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1.0 INTRODUCIION 

The purpose of this report is to document the functional requirements and detailed 
specifications for the Local System Services of the Advanced Information Processing 
System (AIPS). This introductory section is provided to outline the overall architecture and 
functional requirements of the AIPS system. Section 1.1 gives a brief overview of the 
AIPS architecture as well as a detailed description of the AIPS Fault Tolerant Processor 
(FTP) architecture, while Section 1.2 provides an introduction to the AIPS system 
software. Sections 2 through 6 describe the Local System Services functional requirements 
and design and detailed specifications. Each of these sections describes one of the Local 
System Services functions. Section 7 concludes with a summary of results and 
suggestions for future work in this area. 

1.1 AIPsArchitecture 

The Advanced Information Processing System is designed to provide a fault- and damage- 
tolerant data processing architecture which can serve as the core avionics system for a 
broad range of aerospace vehicles being researched and developed by NASA. These 
vehicles include manned and unmanned space vehicles and platforms, deep space probes, 
commercial transports, and tactical military aircraft. 

AIPS is a multicomputer architecture composed of hardware and software 'building blocks' 
that can be configured to meet a broad range of application requirements. The hardware 
building blocks are fault-tolerant, general purpose computers (GPCs), fault- and damage- 
tolerant inter-computer (IC) and inpudoutput (YO) networks, and interfaces between the 
networks and the general purpose computers. The software building blocks are the major 
software functions: local system services, inpudoutput system services, inter-computer 
system services and the system manager. This software provides the services necessary in 
a traditional real-time computer such as task scheduling and dispatching, communication 
with sensors and actuators, etc. The software also supplies the redundancy management 
services necessary in a redundant computer and the services necessary in a distributed 
system such as inter-function communication across processing sites, management of 
distributed redundancy, management of networks, and migration of functions between 
processing sites. 

The AIPS hardware consists of a number of computers which may be physically dispersed 
throughout a vehicle. These dispersed computers are linked together by a reliable, 
damage-tolerant data communication pathway called the IC network, or IC bus. (Since the 
hardware implementation is a circuit-switched network which appears to the 
communication software and the receiving and transmitting devices as a conventional bus, 
the terms 'network' and 'bus' are used interchangeably throughout this document.) A 
computer at any particular processing site may also have access to varying numbers and 
types of VO buses, which are separate from the IC bus. The VO buses may be global, 
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regional or local in nature. VO devices on the global VO bus are available to all, or at least a 
majority, of the AIPS computers. Regional buses connect VO devices in a given region to 
the processing sites located in their vicinity. Local buses connect a computer to the UO 
devices dedicated to that computer. Additionally, UO devices may be c o ~ e c t e d  directly to 
the internal bus of a processor and accessed as though the UO devices reside in the 
computer memory (memory mapped YO). Both the VO buses and the IC bus are time- 
division multiple-access contention buses. Figure 1 shows the laboratory engineering 
model for a distributed AIPS configuration. This distributed AIPS cofliguration includes 
all the hardware and software building blocks mentioned earlier and was conceived to 
demonstrate the feasibility of the AIPS architecture. 

The laboratory configuration of the distributed AIPS system shown in Figure 1 consists of 
four processing sites. Each processing site has a General Purpose Computer (GPC). 
GPCs may be simplex or they may be FTps of varying redundancy levels. Of the four 
FITS in the laboratory configuration, one is simplex, one is duplex, and two are triplex 
processors. An FTP may also be quadruply redundant but none was fabricated for the 
AIPS laboratory demonstration. The redundant FTPs are built such that they can be 
physically dispersed for damage tolerance; each of the redundant channels of a FIT can be 
as far as 5 meters from other channels of the same FIT. The FIT architecture is described 
in more detail in the following subsection. 

The GPCs communicate with each other over the Inter-Computer Network, in which the 
circuit-switching nodes have been configured into redundant virtual buses. Each redundant 
bus is referred to as a layer; these layers are totally independent and are not cross-strapped 
to each other. Each layer contains a circuit-switched node for each processing site; thus 
every processing site is serviced by three nodes of the IC network. GPCs are designed to 
receive data on all three layers, but the capability of a GPC to transmit on the network 
depends on the GPC redundancy level. Triplex FTPs can transmit on all three layers, 
duplex FITS on only two of the three layers, and simplex processors on only a single 
layer. In duplex and triplex FTps, a given processor can transmit on only one network 
layer. Thus malicious behavior of a processor can disrupt only one layer. 

The IC network and the GPC interfaces into the network are designed in strict accordance 
with fault-tolerant systems theory so that any arbitrary random hardware fault, even a 
Byzantine fault, can not disrupt communication between triplex FTps. Thus the triplex IC 
network, in conjunction with the GPC interfaces into the network, provides error-masking 
capability for communication between two mplex computers. 

The I/O network is demonstrated in the laboratory using a 15-node circuit-switched 
networkthat interfaces with each of the GPCs on 1 to 6 nodes, depending on the GPC 
redundancy level. The 15 YO nodes can be configured in the laboratory as global, 
regional, and local 1/0 networks to demonstrate various dimensions of the AIPS VO 
concept. 
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1.1.1 AIPS Fault Tolerant Proasam overview 

The AIPS Fault-Tolerant Processor (FTP) is a significant enhancement of the CSDL FI'P 
[ 1,2] developed and used in many centralized real-time applications. The basic FI'P 
architecture has been enhanced to work efficiently and reliably in the distributed 
information processing environment of AIPS. Figure 2 shows a simplified schematic of a 
triplex AIPS FTP. 

AIPS FAULT TOLERANT PROCESSOR 

Multiprocessor 

n 

Figure 2. Simplified Schematic of AIPS Fault Tolerant Processor 

The first enhancement was the addition of a second processor to each channel so that 
input/output operations can be performed in parallel with application function 
computations. The I/O processor (IOP) is used to perform the collection of sensor data and 
transmission of actuator commands that are typical in traditional real-time systems. It also 
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performs inter-computer communication, which is a significant burden in a distributed 
system. The IOP thereby leaves its counterpart, the computational processor (CP), free 
for calculation and decision-making tasks. This architecture has several important 
attributes. 

First, the IOP and the CP share the data exchange and other hardware responsible for 
providing fault tolerance in the FTP. This results in increased throughput without 
additional hardware penalties for fault tolerance. Second, by performing all external 
communications the IOP can, with appropriate help from System Services Software, 
completely shield the CP and the applications programs running on it from the complexities 
of a distributed processing environment. Third, by making all the incoming data congruent 
before presenting it to the CP, the IOP also shields the applications programs from the 
redundant nature of the system. These last two attributes greatly simplify the process of 
developing applications software. 

The second major enhancement to the basic FTP architecture was the addition of dedicated 
hardware interfaces between the FTP and the InpuVOutput and the Inter-Computer 
Networks. These are called the Input Output Sequencer (10s) and the Inter-Computer 
Interface Sequencer (ICIS), respectively. These interfaces are shared by the CP and the 
IOP and are shown as blocks L, M, and N in Figure 2. L, M, and N refer to the three 
layers of the IC network. These interfaces take care of the low level bus protocol and 
formatting details (typically the physical layer and the data link layer), thus relieving the 
IOP from having to manage the I/O and IC networks at microsecond time intervals. The 
ICIS and 10s make it possible to interface the AIPS FTPs to very high speed buses. The 
possibility of Byzantine faults in the network nodes causing single point FTP failures is 
quite real, so the design of these interfaces adheres strictly to fault-tolerant systems 
themetical principles. 

The AIPS FIP architecture is both symmetric and modular. It is symmetric in that either 
processor can do the work of the other. Since both the CP and the IOP have access to all 
the external interfaces, the FTP can be operated with only one processor per channel, if 
desired. For AIPS applications that do not have intensive I/O and/or IC communication, 
one processor per channel may suffice. Or a combination of one-processor and two- 
processor GPCs may be used, where sites with little UO and/or IC activity have only one 
processor per channel while other sites have two. The architecture is modular in that the 
number of UO and IC interfaces per FTP can be varied to fit various processor and network 
redundancy levels and parallel and partitioned networks. 

The AIPS FTP architecture, in combination with the networks, provides a system 
architecture that is extremely flexible and expandable. It has been designed from the outset 
to be a distributed architecture utilizing fault-tolerant computers. These qualities can only 
be appreciated fully if one has faced the task of mating various existing avionics computers, 
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such as flight control and engine control computers, in order to create an integrated fault- 
tolerant system. 

Ll.2 Fault Tolerant Processor: Functional View 

The Fault-Tolerant Processor (FP) consists of a variable number of redundant processing 
channels depending on the reliability requirements of the application. The AIPS 
engineering breadboard FTP is intended to be operated primarily as a triplex, but it 
provides fail-safe capability when operated as a duplex. A single channel can also be used 
for non-critical operations as a simplex computer. 

Each channel of an FTP consists of three sections: a computational section, an input/output 
section, and the resources shared between them. The first section contains a Computational 
Processor (CP), memory, timers and clocks. The second section contains an Input/Output 
Processor (IOP), memory, timers, and clocks. The shared resources include shared 
memory, data exchange hardware, timers, and external interface hardware. The redundant 
processors are tightly synchronized using a fault-tolerant clock. Data is exchanged among 
redundant channels on point-to-point links. The data exchange hardware also performs the 
bit-for-bit voting, fault detection and masking functions in a manner that satisfies all the 
requirements to protect the Fl"P from Byzantine failures, as described in Appendix A. 
Apart from redundancy, there are other features that provide hardware and software fault 
tolerance. These include watchdog timers, processor interlocks, a privileged operating 
mode, handlers for hardware and software exceptions, and self tests. 

A functional view of one channel of an AIPS R P  is shown in Figure 3. The CP and IOP 
are identical, conventional processor architectures. Interval timers are used for scheduling 
tasks and maintaining time-out limits on applications tasks (task watchdog timers). A 
hardware watchdog timer is provided to increase fault coverage and to cause a processor to 
fail-safe in case of hardware or software malfunctions. This timer resets the processor and 
disables all of its outputs, if it is not reset periodically. The watchdog timer is implemented 
independently of the basic processor timing circuitry. A monitor and interlock circuit in 
each channel provides the capability to disable the outputs of faulty processors. Any two 
correctly operating processors in a mplex FlT can disable the outputs of the third failed 
processor through this interlock mechanism. A processor that is failed active is thus 
prevented from transmitting erroneous data or commands on VO networks, IC networks, 
and local VO devices. 

The CP and IOP share resources through a bus that can be accessed by either processor. 
These shared resources include memory; a system timeK the interchannel data exchange and 
voting circuits; and interfaces to one or more YO networks, memory mapped VO devices, 
and the IC network. 
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Figure 3. Fault Tderant Processw Architedure: Functional View (One Channel) 

One very important aspect of the FIT architecture is the interconnection hardware between 
redundant channels. The interchannel data exchange and voting hardware serves three 
purposes: it provides a path for distributing data in one channel to all other channels; it 
provides a mechanism for comparing results of the redundant channels; and it provides a 
path for distributing and comparing timing and control signals such as the fault tolerant 
clock and external interrupts. 

Two types of data exchanges are possible: a simplex exchange or a voted exchange. The 
simplex exchange is used to distribute copies of data from one channel to all other 
channels, for example, the value of a sensor that is available in only one channel. A voted 
exchange, on the other hand, is used to compare and vote results of the redundant 
channels, for example, an actuator command produced by all three channels which must be 
voted before the command is actually issued. 

7 



The interchannel data exchange and voting circuits appear on the shared bus as a set of 
registers which include the transmit register, the receive register, and error latches. Data is 
exchanged between redundant channels one word at a time by writing the word to the 
transmit register and then reading the result from the nxeive register. When an exchange is 
initiated, the transmitter in each channel sends to all channels either its own data (in the case 
of a voted exchange) or the data available from another channel (in the case of a simplex 
exchange). Each channel thus receives three copies of the data, which are voted on a bit- 
by-bit basis. The majority result, which will be the same in all channels even in the 
presence of an error, is placed in each processor's receive register. The type of exchange 
(voted or simplex) which will be performed is determined by the particular transmit register 
that is referenced when the exchange is initiated 

Either type of exchange takes on the order of 5 microseconds in the engineering breadboard 
version of the AIPS FTP. The hardware is designed to lock out access to the receive 
register while the exchange is in progress; a processor which mes to read the receive 
register before the transaction has completed is suspended. As soon as the data becomes 
available, the processor is released and the register read cycle completes normally. The 
processor wait is thus transparent to the software. 

The same software executes on a redundant FTP as on a simplex channel and application 
code is written as if it were to operate on a simplex computer. All redundant processors 
have identical software and execute identical instructions at exactly the same time. This 
feature of the architecture is carried out in the data exchange hardware and software as well. 
The data exchange hardware is designed such that all redundant processors execute 
identical instructions when exchanging data whether it is redundant data to be voted or 
simplex data being transmitted from one channel to others. Thus, for example, if a simplex 
exchange is to be made from channel A, all three channels write to their FROM-A register. 
While the contents of the FROM-A register are transmitted from A, voted, and deposited in 
the receive registers of all three processors, the contents of the FROM-A registers in 
channels B and C, which are meaningless, are ignored. 

On a routine basis, the internally produced data that needs to be exchanged consists of error 
information and cross channel comparisons of results for fault detection. These operations 
can be easily confined to the program responsible for Fault Detection, Identification, and 
Reconfiguration (FDIR). Voting of the results of the redundant computational processors 
is performed in hardware by the inpudoutput processors and the system software 
responsible for the VO services. Therefore, the remaining pieces of the Operating System 
software and the applications programs need not be aware of the existence of the data 
exchange registers. The task scheduler and dispatcher, for example, can view the 
computational core as a single reliable processor. 

Data from other processing sites is received by each IOP on the redundant IC buses, 
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hardware voted, and then deposited in their respective shared memories. Simplex source 
data such as that from VO devices is received by the IOP in one channel to which the VO 
device is physically connected. This data is then transmitted to the other two IOPs using 
the data exchange registers. The congruent data is then deposited in all three shared 
memories. Thus, the computational processor obtains all external data that has already 
been processed for errors and source congruency requirements by VO System Services 
executing on the VO processor. 

The IOP and CP communicate through the shared memory. The IOP and CP have inde- 
pendent operating systems that cooperate to assure that the data from input devices is made 
available to the applications programs running in the CP in a timely and orderly fashion. 
Similarly, the two processors cooperate on the outgoing information so that the output 
devices receive commands at appropriate times. Hence the CP and IOP actions must be 
synchronized to some extent. To help achieve this synchronization in software, a hardware 
feature has been provided which enables one processor to interrupt the other. By Writing to 
a reserved address in shared memory the CP can interrupt the IOP and by writing to 
another reserved location the IOP can intempt the CP. Different meanings are assigned to 
this interrupt by leaving an event code in some other predefmed part of the shared memory, 
before the inter-processor interrupt is asserted. 

For routine flow of infoxmation in both directions, the shared memory is used without 
interrupts but with suitable locking semaphores to pass consistent data sets. The interrupts 
can be used to synchronize this activity as well as to pass time critical data that must meet 
tight response time requirements. In order to assure data consistency, it is necessary that 
while one side is updating a block of data the other side does not access that block of data. 
This has been implemented using software semaphores. Hardware support for semaphores 
is provided in the form of the test and set instruction. 

The architectural approach described above provides several significant operational 
benefits. The most important of these is the decoupling of the computational and 
input/output streams of transactions. The computational processor is unburdened from 
having to do UO transactions. To the CP, all UO appears memory mapped including not 
only UO devices but also all other computers in the system. That is, each sensor, actuator, 
switch, computer, etc., with which the FTP interfaces can be addressed simply by reading 
or writing words in the shared memory. 
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1.2 AIPSSystemsOftware 

The AIPS system software, as well as the hardware, has been designed to provide a virtual 
machine architecture that hides hardware redundancy, hardware faults, multiplicity of 
resources, and distributed system characteristics from the applications programmer. 
Section 1.2.1 discusses the approach used for the AIPS system software design. Section 
1.2.2 is a high level description of the system services that are provided for AIPS users. 

1.2.1 AIPS Sofhare Design Approach 

The approach used to design the AIPS system software is part of the overall AIPS system 
design methodology. An abbreviated form of this system design methodology is shown in 
Figwe 4. This methodology began with the application requirements and eventually led to 
a set of architectural specifications. The architecture was then partitioned into hardware and 
software functional requirements. This report documents the design approach used for 
Local System Services software, beginning with the functional requirements and 
proceeding through detailed specifications. 

Hardware and software for the AIPS architecture is being designed and implemented in two 
phases. The frs t  phase is the centralized AIPS configuration. The centralized AIPS 
architecture, as shown in Figure 5 ,  is configured as one triplex Fault Tolerant Processor 
(FTP), an Input/Output network and the interfaces between the FTP and the network, 
referred to as input/output sequencers (10s). The laboratory demonstration of the 
input/output network consists of 15 circuit-switched nodes which can be configured as 
multiple local VO networks connected to the triplex GPC. For example, the VO network 
may be configured as one 15-node network, as shown in Figure 5, or as three 5-node 
networks. The software building blocks that have been designed and implemented for the 
AIPS centralized architecture include local system services and UO system services. The 
following subsection 1.2.2 gives an overview of all the AIPS software building blocks. 
The remainder of the document, Sections 2 through 6, focuses on the functional design 
and detailed specification of the Local System Services. 
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Figure 4. AIPS System Design Approach 
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Figure 5. Centralized AIPS Configuration 
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1.2.2 AIPS System Software Overview 

As shown in Figure 6, AIPS system software provides the following AIPS System 
Services: local system services, communication services, system management, and VO 
system services. The system software is being developed in Ada. System services are 
modular and partitioned naturally according to hardware building blocks. The distributed 
AIPS configuration includes all the services. Versions of the system software for specific 
applications can be created by deleting unused services from this superset. The System 
Manager functions reside on only one GPC, but all functions of the System Manager are 
not necessarily on the same GPC. The other system services ~IE replicated in each GPC. 
A brief description of each of the services follows. 

Figure 6. Top Level View Of System Services 

1.2.2.1 Local System Services 

The local system services provided in each GPC are: GPC initialization, real-time operating 
system, local resource allocation, local GPC Fault Detection, Isolation, and 
Reconfiguration (FDIR), GPC status reporting, and local time management (see Figure 7). 
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Figure 7. Local System Services 

The function of GPC initialization is to bring the GPC to a known and operational state 
from an unknown condition (cold start). GPC initialization synchronizes the CPs, 
synchronizes the IOPs and resets or initializes the GPC hardware and interfaces (interval 
timers, real time clock, interface sequencers, DUART, etc.) It makes the hardware state of 
the redundant channels congruent by alignment of memory and control registers. It then 
activates the system baseline software that is common to every GPC. 

The AIPS real-time operating system supports task execution management, including 
scheduling according to priority, time and event occurrence, and is responsible for task 
dispatching, suspension and termination. It also supports memory management, software 
exception handling, and intertask communication between companion processors (IOP and 
CP). The AIPS operating system resides on every CP and IOP in the system. It uses the 
vendor-supplied Ada Run Time System (RTS), and includes additional features required 
for the AIPS real-time distributed operating system. 

The GPC resource allocator coordinates and determines responsibility for any global or 
migratable functions from the system resource manager. It also monitors commands from 
the system resource manager to start or stop any function. 
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The GPC status reporter collects status information from the local functions, the local GPC 
FDIR, the IC system services and the I/O system services. It updates its local data base 
and disseminates this status information to the system manager. 

GPC FDIR has the responsibility for detecting and isolating hardware faults in the CPs, 
IOPs, and shared hardware. It is responsible for synchronizing both groups of processors 
in the redundant channels of the FlT and fur disabling outputs of failed channel@) through 
interlock hardware. After synchronization, all CPs will be executing the same machine 
language instruction within a bounded skew, and all IOPs will be executing the same 
machine language instruction within a bounded skew. GPC FDIR logs all faults and 
reports status to the GPC status reporter. It is responsible for the CPU hardware exception 
handling and downmodinghpmoding hardware in response to configuration commands 
from the system manager. It is also responsible for transient hardware fault detection and 
for running low priority self tests to detect latent faults. This redundancy management 
function is transparent to the application programmer. 

