 

the flow from the leading edge, to far downstream have been conducted 

by Ackerberg and Phillips (1970)  and Goldstein et a1 (1983). Some details 

o f  the far downstream behaviour of this problem have in the past been 

the subject of some controversy. At large distances downstream of the 

leading edge, a set of eigensolutions must exist, which decay exponentially 

fast downstream in the streamwise direction (this reflects the effect of 

the particular conditions prevailing upstream). One set of eigensolutions 

found by Lam and Rott (1960) and by Ackerberg and Phillips ( 1 9 7 2 )  is 

determined by conditions close to the wall, and has decay rates that 

decrease as the eigenvalue increases. A second set of eigensolutions 

has been found by Brown and Stewartson (1973a,b), and these are determined 

primarily by conditions at the outer edge of the boundary layer, and 

are characterised by a decay rate that j-s with increasing order. 

Some discussion of this apparent discrepency is to be found in 

Coldstein et al.(1983). 

Further downstream still, Goldstein (1983) showed hop, the eigensolutions 
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o f  Lam and Rott (1960), which initially decay, develop into the 

classical, high Reynolds number limit for Tollmien-Schlichting modes 

(including the unstable mode) for Blasius-type boundary layers. 

Although the Lam and Rott (1960) eigensolutions decay downstream, they 

also oscillate with increasingly rapid (spatial) frequency, and far 

downstream, transverse and streamwise gradients must become 

comparable, giving rise to an entirely new structure, in which transverse 

pressure gradients play a key role. 

Returning to the boundary layer problem, non-small oscillations 

of the freestream (but still limited to non-reversing freestreams) have 

been tackled by Moore (1951), (1957) and Pedley (1972) for regions close 

to the leading edge of the plate, and i t  is again found that the flow is 

Blasius like. Lin (1956), Gibson (1957) and Pedley (1972) studied the 

far downstream region, and found the flow takes on a double structure 

similar to that observed in the analogous small amplitude case. 

Duck (1989) has presented numerical results which extend from the leading 

edge, to far downstream, in this case. 

A11 these aforementioned papers were concerned with purely temporal 

flow oscillations (i.e. oscillations of infinite streamwise wavelength). 

The effect of  a small amplitude progressive wave on an incompressible 

boundary layer has been investigated by Kestin, Maeder and Wang (1961) 

and Patel (1975). The former authors considered the low frequency limit 

to the problem, for the very particular case when the wavespeed equalled 

the mean far field velocity. Patel (1975) gave results for  both high 

and low frequency, the latter being obtained using an empirical momentum 

integral appraoch. A number of experimental results were also presented, 

and compared with theory. 

In this paper we consider the effect of a two-dimensional small 
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amplitude progressive wave in a supersonic freestream, on a laminar 

boundary layer on a flat plate. Here the situation is rather different 

to the incompressible case in a number of respects. Although eigenfunctions 

similar to those of Lam and Rott (1960) undoubtedly exist, these are not 

expected t o  develop into growing Tollmien-Schlichting waves (at least 

not in the case of two-dimensional flows - see Ryzhov and Zhuk 1980 and 
Duck 1985). Although planar Tollmien-Schlichting waves are present 

downstream, these all decay and S O  are of little consequence. In this 

paper, as well as presenting results for the boundary layer region, we go 

on to consider the development of the flow far downstream, which turns out 

to be predominantly inviscid. A further difference found is that in the 

case of these supersonic flows (unlike incompressible flows) if the 

progressive wave is to satisfy the appropriate governing equations in 

the farfield, the spatial and temporal wavelengths are linked. ( A  somewhat 

related study, of a forced flow but at finite Reynolds numbers has been 

made by Mack 1975). 

The layout of the paper is as follows: in Section 2 we consider the 

"fore region" in which the flow close to the plate is governed by a form 

of the compressible boundary layer equations. We look. at the downstream 

limit of this zone, and then in Section 3 we consider the downstream 

region, wherein transverse variations of pressure become important ; 

the regions studied separately in Sections 2 and 3 are seen t o  match 

(in an asymptotic sense). In Section 4 we show how results from the 

previous two sections correctly match, and finally in section 5 we 

present a few conclusions. 
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2 .  T he for e r e L  - on 

