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ABSTRACT

The accurate prediction of system dynamic response
often has been limited by deficiencies in existing
capabilities to characterize connections adequately.
Connections between structural components often are
complex mechanically, and difficult to accurately model
analytically. Improved analytical models for connec-
tions are needed to improve system dynamic predictions.
In this study a procedure for identifying physical con-
nection properties from free and forced response test
data is developed, then verified utilizing a system
having both a linear and nonlinear connection. Connec-
tion properties are computed in terms of physical
parameters so that the physical characteristics of the
connections can better be understood, in addition to
providing improved input for the system model. The
identification procedure is applicable to multidegree
of freedom systems, and does not require that the test
data be measured directly at the connection locations.

INTRODUCTION

Recently, there has been an increased need for
developing parameter identification methods for improv-
ing structural dynamic models. This need has arisen
because of the increased ability of engineers to con-
struct complex analytical models, coupled with their
inability to precisely identify those models so as to
adequately simulate observed response. While great
strides in computer technology and analytical methods
have enabled engineers to theoretically solve very
large and complex structural problems, the results
often do not compare well with test data, because of
inaccuracies in the parameters of the mathematical
model .

The field which addresses mathematical modeling is
labeled system identification, which is described in
some detail in Refs. 1 to 4. In general, system iden-
tification involves the utilization of input and output
relations to determine differential equations. Once
the differential equations are determined, the unknown
parameters within the equations are identified and the
equations then are used to represent the actual system.
When the differential equation is known a priori

(e.g., a vibrating beam), the identification problem
is reduced to the more specific area of parameter
identification.

Parameter identification methods can be separated
into modal and physical model identification methods.
In modal parameter identification, experimental data
are used to derive modal parameters such as character-
istic frequencies and mode shapes. These parameters
then are used to create a frequency domain model uti-
1izing modal coordinates. Physical parameter identifi-
cation also involves the use of experimental data,
except that for this type of identification, a physi-
cal, time domain model, based on physical coordinates,
is generated. Physical models have successfully been
generated through the use of both modal and free or
forced transient response data.

Parameter identification methods may be utilized
in determining structural connection properties. Since
connections usually contribute significantly to the
overall system stiffness, damping, and in many cases
nonlinearity, it is critical that reliable connection
models be made available. Ffor many structural systems
the constituent components themselves often can be
modeled accurately, and it is the connections which
contain most of the modeling uncertainty. Therefore,
accurate system response predictions often are highly
dependent on valid connection models.

Identification methods for connections which use
frequency based or modal test data typically are
desired for linear systems, because the test apparatus
for obtaining the data are readily available and simple
to apply in the frequency domain. Furthermore, the
same test equipment and post-processing software may be
used for a wide range of structural dynamic systems.
Modal data also have advantages over time domain data,
in that the modal data, which normally includes reso-
nant frequencies and mode shapes, provide global system
information which is useful for identifying overall, as
well as specific, system characteristics (e.g., exist-
ence of rigid body modes, system flexibility, etc.).

Some recent work related to frequency based test-
ing and identification of connection properties is
described in Refs. 5 to 8. In Ref. 5, component mode
synthesis (substructuring) methods are combined with



parameter identification procedures to improve the ana-
lytical modeling of the structural connections for
reduced order systems. In this study, which utilized
experimental modal data, improvements in connection
properties were computed in terms of physical stiffness
parameters. By utilizing substructuring methods, com-
ponent and connection properties were identified inde-
pendently with the advantage that the identification
problem is reduced to a collection of smaller order
problems. For each of these problems the complexity of
obtaining the experimental data, and the required quan-
tity of data, is less than if the entire system were
identified as a whole. In Ref. 6, a similar identifi-
cation procedure is used to determine connection damp-
ing as well as stiffness. The effect of friction
damping on an assumed viscously damped system also was
assessed. Swept sine tests were used in Ref. 7 to
ascertain the connection properties of nonlinear con-
nections for space structures. Harmonic balancing and
Fourier approximation were used to extract the connec-
tion parameters from the test data. In Ref. 8, a mix
of analytical and experimental component models were
combined to characterize the dynamics of a flexible
spacecraft. For this study, joint stiffness and damp-
ing properties were ascertained via cyclic Toading
tests before the joints were incorporated into the sys-
tem model. Since the system modal properties computed
using experimentally derived joint models were in
agreement with test results, there was no need to
modify the joint characteristics using the coupled sys-
tem test data.