The local time manager works in cooperation with the system time manager to keep the 
local real time initialized and consistent with the universal time. It is also responsible for 
providing time services to all users. 

Sections 2 through 6 describe the Local System Services functional requirements and 
design and detailed specifications. Each of these sections describes one of the Local 
System Services functions. Section 7 concludes with a summary of results and 
suggestions for future work in this area. 

1.2.2.2 Inter-Computer System Services 

The inter-computer system services provide two functions: (1) inter-computer user 
communication services, that is, communication between functions not located in the same 
GPC, and (2) inter-computer network management (Figure 8). 

The IC user communication service provides local and distributed inter-function 
communication which is transparent to the application user. It provides synchronous and 
asynchronous communication, perfoms error detection and source congruency on inputs, 
and records and reports IC communication errors to IC network managers. Inter-computer 
communication can be done in either point to point or broadcast mode and is implemented 
in each GPC. 

The IC network manager is responsible for the fault detection, isolation and reconfiguration 
of the network. The AIPS distributed configuration consists of three identical, independent 
IC network layers which operate in parallel to dynamically mask faults in a single layer and 
provide reliable communication. There is one network manager for each network layer. 
However, the three network layer managers do not need to reside in the same GPC. They 
are responsible for detecting and isolating hardware faults in IC nodes and links and for 
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reconfiguring their respective network layer around any failed elements. The network 
manager function is transparent to all application users of the network. 

REALLoc mm0N 
FLAG ALLOCATION 

1cmoRK 
m COMMAND GPC STATUS 

LOCAL IC STATUS REPORTING 

Figure 8 Inter-Computer System Services 

1.2.2.3 System Manager 

The system manager is a collection of system level services including the applications 
monitor, the system resource manager, the system fault detection, isolation and 
reconfiguration (FDIR), and the system time manager (Figure 9). 

The applications monitor interfaces with the applications programs and the AIPS system 
operator. It accepts commands to migrate functions from one GPC to another, to display 
system status, to change the state of the system by requesting a hardware element state 
change, and to convey requests for desiEd hardware and software configurations to the 
system resource manager. 

The system resource manager allocates migratable functions to GPCs. This involves the 
monitoring of the various triggers for function migration such as failure or repair of 
hardware components, mission phase or workload change, operator or crew requests and 
timed events. It reallocates functions in response to any of these events. It also designates 
managers for shared resources and sets up the task location data base in each GPC. 

The system fault detection, isolation and reconfiguration (FDIR) is responsible for the 
collection of status from the inter-computer (IC) network managers, the 1/0 network 
managers, and the local GPC redundancy managers. It resolves conflicting local fault 
isolation decisions, isolates unresolved faults, correlates transient faults, and handles 
processing site failures. 
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Figure 9. System Manager 

The system time manager, in conjunction with the local time manager on each GPC, has the 
job of maintaining a consistent time across all GPCs. The system time manager indicates to 
the local time manager when to set its value of time. It also sends a periodic signal to 
enable the local time manager to adjust its time to maintain consistency with an external time 
source such as the GPS Satellites or an internal source such as the real time clock in the 
GPC which hosts the system time manager software. 

1.2.2.4 YO System Services 

The VO system services provide efficient and reliable communication between the user and 
external devices (sensors and actuators). The VO system services software is also 
responsible for the fault detection, isolation and reconfiguration of the VO network 
hardware and GPC/network interface hardware (inpudoutput sequencers). 

I/O system services is made up of three functional modules: VO user interface, UO 
communication management and the VO network manager (Figure lo). 
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Figure 10. YO System Services 

The VO user interface provides a user with readwrite access to VO devices or Device 
Interface Units (DIUs), such that the devices appear to be memory mapped. It also gives 
the user the ability to group YO transactions into chains and VO requests, and to schedule 
VO requests either as periodic tasks or on demand tasks. A detailed description of the VO 
user interface is provided in [3]. 

The UO communication manager provides the functions necessary to control the flow of 
data between a GPC and the various UO networks used by the GPC. It also performs 
source congruency and error detection on inputs, voting on all outputs, and reports 
communication errors to the I/O Network Manager. It is also responsible for the 
management of the VO request queues. A detailed description of the VO communication 
manager is provided in [3]. 
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The ID Network Manager is responsible for detecting and isolating hardware faults in I/O 
nodes, links, and interfaces and for reconfiguring the network around any failed elements. 
The network manager function is transparent to all application users of the network. A 
detailed description of the UO Network Manager is provided in [4]. 
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2.0 G P C ” U L E A T I 0 N  

It is the responsibility of the GPC INIT module to bring the GPC to a known and 
operational state at startup and to initialize the system software tasks and the application 
procedures andor tasks. 

2.1 G P C I n i t j a l i z a t i a n ~  Requirements and Mgn 

The function of GPC initialization is to bring the GPC to a known and operational state. If 
the GPC has a redundancy level greater than a simplex, the initialization software module is 
responsible for controlling the transition from an unknown, uninitialized state of the FTP 
hardware to a state such that all available channels are operating in an instruction- 
synchronous manner. Furthermore, the module will insure that the channels operating in 
such a synchronous manner will have “aligned”, or “bit-for-bit identical”, states of all 
redundant hardware elements (e.g., RAM and interval timers). Once this instruction- 
synchronous, hardware-aligned status is established for the FTP, it will continue to operate 
in a synchronous mode until a fault forces a channel out of synch. (This statement assumes 
all external data to the FIT is made congruent across channels by the appropriate UO 
software.) 

Upon reset, a processor will vector to the start-up entry point of the operating system. 
Standard initialization operations must be performed at this point: 

Initialization of standard hardware such as interval timers, real time 
clock, and DUARTs 

0 Exception vector initialization 

Interrupt handler initializations 

0 Software initialization (Ada “elaboration”, including initialization 
and activation of tasks) 

0 Execution of power-on self tests 

After the standard initialization functions are performed, the FIT specific initialization is 
performed. The redundant channels are synchronized to the instruction level. Since each 
channel has two processors, each processor is synchronized with the other processors of 
its type (Le., CPs or IOPs). In addition, its companion must be synchronized with other 
processors of the companion’s type, i.e., either both processors of a channel are good or 
they are both failed. Thus, processor activity within each channel must be coordinated 
before and during the synchronization process. The processors within each channel 
synchronize with one another to the extent that all of the intra-channel processors finish 
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their pre-synch initialization and signal their readiness to operate in synch with their 
corresponding inter-channel processors. After instruction-level synchronization, the 
hardware state of the redundant channels is made congruent by alignment of memory and 
control registers. The channel synchronization and alignment functions are performed 
within the SYNC software module which is described in Section 4.2.2.2. 

After channel synchronization the power-on self tests are performed in order to check for 
any hardware faults in memory, error latches, voters, real-time clock and monitor interlock 
hardware. After the system is operational the self tests continue to run in background to 
check for any latent faults, but they are run in their entirety at system startup. (Execution of 
the self tests at power-on is optional in the laboratory engineering model.) 

Next the operating system tasks are scheduled. These tasks include the redundancy 
management sequencer task, the GPC Status ReporterKRT display tasks, and the VO 
system services tasks. Finally, the application tasks are scheduled and the self test loop is 
entered. The self tests execute at the lowest priority when the system would otherwise be 
idle. 

2.2 GPC Initialization Software Specifications 

procesS Name: Main Program 

Inputs: DUART, interval timers, real time clock 
Unsynchronized Processors, Channels 
Non Aligned Volatile memory, control registers 
Uninitialized Task Control Blocks, Tasks Stacks 
Uninitialized interrupt handlers, exception handlers 
Uninitialized IOS, ICIS 
Unscheduled Tasks 

An operational FTP in a known synchronous state 
All Tasks scheduled. 

Notes: This process calls the SYNC process, Section 4.2.2.2 

It is the responsibility of the GPC Init function to bring the FI’P to an operational mode at 
startup and to initialize the application procedures and/or tasks. GPC Init resides on both 
the IOP and CP of each processing site. Since Ada requires that the process which initially 
executes be named ‘Main Program’, the GPC Init function is so named in the Ada source 
code. Figure 11 is a diagram of the control flow of the GPC Init function. First the 
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DUARTs, interval timers, real time clock and the interrupt and exception vectors are 
initialized. Then the elaboration of all system packages and tasks is completed. This 
includes initialization of every task control block and task stack area. Next the available 
channels of the FIT are synchronized and all volatile memory, control registers, interval 
timers, and real time clock are aligned in the synchronized channels. This is done by the 
SYNC process, Section 4.2.2.2, in both the CP and IOP processors. 

Once the FTP is running synchronously, a complete iteration of the self tests is performed. 
These tests, which detect and identify faults in memory, error latches, voters, the real-time 
clock and the monitor interlock, are described in Section 4.2.1.3. The difference in the 
power-on self tests and the background self tests is that the power-on tests are not 
interrupted until an entire iteration has been completed. 

Next the Local System Services sequencer task, the F D W i m e  Manager, is scheduled. 
This task is responsible for the execution of the periodic Local System Service functions: 
Fast FDIR, Transient FDIR and the Local Time Manager. The F D W i m e  Manager is a 
high priority, periodic task and presently executes every 40 milliseconds. The periodicity 
of this task is dependent on the particular application running on the GPC; it may be 
different for each GPC site. The FDIEUTime Manager and the three processes it controls 
are discussed in Sections 4.2.1, 4.2.2 and 6.1.1.2.3. 

Finally, the GPC Status Reporter display tasks are scheduled. There are three tasks for 
CRT display and one task for Macintosh display. Like the main task, these tasks are of the 
lowest priority and are time-sliced with each other and the main program. The GPC Status 
Reporter/display tasks are described in Section 5.2.2. The time slice interval is equal to the 
period of the fastest periodic task in the system. 

At this point all of the Local System Services tasks have been scheduled and the FI'P is in a 
known and operational state. I/O System Services tasks and any application tasks may 
now be scheduled and/or application procedures called. 

The main program fmally enters the self test loop where it executes continually at the lowest 
priority the self tests in order to uncover latent faults. The self tests are described in 
Section 4.2.1.3. If needed, applications may call procedures within this loop also. 
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Figure 11. GPC INIT Contrd Flow Diagram 
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3.0 REALTIME0PERA'I"GSYSI'EM 

The foundation of the system software for AIPS is a real-time, multi-tasking operating 
system providing mechanisms for task scheduling, inter-task communication, memory 
management, and intempt handling. The AIPS operating system consists of the vendor- 
supplied Ada Run Time System (RTS) along with those extensions needed to implement 
the functions given below. The extensions are written in Ada with time critical sections 
done in assembly language to reduce system overhead. The AIPS operating system resides 
on every IOP and CP. 

3.1 Real Time Operating System F'unctional Requirements 

The AIPS operating system provides the basic system services necessary to support the 
other application software tasks (see Figure 12). These services include: 

1. 

2. 

3.  

4. 

Task execution management, including scheduling according to priority, time 
and event occurrence; dispatching (context switching); task suspension and 
termination. 
Memory management, including global data allocation, local data 
allocation/deallocation and shared data access routines (protected read and 
write). 
Intertask communication, including both synchronous and asynchronous 
(mailbox) communication. 
Software exception handling. 

I 

TASK "ERTASK 
EXECUnON MANAG- COMMUNICATIONS 

MANAGEMENT 

Figure 12. AIPS Real Time Operating System 
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3.1.1 TaskExecidhManagement 

The basic execution unit is the Ada "task". The management of task execution includes 
scheduling according to priority, time and event occurrence, dispatching, task suspension 
and termination. A static priority is associated with each task. Task execution order is 
according to priority and proceeds in a run-until-blocked mode until one of the following 
conditions occurs: 

1. task completion, 
2. self suspension, 
3. preemption by hardware interrupt, 
4. explicit scheduling of higher priority task, or 
5 .  time slicing of equal priority task. 

A task is capable of scheduling itself or other tasks according to time (one-shot or periodic) 
or upon the occurrence of a software defined event. The option also exists to bracket the 
region of a tasks periodicity by time or events; i.e. provide start/stop times or events. 

The RTS requirements of Ada provide minimal user control of task scheduling with the 
Ada rendezvous and the "delay" statement. Scheduling by event is not an Ada 
requirement. So extensions to the Ada RTS are necessary in order for the task to schedule 
itself or another task cyclically, as the result of an event, at an absolute time, immediately, 
or to deschedule a task (remove all scheduling requirements). 

AIPS requires two additional functions that are not provided by Ada RTS vendors: (1) 
preserving the data exchange receiver register for each task during a context switch, and (2) 
voting the program counter (PC) after every interrupt. Preserving the data exchange 
receiver register is necessary because a data exchange requires two instructions, a write to 
the transmitter followed by a read from the receiver, and an interrupt could occur after the 
write but before the read. When a task is suspended, therefore, the receiver value must be 
saved in the task control block; when a task is resumed, this value must be restored to the 
receiver. In the laboratory demonstration implementation, which uses a Motorola 68010 
processor with an 8 MHz clock, restoring the receiver register takes approximately 5 ps. 

Voting the PC after every interrupt is necessary because an interrupt could bring 
unsynchronized channels back into sync, thus masking the faulty condition. The state of 
each channel at the time of the interrupt can be determined by voting the PC; when a 
channel's PC is different from the majority value the operating system sets a flag for the 
FDIR task. This procedure ensures that a fault is detected as early as possible. In the 
laboratory demonstration implementation, which uses a Motorola 68010 processor with an 
8 MHz clock, the PC check takes approximately 43 ps, of which 5 ps is used for the data 
exchange. 
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3.1.2 MemwyMaqpmnt  

There are two types of memory in the FIT, local memory and shared memory. Local 
memory is memory on the private bus and can be accessed only by a single processor. 
Shared memory is memory on the shared bus and can be accessed by both processors in a 
channel. 

Local memory is used for task execution. The operating system is responsible for 
allocating and deallocating all local memory space from heaps and stacks. The user must 
be able to specify the amount of local memory to be allocated for tasks and data objects. 
Also, routines are provided for the controlled access (protected read and writes) to data 
objects shared between multiple application tasks resident on the same processor. 

Shared memory can be accessed by tasks resident on different processors and by several 
tasks resident on the same processor. Routines are provided for controlled access 
(protected read and writes) to data objects shared between multiple application tasks 
resident on different processors. 

3.1.3 Intertask Communication 

Local intertask communication is communication that takes place between tasks executing 
on the same processor. The operating system supports two methods of local inter-task 
communication: synchronous and asynchronous. Synchronous communication requires 
the communicating tasks to be at a specified synchronization point and is implemented in 
Ada by the "rendezvous". In local asynchronous inter-task communication, the commun- 
icating tasks are not required to be at a specified synchronization point; rather the 
communication is via data "mailboxes" using the local memory controlled access routines. 

Remote inter-task communication is communication that takes place between tasks 
executing on different processors. The operating system supports two types of remote 
inter-task communication: remote task release and asynchronous "mailbox" 
communication. Remote task release means that a task running on one processor can start 
or release a task on the other processor. The remote inter-task mailbox communication is 
supported by using the shared memory controlled access routines. 

3.1.4 sOf€ware Exceptions 

Software exceptions not explicitly handled by the applications tasks are intercepted by the 
operating system and the task is purged. 
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3.2 Real Time Operating System !kftware Specifications 

3.2.1 Task Execution Management procesS Descriptions 

[TASKEXECUTIONMANAGEMENT 1 

DISPA"ING SUSPENSION 

Figure 13. Task Execution Management 
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3.2.1.1 

Inputs: - 0 

0 

procesSName: PRIORTIY - SCHEDULE 

GENERAL-TASK-ID 

GENERAL-TASK-ID.TASK-NOT-WAITING 

ImplementationRequirwnents: 
Initiation: 
Ondemand 

procesS Description: 

If task to be scheduled is not waiting at a scheduling synchronization point, the 
TASK-NOT-WAITING indicator is set and an immediate return to the caller is performed. 

Otherwise, if priority of task to be scheduled (GENERAL-TASK-1D.PRIORITY) is 
greater than the priority of the active task (ACTrVE-TASK-ID.PRIORJTY), execution of 
the scheduled task is initiated via the PRIORITY-DISPATCH process; otherwise, the task 
being scheduled is placed on the ready queue according to its priority and a return to the 
active task is performed. 

3.2.1.2 

Inpk 

e 

e 

0 

e 

htpuDi: 
0 

ProcessName: TIME - SCHEDULE 

GENE=-TASK-ID 
GENERAL-TASK-ID.REPEnnON_TIME 
GENERAL-TASK-ID.COMPLETI0N-TIME 
GENERAL-TASK-ID.COMPLETION-EVENT 
INITIATION-TIME 

None 

Implementation Requirements: 
Initiation: 
- Ondemand 

Process Description: 

Task to be scheduled (GENERAL-TASK-ID) is placed on the time queue according to the 
specified start time (INITIATION-TIME). 

If task is initial task on time queue, the time queue interval timer is updated. 
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3.2.1.3 

Inputs: 
0 

0 

0 

0 - 
0 

GENERAL-TASK-ID 
G E N E R A L _ T A S K - I D . C o O N - ~  
GENERAL-TASK-ID.COMPLETI0N-EVENT 
EVENT 

None 

ImplementationRequirements: 
Initiation: 
- Ondemand 

procesS Description: 

Task to be scheduled (GENERAL-TASK-ID) is placed on the event queue indicated by 
the specified event(EVENT). 

3.2.1.4 Process Name: PRTORlTY - DESPATCH 

Inputs: 
None 

ImplementationRequirements: 
Initiation: 
- 
- active task suspension 
- active task termination 

ready task priority > active task priority 

Process Description: 

If a task is active (ACTIVE-TASK-ID /=null), it is preempted and placed on the ready 
queue according to its priority (ACTIVE-TASK-1D.PRIORITY). 

Execution of the highest priority task on the ready queue is initiated. 
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3.2.1.5 procesSName: TIME - DISPATCH 

None 

outplts: 
TIME-TASK-ID.TASK_"G 

ImplementationReqUilp~~ 
Initiation: 
- Time queue interval timer interrupt 

Process Description: 

If task at the head of the time queue (TIMETASK-ID) is not waiting at a scheduling 
synchronization point, the TASK-NOT-WAITING indicator is set and dispatching of the 
task is not performed. 

Otherwise, if priority of time task (TIME-TASK-ID.PRIORITY) is greater than priority of 
active task (ACTIVE-TASK-ID.PRIORITY), the PRIORITY-DISPATCH process is 
invoked, otherwise, the time task is placed on the ready queue according to its priority. 

If the time task is periodic and the current time is less than TIMETASK-ID.COMPLET- 
ION-TIME or TIMETASK-1D.COMPLETXON-EVENT has not occurred, then the time 
task is  replaced on the time queue according to its period 
(TIMETASK-1D.REPETITION-TIME). Otherwise, the task is removed from the time 
queue. 

The time queue interval timer is set to interrupt for the task now at the head of the time 
queue. 
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3.2.1.6 procesS Name: SIGNAL-EVENT 

Inpub: 
EVENT 

ol4J- 
GENERAL-TASK-ID 

ImplementationRequirements: 

Initiation: 
- On occurrence of event 

procesf Description: 

All tasks (GENERAL-TASKJD) on event queue indicated by the specified event 
(EVENT) are dispatched via the EVENT-DISPATCH process. 

3.2.1.7 ProcesName: EVENT - DISPATCH 

Inpub: 
GENERAL-TASK-ID 

ouw 
GENERAL-TASK-1D.TASK-NOT-WAITING 

Implementation Requirements: 
Initiation: 
- Invoked by SIGNAL-EVENT process 

Process Description: 

If event task (GENERAL-TASK-ID) is not waiting at a scheduling synchronization point, 
the TASK-NOT-WAITING indicator is set and dispatch of the task is not performed. 

Otherwise, if priority of event task (GENERAL-TASK-1D.PRIORITY) is greater than 
priority of active task (ACTIVE-TASK-ID.PRIORITY), the PRIORITY-DISPATCH 
process is invoked; otherwise, the event task is placed on the ready queue according to its 
priority. 