We consider the viscous supersonic two-dimensional flow over a 

semi-infinite, stationary plate. We take the origin at the leading edge of 

the plate, X* the coordinate along the plate, y* the coordinate normal 

to the plate, and u* and v* the velocity components in the x* and y* 

directions respectively. t* denotes time, p* the fluid density p* 

the viscosfty of the fluid. p* and T* are defined to be pressure 

and temperature in the fluid; cp(cv) 

at constant pressure (volume), and 

(K" being the coefficient of thermal diffusivity); cp, cv and cr are 

all assumed to be constants. Subcript = will be used to denote 

farfield, unperturbed conditions. 

is the specific heat of the fluid 

u = p*cp/K* is the Prandtl number, 

The fluid is also assumed to satisfy the following equation of state 

p* - p* R*T* 

where R* - cP - cV. ( 2 . 2 )  

We consider here, first the fluid in the far field, where the effects 

of viscosity are expected to be negligible. In this region, we take the 

flow t o  comprise a uniform s t e a d y  s tream p a r a l l e l  t o  the p l a t e ,  perturbed 

by a small amplitude ( O ( e )  << 1) progressive wave. 

We therefore write 

* * 
u* - u, + E ul(x*,y*,t*)+ . . .  

v* - EVI(X*,Y*, * t*>+. . . 

p* p, * + qq*(X*,y*,t*)+. . . 

* * 
T* = T, + cTl(x*,Y*,t*)+ . . .  

( 2 . 3 )  
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The leading order equation of state gives 

* * ** 
Pa 0 ~ c r  RTa. ( 2 . 4 )  

Substitution of ( 2 . 3 )  into the momentum equations and continuity 

equation yields (at O ( E ) )  

* * G ] = - k  * 
*[* at* + % ax* ax* ' 

* 
ax* ay* ' 

* * * * * *  
at* ax ax aY" 
2 1 + " : 2 q + p ; : % + p m  = 0. 

( 2 . 5 )  

Differentiating ( 2 . 5 )  with respect to x* ,  ( 2 . 6 )  with respect to y*, 

and adding yields 

* * * 

If we write 
aa 2 - -yR*T,* ( 2 . 9 )  

with 'y = cp/cv (assumed constant) (2.10) 
* 

where am denotes the speed of sound in the far field, then ( 2 . 8 )  

may be written entirely in terms of pi, viz 
* 

( 2 . 1 1 )  

We no& seek progressive wave solutions of this equation, writing 

-* exp[ io*(x*-c*t*+X*y*) 1 + exp[ ia*(x*-c*t*-i*~*) I)  Pf - PI\ ( 2 . 1 2 )  
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n 

(corresponding to an oblique wave, in general), where pi* is a constant. 

Substitution of (2.12) into (2.11) reveals that we must have 

* 1 c* = u, [l f r;l, (l+r*2)+], (2.13) 

* *  where M, denotes the unperturbed freestream Mach number, &,/aoo. 

It  is now possible to write down the progressive wave solution for 
* * 

u1 and VI' namely 

1 
(2.14a) 

-* * 
u1 = * exp [ ia*(x*-c*t*+X*y*) 1 + exp[ io*(x*-c*t*-X*y*) 1 , 

-* * 
"1 - - * leXp( ia*(X*-C*t*+X*y*) - exp[ io*(x*-c*t*-X*y*) ] 

(k-c*) P o  

Equation (2.14b) also satisfies the normal flow condition, although 

the no-slip condition is violated by (2.14a), since 

ul(y*-o) = - 2 2  * exp( ia*(x*-c*t*) 1 .  (2.15) 
* 

(UZ-C*) Par 

Notice in particular that in the case of plane waves ( A *  - 0), 
* 1 c* - u, [ l  f K] (2.16) 

* v1 = 0 ,  (2.17) 

(whilst (2.15) is unaltered). 

The slip velocity is reduced to zero, in the usual way, by the 

inclusion of a thin boundary layer. The boundary layer approximation 

reduces the governing equations to (Stewartson 1964) 

( 2 . 1 8 )  
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(pfu") + - a ( p * v * )  - 0 ,  ap* a 
at* ax* ar* - + -  ( 2 . 1 9 )  

(2.20) 

(2.21) 

(together with (2.1)). 

These equations can be simplified by the use of a generalisation 

of the Howarth-Dorodnitsyn transformation, suggested by Stewartson (1951) 

and Moore ( 1 9 5 1 ) .  We write 

* au U* I - &* P* - Pal - ay* ' a? 
(2.22) 

where y now replaces y* as the independent transverse variable, and 

(* is essentially a streamfunction. Then 

* 
+ * a? 