Since many structural systems, particulary systems
with complex-connections, contain at teast some amount
of nonlinearity (e.g., friction damping, gaps, local-
ized plasticity, etc.), frequency based methods often
are insufficient, and thus more general identification
methods are required. Several investigators have
attempted to identify nonlinearities in individual
structural connections, but only a limited number have
confronted the complexities associated with
multicomponent/connected systems. Previous studies
which have addressed connection identification have
focused on identifying properties from tests performed
on individual joints rather than from coupled system
tests. In Ref. 9, damping and stiffness characteris-
tics of a representative/space truss joint were stud-
ied. In this work results generated from simplified
joint models were compared to results obtained from a
complex model which included dead bands, large deforma-
tions, and friction forces. It was concluded that in
specialized situations simplified models based on lin-
ear springs and viscous dampers may represent the
behavior of the more sophisticated joint model. In
Ref. 10, nonlinearities in a structural joint were
identified using an approach termed "force-state map-
ping." This approach involved simultaneously measur-
ing the force on a joint along with its position and
velocity. From the shape of the three-dimensional sur-
face generated by plotting force as a function of dis-
placement and velocity, the type and quantitative
description of the joint mechanisms were identified.

In Ref. 11, a technique is introduced for process-
ing noisy test data, and for identifying the parameters
in nonlinear dynamic systems. The methods presented in
this work are suitable for identification of structural
connections, except that the experimental data must be
measured directly at the connection boundaries. In
Ref. 12, a similar method is presented and then applied
to a linear dynamic system in which the mass, damping,

and stiffness matrices are identified. Except for hav-
ing the same limitation described for Ref. 11, of hav-
ing to measure the data directly at the connection
boundaries, this approach is equally acceptable for
identifying connection parameters.

In the present research the methods introduced in
Refs. 11 and 1. are extended so they can be used for
the identification of linear as well as nonlinear con-
nection parameters, when the test data are not taken
directly at the connection boundaries. The present
procedure is applicable to both linear and nonlinear
connections and is suitable for processing test data
which has been measured at arbitrary stations on the
structural system. The flexibility that the opresent
method provides as far as the locations of the test
data measurement stations is highly desirable, because
in most practical situations it is impossible to obtain
test data at the connection boundaries, thus rendering
other identification methods ineffective.

PROCEDURE

In the present research, parameter identification
is defined as the problem of determining connection
properties for a multicomponent system comprised of an
arbitrary number of components coupled via connections
with either unknown, or estimated, properties (Fig. 1).
To accomplish the identification of the connection
parameters, the coupled system is excited at various
stations along the structure, and the resulting
response is measured. The measurement stations may
or may not be collocated with the excitation, and the
number of measurement stations may, or may not, be
equal to the number of input excitations. In general,
it is simpler to excite the system with a single input,
and then measure the resulting response at multiple
stations. It is required that both the input be known
and the output be measured, regardliess of the number of
stations. As mentioned previously, the present proce-
dure is advantageous over previous methods in that the
response measurements need not be stationed directly at
the connection boundaries, but instead may be estab-
lished at any convenient position on the system.

The present procedure involves five major steps
(Fig. 2). First, an analytical model of the system is
created using preliminary estimates for the connection
parameters. This model then is used to compute esti-
mates of the transient response at stations along the
structure where experimental data will be obtained.

In Step II, experimental data is obtained by actually
applying the specified excitation to the system and
measuring the resulting response. In Step IIL, a set
of "residual forces" are computed by minimizing the
differences between the predicted (Step I) response
and the measured (Step II) response. In Step IV, the
residual forces are incorporated into the analytical
mode!, which then is used to predict the output at the
connection boundary locations. In Step V, the cutput
at the connection locations, along with the residual
forces, are used to compute the actual connection
parameters. Steps IV and V are repeated until the
identified connection parameters converge. These pro-
cedural steps are described more fully below:

STEP I. 1In the present research, a finite element
formulation is utilized for characterizing the model,
but other formulations may serve equally well. For the
F.E. formulation, the equations of motion are written
as:
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where [M], {C], and [K] are the conventional mass,
damping, and stiffness matrices, {P} is the external
excitation, [CEC), [KCC1, and (FC} contain initial
estimates for the connection properties, and {RC} are
unknown "residual" forces acting at the connections.
{uS} and {u€} are displacement coordinates for the sys-
tem components and connections respectively. For the
subsequent integration of Eq. (1), performed in this
step, the residual forces are set to zero. The resid-
uals are in fact unknown at this stage because the
actual connection parameters have not yet been
determined.
The actual connection parameters are related to
the residuals by:

[ =4

+

0
O

RC

11 1.1
R] p]v] + p2v2 . pkvk
®Y, = (.} - : : . (2a)
q 9,9 . 9,9 q,9
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(R}, = (vl (p} (2b)

where {p} are the connection parameters and [v]
contains combinations of state variables at the connec-
tion degrees of freedom. For example, if the connec-
tion at degree of freedom ¢ behaved like a grounded
cubic spring with viscous damping, R9 would

3
equal kt(uq) v oD, p? and pg would equal k

and ¢ respectively, and v? and vg would be equal
3
to (uq> and 9. Obviously, the connection charac-

terization may include both linear (e.g., springs,
viscous dampers, etc.) as well as nonlinear elements
(e.g., friction, etc.). Elements such as gaps have not
yet been incorporated because they require more complex
(i.e., discontinuous) expressions for wv.