If current time is greater than GENERAL-TASK-1D.COMPLETION-TIME or 
GENERAL-TASK-ID.COMPLETION-EVENT has occurred, the event task is removed 
from the specified event queue. Otherwise, the task is left on the queue. 
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3.2.1.8 procesS Name: TIME-SUSPEND 

u 
None 

ImplemenGttionRequimmenk 
Initiation: 
- Ondemand 
This process is implemented in Ada by the "delay" statement. 

Process Description: 

The active task (ACTIVE-TASK-ID) is preempted and the TIME-SCHEDULE process is 
invoked to place task on the time queue for the specified delay time (DELAY-TIME). 

Ready task execution is initiated by invoking the PRIORITY-DISPATCH process. 

3.2.1.9 ProcessName: EVENT - SUSPEND 

Inputs: 
EVENT 

None 

Implernenta!ion Requimmts: 
Initiation: 
- Ondemand 

Procxm Description: 

The active task (ACTIVE-TASK-ID) is preempted and the EVENT-SCHEDULE process 
is invoked to place task on the event queue indicated by the specified event (EVENT). 

Ready task execution is initiated by invoking the PRIORITY-DISPATCH process. 
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3.2.1.10 procesS Name: TASK-CO- 

Inputs: 
None 

Implemen~Requirpments: 
Initiation: 
- Ondemand 
This process is implemented in Ada by the normal task completion processing 
of the run time system. 

Process Description: 

The active task (ACTIVE-TASK-ID) is deactivated. The ready task (READY-TASK-ID) 
is initiated by invoking the PRIORITY-DISPATCH process. 

3.2.1.11 Process Name: TASK-CANCEL 

Inputs: 
GENERAI-TASK-ID 

Implementation Requirements: 
Initiation: 
- Ondemand 

procesS Description: 

The specified task (GENERAL-TASK-ID) is removed from the time queue and any 
applicable event queues. If the task has been preempted (Le. is on the run queue), it is 
allowed to run to completion. 
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3.2.1.12 procesS Name: TASK-ABORT 

Inputx 
GERNERAL-TASK-ID 

hplementationRequi~lTbm$: 
Initiation: 
- Ondemand 
This process is implemented in Ada by the "abort" statement. 

Process Description: 

The specified task (GENERAL-TASK-ID) and any dependent tasks are immediately 
removed from all queues (ready, time and event) in a manner least disruptive to the system 
as a whole. If the aborted task is the active task (GENERAL-TASK-ID = 
ACTIVE-TASK-ID), the PRIORITY-DISPATCH process is invoked. 

3.2.2 Memory Management Process Descriptions 

MEMORYMANAGEMENT 1 

HEAPMANAGE" 

I 

DATA 

Figure 14. Memory Management 
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3.2.2.1 

Inputs: 
0 

0 

hm 
0 

GENERAI-TASK-ID 
GENEW-TASK-ID.HEAP_SIZE 

GENERAL-TASK-ID.HEA€-BASE 

hplementationRequiremts: 
Initiation: 
- Taskelaboration 
A STORAGE exception shall be raised if the requested amount of memory is 
not available. 
This process is implemented by the vendor supplied run time system at task 
elaboration. 

procesS Description: 

The specified amount (GENERAL-TASK-ID.HEAP-SIZE) of consecutive heap memory 
is allocated to the requesting task for local stack space and for allocating local data objects. 

The base location address (GENERAL-TASK-ID.HEAP-BASE) of memory allocated is 
returned to the process user. 
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3.2.2.2 

Inputs: 

am 
0 

h.ocessName: ALLOCATJ3LocAL-ORn;'rrr 

LOCAL-OBJECT-SIZE 

LOCAL-OBJECT-LOCATION 

ImplementationRequim& 
Initiation: 
- Ondemand 
A STORAGE exception shall be raised if the requested amount of memory is 
not available. 
This process is implemented in Ada by the "new" allocator. 

Process Description: 

The specified amount (LOCAL-OBJECT-SIZE) of the requesting task's local heap space 
is allocated for use by the requesting task as a data object. 

The object location address (LOCAL-OBJECT-LOCATION) is returned to the process 
caller. 

3.2.2.3 Process Name: ALLOCATl-GLOBAL - OBJECI' 

Inputs: 
GLOBAL-OBJECT-SIZE 

outputs: 
GLOBAL,-OBJECT-LoCATION 

Implementation Requirements: 
Initiation: 
- Ondemand 
A STORAGE exception shall be raised if the requested amount of memory is 
not available. 

Process Description: 

The specified amount (GLOBAL-OBJECT-SIZE) of the global memory is allocated for 
use by all tasks as a data object. 

,The object location address (GLOBAL-OBJECT-LOCATION) is returned to the process 
caller. 
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procesSName: FREE-HEAP 

GENERAL-TASK-ID 
GENERAL-TASK-ID.HEAP-SIZE 
GENERAL-TASK-ID.HEAP-B ASE 

None 

Implementation Requirements: 
Initiation: 
- Task Completion 

Process Description: 

The specified amount (GENERAL-TASK-ID.HEAP-SIZE) of local heap memory 
(GENERAL-TASK-ID.HEAP-BASE) previously allocated to the indicated task 
(GENERAL-TASK-ID) is released. 

3.2.2.5 Process Name: FREE-JBCAL-OBJECI' 

Inputs: 
LOCAL-OBJECT-SIZE 
LOCAL-OBJECT_LOCATION 

atputs: 
None 

Implementation Requirementx 
Initiation: 
- Ondemand 
This process is implemented in Ada by the UNCHECKED-DEALLOCATION 
generic. 

Process Description: 

The specified amount (LOCAL-OBJECT-SIZE) of the requesting task's local heap space 
(LOCAL-OBJECr_LOCATION> previously allocated is released. 
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3.2.2.6 ProcessName: WRITE-DATA 

Ill*: 
SI-IAREI-DATA 
ACTWE-TASK-ID.OU"-DATA 

None 

hplementationRequiremen~ 
Initiation: 
- Ondemand 

procesS Description: 

The following actions are performed when writing to a shared data area (local or global): 

If the shared data area (SHARED-DATA.AREA) is  locked 
(SHARED-DATA.LOCKED = true), the task is suspended (via process 
EVENT-SUSPEND) until shared data is unlocked (SHARED-DATA.LOCKED = 
false). 

Lock data area (SHARED.DATA.LOCKED = true). 
Write data (ACI'IVE-TASK.OUT_DATA). 
Unlock data area (SHARED-DATA.LOCKED = false). 
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3.2.2.7 ProcessName: READ - DATA 
Inputs: 

SHARED-DATA 

u 
ACTIVE-TASK-ID.IN_DATA 

ImplementatiOnRequire~uts: 
Initiation: 
- Ondemand 

Process Description: 

The following actions are performed when writing to a shared data area (local or global): 

If the shared data area (SHARED-DATA.AREA) is  locked 
(SHARED-DATA.LOCKED = true), the task is suspended (via process 
EVENT-SUSPEND) until shared data is unlocked (SHARED-DATA.LOCKED = 
false). 

Lock data area (SHARED.DATA.LOCKED = true). 

Read data (AcnVE-TASK.IN-DATA). 

Unlock data area (SHARED-DATA.LOCKED = false). 
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3.2.3 Intertask Communication procesS Desaiptions 

IN"ERTMK COMMUNICATION 

Figure 15. Intertask Communication 

3.2.3.1 procesS Name: SYNCHRONOUS-SEND 

Inputs: 
RECEIVER-TASK-ID 
SENDER-TASK-ID.OUT-DATA 

outpub: 
SENDER-TASK-ID.IN-DATA 

Implementation Requirementx 
Initiation: 
- Ondemand 
A TASKING exception is raised if a receiver task acknowledgement is not 
received. 
This process is implemented in Ada by the "rendezvous" entry call. 

Process Description: 

The SYNCHRONOUS-SEND process includes the following actions during synchronous 
intertask communication: 

Obtain data from sender task (SENDER-TASK-ID.0UT-DATA) and store for 
receiver task (RECEIVER-TA SK-ID.IN-D ATA) . 
Initiate communication event with the specified receiver task. 

Suspend sender task (via the EVENT-SUSPEND process) until receiver task 
acknowledges communication event completion (via the SIGNAL-EVENT) 
process. 

Obtain data from receiver task (RECEIVER-TASK-ID.OUT-DATA) and store for 
sender task (SENDER-TASK-ID.IN-DATA). 
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3.2.3.2 procesS Name: SYNCHRONOUS-RECEIVE 

Inputs 
RECEIVER-TASK-ID.IN-DATA 

u 
RECEIVER-TASK-ID.0UT-DATA 

Implementafjon Requimnents 
Initiation: 
- Ondemand 
This process is implemented in Ada by the "rendezvous" accept statement, 

Process Description: 

The SYNCHRONOUS-RECEIVE process includes the following actions during 
synchronous intertask communication: 

If a sender task has not initiated a communication event, the receiver task is 
suspended (via the EVENT-SUSPEND process) pending that event. 

Obtain input data from sender task (RECEIVER-TASK-ID.IN-DATA). 

Perform communication processing. 

Store output data for sender task (RECEIVER-TASK-ID-OUT-DATA). 

Acknowledge communication event completion via the SIGNAL-EVENT process. 
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3.2.4 Software Exception procesS Description 

Figure 16. Software Exception 

3.2.4.1 Process Name: RAISE-EXCEPTION 

Inputs: 
GENEW-TASK-ID 
EXCEPTION-ID 

Implemntation Requirements: 
Initiation: 
- Detection of software exception 
This process is implemented in Ada by the vendor supplied run time system 

Process Description: 

Upon detection of a software exception (EXCEPTION-ID), the exception Occurrence is 
recorded and the appropriate exception handler (GENERAL-TASK-1D.EXCEPTION-- 
HANDLER (EXCEPTION-ID) specified by the executing task is performed. If there is no 
specified exception handler, the task is purged. 
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4.0 GPC FAULT DETECI'ION, IDENTIFICATION AND RECONFIGURATION 

The AIPS FTP uses hardware redundancy with fault detection and masking capabilities to 
provide fault tolerance. The design of that hardware is based on theoretical principles and 
is described in detail in Appendix A. The fault tolerance provided by the hardware is 
greatly enhanced by the Fault Detection, Identification and Reconfiguration (FDIR) 
functions which are part of the FTP local operating system. While the hardware alone in a 
triplex FTP could sustain one fault, the FDIR software allows it to sustain multiple 
successive faults and identifies the fault(s) for an operator, thus making the FTP much 
more robust and serviceable. 

4.1 GPC Fault Detdon, Identification and Reconfiguration Functional Requirements 
and Design 

GPC FDIR is a process which is part of the local operating system in each AIPS 
processing site. The primary purpose of GPC FDIR is to keep the GPC and its external 
devices functioning correctly in the presence of any number of hardware faults. To achieve 
this, FDIR has two main functions: 

identifying a failed channel, Le., detecting a fault, isolating it to a single 
channel, masking the faulty channel's inputs, and disabling its outputs. 

recovering a failed channel, Le., determining that the fault no longer exists, 
bringing the channel into line with the two synchronized channels, accepting the 
channel's inputs, and3enabling its outputs. 

These functions must consume a minimum of the processing resources of the FTP under 
both fault and no-fault conditions. The tasks and procedures used by FDIR to implement 
these functions are summarized in Figures 12 and 13 and described in detail in the 
following sections. 

A secondary purpose of FDIR is to report the status of the local GPC to the System 
Manager via the GPC Status Reporter. Therefore, faults and reconfiguration events are 
logged so that the GPC Status Reporter may transfer the information to the System 
Manager, which may be running on another GPC. 

PRECEDlNG PAGE BLANK NOT flLMED 
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PROCESS DESCRIPTION 
~~ ~~ ~ 

FAULT DETECI'ION AND ISOLATION 

Fast FDIR Periodic, high-priority task 

Watchdog Timer Reset Periodic, high-priority task 

Background Selftests As-time-available, low-priority task 

M68010 Exception Handler On-demand procedure 

Reconfigure Ondemand procedure 

Log Error On-demand procedure 

Log Reconfiguration On-demand procedure 

Log Non-Congruent Event On-demand procedure 

CHANNEL RECOVERY 

Transient FDIR Periodic, high-priority task 

Lost Soul sync 

Restart On-demand procedure 

On-demand high-priority task 

Reconfigure On-demand procedure 

Log Reconfiguration Ondemand procedure 

Log Non-Congruent Event On-demand procedure 

Figure 17. Summary of FDIR Tasks and Procedures 

46 



Figure 18. FDIR Tasks and Procedures 
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4.1.1 FauItDetedm ' and Identification 

Fault detection mechanisms are! implemented in both hardware and software, while the 
identification mechanisms are implemented solely in software. Instruction-level synch- 
ronization together with bit-for-bit comparison of redundant data makes it possible to 
isolate a fault to a single channel. 

There are four main processes which detect and identify faults: 

a periodic, high-priority task (Fast FDIR) which checks for failure of a 
companion, an unsynchronized channel, a failure in the data exchange 
hardware, and failure of a fault-tolerant clock; 

a periodic, high-priority task (Watchdog Timer Reset) which taps the watchdog 
timer within the given time bounds sa that the timer does not overrun and cause 
a hardware reset; 

a low-priority task (Background Selftests) which does tests to uncover latent 
faults in memory, voting circuitry and error latches, and the real-time clock; 

a procedure for handling M68010 hardware exceptions such as an illegal 
instruction or addressing error. 

After a channel is identified as being faulty, the GPC must be reconfigured so that the 
faulty channel does not affect GPC operation. The errors generated by the channel must be 
masked and its outputs must be stopped. This is done by a procedure (RECONFIGURE) 
which: 

sets a software variable which identifies the channel as failed; 
disengages the monitor interlock so that outputs from the faulty channel are 
disabled. 
logs the fault and the reconfiguration for later examination by an operator. 

4.1.1.1 FastFDIR 

Fast FDIR is one of four tasks which detect and isolate errors. It is a high-priority task 
which runs every 40 ms. It checks for: 

a failed companion processor 
an unsynchronized channel 
a failure detected but not reconfigured around by the selftests 
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a data exchange failure, i.e., either failure of the interstage or of any link in the 
data exchange hardware 
failure of a fault-tolerant clock. 
a missing companion processor 

Error detection is done in the order given above. If any particular test uncovers a failure, 
the remaining tests are not done during that iteration of Fast FDIR. When an error is 
detected, the error is logged, the GPC is reconfigured to exclude the faulty channel, and the 
reconfiguration is logged. 

Failed Co mpanion 

When one of the two processors in a channel (CP or IOP) detects a failure, the companion 
processor is notified. The companion processors must fail their member in the same 
channel, even though it may be fault free. This ensures that the CPs and IOPs always have 
the same configuration. 

Unsvnchronized Channel 

An unsynchronized channel is detected by means of two tests: (1) the inconsistent PC 
check and (2) the presence test. 

The inconsistent PC check is designed to handle the case where processors are out of sync 
but are brought back together by an interrupt, which thus masks the out of sync condition. 
Each time an interprocessor or timer interrupt occurs, a consensus value for the PC at the 
time of the interrupt is obtained by doing a FROM-ALL data exchange. Each channel then 
compares its own PC to the consensus value; a channel with a different value sets a flag 
which is subsequently checked by Fast. Checking the flag causes the inconsistent channel 
to diverge so that the two synchronized channels see it as missing when they do the 
presence test. 

The presence test detects an unsynchronized channel by sending a unique pattern from each 
channel through the data exchange. If the result read from the data exchange receiver is not 
the expected pattern, the channel originating the exchange is judged not present and 
therefore out of sync. 

Selftest Error 

The background selftests attempt to detect latent errors, that is, errors which currently exist 
but have not yet caused data exchange errors or a channel to become unsynchronized. 
These tests are discussed fully in a later section. The selftest task does not reconfigure 
when it detects an error, however. It merely passes the pertinent information to the Fast 
FDIR task, which does the actual reconfiguration. 
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Data Exchange Failure 

Failures in the data exchange are detected by analyzing the error latches set by the data 
exchange hardware. These latches are set during a data exchange if a miscornpare is 
detected during the voting of data received from the interstages. The latches identify the 
type of exchange and the channel at fault when the miscornpare occurred. A failure can be 
isolated either to (1) an interstage (including the transmitter-teinterstage link) , or (2) any 
link other than the transmitter-interstage link (i.e., transmitter-transmitter links and 
interstage-receiver links). 

Fault-Tolerant Cloc k Failm 

Failures in the fault-tolerant clocks are detected by analyzing the error latches set by the 
clock hardware. There are two sets of error latches: one which is set when the clock 
interstage detects faulty input from a clock element, and a second which is set when a clock 
element detects faulty input from a clock interstage. Failure of a fault-tolerant clock is 
merely logged, it does not cause the channel to be considered failed. 

Missing Companion 

A processor which has restarted because of a watchdog timer-caused reset or because of 
hardware or software exceptions needs to so notify its companion so that the companion 
may also restart. One way for such notification to occur is to have each processor 
periodically notify its companion that it is still running and at the same time check that its 
companion is still running. If a processor finds its companion missing, it assumes its 
companion has restarted and therefore does a software restart itself. 

4.1.1.2 WatchdogTimer Reset 

The second fault detection process is the Watchdog Timer Reset process. This process 
does not perform fault detection functions in quite the same way, however, as other 
processes in this category, Le., by responding to a specific fault. Rather, the failure of this 
task to execute at its scheduled period would indicate a critical fault in either hardware or 
software and would cause a hardware reset. 

The watchdog timer is a hardware component whose purpose is to prevent infinite software 
loops or hardware faults from hanging up the system. After it has been started, the 
watchdog must be cleared periodically within a set time window; if it is not cleared within 
this window (i.e., either too early or too late) a hardware reset occurs. On the AIPS FTP 
this window is 60-120 milliseconds plus or minus 10%. The Watchdog Timer Reset 
process performs the function of clearing the watchdog timer. 
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4.1.1.3 BackgraundSelfTest 

The third fault detection task is the Selftest task, a low-priority task which runs when the 
GPC has no other important work to do. Its job is to uncover latent faults, that is, faults 
which exist but which have not yet caused data exchange errors or desynchronization of a 
channel. This task does tests on four hardware elements: 

Memory 

Monitorinterlock 
Real-timeclock 

Voter circuitry and error latches 

The memory tests include the following: 

PROM sum check. This test verifies that all channels have identical values in 
ROM by doing a sum check. 
RAM scrub. This test checks each memory location to ensure that the values 
are identical among the three channels. 
RAM pattern test. This test checks the functionality of each location. It tests 
each bit's ability to hold both a 1 and a 0 by writing specific patterns to each 
word. 
Shared memory scrub. This test checks each memory location in shared 
memory to ensure that the values are identical among the three channels. 

Voter circuitry and error latches are tested by writing normal and faulty patterns of data to 
the voters. After these votes, both the resulting values and the error latches are checked to 
confirm that all errors were properly latched and corrected. 

The monitor interlock is tested by reading the current value and ensuring that it is identical 
among the three channels. 

The real-time clock is tested by reading the current value and ensuring that it is identical 
among the three channels. 

4.1.1.4 HardwareExceptionHandler 

The exception handler is the fourth fault detection process. It is invoked when there is a 
hardware exception such as an illegal instruction or an address error. The type of exception 
and relevant information such as the program counter and selected registers are logged in 
the non-congruent log. A presence test is done to determine if the exception was caused by 
a hardware error or a generic software error. If the results of the presence test show that a 
processor is alone, this implies a hardware error. If the presence test shows that a proces- 
sor is with others, this implies a generic software error. In either case, the exception and 
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the results of the presence tests are logged in the non-congruent log, and the processor(s) 
are restarted. 

4.1.2 Channel Recovery 

As mentioned earlier, the reliability of the FTP is greatly enhanced if channels previously 
diagnosed as faulty but currently operating without faults can be brought back into the FTP 
configuration. How a channel is recovered depends on the type of failure, Le., whether or 
not the fault has caused the channel to fall out of sync. A failure in the data exchange 
hardware does not desynchronize a channel, while other kinds of failures do. A GPC has 
recovered from a fault, therefore, when 

the failed channel can be resynchronized, or 
the failed channel no longer shows errors in the data exchange hardware. 