V* = - P* [[Y] ax* y,t + 

a? z*lx*,y*l ' 

and the equations of motion and energy reduce to 

(2.23) 

(2.24) 
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""1. 
a v 2  

( 2 . 2 5 )  

On account of ( 2 . 2 1 ) ,  are have written 

* 
p*(x",T,t*) - Pl(X*,f*). ( 2 . 2 6 )  

The usage of the streomfunction ensures that the continuity condition 

( 2 . 1 9 )  is satisfied. 

We now seek a solution to ( 2 . 2 4 )  - ( 2 . 2 5 ) ,  subject to the boundary 

conditions 

ar* (v  - 0) = 0 ,  
a7 

T*(Y + m) + 1 + O(s), 

$*(7 = 0 )  = $* ( Y  * 0) = 0 ,  
7 

( 2 . 2 7 )  

( 2 . 2 8 )  

( 2 . 2 9 )  

( 2 . 3 0 )  

At this stage we must specify the particular viscosity/temperature 

model, and here we choose the simplest example, namely the linear law of 

Chapman (See Stewartson 1 9 6 4 ) ,  

( 2 . 3 1 )  

We nou seek a perturbation solution (in poners of c); we write 
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$* I $; + ET* +... 

T* I T: + cT* + . . .  

-* * 
p* = p o  + e p  +. . .  
- 
y - Yo + e? +. . .  

Substituting ( 2 . 3 2 ) ' i n t o  ( 2 . 2 4 ) - ( 2 . 2 5 )  yields, t o  O ( e 0 )  

* 
The solution of $0 (and Tg) is now routine, and merely 

corresponds to the similarity form of Blasius. Writing 

where 7 - Yo 

then 

( 2 . 3 2 )  

( 2 . 3 3 )  

( 2 . 3 4 )  

( 2 . 3 5 )  

( 2 . 3 6 )  

( 2 . 3 7 )  

( 2 . 3 8 )  

( 2 . 3 9 )  

c 
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The boundary conditions to be applied are 

Go(O) - 0 ,  

Go(a) - 1. (2.40) 

The O ( c )  equations are rather more complicated, although their 

derivation is routine. The momentum and energy equations at this order 

are, respectively 

-* ?* * -* 
- 4,* J ,  y y 

0 0 0  
GYot* + qy0 + qo - $;,* qoy0 

* * * * ?* - * 
T + $;yo Tx* - $;,* T + T i x *  Pyo - Toyo t,* t*  YO 

( 2 . 4 1 )  

( 2 . 4 2 )  
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Our primary concern here will be with the momentum equation ( 2 . 4 1 )  

(although a similar treatment may be carried out on ( 2 . 4 2 ) ) .  

We already have ( 2 . 3 5 ) - ( 2 . 3 7 ) ,  and now we write 

* f  - l a  * * *  c t - *  2 b X *  f* I - 2Pl  F l ( % t )  e !? * t 
(U,-cf)P, p: u: 1 ( 2 . 4 3 )  

where - x * t ,  ( 2 . 4 4 )  

These transforrnatiok, when applied to ( 2 . 4 1 )  yield the following 

equation for F i ( 7 , E ) .  

Q* 

new scaled variable E 

may be completely eliminated from the problem, by introducing the 
A 

( 2 . 4 6 )  

I t  is also convenient to introduce the non-dimensional wavespeed, 

( 2 . 4 9 )  
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This equation may be viewed as the compressible counterpart of the 

work of Pate1 (1975), and also of Ackerberg and Phillips (1972) (and others 

cited previously) which was specifically concerned with temporal 

oscillations. 

Equations (2.38)-(2.39) were solved numerically, using a second-order 

finite-difference scheme, in which the momentum and energy equations were 

split into three and two first order ordinary differential equations 

respectively, and solved iteratively using Newton’s method. Fo(q) and 

G o ( q )  were then input into (2.48); this (linear) equation was solved using 

second order finite-differences in q ,  Crank-Nicolson marching in E ,  ,. 

again by splitting the equation into a system of first order equations 

(in q ) .  

F l q s ( q  = O ) / i  are shown in Figs 1-4. In all -iji2/c Results for e 

cases we set y = 1.4, d - 0.72, A - 0 
are believed to be correct to within the 

figures. Figures la,b show results for 

for rS, - ~ 2 ,  c - 1 + l/&, Figs 3 a,b 

Fig. 4a,b for M, = 5, c - 1 + ~ / M o , .  