In Eg. (1), a preliminary estimate for [CEC],
(K], and {FC} may be used, or if the connections are
entirely unknown, {FC} and the connection contributions
to [CCC] and [KCC] may be set to zero. In situations
where connection forces are required for a stable sys-
tem, it is desirable to provide a small quantity of
connection stiffness so that the system is not unsta-
ble. Once {FC} is assigned, Eq. (1) is integrated and
the predicted state variables, {u} and {u}, are
determined.

The purpose of formulating Eq. (1) is to make an
estimated set of output data available for step III
where residual forces are computed. The required data
for step III, namely the velocities and displacements
at the test measurement stations {uP} and {uP}

(p=1,2, .. . number of measurement stations), are
extracted directly from the vectors {u} and {u} in
Eq. ().

STEP II. The test setup for obtaining the experi-

mental data is determined by convenience and the char-
acteristics of the individual connections. The

ORIGINAL PAGE IS
OF POOR QUALITY

selection of excitation must be appropriate so that
energy is transmitted through the connections and so
that every type of connection characteristic is exer-
cised adequately. For example, if the connection con-
tains friction damping, the excitation must be Jocated
so there is relative displacement at the connection
boundaries and so that a large enough magnitude connec-
tion force is generated to overcome any frictional
"sticking." In some situations, applying an initial
impulsive load or displacement pattern as the excita-
tion, and monitoring the free response decay, may be
advantageous over a forced response excitation.

The quantity of available experimental response
data is dependent on the number of measurement stations
and the number of data points taken at each station.
The required location and number of response measure-
ments ({uM}; and (UM} (i =1, 2, . ndt) are
determined primarily by the desired accuracy of sub-
sequent computations. When the number of output meas-
urement stations is increased, a larger number of
output responses are available at each time step,

t = tj, more accurate results are obtained at the time
step, and experimental error may be compensated for.
The consequences of using different numbers of output
stations and time steps is addressed in the sample
problem.

STEP III. The "residual" forces at the connec-
tions, {RC}, appearing in Eq. (1) are computed in this
step. It would be desirable to bypass this step and
compute the connection parameters directly, but the
parameters cannot be identified until the state varia-
bles at the connection locations are known. The state
variables at connection locations are unknown because
normally they are not measurable, and the analytical
model defined in Eq. (1) cannot be used to predict them
exactly because {RC¢} has yet to be specified.

The approach used in the present procedure is to
compute the residual forces, substitute the forces into
Eq. (1), and then compute the actual state variables at
the connection locations. Once the correct state vari-
ables at the connection locations are known, they then
may be used to identify the actual connection parame-
ters (Steps IV and V).

The residual forces are computed by minimizing
the differences between the predicted output {uP} and
{UP} (Step I), and the measured output {u™} and {u™}
(Step II), at the measurement stations. Because the
residuals change with time they must be recomputed at
each time step (1 ¢ i < n). At each time step the
residuals are computed iteratively from:

RY, = RYgqp 4 + (s1T0MIEs DTS OnD) (0P, i)

- W™, (3

where {RC} are the computed residual forces at time
t = tj, (W] is a weighting matrix applied to the output
data, and (S] is a sensitivity matrix containing the
partial derivatives, d{u}/d{R€}. Reference 6 provides
additional discussion of the coefficients in Eq. (3).
An important distinction between previous applica-
tions of the least squares method and the present, is
that for the current application the partial deriva-
tives, d{u}/d{RC}, remain constant for all time steps.
Since the coefficient matrices of the left-hand side
of Eq. (1) are assumed time invariant, any change in
the right-hand-side (i.e., d{RC}) produces only a pro-
portional change in the response coordinates, {u}, {u},
and {u}, with the derivatives remaining unchanged.
Computationally, this is beneficial because the deriva-
tives only need to be computed once, for the initial
time step.



Once the residual forces are identified for a time
step, they are substituted into Eg. (1) and the initial
conditions for the next time step are computed. It is
necessary to include the residuals from the current
time step so that accurate initial conditions and
residuals can be computed for subsequent time steps.
Equation (3) is repeatedly solved until all of the
available data is utilized (i = ndt).