When a channel has been recovered, the GPC must be reconfigured so that the recovered 
channel participates in the GFT operation and another fault can be tolerated 

There are three main processes involved in channel recovery. Transient FDIR 
distinguishes between transient and hard failures when a channel recovery is being 
attempted in order to balance competing system needs. Lost Soul Sync is responsible for 
resynchronizing an unsynchronized channel, i.e., synchronizing it to the instruction level 
and making its internal state the same as the duplex processors. Finally, the Restzirt 
process is invoked when a second fault or a common-mode failure occurs. These faults 
result in a fail-safe condition, which the AIPS FTP responds to with a system restart. 

4.1.2.1 Transient FDIR 

When recovering a failed channel, system resources are used most efficiently if a 
distinction is made between transient failures and hard failures. Transient failures are 
assumed to be caused by some temporary environmental condition (e.g., a power surge). 
By definition, they are expected to disappear with time. Hard failures, on the other hand, 
are caused by breakdowns of the FTP hardware that must be physically repaired. 

The attempt to recover a failed channel could be made automatically (i.e., the software 
periodically tests the channel to determine its current state) or it could be made solely under 
operator direction (i.e., the operator enters a command indicating the channel has been 
repaired). The first method satisfies the need to recover the channel as quickly as possible 
while the second method satisfies the need to not waste system resources by repeatedly 
testing a channel with a hard failure. Transient FDIR strikes a balance between these two 
needs by initially assuming that any particular fault is transient (it has been observed that 
50 to 80 percent of all faults in computer systems are transient) and automatically 
attempting a recovery. As time passes without the channel being recovered, it becomes 
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more likely that the fault is a hard failure rather than a transient, and Transient FDIR makes 
the recovery attempt less often. After a certain period it can reasonably be a s s u d  that the 
failure is a hard failure and Transient FDIR either waits for an operator signal or tests the 
channel only at some infrequent interval such as its mean time to repair. 

Additionally, it has been noted that hard failures tend to manifest themselves sporadically. 
A channel may be recovered according to the above criteria, but may immediately fail again. 
Transient FDIR attempts to prevent this situation by regarding a recovered channel as 
recovered only on a trial basis. If the channel passes its trial period without further errors, 
it is regarded as fully recovered and can be added back into the FI'P configuration. 
Intermittent failures which occur at infrequent intervals (i.e., after the mal period has 
passed) will not be handled by this scheme, however, but will be regarded as new faults. 

This distinction between transient and hard failures thus defines the two functions of 
Transient FDIR: 

It decides when it is appropriate to attempt to recover a failed channel. 
Once a channel is seen as fault-free, it monitors its health for a brief probation 
period before declaring it fully recovered. 

Attempting Channel Recovery 

The initial response to all detected faults is to mask the fault and disable all outputs from the 
faulty channel. Thereafter, the status of the failed channel is periodically "sampled" to 
determine if the fault is transient. Immediately after a failure, a recovery attempt is made 
and a sampling of the channels health is taken. If the attempt fails (Le., the unsynchronized 
channel cannot be found or the data exchange latches still show errors), the time between 
successive attempts is doubled, until Mean Time To Repair (MTTR) is reached. This time 
delay between successive recovery mes and the samplings of the status of a failed channel 
is a function of state variables representing the "health" of the channel. The "health" 
variable, in turn, is a function of the error history of the particular channel with many recent 
fault observations for the channel indicating "poor" health and declining fault observations 
representing "good" health. The time between recovery attempts is doubled following each 
status sampling which indicates the fault is still present. This sampling sequence is 
repeated until either the fault status changes to indicated the fault is no longer present or an 
upper threshold on the retry time is crossed at which point the fault is deemed "hard". 
From this point on recovery will be attempted only when another M'ITR period has passed 
or after an operator signals that the channel has been repaired. 

Probation Monitoring 

After a channel has been recovered, it must undergo a trial period before being declared 
fully recovered and functional. The length of this period is a function of the "health" of the 
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channel and depends on the number and type of faults. A channel with multiple faults in 
quick succession (i.e., the channel fails before it has passed its trial period) will have a 
longer trial period than if it only had a single fault. Faults that desynchronize a channel 
require a longer trial period than data exchange errors. 

Additional Considerations 

The work of Transient is complicated by several factors. 

(1) A I P S  is a bi-processor system. This has two ramifications. 

(a) The CP and IOP must maintain identical configurations w A n  the skew of one Fast 
cycle. Yet because of performance requirements, Transient runs only 25% as often as 
Fast. Identical configurations must be maintained because otherwise one side might see a 
failure as a single fault while the other side would see it as a double fault and go into fail- 
safe mode. 

(b) When to execute the Channel Sync routine must be very closely coordinated between 
the CP and IOP so that neither side wastes time waiting at the handshake. 

(2) 10s dual-ported memory and registers must be re-initialized after a recovery. Because 
of performance requirements and its low criticality, this process should not run 
uninterrupted and should not prevent Transient from making the other checks it must make 
during its periodic execution. 

These factors led to the following design of the Transient FDIR process. 

All decision-making in the task is done by the CP. The CP then communicates 
with the IOP via shared memory as to what to do, specifically whether to 
schedule the Lost Soul Sync task or the IOSS Restore task (see below). 

The Channel Sync routine is run as part of a separate task (Lost Soul Sync) and 
is scheduled for an absolute time, which is calculated so that the IOP and CP 
spend minimal time waiting for each other. The Channel Sync routine sets a 
flag for Transient indicating whether or not it picked up the faulty channel. 

The 10s re-initialization is run as a separate task. The CP tells the IOP when to 
start it; the IOP signals the CP when the task is complete. Provision is made for 
the case where a second error occurs before the 10s re-initialization is finished, 
since there is no way to stop a task in midstream. 

After a channel has passed its probation period and reinitialized the IOS, it is 
permanently enabled by Fast FDIR rather than Transient. CP Transient, which 

54 



makes the decision to reenable, passes the necessary information to CP Fast, 
which in turn passes it to IOP Fast. 

4.1.2.2 Lust Soul Sync 

Lost Soul Sync is the process of attempting to resynchronize a previously failed channel (a 
"lost soul") and, if successful, bringing it to the same state as the two good channels. This 
process has two main steps: 

resynchronizing the channel, Le., synchronizing it to the instruction level with 
the other two channels, and 

aligning the channel, Le., making its volatile memory and registers the same as 
those of the other two channels. This ensures that after the code execution is 
synchronized, only a fault could cause a channel to lose synchronization, rather 
than, for example, a memory location that contained an incorrect value. 

This task is an on-demand task scheduled by Transient FDIR when Transient deems it 
appropriate to attempt recovery of a failed channel. Because of the handshaking required 
between the CP and IOP, the task is scheduled to run at an absolute time. The following 
describes the two main steps of Lost Soul Sync. 

The resynchronization function is performed in a loop where single-source exchanges are 
initiated with predetermined, constant data patterns being sourced. The exchanges executed 
in one iteration of the loop include one single-source exchange Erom each FIT channel. 
Divergent channels must be executing this loop at the same time in order to become 
synchronized. As a given channel performs the data exchanges within the sync loop, a 
comparison is made of the data received for a given exchange against the data expected for 
a successful exchange. A match indicates that the given channel is operating in 
synchronism with the channel at the source of the exchange; a mismatch indicates a lack of 
synchronism. Thus after every iteration a channel knows whether it is alone or 
synchronized and with whom. A channel remains in this loop as long as it is alone; 
channels which are together leave the loop either immediately (if they have become a 
triplex) or after a specified number of iterations (if they are a duplex). 

Obviously, repetitive executions of the exact same loop of instructions by two 
unsynchronzed channels will never bring them to the point of synchronous operation. 
After each iteration, the two channels must delay their execution of the next iteration of the 
loop by different amounts of time in an attempt to phase shift into sync with one another. 
The length of the delay depends on the configuration of the channel(s), Le., each channel 
or combination of channels delays for a different amount of time. All other channels in this 
configuration will delay the same amount and thereby remain synchronized with each other. 
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Since each channel of the FTP may have multiple processors, a coordination of processor 
activity within each channel is required before and during the resynchronization process. 
Only one of the processors in each FIT channel executes the sync loop code described 
above. Before doing so, the processors within each channel handshake with one another to 
signal their readiness to operate together with their counterparts in other channels. This 
handshake is implemented using shared memory. The processors not executing the sync 
loop described above must suspend operation until the sync loop is exited and the result of 
the synch attempt is known. This suspension must be implemented such that on 
resumption of processor operation following a successful synch attempt, not only will the 
set of inter-channel processors which actually executed the synch code be in synch, but 
their companion (intra-channel) processors will also execute in synch with their inter- 
channel counterparts. This is accomplished by locking the shared bus; a reference to any 
component on the shared bus (in particular, shared memory) results in a suspended bus 
cycle which completes only when the shared bus is unlocked by the locking processor. 
Thus those processors not executing the actual synch code will be suspended on a shared 
memory access with the processors executing the synch code clearing the lock only after 
completion of the synch attempt. The result of the synch attempt is passed to the 
companion processor via shared memory. 

It is imperative that once synchronous operation between channels is established, no 
conditional changes in program flow are made based upon data not congruent across 
channels. Immediately following a synch attempt in which an a lone channel is added to 
the configuration, all hardware elements must be made congruent (Le., 'aligned'). Any 
hardware element for which an incongruent state could cause a desynchronizing of 
channels must be aligned. Each processor within the channel must align its own local 
hardware resources. However, only one processor in a channel needs to align the shared 
resources within the channel (e.g., shared memory, real-time clock). 

The same resynchronization and alignment processes are used for synchronizing three 
divergent channels at system startup. 
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4.1.2.3 System Restart 

Certain faults which are detected may be of such a magnitude that they are unsustainable 
and may be recovered from only by restarting the system. Examples of such faults are a 
second fault detected by Fast FDIR and common-mode faults. The restart process 
accomplishes the system restart without requiring operator intervention. 

4.1.3 Reconfiguration 

The reconfiguration routine is called by the fault detection and identification tasks when a 
fault has been identified and by the recovery tasks when a channel has been repaired. 
During a reconfiguration a channel is either removed h m  the configuration because it was 
found to be faulty, or added in because the fault no longer exists. 

When a channel is identified as being faulty, the errors generated by that channel must be 
masked and its outputs must be stopped. This is done by (1) setting a software variable 
which identifies the channel as having failed, and (2) disengaging the monitor interlock so 
the channel's outputs are disabled. 

When a channel has recovered from a failure, its inputs must be accepted and its outputs 
enabled. This is done by the reverse process, Le., (1) setting the software variable to say 
that the channel is now functional, and (2) engaging the monitor interlock so the channel's 
outputs are enabled. 

When a channel has recovered from a failure, it is considered part of the configuration only 
by FDIR until its probation period has expired. This is done by setting a software variable 
to say that the channel is enabled on a trial basis. 

4.1.4 Logging 

Failures and reconfigurations are recorded in logs which may then be examined by a 
system operator or passed to the system FDIR manager. Certain failures and recovery 
actions are also entered in the non-congruent log, which contains unique information for 
each channel and is preserved by a software restart. The logs may be displayed by entering 
appropriate commands on a CRT or Macintosh computer. 
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4.2 GPC Fault Detection, Identification and Reconfiguration Software Specifications 

4.2.1 Fault Detection and Identification Process Descriptions 

f Fault Detection 
and 

I I 
Background 

Selftests Fast FDIR 

Handler 
Watchdog 

Timer Reset 

Figure 19. Fault Detection and Identification Functions 
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4.2.1.1 FastFDI 
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Clock-Latches 

Changes 
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Figure 20. Fast FDI Processes 
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4.2.1.1.1 procesSName: CP-FDXRANDTIME 
IOP - FDIR - ANqTIME 

Inputs: 
None 

None 

Description: 

These tasks implement the periodic FDIR functions and the Time Manager function for the 
CP and IOP, respectively. Although Fast FDIR, Transient FDIR, and the Time Manager 
are tasks, conceptually speaking, they were not actually implemented as separate Ada 
tasks. Rather, only one task, a combined FDIR-AND-TIME task, was implemented. 
This task is scheduled to run at the frequency of the highest priority function, Fast FDIR. 
It executes Fast FDIR every time it is scheduled and then uses a counter to maintain the 
proper periodicity of the other functions, Le., Transient FDIR is executed only four times a 
second and the Time Manager only once. The motivation for the combined 
FDIR-AND-TIME task was to save the overhead time required for switching between 
separate tasks, especially since under no-fault conditions the time required for Transient 
FDIR is only a few microseconds. Interrupts are disabled while this task is executing. 

4.2.1.1.2 ProcesName: FAST 

Inpk 
Companion present flag from companion processor 
Enable command from companion (if IOP) or from Transient FDIR (if CP) 
Disable command from companion 
Disable command from selftest task 

Companion present flag 

Disable command to companion processor 
Enable command to companion (if CP) 

This is the main procedure of the Fast FDIR process, and is called by the 
FDIR-AND-TIME task every 40111s. This procedure checks for the following faults: 

failure of a companion processor, Le., a disable command from the companion 
a channel out of sync, i.e., either 
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- an inconsistent PC, which indicates to a lone channel that it was Out of 
sync at a timer or interprocessor intempt, or 

- incorrect results from the presence test 
a fault detected but not reconfigured around by the selftests 
a data exchange error, i.e., either failure of the interstage or of any link in the 
data exchange hardware 
failure of a fault-tolerant clock 
absence of a companion processor, Le., the companion has ceased execution 

In addition, the procedure checks for an enable command, which indicates that a previously 
failed channel has been recovered. 

The above list indicates the priority of the tests. Once a fault is detected, the remaining 
tests are bypassed during that execution of the procedure, because they would fail anyway. 
For example, if a processor is out of sync, that would naturally cause the data exchange 
error latches to be set. 

After an error is detected, it is logged. The GPC is reconfigured to exclude the faulty 
channel, and the reconfiguration is logged. A disable command is written in shared 
memory to notify the companion processors of the failure. For the appropriate types of 
failures (i.e., all errors except data exchange errors), the faulty channel now goes to the 
Channel Sync procedure . If a channel determines that it is alone and that the GPC has 
degraded from a duplex to a simplex (Le., a second fault has occurred), it goes to a 
FAIL-SAFE procedure. 

An exception to this procedure occurs when a fault-tolerant clock failure is detected. This 
failure is not reconfigured around; it is merely logged. 

The last step in the Fast FDIR procedure is to check for a Channel Enable command. The 
CP gets this command from Transient FDIR; if there is one it reconfigures, logs the 
reconfiguration and notifies the IOP by writing in shared memory. The IOP gets the 
Channel Enable command from the CP; if there is one it reconfigures and logs the 
reconfiguration. 

Imdementation Notes 

The shared bus is locked during any access to shared memory (Le., reading or writing the 
inter-processor commands). This is done to prevent these commands from simultaneous 
accesses. This implementation was selected over two alternative approaches: 

1) using the shared readwrite services of the Ada runtime system, and 
2) associating a lock variable with each shared memory command so that a specific 

command could be locked rather than the shared bus. 
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The first alternative was rejected because the runtime system puts a task to sleep when a 
desired object is not available, and this is not an acceptable consequence for Fast FDIR. 
The second alternative was rejected because, while the amount of time that the shared bus 
was locked decreased, the amount of time to execute Fast FDIR increased. This thus 
became a tradeoff between taking time from the local processor and taking it from the 
companion processor. Locking the shared bus was then chosen because it is a simpler and 
m o ~  direct implementation. 

Similar reasoning was used in the decision to use the shared data exchange, rather than the 
dedicated, for the presence test. Using the shared data exchange means the test can be very 
simple, but it required locking the shared bus. Using the dedicated data exchange does not 
require locking the shared bus but the test is more complex and takes longer. The shared 
exchange implementation was chosen because of its simplicity. 

Finally, the shared bus is locked for the following sequence of tests: 

Checking for a disable command from the companion 
Checking for an inconsistent PC 
Presence test 
- Doing the data exchanges 
- Writing disable command to companion if e m  detected 

This is done to ensure that when a processor falls out of sync, the error will be reported in 
a predictable way. Often a processor drops out of sync because its companion dropped 
out first. Locking the shared bus during the above sequence ensures that one side (and 
only one side) will report a presence failure while the other side will report a companion 
error. 

4.2.1.1.3 Process Name: PROCES-COMPANION-COMMAND 

Inputs 
Reconfig_cmd record 

outplts: 
Entry in error log 
Entry in FAST-INFO array 

Desaiption: 

This procedure disables a channel when one set of processors (CP or IOP) has been 
notified that a companion has failed. The GPC is reconfigured to eliminate the faulty 
channel, and the error and the reconfiguration are logged. For errors other than data 
exchange errors, the companion to the failed processor drops out of sync at this point and 
goes to the Channel Sync procedure. 
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4.2.1.1.4 ProCeEsName: PRESENT 

Inputs: 
None - 
Integer indicating channels in sync 

This routine performs the presence test, Le., it checks for missing (unsynchronized) 
channels. It does this by sending a unique pattern from each channel through the data 
exchange. If the result read after a particular exchange is not the expected pattern, the 
channel originating the exchange is judged to be not present and therefore out of sync. 

As mentioned in the Implementation Notes for the Fast process, the patterns exchanged are 
long words and are transmitted using the shared data exchange. When a word is 
exchanged using the dedicated exchange, the data exchange hardware is sufficiently slow 
such that any particular word will be in the receiver for more than one FTC cycle. This 
would allow a channel only slightly behind to see the expected word in the receiver and 
incorrectly conclude that it is in sync. Successive exchanges of long words, however, 
result in the long word being in the receiver for only one FTC cycle, so a tardy channel 
could not conclude that it was in sync. 

Interrupts are disabled and the shared bus is locked before this routine is called. 

4.2.1.1.5 Process Name: CHECK-COMPANION-PRESENT 

Inputs 
Shared memory signal from companion 

QJw 
Shared memory signal to companion 

Description: 

A processor which has reset because of the watchdog timer or because of hardware or 
software exceptions has no way to notify its companion of this fact. If one set of 
processors (i.e., CP or IOP) in all three channels reset in this way, they will never restart 
because they will all be waiting in the synchronization routine to handshake with their 
companions, who know nothing of their restart. 

One solution to this problem is to have each processor periodically notify its companion 
that it is still running by writing a predefined value in shared memory. In addition to 
writing its own value, the processor determines if the companion is still executing by 
checking for the companion's value. The companion is allowed to m i s s  one cycle before 
the processor assumes it has reset and does a reset itself. 
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4.2.1.1.6 Procesr Name: ANALYZE-DATA-LATc)rr;ls 

Inputs: 
Data exchange error latches 

olrtplts: 
None 

This routine analyzes the e m r  latches set by the data exchange hardware and identifies the 
particular element of the hardware which has failed (i.e., the specific interstage or link). 

Each channel gets its own copy of the four error latches (one for each type of exchange) 
and combines them into one word. This word is then sent to the other two channels. All 
three channels do a software vote to get a consensus value of the three individual latches. 

Only the CP checks for link and interstage failures, because these failures will be 
manifested in both processors. Both the CP and IOP check for "soft" errors (i.e., non- 
congruent data in a FROM-ALL exchange), since this type of error would be unique to the 
particular processor. Each type of failure causes the error latches to be set in a known way, 
which allows the error to be identified unambiguously. Figure 21 summarizes the types-of 
failures and the error latch settings for each type. 

If only two channels are up, an error cannot be unambiguously identified. All that can be 
done in this case is to check for a second failure by ignoring any errors caused by the 
failed channel and then seeing if any other bits in the latches are set. To ignore errors 
caused by a failed channel X, three things must be masked: 

any latches set during a FROM-X exchange, 
the bits representing channel X in the other types of exchanges. 
the exchanged copy of channel X's error latches. 

A second failure results in a fail-safe condition in which the system restarts. 

After a fault has been identified, the LOG-AND-RECONFIG subroutine is called to create 
the reconfiguration record and error log entry which will be used by the main Fast FDIR 
procedure. 
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4.2.1.1.7 Process Name: ANALYZE - INTERSTAGE-FAILURE 

Inputs: 
Voted value of e m  latches from the three channels 

o@ut= 
None 

This routine checks for a hard interstage failure. When an interstage has failed, all channels 
will show an error in that channel for all types of exchanges. This is illustrated in Figure 
22. A failure in the link between a channel's transmitter and its interstage will cause the 
error latches to be set in the same way. The failure of this link and the failure of an 
interstage are indistinguishable. 