(plane waves) and the results 

graphical tolerance of the 

M , - J 2 ,  c - l - -  Figs. 2 a,b 

M, - 5, c - 1 - I/*, 
M,’ 

for 

I t  is readily apparent from these results that as [ + OJ (i.e. far 

downst ream) , e -ii2’c F i T V ( y O ) / i  asymptotes to a constant, and i t  is 

a simple matter to confirm this analytically. 

The inclusion of the second and third terms here is most easily 

justified by transforming to the (non-dimensional) streamwise ( x )  

coordinate, where 

x = i 2 ,  

13 
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whence 

(2.54) 

This solution generally violates the no-slip condition on TO, since 

(2.55) FIT(rpO) - Go(0) (1 - 1 -). 
C 

However this is easily rectified by the inclusion of a Stokes layer, 

where 

and 

1 ix/c Flrry + 2iFly - 2iCo(O) (1 - ;)e 

Writ i ng 

then 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

which does satisfy the no-slip condition on Y-0. Equation (2.59) 

then gives 

This is shown as an asymptote on Figs. 1-4, and the result is seen to be 

confirmed. Equation (2.54) does adnit the possibility of a 
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s i ngu 1 ar i t y m5erever 

(2.61) Fo7 - VC, 
and a critical layer is necessary if this occurs, as described in the 

Appendix. 

Unfortunately the above expansion is not uniformly valid as [ + 03. 

This is most easily seen by comparing the magnitude of the transverse 

pressure gradient (ap* 

the p*u*v* 

P 

) with the transverse inertia -terms (in particular /ay* 
t e m )  name 1 y 

X 

p*u*\-• 
X* 

* *  

Hence there will be a breakdown to the above 

when the transverse pressure gradient can no 

(2.62) 

so 1 ut i on when 

(2.63) 

longer be neglected. In the 

following section we go on to consider the repercusions of this. 

One final point is that eigensolutions analogous to those described 

by Lam and Rott (1960) are certainly expected to occur far downstream 

(although their magnitude was such that xhey were undetectable in our 

ike the 

deration, 

numerical resclts); however, as noted in the previous section, un 

subsonic case. in the supersonic planar case currently under cons 

these eigensolutions are of little consequence. 
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3.. n e  far downstr earn r e a  

As noted at the end of the last section, unsteady transverse pressure 

fluctuations will become significant in the physics of the boundary layer 

when 

* *  
x * - 0 -  Pa3 UOJ . I; a*21 

(3.1) 

This implies (and is cohsistent with) 

implying the transverse scale (i.e. the boundary layer thickness) I s  

comparable with the wavelength of the imposed wave. At the same time, the 

streamwise lengthscale of the wave 

developmental length of the boundary layer ( i . e .  ( 3 . 1 ) ) ,  and so the 

parallel flow approximation is a rational procedure, and is adopted 

here. 

 CY*-^) is much shorter than the 

We choose to make the following non-dimensionalisations 

a = a.*6". 

* 
T - T*/T, 

* 
c = c*/u,, 

* *  
t - u,t 

6" 
- ( 3 . 3 )  

Here 6* represents the boundary layer thickness, (and is the key 

lengthscale used in the non-dimensionalisation process), i.e. 
16 



* * f  
6 * -  [*I 

Pa, urn 
( 3 . 4 )  

We then expect the solution to develop as follows 

u = O(y) + &f(Y) E+. . . 

v = BOL cp(y)E+. . . 
p = 1 + € r(y)E+ . . .  

T - T(y) + E e(y) E+ . . .  

p - p(y) + L R(y) E+ . . .  

i a( X-Ct ) with E - e I (3.5) 

and where u(y), p ( y )  and T(y) denote the mean flow speed, density 

density and temperature respectively. 

The governing equations are then found to be (Lees and Lin 1 9 4 6 )  

-ir 
p[ i(tJ-cJ f + U'pJ - 7 

% 

i(6-c)R + i ( p ' +  if) + i l p  = 0, 

R f l  
x 9 - + - ,  - 

P T  

( 3 . 6 )  

( 3 . 7 )  

( 3 . 8 )  

( 3 . 9 )  

[i(ij-c>e + TI p] - i[y]r(ij-c)i ( 3 . 1 0 )  

After some simple manipulation (following Lees and Lin 1 9 4 6 ) ,  

we arrive at the following equation for p,  

( 3 . 1 1 )  

( I t  is worth noting at this stage that the analogous governing equation 

of Mack 1 9 8 4 ,  1987  appears inconsistent with this equation, and should be, 
17 



Mack's notation in 

D I T 

Finally, we follow the same approach as used previously, by using 

the transformat ion 

c g - I; (Y) 

(analogous to (2.21)) and so ( 3 . 1 1 )  becomes 

( 3 . 1 2 )  

(3.13) 

(3.14) 

with Fo(7)  defined by (2.37), and Go(?) by (2.38). 