The accuracy of the identified residuals is depen-
dent on the number of stations where data is measured.
As a minimum, the number of measurement stations must
be at least equal to the number of connected degrees of
freedom. If the number of measurement stations is less
than this value, the [S] matrix will have dimensions
less than {RC} and the residuals will be underdeter-
mined. MWhen the number of measurement stations is
large, the residuals may be computed with greater
accuracy.

STEP IV. In this step the residual forces com-
puted in the previous step are used in Eqg. (1) to com-
pute the state variables at the connection locations.
Since each term in Eq. (1) now is completely defined,
Eq. (1) may be used explicitly to predict values of
the state variables, {u€} and {u€}, at the connection
boundaries.

STEP V. The actual connection parameters are com-
puted in this step. Using the state variables from
Step IV and the relationship (Eq. (2)) between the
residuals and the unknown connection parameters:

(RC}]\ [(v1,]
(R}, tvi,
p=| - | {p} (4a)
QRc}ﬂ) }v]nJ
or
{R} = [VI{p} (4b)

Since the number of unknown parameters normally will
not equal the number of time steps, [V] cannot be
inverted directly. Instead, the least squares inverse
is used, leading to the solution of the unknown parame-

ters by:
{p} = («vITEvD-TrviT{R} (5)

STEP VI. 1In most situations the experimental data
has measurement errors which causes the subsequently
computed residual forces and connection parameters to
also contain errors. Since the computations for each
time step are dependent on the residual forces computed
in the previous time step, an error in the residval
force at one time step carries over into the next step.
In fact, the errors tend to accumulate, so that a small
error in the test data often progresses to very large
errors in computed residual forces as time advances.

Fortunately, measurement error often may be com-
pensated for by iterating. By utilizing the identified
connection properties in the analytical model, and then
using the model to recompute the residual forces, the
effects of measurement error may be minimized. In each
iteration the same test data is used, but the analyti-
cal model is revised with updated connection parameters
so that it better predicts the test data. Since the
model becomes a finer predictor of the test data, the
computed residual forces become smaller and more capa-
ble of tracking the correct solution.

SAMPLE PROBLEM

The sample problem is presented to demonstrate
the parameter identification procedures for a system
having a single input and multiple output measurement
stations. For this problem a finite element model was
used to generate simulated experimental data. The
model (Fig. 3) consists of two planar elastic beams
connected at their ends with resolute (pinned) connec-
tions. Each of the connections are attached to ground
by a linear, translational, spring. An “unknown" con-
nection, also attached to ground, is added at node 6.
Each of the beam components is discretized into five
beam elements with the beam mass lumped at the ends of
the elements. The Newmark-Beta integration method was
used to generate the simulated experimental data (3is-
placement and velocities at the output stations), and
to compute the sensitivities and state variables
required in Steps III and IV respectively.

Initially, the unknown connection was defined as
a linear spring having a spring constant equal to
30.x104. For the initial guess required by the param-
eter identification (Step V) the connection character-
ization was defined as pysign(ub) + pp(ub) + p3100.)
+ p4(ﬂ6) where py. 2, and 4. were the unknown con-
nection parameters'to'be identified, and ub and
were the displacement and velocity at node 6, the loca-
tion of the connection. py 2, 3 apnd 4 were set
initially to zero and the parameter identification pro-
cedure was given the task of determining the actua)l
parameters, p = {0.,30.x10%,0.,0.}. A sinusoidal input
was applied at node 1 and the resulting output for 36
time steps was measured at nodes 1, 3, 5, 7, 9, and 11.
Figure 4 shows the results of three simulation runs
which were made using test data having random measure-
ment errors (coefficient of variation) of 10, 50, and
100 percent. For each of the runs the four parameters,
friction, spring, constant force, and viscous damper,
were identified using 15 iterations. Clearly, as the
amount of measurement error increases there is a reduc-
tion in the quality of the identified parameters. In
Fig. 4(a) identified friction for 10 percent error is
computed very accurately after only five iterations.
For 50 percent error the friction is accurate after
three iterations, and for 100 percent error the
friction is not only inaccurate, but does not even
converge.

The results for the other three parameters follow
a similar pattern. In Fig. 4(b) the parameter associ-
ated with the linear spring converges to a precise so-
Tution after only two and eight iterations for 10 and
50 percent error, respectively. For 100 percent error
the correct solution is never attained. In Figs. 4(c)
and (d) the same trend is followed. For both the
10 and 50 percent error simulations the parameters
eventually produce the correct solution, while for the
simulation with 100 percent error the parameters always
fail to converge.