After an interstage failure has been identified, the LOG-AND-RECONFIG subroutine is 
called to create the reconfiguration record and error log entry which will be used by the 
main fast FDIR procedure. 
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4.2.1.1.8 Process Name: COMPLEX-ERRORANALYSTS 

Inputs 
Local and voted values of error latches from the three channels 

w 
None 

This subroutine checks for three types of link failures: 

a failure in the link between an interstage and any one channel's receiver; 
a bidirectional failure in the link between two channels' transmitters; 
a one-way failure in the link between two channels' transmitters. 

These failures are illustrated in the following figures. 

A failure in the link between an interstage and any one channel's receiver will cause error 
latches to be set only on the receiving channel. This channel will show errors in the 
channel originating the faulty link for all types of exchanges. 

A bidirectional failure in the link between two channels' transmitters will set the same error 
latches on all three channels. All exchanges from the first channel will show an error in the 
second channel, and all exchanges from the second channel will show an error in the first 
channel. 

A one-way failure in the link between two channels' transmitters will set the same error 
latches on all three channels. A failure from Channel 1 to Channel 2 will show errors in 
Channel 2 on From-Channel-1 exchanges. 

After a link failure has been identified, the LOG-AND-RECONFIG subroutine is called to 
create the reconfiguration record and error log entry which will be used by the main Fast 
FDIR procedure. 
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Figure 23. Latch Settings For Interstage - Receiver Link Failure 
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Figure 24. Latch Setting For Bidirectional Transmitter - Transmitter Failure 
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4.2.1.1.9 Proms Name: SOFI'-ERFtOR_ANALYSIS 

Inputs: 
Voted value of error latches from the three channels 

u 
None 

Desaiption: 

This subroutine checks for a "soft" error, Le., non-congruent data sent during a 
FROM-ALL exchange. This type of error will set the same error latches on all three 
channels. The channel sending the non-congruent data will be identified as faulty on a 
FROM-ALL exchange (refer to the following figure). 

After a "soft" error has been identified, the LOG-AWJECONFIG subroutine is called to 
create the reconfiguration record and error log entry which will be used by the main Fast 
FDIR routine. 
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4.2.1.1.10 Process Name: ANALYZE-CIDCK-LATCHES 

Inputs: 
Fault-tolerant clock e m r  latches 
Fault-tolerant clock interstage error latches 

u 
None 

This routine analyzes the error latches set by the fault-tolerant clock hardware and identifies 
which clock element or clock interstage has failed. 

Each channel gets its own copy of the two error latches (one from the interstage, one from 
the clock element) and combines them into one word. This word is then sent to the other 
two channels. All three channels do a software vote to get a consensus value of the three 
individual latches. 

Each set of latches identifies errors about the other clock unit. Thus, the interstage latches 
identify faulty inputs from the clock elements. If Channel A's clock element fails, the 
interstage latches of all channels will show a fault in A. Conversely, the clock element 
latches identify faulty inputs from the interstage; if Channel A;'s interstage fails, the clock 
element latches of all channels will show a fault in A. These failures are illustrated in the 
following diagram, 

This routine checks the current value of the latches against their previous value. If the 
value has changed, the routine determines whether a clock has failed or recovered, and 
makes an appropriate entry in the error log or the reconfiguration log. 
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4.2.1.1.11 Fkcess Name: RECORI-CHANGES 

Inputs: 

Previous voted value 
Voted value of clock and clock interstage latches from the three channels 

outprts: 
Entry in error log or reconfiguration log 

This subroutine examines differences between the current and previous values of the FTC 
latches and determines that either a clock has failed or recovered. If a clock has failed, an 
entry is made in the error log; if a clock has recovered an entry is made in the 
reconfiguration log. Differences between the current and previous values of the FTC 
interstage latches are also examined and recorded. 
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4.2.1.2 WatchdogTimer Reset 

The watchdog timer is a hardware component whose purpose is to prevent infinite software 
loops or hardware faults from hanging up the system. After it has been started, the 
watchdog must be cleared periodically within a set time window; if it is not cleared within 
this window (i.e., either too early or too late) a hardware reset occurs. On the AIPS FTP 
this window is 60-120 milliseconds plus or minus 10%. 

Two methods are required to reset the watchdog: 1) a periodic task which regularly clears 
the watchdog during normal system operation, and 2) a special procedure which is used 
during Lost Soul Sync when interrupts are disabled and the periodic task cannot run. 
These procedures are described on the following pages. 

Normal-Watchdog rn rn Timer 1 -Handler 

Handle 

Figure 29. Watchdog Timer Reset pnx3esses 
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4.2.1.2.1 procesS Name: NO~-WATCHDOG-RESET 

Inputs: 
Channel-Sync-State indicator 
Atemate-Iteration indicator - 
Channel-Sync-State indicator 
Atemate-Iteration indicator 

This routine is called by the highest priority task, the FDIR-AND-TIME task, to 
periodically clear the watchdog timer. This routine assumes that it is being called on every 
iteration of this task (i.e., every 40 ms) and that by clearing the timer on every other 
iteration it will be satisfying the timer requirements (refer to previous page). Clearing the 
watchdog in this way guarantees: 

1) that timer interrupts are enabled, 
2) that the runtime system is not in an infinite loop with interrupts off; 
3) that the FDIR-AND-TIME task is being scheduled at its correct interval; 
4) that the FDIR-AND-TIME task is not in an infinite loop; 
5 )  that a processor which hangs waiting for a DTACK because it has referenced a 

non-existent address will be reset. 

Special provision has been made for clearing the watchdog timer while the Channel-Sync 
routine is running, because Channel-Sync cannot be interrupted and the amount of memory 
to be aligned when a lone channel is being picked up is so great that it cannot possibly be 
completed within 120 milliseconds. During Channel-Sync, one of the unused interval 
timers is used to periodically cause an interrupt, at which time the watchdog is cleared. 
After Channel-Sync is completed, the job of clearing the watchdog reverts to the periodic 
routine, Normal-WatchdoLReset. However, its alternate iteration test is now invalid; for 
example, it may be the alternate iteration but the watchdog may have been cleared only a 
few milliseconds ago while Channel-S ync was running. Thus, immediately after 
Channelsync has completed, this routine must use a time comparison to determine when it 
should clear the watchdog. After the watchdog has been reset once using this method, the 
alternate iteration method becomes appropriate again. 

The alternate iteration method is the preferred method because this guarantees that the 
FDIR-AND-TIME task is being scheduled at its correct interval, whereas always using a 
time comparison to clear the watchdog would not guarantee this. 
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4.2.1.2.2 procesS Name: Tiirl-Handk 
Handle - Timerl-Rupt 

Inputs: 
Channel-Sync-State indicator 

OutPrDs: 
Time watchdog last reset 
Newvalueintimer 

As mentioned in the process description for Normal-WatchdogReset, under normal 
conditions the watchdog timer can be cleared by a periodic task. Special provision must be 
made, however, for clearing the watchdog while the Channel-Sync routine is running, 
because Channel-Sync cannot be interrupted and the amount of memory to be aligned 
when a lone channel is being picked up is so great that it cannot possibly be completed 
within 120 milliseconds. During Channel-Sync, one of the unused interval timers is used 
to periodically cause an interrupt, at which time the watchdog is cleared. 

These routines are invoked when the timer interrupt occurs. They clear the watchdog and 
set the timer to go off again. After Channel-Sync is complete, the job of clearing the 
watchdog reverts to the periodic procedure, and so an interrupt which occurs after 
Channel-Sync is finished is ignored and the timer is not reset. 

Two routines are required here because the interrupt handler must conclude with an RTE 
instruction and must therefore be written in assembler, while the actual work of checking 
flags and clearing the watchdog is more conveniently done in Ada. Thus the 
Timerl-Handler routine is an outer shell which ends with an RTE instruction, while the 
Handle-Timerl-Rupt routine does the actual work required. 
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4.2.1.3 Background Sei- 

Voter Test 
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ShMem Scrub 6 
(=) SM Word 
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S y stem-Timer (-) 

Test Word 
with Pattern * Test Location 

Figure 30. Background Self€& F’rocesses 
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4.2.1.3.1 procesS Name: BACKGROW-SE- 

Inputs: 
None - 
None 

This is the main procedure of the selftest process and is run as part of the main program 
(CP-MAIN-PROG or IOPMAIN-PROG). It calls appropriate procedures to run the 
following tests: 

Data exchange voter test 
Data exchange e m r  latch test 
ROM sum check 
RAM scrub 
Shared memory scrub 
Pattern test on offcard RAM 
Pattern test on oncard RAM 
System timer test 

When an error is detected, the reconfiguration is not done immediately, but Fast FDIR is 
signaled that a reconfiguration is required and the necessary information is passed in a 
global variable. Further testing is then delayed until FAST has done the reconfiguration. 
Testing resumes from the point at which the error was detected. 

This procedure is also executed at system startup when the entire suite of selftests is run 
without interruption before any other tasks are started. In the laboratory testing 
environment, this startup execution is optional and is controlled by a flag set by the 
operator in RAM. 
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4.2.1.3.2 procesS Name: VO'IIBJ" 

Inputs: 
Currentconfiguration 

om- 
* Patterns to be used in each test 

This selftest exercises the voting circuitry and error latches in the data exchange hardware. 
It verifies that when the voters receive non source-conjpent data they produce a correct 
(majority) result and that the error latches are correctly set to indicate the dissenting 
channel. 

The test is done by calling a subroutine which does a FROM-ALL exchange in which one 
channel transmits a pattern different from the other two channels. After the exchange, the 
called subroutine verifies that the correct result is read by all channels and that all channels 
correctly identify the dissenting channel on a FROM-ALL exchange. (Refer to following 
section on TEST-ONE-VOTER-PAL for more details.) 

In order to thoroughly test the voters, the basic test must be repeated with a series of 
patterns. The data exchange mechanism acts on a 16-bit word. The voters, however, 
consist of eight 2-bit wide PALS, i.e., the 16-bit word is fed into the voters two bits at a 
time. This means that it is not necessary to test every possible combination of the bits in a 
16-bit word. Rather, the bits can be tested in 2-bit units, i.e., first bits 0-1, then bits 2-3, 
then bits 4-5, etc. The bits being tested must exercise every possible combination of bits (4 
for a 2-bit unit), but the value of the rest of the word is irrelevant. 

Thus, a test of any particular 2-bit unit consists of the 16 combinations of patterns shown 
in the following table. 
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Concurring 
Channels 

00 

01 

10 

11 

Dissenting 
Channels 

00 
01 
10 
11 

00 
01 
10 
11 

00 
01 
10 
11 

00 
01 
10 
11 

Figure 31. Test on a Two-Bit Unit 

This test is repeated eight times, once for each 2-bit unit in the 16-bit word. Since there are 
three channels, the entire sequence described above is repeated three times, with each 
channel having a turn at being the dissenter. This routine generates the concurring and 
dissenting patterns which are used for each test. 

The voter test is not started unless all three channels are in sync. If the 
TEST-ONE-VOTER-PAL subroutine reports that an error was detected, the voter test is 
discontinued and the next selftest starts execution. 
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4.2.1.3.3 ProcessName: l'"0NEVOTFlR-PAL 

Inputs: 
Data exchange receiver values and error latches 

WJ- 
Reconfigand record 

Desaiption: 

This routine does the actual data exchange required to test a particular PAL in the data 
exchange voters and analyzes the results. This exchange is a FROM-ALL exchange in 
which one channel transmits a pattern different from the other two channels. After the 
exchange the result read back by all channels should be the pattern sent by the two 
concurring channels, and all error latches should say that there was an error in the 
dissenting channel on a FROM-ALL exchange. If these conditions are not met, the test is 
considered to have failed. 

For each FROM-ALL exchange done during the test, a "good" pattern (transmitted by the 
concumng channels) and a "bad" pattern (transmitted by the dissenting channel) are 
generated. The channels send out the different patterns by using their id as an index to an 
array containing the address of the desired pattern. Three different arrays, corresponding 
to who is the dissenting channel at the time, are used. Thus when A is the dissenter, 
addresses are chosen from a table where 

table (1) = "bad-pattern 
table(2) = "good-pattern 
table (3) = "good-pattern 

-- Ch A uses this address 
-- Ch B uses this address 
-- Ch C uses this address 

Note: Care must be exercised when using channel id as an index to an array. The current 
definition of the channeljd type gives a value of 0 for A, 1 for B, and 2 for C. When Ada 
computes addresses within an array, it treats an index of 0 as a special case. Thus if the 
channels used their id as an index, channel A would drop out of sync. The solution is to 
convert the id from 0, 1, and 2 to 1 ,2  and 3, and then have a 0th entry in the table which is 
unused. 

Venfving: the ExDected Results 

To verify that each channel has obtained the correct result after the FROM-ALL exchange, 
each channel distributes its result to the other two. The result from each channel is then 
compared to the expected result; any unequal result indicates an error. After the exchange, 
the error latches are also analyzed to verify their correct setting. Each channel exchanges 
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its copy of the FROM-ALL error latch; these values are then compared to the expected latch 
value. Any unequal result indicates an error. 

A channel may appear to fail this test when actually it has dropped out of sync but has not 
yet been detected as missing by Fast FDIR. Thus when a particular channel fails a voter 
test, it is not immediately identified as having a voter error. Instead, the routine does its 
own presence test using the dedicated data exchange to determine if the channel is still 
synchronized. If it is, a reconfiguration record and error log entry are created for fast 
FDIR; if the channel is not synchronized, the error is ignored. In either case, the voter test 
is then discontinued and the next selftest starts executing. 

1) The test is not done if the FROM-ALL error latch is set already. 

2) Interrupts must be disabled during the critical period which includes doing the 
FROM-ALL exchange, reading the result, and reading the FROM-ALL error 
latch. 
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4.2.1.3.4 procesS Name: L~4"lX-l'" 

Inputs: 
Currentconfiguration 

outplts: 
None 

This selftest tests the error latches in the data exchange hardware for all types of exchanges. 
It verifies that when non source-congruent data is received by the voters, the error latches 
correctly indicate the channel at fault for the particular type of exchange. 

The test is done by calling subroutines which cause two channels to do one type of 
exchange while the third channel does a different type. The subroutines verify that single 
and multiple errors are correctly latched. (Refer to following sections on 
GENERATE-DX-ERROR and GENERATI-MULTIPLE-ERROR.) 

The latch test is not started unless all three channels are in sync. If either subroutine reports 
that an error was detected, the latch test is discontinued and the next selftest starts running. 
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4.2.1.3.5 Procesr Name: GENERATEDXERROR 

Inputs: 
Data exchange error latches 

Desaiption: 

This routine verities that single data exchange errors are comt ly  latched. This is done by 
causing two channels to do one type of exchange while the third channel does a different 
type. The results of the exchange do not need to verified, since this type of fault would be 
caught by the voter selftest. However, the error latches are checked to ensure that they 
correctly identify the dissenting channel on the particular type of exchange. If the error 
latches do not contain the expected value, the test is considered to have failed. By reading 
the error latches without clearing them, the routine guarantees that a particular fault will not 
be attributed to the wrong latch because of an address decoding problem. 

The table on the following page shows the tests that are run and the expected results of each 
test. 

In order for different channels to perform different exchanges without going out of sync, 
the test is table-driven, with each channel using its own id as an index into the table. (Refer 
to previous section on the voter test for cautions when using channel id as an index.) The 
table identifies the following for each test. 

Address of the DX transmitter to be used by each channel in doing the 
exchange. Each channel accesses this address by using its own id as an index. 
The pattern to be exchanged. Each channel accesses this pattern by using its 
own id as an index. 
Expected setting of each channel's error latches for this test 
Expected setting of each channel's error latches for the multiple-error test (refer 
to following section) 

After the exchange is done, the error latches from each channel are read and distributed. If 
the latches do not equal the value expected for each channel, the test is considered to have 
failed. 
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Figure 32. Data Exchange Error Latch Tests and Expected Results 

A channel may appear to fail this test when actually it has dropped out of sync but has not 
yet been detected as missing by Fast FDIR. Thus when a particular channel fails a latch 
test, it is not immediately identified as having a latch error. Instead, the routine does its 
own presence test using the dedicated data exchange to determine if the channel is still 
synchronized. If it is, a reconfiguration record and error log entry are created for Fast 
FDIR; if the channel is not synchronized, the error is ignored. In either case, the latch test 
is then discontinued and the next selftest starts executing. 

Additional Considerations 

1) The test is not done if any of the error latches are already set. 

2) Interrupts must be disabled during the critical period which includes doing the 
exchange and reading the appropriate error latch. 
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4.2.1.3.6 pro<.RssName: GENERATE - MULTIPLE - ERROR 

Inpub: 
Data exchange error latches 

Desaiption: 

This routine verifies that multiple data exchange errors are correctly latched. This is done 
by repeatedly causing two channels to do one type of exchange while the third channel does 
a different type. This test is very similar to the single-error test described in the preceding 
section, and the reader should read this section before proceeding here. This test differs 
from the single-emr test only in that all errors for a particular channel are generated before 
the error latches are read. The errors are actually generated twice before the latches are 
read, so that the test verifies that both the same error and different errors can be correctly 
OR'ed into the latches. 

4.2.1.3.7 ProcessName: ROM - SUM 

Inputs: 
Starting and ending addresses of the memory to be summed 

-m 
Reconfig_cmd record 

This test verifies that all three channels have identical values in ROM. Due to the static 
nature of ROM, it is not necessary to check every individual location. Rather, each channel 
computes a checksum of all PROM locations and then sends its own sum to the other two 
channels. A consensus value is obtained by doing a software vote of the individual values; 
each individual channel's sum is then compared to the voted sum to identify any errors. 
Although there is a small probability that two errors will cancel each other and the sum 
check will not detect them, that probability is small  enough to be neglected. 

A channel may appear to fail this test when actually it has dropped out of sync but has not 
yet been detected as missing by Fast FDIR. Thus when a particular channel fails the ROM 
sum test, it is not immediately identified as having a ROM error. Instead this routine does 
its own presence test using the dedicated data exchange to determine if the channel is still 
synchronized. If it is, the ROM sum error is considered to be a legitimate error and a 
reconfiguration record and error log entry are created for Fast FDIR; otherwise the error is 
ignored . 
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4.2.1.3.8 Process Name: GET-SUM 

Inputs: 
Starting and ending addresses of the memory to be summed 

outplts: 
PROM checksum 

This routine adds the contents of each 16-bit word in PROM and returns a 16-bit word 
containing the result. 

4.2.1.3.9 Process Name: RAM-SCRUB 

Inpk 
Starting and ending address of area to be tested 

None 

This procedure does a RAM scrub on the specified memory area. This ensures that the 
values in each location are congruent among the three channels. The subroutine 
SCRUB-WORD is called for each word in the area to be scrubbed (see following section). 
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4.2.1.3.10 procesS Name: SCRUB-WORD 

Inputs: 
Address of 16-bit word to be scrubbed 

u 
Reconfigand record 

This procedure checks the specified memory location to ensure that the values are 
congruent, or identical, among the three channels. After the location has been read, each 
channel currently in the configuration sends its value to the other two channels. The value 
from each channel is then compared to a voted value. 

A channel may appear to fail this test when actually it has dropped out of sync but has not 
yet been detected as missing by Fast FDIR. Thus when a particular channel fails the test, it 
is not immediately identified as having a RAM error. Instead, this routine does its own 
presence test using the dedicated data exchange to determine if the channel is still 
synchronized. If it is not, the error is ignored. If the channel is still synchronized, an error 
log entry identifying the location and value of the difference is created for fast FDIR and the 
test is repeated. If the word is still different, a voted value is written into the location and 
then read back. If the correct value is not read back, the failure is considered a hard failure 
and a reconfiguration record notifying Fast of the error is created. 