The boundary condition on y = 0 is 

p(7 - 0) = 0, (3.15) 

corresponding to the impermeability condition. As + OD, we require 

the match with the progressive wave solution. 

section, this condition can be described by the superposition of an 

incoming and outgoing wave, if 

From the previous 

(3.16) 

4 is a reflection coefficient, which is to be determined as part of 

the solution. The wavespeed c is given by 
I 
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1 c - 1 f ( 1 + 9 ) f  (3.17) 

on account of (2.13). 

The problem then may be thought of as that to determine 8 ,  given 

X (generally complex), Fb,, and a .  This was achieved by writing 
c 

where, 

a2X2(fi-c) + E"(?) f ' (?)  iaA(fi-c)-fi'(?) 
- e  -?[T-t&U-C)2] +- [  T2 [ T-&( 2 fi-c)2] 

(3.18) 

(3.19) 

This equation was split into two first order equations, one for 

19 



>' ( P ) ,  the other for F' (7)' where 

(3.20) 

A simple fourth-order Runge-Kutta method was then used. To obtain the 

appropriate behaviour at infinity, the radiation condition 

;- + iCY& 0 
Y 

(3.21) 

was applied at some suitably large value of y .  

This solution will in general fail to satisfy the no-slip condition; 

however this is easily remedied by the presence of a Stokes layer of 

thickness Y - O ( 1 )  (see ( 2 . 5 6 ) ) .  
- 

Figures 5-10 show the variation of the reflection coefficient 6 
1 (see (3.12)) with CY. 

of (3.17) are shown in Figs. 5a,b; for M, - /2, X - c; + l i ,  

Results for M, - /2, X - 2 + i i ,  negative root 

1 
c; 
1 negative root of (3.17) in Figs. 6a,b; for ?& - /2 A - 

root of (3.17) in Figs. 7a,b; for M, - ~ 2 ,  

of (3.17) in Figs. 8a,b; for &, - 5, X - + i ,  

1 1  in Fig. 9a,b; for M, - 5, A - c; + c; i., negative root of (3.17) in 

+ i i ,  positive 

1 
X - c; + i i ,  positive root of 

negative root of (3.17) 1 

Figs. 10a,b. All these results were obtained with y - 1.4, Q - 0.72.. 
The primary result which is clearly visible from these computations 

is that 6 + -1 as CY + 0. This indicates a correct match with the 

results of the previous section in the upstream limit (a + 0 ,  here, 

may be interpreted as the upstream limit), in particular with (2.15). 

T h i s  match will be studied in full in the following section. 

Lastly, i t  is also clear that as a + Q (downstream limit), 6 + 0 .  

In the following section we sumarise the conclusions of this work. 
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4 .  J h e match inn of t he fore and do W nstream reg 1 ons 

Let us first consfder the limit of (3.11) as (y + 0 (which as 

pointed out at the end of the previous section is equivalent to the 

upstream limit of the downstream zone). Two lengthscales for y 

emerge, the first, where 

y - cuy - O ( 1 )  (4.1) 

involves a solution to (3.11) of an incoming and outgoing 

wave, namely 

,. c 

(4.2) 

We may impose the impermeability constraint on this system, which 

requires @ - -1 and so t o  leading order 

this condition matching correctly with the outer fore-region solution 

( 2 . 1 4 ) .  

The second important lengthscale is y - O ( 1 )  itself, where the 

variation of T and 0 must be taken into consideration. To leading 

order we have 

The solution to this is 

( 4 . 4 )  

( 4 . 5 )  

where the impermeability condition has been imposed, and C is a 
21 



constant which is determined by matching with ( 4 . 3 ) ,  which yields 

2ai (1 - c )  
x c - -  ( 4 . 6 )  

This completes the details of the Q 0 solution; however for 

the purposes of matching with the fore-region, the simplest illustration 

is by means of the perturbation streamwise velocity f(y). 

we see we may write 

By (3.6) 

4 i r p  

*2(0-c) ( 0 - c )  
f(>' - - + - ,  ( 4 . 7 )  

The pressure term z is (by (3.7)) seen to be independent of y ,  and 

given by 

z - -icy& 
and so 

Y - 
dY f(y) - - + il: C - 

f i - C  i~ - 1  i ( 6 - C )  T 2 
0 

( 4 . 8 )  

- 
(if U - c, then a critical layer of the type described in the 

Appendix will be present). 