In Fig. 5 the computed residual! forces for each
time step are shown for three cases; no error, one with
10 percent measurement error, and one with 10 percent
error with three point averaging. For the case without
error the residuals are computed correctly beginning
in the first iteration. When the measurement error is
10 percent, the residuals vary considerably from the
actual values although they tend to oscillate about the
correct solution. Apparently, an inaccurate residual
from one time step is overcompensated for in the subse-
quent step. As expected mentioned, the inaccuracies
expand as time progresses. Fortunately, after iterat-
ing for only a few cycles the inaccuracies vanish and
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the residuals converge to the correct values. Three
point averaging ((Rj-1+Rj+Rj.12/3) also was used in an
attempt to smooth out the overcompensating effect which
appears in the residuals when measurement error is
present. Although the averaging appears to be effec-
tive, it does not accelerate the iterative process. In
situations where large quantities of data are utilized
convergence may not be improved because the accumulated
error in the residuals will grow and the residuals will
be unable to track the correct solution.

The results presented in Fig. 6 were created by
increasing the number of data points (time steps) from
36 to 72. By comparing the results in Fig. 4 to this
figure, the effect of varying the number of data points
may be seen. In general, it takes more iterations to
achieve convergence when the number of data points is
increased. For example, while the spring parameter
took only two iterations to converge when 36 data
points were used, the 72 data point simulation required
three. Another observation which is made by comparing
the results in these figures is that increasing the
number of data points does not necessarily assist in
offsetting the effects of measurement error. This is
evidenced by the fact that correct parameters could not
be identified in either case (36 or 72 data points)
when the measurement error was 100 percent. Although
the 72 data point simulations provide additional data,
the identified residuals are no more accurate because
the number of measurements at each time step remains
the same. This situation is unfortunate because it is
easier to obtain additional data at a measurement sta-
tion than it is to increase the number of stations.
Iterating does not appear to improve this situation.

The next step toward validation of the identifica-
tion procedure consisted of performing simulations
with a more complex model. The previous model was com-
plicated by introducing a friction damper into the con-
nection along side the linear spring. The friction
force at the connection was described as
3000.sign(ub), thus the complete parameter vector is
p = {3000.,30.x10%4,0.,0.}. Results from this system
(Fig. 7) also were generated for various levels of
measurement error, and as expected, as the error
decreased, the identified connection parameters became
more accurate. The spring parameter actually converged
faster for this model than for the/model without fric-
tion. The friction parameter converged relatively
quickly as well. Overall, the introduction of friction
into the system did not have adverse effects on the
identification process.

Another aspect of the identification process stud-
ied in the present research was the effect of using
other types of input excitation. Thus far, all of the
results presented have been obtained through the use of
sinusoidal input. To assess the effect of excitation
type, the sinusoidal input was replaced by an initial
displacement, and the resulting free response was used
for the identification. Random input also was used as
the excitation. The results (Fig. 8) are plotted along
with the previously tdentified parameters so that a
comparison can be made. For both the friction and
spring parameters the results were as accurate for the
free response and random simulation as they were for
the sinusoidal excitation, however, it took the free
response identification several more iterations to con-
verge. It is difficult to generalize about the effec-
tiveness of different types of excitation because of
the numerous variables which must be considered. For
example, while the free response resulting from an ini-
tial condition with one spatial distribution may be
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more effective for the identification than a sinusoidal
input, the opposite may be true for other distribu-
tions. As a conservative quide, it probably is best to
try as many types of input as possible.

SUMMARY AND CONCLUSIONS

An analytica) procedure has been presented which
allows for the identification of the mechanical proper-
ties of connections in multicomponent structural sys-
tems. The procedure requires verified analytical
models of the individual components, although the con-
nection parameters to be identified may be nonlinear,
and velocity or displacement dependent. Adequate tran-
sient, time domain response data are required for the
assembled structural system; the location of data meas-
urement stations is, however, arbitrary. Limited meas-
urement errors in the data may be accommodated through
an iterative refinement process in the identification
algorithm. The quality of the parameter identification
is dependent on the quantity as well as the gquality of
the system transient response data available. The num-
ber of parameters to be identified is not limited,
although larger identification problems may require a
greater number of measurement stations.

The procedure shows great promise for improving
modeling capabilities in complex structural systems,
as well as for enhancing our understanding of structur-
al connection behavior. Further developments are cer-
tainly desirable in establishing convergence criteria,
enhancing convergence, determining the reliability of
identified parameters, characterizing more complex con-
nections, and streamlining the identification of large
problems.
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