There are some RAM locations whose contents may legitimately differ from channel to 
channel, e.g., the channel id and non-congruent data from external sources. Those 
variables which are known in advance as potentially different are kept in a non-congruent 
data area which is not scrubbed. But since not all the different RAM locations can be 
predicted (because, for example, of interrupts causing registers to be stored on the stack), 
at the present time only static variables are scrubbed. 
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4.2.1.3.11 procesS Name: SHMEM-SCRUB 

Inputs: 
Starting and ending address of area to be tested - 
None 

Dfsaiption: 

This procedure scrubs the dual-ported memory shared by the IOP and CP to ensure that the 
values in each location are congruent among the three channels. The subroutine 
SCRUB-SM-WORD is called for each word in the area to be scrubbed (see following 
section). This procedure is only executed by the CP. 

4.2.1.3.12 procesSName: SCRUB - -  SM WORD 

Inputs: 
Address of 16-bit word to be scrubbed 

outplts: 
Reconfigand record 

This procedure checks each memory location to ensure that the values are congruent, or 
identical, among the three channels. After a particular location has been read, each channel 
currently in the configuration sends its value to the other two channels. The value from 
each channel is then compared to a voted value. 

A channel may appear to fail this test when actually it has dropped out of sync but has not 
yet been detected as missing by Fast FDIR. Thus when a particular channel fails the test, it 
is not immediately identified as having a RAM error. Instead, this routine does its own 
presence test using the dedicated data exchange to determine if the channel is still 
synchronized. If it is not, the error is ignored. If the channel is still synchronized, a 
reconfiguration record and error log entry identifying the location and value of the 
difference are created for later use by Fast FDIR, No attempt is made, as in the RAM 
scrub, to write a voted value and repeat the test because the IOP (this test is only done by 
the CP) could have written something into that location that the CP would be destroying. 
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4.2.1.3.13 procesS Name: RAM-PATI" 

Inplls: 
Starting and ending addresses of area to be tested 

outpltr 
None 

Description: 

This procedure tests the functionality of each word in the specified RAM area by writing a 
particular pattern to each word and reading it back. These patterns test the ability of each 
bit in the word to hold both 0 and 1 values. The subroutine TEST-WORD-WITH- 
P A T "  is called for each word in the area to be tested (refer to following section). 

4.2.1.3.14 Process Name: TEST - WORDWITHPATI" 

Inputx 
Address of 16-bit word to be tested 

Reconfigand record 

DesaiptiOn: 

This procedure tests the functionality of each word in RAM by writing a particular pattern 
to each word and reading it back. After a word has been written and read, each channel 
currently in the configuration sends its result from the test to the other two channels. The 
channels then verify that the test was passed on each individual channel. 

Six different patterns, which represent the standard sequence of marching ones surrounded 
by zeros and marching zeros surrounded by ones, are written to each word. These patterns 
test each bit's ability to hold both a 0 and a 1 no matter what the setting of its neighbor bits. 

A channel may appear to fail this test when actually it has dropped out of sync but has not 
yet been detected as missing by Fast FDIR. Thus when a particular channel fails the test, it 
is not immediately identified as having a RAM error. Instead, this routine does its own 
presence test using the dedicated data exchange to determine if the channel is still 
synchronized. If it is not, the error is ignored. Otherwise, it is assumed to be a legitimate 
RAM error and an error log entry is created for Fast FDIR. The test is then repeated, if the 
error occurs again, the routine assumes the error represents a hard failure and a 
reconfiguration record is created for Fast FDIR. 

The actual reading and writing of the test pattern is done by calling an assembly language 
subroutine which saves the contents of the location in a register before testing it (refer to 
following section on TEST-LOCATION). 



4.2.1.3.15 procesS Name: TESI-WCATION 

Jnw 

Pattern to be written 
Address of word to be tested 

w- 
Value read after test pattern was wrimn 

Desaiption: 

This is an assembly language function which writes a specified pattern to a specified word 
in RAM, then reads it back and returns the value read to the d e r .  

The c m n t  value of the word to be tested is saved in a register before the test is started and 
restored when the test is finished. In the laboratory testing environment, where program 
code probably resides in RAM, the routine must take care not to write over its own 
instructions. The beginning and end of the critical section of code are identified with 
labels, and any locations within this area are not tested. 

4.2.1.3.16 Process Name: SYSTEM-TIMER-I" 

Inputs: 
Local and voted values of the system timer 

u 
Recodiigcmd record 

Description: 

This test verifies that the system timers in all three channels have the same value. The 
channels first obtain a consensus value for the timer by doing a FROM-ALL exchange. 
Each channel currently in the configuration then sends its own timer value to the other 
channels and these individual values are compared to the voted value to identify any errors. 

A channel may appear to fail this test when actually it has dropped out of sync but has not 
yet been detected as missing by Fast FDIR. Thus when a particular channel fails the test it 
is not immediately identified as having a timer error. Instead, the routine does its own 
presence test using the dedicated data exchange to determine if the channel is still 
synchronized. If it is, a reconfiguration record and error log entry are created for Fast 
FDIR; if the channel is not synchronized, the error is ignored. 
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4.2.1.3.17 procesS Name: GET-LA'I"-CONFIG 

Inputs: 
Current configuration at runtime 
Startup configuration 

outplts: 
Array identifying up channels 

This routine converts the current configuration from a record of three booleans to an array 
of three booleans. The selftest routines can work more easily with the configuration 
represented as an array rather than a record. The input configuration record will either be 
the global configuration record maintained in the CONFIG package during normal system 
execution, or it will be the startup configuration record, which is a record local to the TEST 
package and which is used when the selftests are running uninterrupted at system startup. 

4.2.1.3.18 Process Name: CREATI-=ONFIG 

Inputs: 
Startup-selftest flag 
Faulty channel id and fault id 

h- 
Reconfig-cmd record 

This routine creates the reconfiguration record that is passed to Fast FDIR when a fault is 
detected. This record is not created, however, if a fault is detected while the selftests are 
running at system startup. 
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4.2.1.3.19 procesS Name: DELAYUNTILFAST 

Inputs: 
Startllp-selftest flag 

None 

Description: 

This subroutine is called after a fault has been detected and a reconfiguration record created 
for Fast FDIR. Its function is to suspend the selftest task until Fast FDIR has been able to 
reconfigure around the faulty channel. It does not want to do this, however, if the selftests 
are running at system startup, since at that time they are running with interrupts disabled 
and Fast will never execute. 

4.2.1.3.20 Process Name: CHANNEL-PRESENT 

Inputs: 
Channel id 

oum 
Boolean indicating if specified channel is synchronized 

Description: 

This routine determined if the specified channel is synchronized with at least one other 
channel by doing a presence test using the dedicated data exchange registers. While a 
presence test using the shared data exchange would be simpler (refer to Section 4.2.1.1.4), 
it requires locking the shared bus, which is not an acceptable action for this task. Since any 
word that is transmitted using the dedicated exchange registers will remain in the exchange 
receiver for more than one FTC cycle, it is possible that a channel only slightly behind 
would see the expected word and incorrectly conclude that it was in sync. A valid presence 
test using the dedicated exchange must therefore do two rounds of exchanges: (1) each 
channel transmits a unique pattern and determines what other channels it sees, and (2) each 
channel transmits a unique pattern indicating who it saw. A software-voted value of who 
was seen is then obtained and compared to who the particular channel saw. If a majority 
vote could not be obtained or who the particular channel saw does not agree with the voted 
value, the particular channel itself is unsynchronized and returns FALSE. If the particular 
channel is synchronized, it compares who each individual channel saw with the voted value 
to determine if the specified channel is synchronized or not. 
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4.2.1.4 68010 Exception Handler 

EXCEPTION T 
Excep-Handler 0 

Figure 33. Exception Handler Processes 

4.2.1.4.1 Process Name: EXCEP-HANDLER 

Inputs: 
Program counter, status register and vector offset from the stack 

outputs 
Entry in the non-congruent log 

This routine receives control when a hardware exception such as an illegal instruction or 
addressing error occurs. 

The type of exception and relevant information such as the program counter, status register, 
and selected registers are logged in the non-congruent log. A presence test is done to 
determine if the exception occurred synchronously on all channels or if only one channel 
was affected, and the result is logged. The processor then does a software restart. 
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4.2.2 Channel Recovery procesS Descriptions 

I 

c3 Recovery 

I 

Figure 34. Channel Recovery Functions 

4.2.2.1 Transient FDIR 

CP Transient 1 
Decide-To- 

Attempt-Recovery 

IOP-FDIR-AND-TIME 

IOP Transient 

Figure 35. Transient FDIR Processes 
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4.2.2.1.1 procesSName: CP - TRANSIENT 

hpuk 

CHANNEL-STATUS array 
CHANNEL-ON-TRIAL array 
LOST-SOUL-STATUS boolean 
IOSS-RESTORE-CMD boolean 

FASTJNFO array set by Fast FDIR 

OUtP- 
CHANNEL-STATUS array 
Channel-enable-and for CP Fast 

IOSS-restore-cmd boolean 
Sched-lost-soul command in shared memory 

This is the main procedure of the TRANSIENT-FDIR process on the CP and is called by 
the CP-FDIR-AND-TIME task. It does all the decision making for both the CP and the 
IOP and notifies the IOP when either a resynchronization is to take place or the 10s must 
be reinitialized. It notifies CP Fast FDIR when a channel is to be permanently enabled. 
To support this decision making, this procedure maintains four variables about each 
channel: 

FAIL-LEVEL: the amount of time the channel must operate correctly after it 
has recovered from a fault (i.e., the length of its probation). This variable is 
increment4 when a fault has been detected and decremented as the probation 
period passes. 

RETRYBACKOFF: the amount of time between recovery attempts. This 
variable is set when a recovery is attempted and is doubled with each 
succeeding attempt until MT"R is reached. 

RETRY-TIME: the amount of time remaining until another recovery attempt 
can be made (assuming the previous one failed). This variable is set with the 
RETRY-BACKOFF value when a recovery is attempted, if the recovery fails, it 
is decremented as time passes. 

CHANNEL-ON-TRIAL: whether or not a channel is on probation. This 
variable is set when a channel is initially recovered, reset when the probation 
period is over and the IOP is signalled to start its IOSS restore task, and finally 
cleared when the IOP signals that the IOSS restore task is complete. 
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This procedure has work to do only when a channel is down. It makes the following 
sequence of tests; as soon as any condition is met, the current iteration of Transient is 
terminated. 

Checks for a new error, i.e., one detected by Fast since the last iteration of 
Transient. If there has been a new error, the FAIL-LEVEL for the channel is 
updated and an attempt is made to mover the channel. 

Checks if a channel is on probation. If so, it counts down the probation time by 
decrementing FAIL-LEVEL. When the probation time has expired, the IOP is 
notified to start the IOSS-RESTORE task and the CHANNEL-ON-TRIAL 
variable is set to WAITING-FOR-IOP. 

Checks if the LOST-SOUL-SYNC task was previously scheduled, but has not 
run yet. If so, there is nothing to do. 

Checks if the LOST-SOUL-SYNC task was previously scheduled and has 
picked up the failed channel. If so, it begins the channel's probation period by 
setting the CHANNEL-ON-= variable to yes. 

Checks if there was a previously detected failure (i.e., CHANNEL-ON-TRIAL 
= NO) whose RETRY-TIME must be decremented. If so, RETRY-TIME is 
decremented; when it goes to zero, another attempt is made to recover the 
channel. 

Checks if the channel has passed its probation period and is waiting for the IOP 
to finish the IOSS-RESTORE task. If the IOSS-RESTORE task is finished, 
Fast FDIR is notified that the channel an be permanently enabled. 

The above checks must be made in the given order because of their priority. The check for 
a new error must be made first because this condition cancels all previously existing states, 
for example, a channel being on trial. Checking on the status of the LOST-SOUL-SYNC 
task must be done before checking for CHANNEL-ON-TRIAL = NO so that 
LOST-SOUL-SYNC does not get scheduled multiple times. 
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4.2.2.1.2 

Inputs: 
0 

0 

outplts: 

0 

0 

FAST-INFO array 
Enrpr latches from Fast FDIR 

Sched-lost-soul record in shared memory 
LOST-SOUL-STATUS boolean 
Scheduling of Lost-Soul-Sync task 

This procedure is executed when a channel's RETRy_TIME ( the time between successive 
recovery attempts) has expired. 

First the variables governing the recovery attempt (RETRY-BACKOFF and 
RETRY-TIME) are set for the next attempt. Then the procedure checks for the type of 
failure (synchronization or data exchange errors). 

To recover an unsynchronized channel, the LOST-SOUL-SYNC task must be scheduled 
and a scheduling command written in shared memory for the IOP. The results of the 
LOST-SOUL-SYNC task will not be known until a subsequent iteration of the 
TRANSIENT task. 

To recover from data exchange errors, the data exchange error latches are checked for the 
absence of errors. If no errors are detected, a command to temporarily enable the channel 
is sent to Fast FDIR and its probation period begins. 
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4.2.2.1.3 

Inputs: 
e 

e 

e 

e 

u 
e 

e 

ProcessName: DECIDE - -  To ATEMIT - RECOVERY 

INITIALJtECOVERY-ATI'EMPT boolean 
RETRY-TIME 
CHANNEL-RECOVERY-MODE 
CHANNEL-REPAIRED 

RETRY-TIME 
CHANNEL-REPAIRED 

When a fault is first detected, it is regarded as a transient and recovery is attempted 
immediately. If the attempt fails, the time between successive attempts increases until 
MTI'R is reached. If the channel has not been recovered by this time, the fault is regarded 
as a hard failure. Action at this point depends on the user-specified recovery mode: either 
recovery is attempted every MTTR or recovery is attempted only when an operator 
indicates the channel is repaired. (The default in the laboratory testing environment is to 
attempt every M l T R ) .  
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4.2.2.1.4 ProcessName: IOP - TRANSIENT 
Inputs: 

Sched-IOSS-restore command h m  CP 
Sched-lost-soul command from CP 

htprds: 
IOSS-RESTORE-SCHEDULED boolean 

This is the main procedure of the TRANSIENT-FDIR process on the IOP and is called by 
the IOP-FDIR-AND-TIME task. It has work to do only when a channel is down. It 
checks for commands from the CP, which makes all the decisions of the 
TRANSIENT-FDIR process It can receive two commands from the CP: 

to schedule the LOST-SOUL-SYNC task, which tries to pick up an 
unsynchronized channel, or 
to schedule the IOSS-RESTORE task, which re-initializes the 10s dual-ported 
memory and registers. 

The command to schedule the LOST-SOUL-SYNC task specifies the absolute time at 
which the task should run. This is necessary so that neither the CP nor the IOP spend 
unnecessary time waiting in the LOST-SOUL-SYNC task to do their handshake. 

The command to schedule the IOSS-RESTORE-TASK is cleared by the task itself to 
indicate that it is completed. This procedure uses the IOSS-RESTORE-SCHEDULED 
boolean in FDIR-GLOBALS to prevent itself from scheduling the task multiple times. 
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4.2.2.1.5 procesSName: FDIFt-GLOBALS 

Inputs: 
None 

outpds: 
None 

This package contains types and variables shared by different tasks involved in the FDIR 
process. 

Fast FDIR must pass several different pieces of infomation to Transient FDIR. 
This information is written by Fast, then read and cleared by Transient. 

- 
- 

The error latches read by the error latch analysis routine 
An array of flags, one for each channel, to indicate whether a channel's 
failure caused it to drop out of sync or not. 

The Display task can accept a command from an operator that a failed channel 
has been repaired. It passes this infomation to Transient FDlR in an array of 
booleans, one for each channel. 

CP Transient and IOP Transient communicate through commands in shared 
memory. The type for the Lost-Soul-Sync scheduling command is defined 
here. 

IOSS Restore must indicate to IOP Transient when the IOSS Restore task is 
done. It does this by clearing a flag which IOP Transient has previously set. 
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4.2.2.2 Lust Soul Sync 

CP-Handshake 
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0 Align-Mem 

a lign-Integer 

Figure 36. Lost Soul Sync Processes 
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4.2.2.2.1 procesS Name: LOST-SOUL-SYNC 

Inputs: 
None - 
None 

The LOST-SOUL-SYNC task is scheduled when Transient FDIR has determined that an 
attempt should be made to pick up a channel that has become desynchronized. The task is 
scheduled to run at an absolute time and is descheduled after one iteration. It calls the 
CHAIWEL-SYNC routine which tries to pick up the lost channel. 

4.2.2.2.2 

Inputs: 
e 

e 

e 

outputs: 
0 

0 

procesS Name: CHANNEL-SYNC 

Integer version of current configuration 
Reason for synching - initial or pickup 
Type of sync variable in global memory 

Entry in reconfig log 
Type of sync variable in global memory 

Description: 

This is the main procedure of the LOST-SOUL-SYNC task. It is also the procedure used 
to synchronize channels at system startup. It is where channels who are together and 
channel(s) who are alone find each other. Its main steps are: 

to synchronize the channels to the instruction level, and 
to align the channels' volatile memory and registers, i.e., make them identical 
amongst the synchronized channels. 
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Figure 37. Channel Sync Flow Diagram 
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To be in sync, a processor must be synchronized to the instruction level with other 
processors of its type (Le., CPs or IOPs). In addition, its companion must be 
synchronized with other processors of the companion's type, i.e., either both pmessors in 
a channel are good or they are both failed. The steps in the synchronization process and the 
interaction between CP and IOP are summarized below and shown in the following 

Initial Handshake 
CPs Sync 
CPs Concur on Type of Sync 
CPs Signal IOPs 
IOPs Concur on Type of Sync 
IOPs Determine Consensus of CP and IOP Types of Sync 
IOPs Signal CPs 
CPs Align 
CPs Signal IOPs 
IOPs Align 
IOPs Signal CPs 
CPs Reconfigure and Log 

Initial Handshake 

The purpose of the initial handshake is to coordinate the synchronization of the CPs with 
that of the IOPs, since a processor cannot be considered synchronized unless its companion 
is also synchronized. This handshake ensures that both sides are in the Channel Sync 
routine before the attempt to sync is made. It also means that only one side (the CPs were 
chosen arbitrarily) needs to sync using the data exchange hardware. As explained in more 
detail in the process descriptions for CP-HANDSHAKE and IOP-HANDSHAKE, the 
other side (the IOPs) will automatically sync while waiting for their companions. 

CPs Svnc 

The CP locks the shared bus and makes a fixed number of attempts to synchronize with 
another channel(s) by doing data exchanges. As Iong as a CP is alone, it repeats this step. 

CPs Concur on TvDe of Svnc 

This step and the next four steps concern the CP and IOP agreeing on what type of sync 
they are doing. This agreement is required in order for the system to recover from some 
catastrophic condition, such as a second failure or hardware or software common-mode 
fault, by automatically restarting. These catastrophic conditions could result in channels 
'going to the Channel Sync routine in different states, which would make it impossible for 
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them to be aligned. Therefore we must check why a channel is in Channel Sync and ensure 
that at least two channels arrive there in the same state. 

There are four possible types of sync: 

POWER-ON - an operator has restarted the system 
SOlT-RESTART - the software has restarted the system 
RECOVERY-CHANSTOGETHER - two synchronized channels are trying 
to pick up a lone channel 
RECOVERY-LONE-CHAN - a lone channel is trying to be picked up 

A consensus value for the type of sync is arrived at by the standard method of bit-for-bit 
voting. If there is no majority, there will be no consensus, with one exception: a vote of 
POWER-ON and SOlT-RESTART results in a consensus value of SOlT-RESTART. 
This is because POWER-ON and SOFT-RESTART produce identical states in the 
processor; their only difference is that SOFT-RESTART preserves the existing non- 
congruent logs. The action taken when there is no consensus depends on the particular 
situation; this is discussed in more detail below. 

The first step in arriving at a consensus value for type of sync is for the CPs to agree 
among themselves. After two or more CPs have synchronized, they all exchange their type 
of sync and obtain a voted value. If there is no consensus or if the majority are lone 
processors trying to be picked up, they have different states and cannot be aligned. They 
must restart in order to achieve identical states. 

CPs Signal IOPs 

After the CPs examine their type of sync, they notify the IOPs by setting the TOIOP 
variable in shared memory. They can set it to two possible values: 

0 6 - The CPs could not achieve a consensus and/or had to restart. 
7 - The CPs did achieve a consensus, The consensus value is written in 0 

the TYPE-OF-SYNC variable in shared memory. 