We now match the downstream limit of the fore-region with (4.9) 

The O ( E )  Perturbation to the X* component of velocity, as 

X* + Q: may be vritten 

( 4 . 1 0 )  
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- 
where t) is defined by 

whi 1st 

(4.11) 

(4.12) 

A - 
and F1(')) is given by ( 2 . 5 4 )  (with t) replaced by 7). Notice 

that 

Equation (4.12) may be written 

( 4 . 1 3 )  

(4.14) 

(4.15) - *  
Here B ~ * ( Y )  - V, CO~(Y)GO(Y). 

whilst 

which yields 

B$(y) is determined from the far downstream limit of (2.42) 

where we have written 

i a* (x*-c*K E* = e 9 

(4.16) 

( 4 . 1 7 )  
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( 4 . 1 8 )  

(4.19) 

Consequently we see that 

Y 

( 4 . 2 0 )  

The solution of t h i s  equation is 

( 4 . 2 1 )  

We now see that as X* -B w 

Y A n 

where we have used the condition 

A 

';* - 2p*E*. ( 4 . 2 3 )  

Equation ( 4 . 2 2 )  may now be written 

( 4 . 2 4 )  

Y 



* 
Setting C1 = iUmC/(l-c), 

and noting that 

( 4 . 2 6 )  

(4.27) 

(4.28) 

we see that ( 4 . 2 5 )  matches correctly with ( 4 . 9 ) .  
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5. plscussion and conclusio ns 

In this paper a description of the effect of a small amplitude 

progressive wave on a supersonic viscous flow over a semi-infinite flat 

plate has been given. 

the possibility of a supersonic analogy of the so-called receptivity 

problem; however i t  turns out that in this case there is no receptivity, at 

least in the absence of boundary curvature. However, it would certainly 

be possible that a higher order analysis incorporating boundary-layer 

growth terms (i.e. non-parallel effects) would give an element of 

boundary curvature. 

The original motivation in this work was to study 

Associated with the present study, the form of the compressible 

Stokes layer has been described, together with the ultimate breakdown 

of the (boundary layer) structure of the perturbation solution which far 

downstream becomes predominantly inviscid. The analysis, together with 

our numerical results, formally indicate a proper match between the two 

regimes. 
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ADDend i X 

Here we consider the critical layer which will occur i f  

Foq - (A.1) 

in ( 2 . 5 4 ) .  Sirtee 0 < Foq < 1, this situation is only possible if the 

negative root of (2.12) is chosen. 

The treatmenr of the critical layer is fairly standard, and follows 

closely the structure found in, for example, linear stabi-lity theory 

(see for examplc Rosenhead 1963); as a consequence we shall keep details 

to a minimum. 

Suppose that we have a line, '1 - qc, such that 

we then write 

and then takiq the inviscid equation (2.52), and performing a 

Frobenius expansion about 7 = vC, gives, for 7 < qc 

, I  n i  

For 7 > qC the same procedure yields 

The ambiguit? in sign here must be resolved by incorporating the effects 

of viscosity irside the critical layer. The similarity with linear 

27 



incompressible stability theory is imacdiately apparent, the chief 

difference being the inclusion of the Co(qc) term, i.e. the temperature 

gradient term, which is obviously absent in incompressible situations. 

Following classical stability theory, we expect that inside the critical 

layer the solution develops as follows (assuming o>l) 

where r - (qc-v)x l/3 
- 0(1) inside the critical layer. ( A .  7)  

- 
The governing equation for Fl(r) is found to be (from ( 2 . 4 8 ) )  

The solution to ( A . 8 ) ,  which matches on to both ( A . 4 )  and ( A . 5 )  is 

simply 

.. 
The equation for Til(() I s  found t o  be 

( A .  10) 

The solution of this may be expressed in terms of the functions due 

to Holstein ( 1 9 5 0 )  (alternatively in terms of Airy functions) and this 

demands that i f  a proper matching is to be achieved with ( A . 4 )  as 

r + a ,  and ( A . 5 )  as r + -=, then we must take the negative sign in 

28 



( A .  5 ) .  

Although the temperature perturbation T* exhibits an algebraic 

singularity as t) + (with T* proportional to ( t ) - q C ) - l ) ,  

nonetheless viscous effects in the r - O ( 1 )  layer are sufficient to 

alleviate this singularity. 

This then completes the determination of the critical layer, and 

resolves the sign ambiguity in ( A . 5 ) .  
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