The CPs now wait for a return signal from the IOPs. 

IOPs Concur on Type of Svnc 

The IOPs reach a consensus on their type of sync in the same way as the CPs. They all 
exchange their type of sync and obtain a voted value. If there is no consensus or if the 
majority are lone channels trying to be picked up, they must restart so that they can achieve 
identical states. 
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If the IOPs did not have to restart, they now compare their voted type of sync to the CPs' 
type from shared memory. There are two possible results. 

A consensus is reached. This will happen either because the two types are the 
same or because one is a Power-On and one is a Soft-Restart. 

No consensus is reached. This will be the case when one side has started over 
(either a power-on start or a software restart), but the other side has not. In this 
situation, the side which did not restart must now do so. One side cannot 
continue from where it previously left off when the other side is starting afresh. 

IOPs Signal CPs 

After the IOPs examine their types of sync and the CPs' type of sync, they notify the CPs 
by setting the TOIOP variable in shared memory. They can set three possible values: 

8 - The CPs must do a restart. The IOPs will wait for them at the Initial 

9 - The IOPs must do a restart. The CPs should wait for them at the Initial 

10 - A consensus value has been reached. It is written back into the 

Handshake. 

Handshake. 

TYPE-OF-SYNC variable in shared memory. Both sides now use the 
consensus value as their type of sync. 

The IOPs now start Interval Timer 1, which is used to reset the watchdog timer during the 
resynchronization process and wait for a signal from the CPs as to whether they need to 
align. 

CPs Align 

Having agreed on a type of sync, the CPs now check to see if they have picked up any 
new channel(s). If they have, they start Interval Timer 1, they then align their volatile 
memory and registers. These include: 

intervaltimers 
RAM (oncard and offcard) 
testport memory 
oncard discretes 
shared discretes 
LMN data exchange control register 
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Finally the data exchange error latches and fault-tolerant clock error latches are cleared. 

CPs Signal IOPs 

The CPs notify the IOPs of the results of the above step by semng the TOIOP variable in 
shared memory. They can set it to two possible values: 

2 - The CPs have picked up a channel and aligned. The IOPs must align 
also. 

3 - The CPs did not pick up anyone new. The IOPs do not need to align. 

IOPs Aliyn 

If the CPs picked up a new channel, the IOPs must now align their volatile memory and 
registers. These are the same as on the CP side, with two additions: 

sharedmemory 
system timer 

Finally, the data exchange error latches and fault-tolerant clock error latches are cleared. 

lops  Notifv CPs 

Whether or not the IOPs needed to align, they clear the TOIOP variable to signal the CP 
that they are done. 

CPS Log: and Reconfirrure 

Finally the CPs reconfigure and log the reconfiguration. This step is done here because the 
system timer is initializedaligned by the IOPs; a meaningful time is not available until this 
point. 
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4.2.2.2.3 procesS Name: CP-HANDSHAKE 
IOP-JIANDSHAKE 

TOIOP variable in shared memory 

u 
TOIOP variable in shared memory 

These two routines execute the handshake between the CP and IOP which is required 
before an attempt to synchronize multiple channels is made. 

The basic sequence of the handshake is for the CP to write some value in the TOIOP 
variable in shared memory and for the IOP to clear it. After the IOP has cleared it, the CP 
attempts to sync using the data exchange hardware, first locking the shared bus. When 
they have successfully synchronized, the CPs write another value in the TOIOP variable 
and unlock the shared bus. Meanwhile, the IOP, having cleared TOIOP, is waiting for the 
variable to change to some other value. The IOPs will automatically synchronize here 
because, since the shared bus is locked, they will all be suspended at the instruction 
referencing shared memory. 

One complication involves the initial setting of the TOIOP variable. If the IOP looks for a 
particular value, but that value is left over from a previous execution, the IOP will 
incorrectly conclude that its companion is waiting at the handshake. This problem was 
solved by having the handshake be a two-step process. In between the first and second 
steps, the IOP can determine if the value it read was a leftover value or if its CP is really 
waiting for it. 

The actual steps of the initial handshake are shown in the following diagram. 
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CP 

- - 

INITIAL HANDSHAKE 
Uses TOIOP variable in Shared Memory 

* Wait for signal 
hat C p s  have Synced 

(TOIOP = 2 or 3) 

IOP 

Signal IOP 

Wait For IOP 

Wait for second 

f Handshakedone 7 

Shared 
Memory 

IOPs will synchronize here waiting 
for shared bus to be unlocked 

Acknowledge CP 

- Wait for second signal I 

A TOIOP=2222 yes 

signal again 

Signal I 

Figure 38. CP and IOP Handshake Flow 
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4.2.2.2.4 Process Name: SYNC-CHANS 

In@: 
None 

hw 
Integer representing the channels in sync 

This is an assembly language routine which synchronizes channels at the instruction level 
by sending a unique pattern from each channel through the data exchange. If the result read 
after a particular exchange is the expected pattern, the channel originating the exchange is 
judged to be present and in sync. 

The patterns exchanged must be long words and must be transmitted using the shared 
exchange registers. When a word is exchanged using the dedicated registers, the data 
exchange hardware is sufficiently slow such that any particular word will be in the receiver 
for more than one FTC cycle. This would allow a channel only slightly behind to see the 
expected word in the receiver and incorrectly conclude that it is in sync. Successive 
exchanges of long words using the shared registers, however, result in the long word 
being in the receiver for only one FTC cycle, so a tardy channel could not conclude that it 
was in sync. 

The routine does three data exchanges: FROM-A, FROM-B, and FROM-C. After each 
exchange it analyzes the result to see if the source channel is present. When all three 
channels are present, it returns immediately to the calling routine; otherwise it iterates the 
exchanges a number of times, attempting to pick up all channels. This basic data exchange 
loop is shown in the following N-S diagram. 

The execution time of this data exchange loop is of critical importance. If the three 
channels are all executing this code but have started at different times, they will never 
synchronize if the basic exchange loop takes the same number of FI'C cycles on each 
channel. The loop must take a different (prime) number of FTC cycles on each channel. 
This is done by having each unsynchronized channel delay for a different amount of time at 
the end of each iteration, while synchronized channels have no delay. In the laboratory 
demonstration implementation, which uses a Motorola 68010 processor with an 8 MHz 
clock, synchronized channels take 15.5 FTC cycles for one iteration, channel A alone 
takes 17.5 cycles, channel B alone takes 18.5 cycles, and channel C alone takes 20.5 
cycles. 
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In i t ia l izat ion 

Data exchange loop 
Do N times or until 3 channels present 

Do From-A exchange and look at result 

Do From-B exchange and look at result 

Do From-C exchange and look at result 

Update number of iterations- exit loop 
if required number done 

Delay appropriate amount for particular 
channel or combination of channels 

Return word identifying channels in Sync 

Figure 39A. Sync Cham N-S Diagram 
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4.2.2.2.5 procesSName: mART - TIMER1 

Inpub: 
Currenttine 
Time watchdog timer was last reset 

outplts: 
Countdown value in Timer 1 
Handler address for Timer 1 interrupt 

Since the Channel-Sync routine runs uninterrupted by other system tasks, when a 
recovered channel is being aligned the amount of time used will exceed the limit of the 
watchdog timer. During Channel-Sync, therefore, one of the unused interval timers 
(specifically, Timer 1) is used to periodically cause an interrupt, at which time the 
watchdog is reset. 

This subroutine sets Interval Timer 1 the fmt time by calling a system subroutine with an 
initial value and the address of the interrupt handler. The initial value must be calculated 
based on the time the watchdog was last reset, since the watchdog cannot be cleared either 
too soon or too late. 

This subroutine is called by the CP only after it has determined that it has picked up the 
lone channel, but it is called by the IOP immediately after the IOP has determined a 
consensus Type-of-Sync. This is necessary because the CP does not signal whether it has 
picked up anyone until after it has aligned, by which time the IOP's watchdog would have 
overrun. 
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4.2.2.2.6 procesS Name: ALIGN-SH-MEM 

Inputs: 
None 

None 

This procedure aligns the channel's shared memory. There are eight sections of shared 
memory, as follows: 

F87000 - F87FFE 
F8FOOO -F8FFFE! 

F97OOO - F97FFE 
F9F000 - F9FFFE 

F A 7 0  - FA7FFE 
FAFOOO - FAFFFE 

FB7000 - FB7FFE 
F B F O  - FBFFFE 

The alignment is done by calling the assembly language routine, ALIGN-MEM (refer to 
following section). 

4.2.2.2.7 Process Name: ALIGN-MEM 

Inputs 

fiw 
Starting and ending addresses of memory to be aligned 

A voted value written to each location 

Description: 

This assembly language routine does the actual alignment of the specified memory area by 
doing a FROM-ALL exchange of each long word and then writing the result back into 
memory. For greater efficiency, preparations for the next exchange are interleaved with the 
writing and reading of the current exchange. The alignment is accomplished by doing long 
word exchanges via the shared exchange registers (therefore the CP and IOP must align in 
sequence), rather than by doing word exchanges on the dedicated registers (in which case 
the CP and IOP could align in parallel). The first method was judged to be faster in total 
time and simpler. 
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4.2.2.2.8 procesS Name: ALIGN-SHARED-DISCRETES 

Inputs: 
Local value of shared discretes register 
Voted value of shared discretes register 

atplts: 
Interprocessor interrupt bits in shared discretes 

This procedure aligns the shared discretes, specifically, the CP-to-IOP interrupt and IOP- 
to-CP interrupt. If the majority of channels have the particular interrupt set, it is set on all 
channels; otherwise it is cleared on all channels. The CP sets the interrupt-IOP bit but 
clears its own interrupt; similarly the IOP sets the interrupt-CP bit but clears its own 
interrupt. 

4.2.2.2.9 Process Name: A L I G N - C P - m R T  

This procedure is executed by the CP to align its testport memory. All of testport memory 
can be accessed by both the CP and IOP, but it has been divided into separate sections for 
convenience. There are two sections of testport memory for the CP, as follows: 

C27000 - C27FFE 
C2F000 - C2FFFE 

The alignment is done by calling the assembly language routine, ALIGN-MEM (refer to 
earlier section). 
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4.2.2.2.10 procesS Name: ALIGNXOPTF,(TPORT 

Inputs: 
None 

u 
None 

This procedure is executed by the IOP to align its testport memory. All of testport memory 
can be accessed by both the CP and IOP, but it has been divided into separate sections for 
convenience. There are two sections of testport memory for the IOP, as follows: 

C37000 - C37FFE 
C3F000 - C3FFFE 

The alignment is done by calling the assembly language routine, ALIGN-MEM (refer to 
earlier section). 

4.2.2.2.11 procesS Name: ALIGN-TIMER0 

Inpuk 
None 

outpllts: 
Interval Timer Control Register 
Interval Timer value 

Desaiption: 

This routine aligns Interval Timer 0 by setting the timer to an arbitrarily small value. A 
system subroutine is called to set this value since the shared bus must be accessed in 
between writing the most significant byte and least significant byte of the timer. This 
access ensures that the timers are set away from a rising or falling edge of the fault tolerant 
clock and therefore the resulting interrupts will be asserted on the same pulse of the fault 
tolerant clock.. 
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4.2.2.2.12 procesS Name: ALIGN-RAM - 
None 

This routine aligns oncard and offcard ram (excluding the non-congruent data area). One 
subroutine is called to align both. Since the non-congruent area is forced to be at an 
absolute address and is therefore located at the high end of offcard RAM, there is no need 
to align anything following this area. 

The align is done by calling the assembly language subroutine ALIGN-ALL-RAM (refer 
to following section). 

4.2.2.2.13 Process Name: ALIGN-ALL-RAM 

Inputs 
Starting and ending addresses of memory areas to be aligned 

ouw 
A voted value written to each location 

This assembly language routine aligns the specified areas of oncard and offcard RAM by 
doing a FROM-ALL exchange of each long word and then writing the result back into 
memory. For greater efficiency, preparations for the next word are interleaved with the 
reading and writing of the current word. The alignment is accomplished by doing long 
word exchanges via the shared exchange registers (refer to description of ALIGN-MEM 
routine). Oncard and offcard RAM must be aligned in a single routine so that it does not 
matter whether variables and data reside oncard or offcard or both. 
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4.2.2.2.14 proc3essName: ALIGN - TIME 
Inputs: 

None - 
None 

This routine calls the Time Manager's Align-Time routine (refer to Section 6.2.1.1.5.1) 
and then aligns the SYSTEM-TIMER-OFFSET value in shared memory. 

4.2.2.2.15 proceSS Name: ALIGN-mGER 

Inputs: 
address of long word to be aligned 

hm 
a voted value written to the specified address 

This assembly language routine aligns a single long word by doing a FROM-ALL 
exchange using the shared data exchange and writing the result back into the specified 
address. 

4.2.2.2.16 Process Name: INlTIAI-SYNC-SIMPLEX 

Inputs 
TOIOP flag in shared memory 

hm 
Entry in reconfiguration log 
TOIOP flag in shared memory 

Description: 

This procedure is executed on simplex channels at system startup. Since there is only one 
channel, no synchronization or alignment takes place. Agreeing on type of sync is easier 
than in a triplex, since the only two possible types are POWER-ON and 
SOlTiRESTART. The routine does a handshake between the CP and IOP and initializes 
certain variables (the configuration, system time) and registers (LMN-DX control registers, 
system timer). 
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4.2.2.3 

4.2.2.3.1 

Input% 
e 

e 

System Restart Processes 

procesSName: XRESTART 

None 

Entry in non-congruent log 
Type-of-sync variable 

This routine is called when a critical &e., unrecoverable) fault is detected and the only way 
to recover is to completely restart the system. Examples of critical faults are a second fault 
detected by Fast FDIR, or a common-mode hardware or software fault. A channel may be 
alone or with other channels when it decides to restart. This routine logs the Occurrence of 
the restart and sets the Type-of-Sync flag to SOlT-RESTART-REQUEST. It then jumps 
to the beginning of the load module. 
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4.2.3 

4.2.3.1 

R~guratimh.ocessDescriptions 

procesSName: CONFIGPackage 

Desaiptim: 

This package is concerned primarily with maintaining the software records of each 
channel's status: present or not present. Some of the procedures and functions in this 
package are used by other processes throughout the system, while others are used only by 
FDIR processes. These functions and procedures are described on the following pages. 

Package (7) 
I 

I I I I 

Figure 40. Reconfiguration Processes 
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4.2.3.1.1 procesS Name: RECONFIGURE 

Inputs 
Reconfigand record identifying the channel and whether it is failed or 
recovered 

out?- 
* Configurationrecord 

Monitor interlock 

Integer version of configuration record 
STATUS-INFO array for display task 

This procedure is called in four different situations: 

system startup 
a channel has failed 
a channel has been recovered after a failure (mal recovery) 
a channel has passed its probation period after recovery (permanent recovery) 

In each situation, appropriate actions are taken to update variables reflecting the current 
configuration and enable/disable the Monitor Interlock. 

At system startup: 

THE-CONFIG, TRIAL-CONFIG and CHANS-IN-SYNC are set to reflect 
the channels which successfully synchronized. 
INT-CONFIG, INT-TRIAL-CONFIG and IN"-CHANS-IN-SYNC are set 
to correspond to THE-CONFIG, TRIAL-CONFIG and 
CHANS-IN-SYNC, respectively. 
The STATUS-INFO array is set to indicate whether each channel is failed or 
active and the time it failed or became active. 
The Monitor Interlock is engaged for the active channels and disengaged for 
all others. 

When a channel has failed: 

THE-CONFIG and TRIAL-CONFIG are updated to reflect the failed 
channel. 
If the failure was other than a data exchange failure, CHANS-IN-SYNC is 
also updated to reflect the failed channel. 
The STATUS-INFO array is updated to reflect the failed channel. 
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The failed channel's Monitor Interlock is disengaged. 
INT-CONFIG, INT-mL-CONFIG and INT-CHANS-IN-SYNC are set 
to correspond to THE-CONFIG, TRIAL-CONFIG and 
CHANS-IN-SYNC, respectively. 

When a channel has been recovered after a failure (trial recovery); 

CHANS-IN-SYNC and TRIAL-CONFIG are updated to reflect the 
recovered channel. 
I"'-CHANS-IN-SYNC and INT-'I'RIAI-CONFIG are set to correspond 
to CHANS-IN-SYNC and TRIAL-CONFIG, respectively. 

When a channel has passed its probation period after recovery (permanent recovery); 

THE-CONFIG is updated to reflect the recovered channel. 
The STATUS-INFO array is updated to reflect the recovered channel. 
INT-CONFIG is set to correspond to THE-CONFIG. 
The recovered channel's Monitor Interlock is engaged. 

4.2.3.1.2 ProcessName: NEW - PRESENCE 

Inputs: 
Integer value of old configuration 
Integer value of new configuration 

atplts: 
Reconfigand record identifying the channel that is different and whether it was 
added or deleted 

This function examines two integer versions of the configuration and figures out which 
channel is different between the two versions. If a channel has been added it creates a 
reconfig-cmd record for the channel with a reason of ENABLE-T; if a channel has been 
deleted it creates a reconfig_cmd record with a reason of DISABLE. 
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4.2.3.1.3 procesS Name: GET-CONFIG 

Inputs: 
Integer version of current configuration 

u 
Record version of current configuration 

This function is called by local system service and UO system service routines that want to 
know the current configuration. The function takes the integer version of the current 
configuration and converts it to a record of type configuration. 

It is necessary to obtain the current configuration by calling this routine rather than by 
simply making a local copy of the current configuration record. This is because Ada 
generates multiple instructions to move the configuration record, rather than using a single 
M0VE.L instruction. Thus if a routine were to be interrupted while moving the record, 
when it got control again the record may have changed, due to an intervening execution of 
Fast FDIR, Transient FDIR, or Lost Soul Sync. To make sure a consistent copy of the 
configuration record is obtained, it is necessary to use this function. 

4.2.3.1.4 Process Name: THIS_CHAN 

Inputs: 
Channel id from the Monitor Interlock Register 

oum 
Channel id of type channel-id 

This function reads the channel id from the Monitor Interlock register and converts it to a 
variable of type channel-id with a value of A, B, or C. 
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4.2.4 Logging procesf Descriptions 

4.2.4.1 User E m  Logs 

Logging routines are included in the following packages: 

RECORD_FDIR-ERRORS 
FDIR-ERROR-LDG 
RECORD-RECONFIGS 
RECONFIG-LOG 
NON-CONGRUENT-LOG 

The non-congruent log itself is contained in the NON-CONGRUENT-DATA package. 

4.2.4.1.1 Process Name: RECORD-F'DIR-ERROR,CREPORT_ERROR 

I n p w  
Information to be entered in the error log 

This routine logs faults detected by the Fast-FDIR task. 
FDIR-ERROR-LOG.ENTER, to make the log entry. 

It calls a subroutine, 

4.2.4.1.2 Process Name: F'DIR - ERROR-LOG.ENTER 

Inputs: 
Information to be entered in the error log 

hm 
Entry in the error log 
Counters to indicate number of entries and next available slot in the error log 

This routine creates a new entry in the FDIR error log. This log has room for 20 entires; 
after all available slots are filled the next entry goes at the top of the log. Indices to the 
oldest and newest entries in the log are maintained, along with a count of the number of 
entries. 
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4.2.4.1.3 Process Name: RECORI-RECONFIGS.REPORT-RECONFIG 

Inputs: 
Information to be entered in the rcconfiguration log 

outp1oi: 
None 

This routine logs all reconfigurations that occur. It calls a subroutine, 
RECONFIG-LOG.ENTER, to make the log entry. 

4.2.4.1.4 Process Name: REC0"IG-LOG.EN"ER 

Inpuls: 
Information to be entered in the reconfiguration log 

hw 
Entry in the reconfiguration log 
Counters to indicate number of entries and next available slot in the log 

This routine creates a new entry in the reconfiguration log. This log has room for 20 
entires; after all available slots are filled the next entry goes at the top of the log. Indices to 
the oldest and newest entries in the log are maintained, along with a count of the number of 
entries. 
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4.2.4.1.5 Process Name: NON~CONGRUENT~LOG.LOG~NONCONGRU~EVENT 

In*: 
Strings identifying logger and information to be logged 

u 
Entry in non-congruent log 

This routine creates a new entry in the non-congruent log. This log has room for 16 
entries; after all available slots are fded the next entry goes at the top of the log. An index 
to the next available slot is maintained, along with a count of the number of entries. 

In order to determine the next available slot, two special subroutines must be called, since 
different channels will be at different positions in their respective logs and computing a new 
position should not throw them out of sync. Refer to INCR-NC-LOG-INDEX and 
SET-UP-CURRENT-ENTRY which follow. 

4.2.4.1.6 Process Name: NON - CONGRUENT~LOG.INCR~NC~LOG~INDEX 

Inputs: 
Current NC-LOG-INDEX - 
Updated NC-LOG-INDEX 

The non-congruent log has room for 16 entries; the index varies between 0 and 15. This 
routine increments it and resets it to 0 when it gets past 15. This must be done without 
actually checking the value because different channels may have different indices, and such 
a check might throw them out of sync. This assembly language routine uses an AND 
instruction to set a 16 to 0. 
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4.2.4.1.7 procesS Name: NON-CONGRUENT-LOGSET_VP_CURRE"TRY 

Inputs: 
Index to the noncongruent log 

Address of next available position in the non-congruent log 

Description: 

This routine takes an index value and converts it to an actual address within the non- 
congruent log. This special routine is required because the Ada implementation of this 
operation treats an index of 0 as a special case. Since different channels may have different 
indices to the non-congruent log, this special case could throw a channel out of sync. This 
routine also speeds up the computation by using a shift instruction rather than a multiply. 

4.2.4.1.8 Process Name: NON - CONGRUENT-DATA Package 

Description: 

This package contains data items whose values may legitimately differ across channels and 
which are therefore kept in this special area which is neither aligned nor scrubbed. 
Limitations of the Ada compiler force this package to reside at an absolute address; the high 
end of RAM was chosen for convenience. There are three types of data in this package: 

1) channelid 
2) input values which may differ across channels 
3) the non-congruent log 

The channel id is obtained at system startup by reading the value from the hardware register 
and converting it to the channel-id type defined in the Config package. 

Input values which may differ across channels include local copies of the error latches, 
local results of selftests, and data read from input devices. 

The non-congruent log contains information about selected faults which occurred. This log 
is not reinitialized after a software restart so that information about the cause of the restart is 
available. 
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4.2.4.2 Debugging Lo@ 

The FDIR software also has the facility to record ongoing events (both no& and error 
conditions) in a log which cannot be displayed but must be inspected manually by the 
system engineer. The subroutine to update this log is described in the following section. 

4.2.4.2.1 Process Name: DEBUG-LOG 

Inputs: 
Two identifying words passed by the caller 

hm 
Either a new entry in the log, or an addition to the count field of the previous 
entry 

This routine maintains a trace log so that the sequence of events in the FIT at any particular 
time may be known. This log is circular; after all available slots are filled the next entry 
goes at the top of the log. 

In addition to recording the caller id and an additional word of infoxmation, which are 
passed as parameters, the routine maintains a count of the number of times it has been 
called in succession with identical parameters. Thus, for example, the selftest procedure to 
write RAM patterns calls this routine once for every word that it tests. There are not n 
entries in the log, however; rather there is only one entry with a field to indicate that the 
entry was made n times in succession. 

The current value of the system timer is also saved for each entry. 

This procedure is written in assembly language to minimize its impact on system performance. 
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5.0 GPCSTATUSREPORTER 

I 

The purpose of the GPC Status Reporter is to collect and disseminate information about the 
status of the various AIPS components. Hardware status information is provided by the 
various redundancy managers, while software status information is provided by the 
operating system. The collected information is made available to an operator, for manual 
decision-making, and to the System Manager software function, for automated decision- 
making. The three major functions of the Status Reporter are shown in Figure 41. 

I 

GFC STATUS U REPORTER 

Figure 41. GPC Status Reporter Functions 

5.1 GPC Status Reporter Functional Requirements and Design 

AIPS is a distributed system with redundancy management functions at each site. Some of 
these functions are located at every site (e.g., GPC FDIR, 10s FDIR and ICIS FDIR) 
while other functions are located only at selected sites (e.g., the VO Network Manager and 
the IC Network Managers). The GPC Status Reporter, which resides on both the CP and 
IOP at every site, must collect and disseminate status information provided by every 
function resident at its own particular site. 

Figure 42 shows the flow of the status information. The shaded circles in this figure 
indicate functions executed only at selected sites, while the unshaded circles indicate 
functions executing at every site. 
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Figure 42. GFC Status Reporter Data Flow 

5.1.1 StatusDatabaseManagemnt 

The status database consists of hardware and software status information kept in logs and 
variables which are maintained by the various redundancy managers and the operating 
system. This information is segmented so that the redundancy managers do not have 
access to the entire database, but only to their own particular segment. The logs and 
variables used by each function are summarized in the following table. Access to the logs 
is controlled using the lock-out feature of the Ada runtime system, which requires tasks to 
"lock" the desired log before using it. A task which finds the log already locked is 
automatically suspended and then resumed when the log is unlocked. 
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REDUNDANCY MANAGER 

GPC FDIR 

Real Time Operating System 

IC Network Manager 

STATUS DATABASE SEGMENT 

FTP Configuration 
FDIR Error Log 
FlT Reconfiguration Log 
Non-Congruent Log 

Software Exception Log 

IC Network Configuration 
IC Network Error Log 
IC Network Reconfiguration Log 

ICIS Configuration 
ICIS Error Log 
ICIS Reconfiguration Log 

10s Configuration 
10s Error Log 
10s Event Log 

VO Network Configuration 
VO Network Error Log 
VO Network Event Log 

Figure 43. Status Database 

5.1.2 Status Display 

The Status Display software displays. the status information currently available about a 
particular hardwadsoftware component in response to an operator query. Each processor 
card in a GPC has a Dual Universal Asynchronous Receiver/Transmitter (DUART) chip 
with two channels, which allows the processor to communicate with a display device such 
as a CRT or personal computer over two RS-232 lines. Two types of displays are 
currently available, one on a CRT and one on a Macintosh computer, and each uses its own 
RS-232 line. The functions which provide these displays are shown in Figure 44. 
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STATUS 
DISPLAY 

Figure 44. Status Display 

The CRT-Display function a lows an operator to communicate with a GPC via a VT2 1 or 
VT240 terminal. There are three instances of the CRT-Display task, one to serve each 
channel, so that a terminal may be connected to each channel and three different displays 
called up and monitored by an operator if desired. The three tasks run at the lowest 
priority. All three tasks execute on all three channels but the input to any one task is only 
from the channel being served by the particular task. Specifically, the CRT-Display task 
for Channel A executes on all channels but its input comes from Channel A's DUART and 
must be distributed to the other channels by means of the data exchange before any 
processing is done; output is then sent only to Channel A's DUART. Similarly, the 
CRT-Display task for Channel B executes on all channels, but its input, which comes from 
Channel B's DUART, is distributed before being processed, and output is sent only to 
Channel B's DUART. 

The Mac-Display function allows an operator to communicate with a GPC via a Macintosh 
computer. The Mac-Display task sends the status information to a Macintosh computer 
where it is formatted into a pictorial or tabular display. This moves the complex and time- 
consuming routines necessary to create user-friendly displays from the GPC to the 
Macintosh. 

There is only one instance of the Mac-Display task, so communication can take place with 
only one FTP channel at any given time. The channel that will receive and transmit data is 
chosen according to channel identification and availability. Channel A has the highest 
priority and channel C the lowest. If Channel A is active, its DUART is responsible for the 
Macintosh link. If the channel currently driving the Macintosh display fails, the 
MAC-Display software automatically switches to the next available DUART. The 
operator requests the desired displays from the FTP by using Macintosh menus; several 
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displays may be called up and monitored simultaneously by using Macintosh windows. 
The Macintosh may communicate with the GPC over any distance, and remote users may 
connect their Macintosh to a GPC using a modem and telephone line. 

5.1.3 Status Reporting 

The Status Reporting function sends all currently available status information to the System 
Manager, either periodically or in response to a fault. Since the System Manager has status 
information from all sites, it can form a global view of things and identify faults in a way in 
which the individual redundancy managers, with only their local viewpoint, cannot. The 
System Manager is thus able to identify transient faults, isolate the cause of ambiguous 
faults, and determine the need for function migration. 

5.2 GPC Status Reporter Software Specifications 

5.2.1 Status Database Management procesS Descriptions 

The status database management processes are specific to each of the database segments 
and are described in the section pertaining to the appropriate redundancy manager. These 
processes are summarized in the following table. 
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5.2.2 

Help-Menu 

5.2.2.1 

status Status-Update 

Site Status Display Process Descriptions 

TerminalDisplays 

I 

CRT-Display-CP G 
1 

0 FDIR-Errors Display- 
Except-Log 

Display 

( ~ ) l  (E) 
7 7 [ Ini[lalirc_Date) [ Get-Recovery Mode 

View-Memory 

7 

Change-Color u 
CRT-Display-IOP 

I 

(-)(*) (Dllplsy) (e) 
Except-Log Emr-Log Even t-Log Change-Color 

Figure 46. Terminal Display Processes 

139 



5.2.2.1.1 h.ocess Name: CRT-Display-CP 

Inputs: 
Channel id 
User commands from a texminal - 
Invalid command message to terminal 

This task provides a means by which an operator may communicate with the FTP, 
specifically the CP, via a VT220 or VI240 terminal c o ~ e c t e d  to an RS232 port. There are 
three instances of this task, one for each channel, so that simultaneous input from three 
different channels may be processed. 

This task runs at the lowest priority and executes periodically. However, the periodicity is 
not achieved by using the Scheduler functions, but rather by a delay statement at the end of 
the task’s main loop. The task is initially started by a rendezvous with the main program 
which identifies to each instance of the task which channel it is serving. 

Within its main loop, the task calls the procedure INPUT-WAITING to determine if new 
input has come in from the RS232 port. If it has, the input command is read and an 
appropriate routine is called to process it. If there is no new input and the last command 
entered was an ST command (Status Display), the time and date on the status display are 
updated. 
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5.2.2.1.2 Process Name: Help-Menu 

Inputs: 
None - 
CRT display 

This routine responds to the HE (Help) command and displays a list of valid input 
commands. Valid CP commands are: 

CR -- Repairchannel 
CC -- Change Color 
CL -- Clearscreen 
DA -- SetDate 
FD -- Display FDIR Error Log 
HE -- Help 
NC -- Display Noncongruent Log 
OP -- OpenMemory 
RE -- Display Reconfiguration Log 
RM -- SetRecoveryMode 
SE -- Display Software Exceptions 
ST -- Display FTPStatus 
TI -- SetTime 

Valid IOP commands are: 

CC -- Change Color 
CL -- Clear Screen 
FD -- Display FDIRErrorLog 
HE -- Help 
NC -- Display Noncongruent Log 
OP -- OpenMemory 
RE -- Display Reconfiguration Log 
Rl/R2/R3 -- Display VO Network Errors 
SE -- Display Software Exceptions 
ST -- Display FTPStatus 
Vl/V2/V3 -- Display VO Network Events 
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5.2.2.1.3 procesSName: FDIR - Ernws - 
CRT display 

This routine responds to the FD command (Display FDIR Errors). It formats the FDIR 
error log and outputs it to a CRT. For each entry in the log, the type of error, the faulty 
channel and the date and time of the error are displayed. Additional information is 
displayed for the memory selftest errors (RAM scrub, RAM pattern, shared memory scrub, 
and PROM sum check): the address containing the fault, the actual value at that address, 
and the expected address. 

5.2.2.1.4 Process Name: Reconfigurations 

Inputs: 
Reconfiguration log 

oum 
CRT display 

This routine responds to the RE (Display Reconfigurations) command. It formats the 
reconfiguration log and outputs it to a CRT. For each entry in the log, the reconfiguration 
event (e.g., power on, disable, enable), the processor, the time and date of the event, and 
the channel(s) involved are displayed. 
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wuf= 
Software exception log - 
CRT display 

This routine responds to the SE (Display Software Exceptions) command. It formats the 
software exception log and outputs it to a CRT. For each entry in the log, the date and time 
of the error, where it occurred (subroutine or task id), and a brief description of the 
exception are displayed. 

This subroutine is declared as EXTERNAL so that it may be used by the runtime system to 
display the software exception log in the event of some catastrophic error which forces a 
system shutdown. 

5.2.2.1.6 procesS Name: Status 

Inputs: 
Current configuration 

htpds: 
CRT display 

This routine responds to the ST (Display FTP Status) command. It formats the initial 
display which shows the current configuration of the FTP (which channels are up, which 
are down, and failure times). the 
STATUS-UPDATE routine (see following section) is periodically called to update the date, 
time and any change in channel status. 

After this initial display has been drawn, 
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5.2.2.1.7 procesSName: Status-Update 

Inpuk 
Cumntconfiguration 
STATUS-INFO m y  
STATUSCHANGED array 

atpds: 
Time, date and channel status fields in status display 

This routine updates only the time, date and channel status fields in the status display. To 
make the routine as efficient as possible, the channel status is updated on the display only 
when it has changed. The STATUS-INFO and STATUS-CHANGED arrays are used to 
keep track of when the status changes (from online to failed and failed to online) and 
whether that changed status has been reflected in the display. 

5.2.2.1.8 procesS Name: DisplayNoncongru - Log 
Inpk 

Non-congruent log 
Channel id whose log is to be displayed 

hm 
CRT display 

Description: 

This routine processes the NC command, which is used to display the non-congruent log 
for a particular channel. After the NC command has been entered, this routine prompts the 
operator for the specific channel id. The log is then copied from the resident channel to all 
channels using a single-source data exchange. For each entry in the log, the date and time 
of the error, where it occurred (subroutine or task id), and a brief description of the non- 
congruent event are displayed. 

5.2.2.1.9 ProcessName: Blank - Screen 

Inpuk 
None 

ouw 
Blank CRT screen 

Description: 

This command responds to the BL (Blank Screen) command. It causes the CRT screen to 
be cleared. 
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5.2.2.1.10 h.ocess Name: InitMzt-Date 

hw 
New value for date - 
Local-GPC-Time variable in shared memory 

This routine processes the DA command, which is used to enter the current date. After 
the DA command has been entered, this routine prompts the operator for the date, which 
must be entered in the format DD-MON-YYYY. It then calls the SET-DATE subroutine 
provided by the Time Manager package to update the global time record, which resides in 
shared memory. 

5.2.2.1.11 pn>cess Name: Initialize-Time 

Inputx 
New value for time 

&- 
e Local-GPC-Time variable in shard memory 

This routine processes the TI command, which is used to enter the current time of day. 
After the TI command has been entered, this routine prompts the operator for the time of 
day, which must be entered in the format HH:MM:SS. It then calls the SET-TIME 
subroutine provided by the Time Manager package to update the global time record, which 
resides in shared memory. 
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5.2.2.1.12 procesS Name: Get-Recovery-Mode 

Inpub: 

Channel id 
Recovery mode (automatic or on-command) 

outplts 
Channel-Recovery-Mode array 

This routine processes the RM command, which is used to indicate the recovery mode 
(either automatic or on-command) for a specified channel. After the RM command has 
been entered, this routine prompts the operator for the specific channel id. The information 
is then stored in the Channel-Recovery-Mode array in the FDIR-Globals package, where 
it will be referenced by Transient FDIR. 

5.2.2.1.13 procesS Name: Do-Channel-Repair 

Inputs: 
Id of repaired channel 
Cunent configuration 
Channel-Recovery-Mode array 

hw 
Channel-Repaired array 

This routine processes the CR command, which is used to indicate that a failed channel has 
been repaired. After the CR command has been entered, this routine prompts the operator 
for the specific channel id. An error message is displayed for the operator if the specified is 
not down or if its recovery mode is automatic. Otherwise, the Channel-Repaired array in 
the FDIR-Globals package is updated to reflect the repaired channel, and the information 
will be used subsequently by Transient FDIR. 
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5.2.2.1.14 PrwessName: Change-Color 

Inputs: 
Id of desired color scheme 

out@= 
Command to terminal to set color characteristics 

This routine processes the CC command, which is used to indicate the desired color 
scheme for a IT240 terminal. After the CC command has been entered, this routine lists 
codes for each of the possible color schemes and prompts the operator to make a selection. 
The correct bit pattern is then written to the terminal to select the desired colors. 
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5.2.2.1.15 Process Name: Open-Memo~y 

Inpub: 
Memory address 

outplts: 
Voted and individual channel values for specified address 

Description: 

This routine processes the OP command, which allows an operator to display and modify 
the contents of specified memory addresses. After the OP command has been entered, this 
routine prompts the operator for an address and then displays both a voted value and 
individual channel values for the specified address. If a channel is down, I*****' is 
displayed for its value. If a channel disagrees with the voted value, its own value is 
displayed, otherwise '-----I is displayed to indicate its agreement with the voted value. 

After the value of the specified address has been displayed, the operator types another 
command to indicate what he wants to do next. The possible actions are: 

N Display the next address 
P Display the previous address 
A 
- - 

Q 

Display a new address (operator will be prompted for the new address) 
Modify current address (operator must type in new value at the repositioned 
cursor) 
Exit (Help screen will then be displayed) 
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5.2.2.1.16 procesS Name: CRT-Display-IOP 

Inputs: 
Channel id 
Terminalinput 

OutpIOs: 
Invalid command message to texminal 

This task provides a means by which an operator may communicate with the FTP, 
specifically the IOP, via a Vn20 or VT240 terminal connected to an RS232 port. There 
are three instances of this task, one for each channel, so that simultaneous input from three 
different channels may be processed. 

This task runs at the lowest priority and executes periodically. However, the periodicity is 
not achieved by using the Scheduler functions, but rather by a delay statement at the end of 
the task's main loop. The task is initially started by a rendezvous with the main program 
which identifies to each instance of the task which channel it is serving. 

Within its main loop, the task calls a procedure, INPUT-WAITING, to determine if new 
input has come in from the RS232 port. If it has, the input command is read and an 
appropriate routine is called to process it. If there is no new input and the last command 
entered was an ST command (Status Display), the time and date on the status display are 
updated. 

Most of the commands handled by this task are also handled by the CRT-Display-CP task, 
and the routines to process these commands have been described earlier in this section. 
The reader is referred to previous subsections for information on the CC, CL, FD, HE, 
NC, OP, RE, SE, and ST commands. 
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5.2.2.1.17 procesS Name: Display-Event-Log 

h- 
Event log for the specified VO network - 
CRT display 

This routine responds to V1, V2 and V3 (Display Event Log n) commands. It formats the 
event log for the specified VO network and outputs it to a CRT. Each entry in the log 
identifies the time and date of the event, the relevant network, the id of the subroutine 
logging the event, and a brief description of the event 

5.2.2.1.18 Process Name: Dkplay-Error-~ 

Inputs: 
Error log for the specified VO network 

htplts: 
CRT display 

Description: 

This routine responds to R1, R2 and R3 (Display Error Log n) commands. It formats the 
error log for the specified VO network and outputs it to a CRT. Each entry in the log 
identifies the time and date of the fault, the relevant network, the channel and node 
reporting the fault, an identifier of the test which detected the fault, and a brief description 
of the fault. 

5.2.2.1.19 Process Name: WO Network Displays 

Inpuls: 
YO Network Status Information 

htplts: 
CRT display 

These subroutines use the information maintained by the VO Network Manager about the 
networks to format a pictorial display of the VO networks. These subroutines are described 
in Section 3.6 of the "Input/Output Network Management Software" document, May 1988. 
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5.2.2.2 Macintosh Displays 

1 I (-) (T) 
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Send Config 
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Send Net 
start IO 

twork Manager 

Chan Status Channel Repair 

Mac-Display-IOP v 

Figure 47. Macintosh Display Processes 
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5.2.2.2.1 ProcessName: Mac - Display-CP 

In- 
* h n t  configuration 

Commands from Macintosh 

outprts 
None 

This task provides a means by which an operator may communicate with the FIT, 
specifically the CP, via a Macintosh computer. The communication takes place by means of 
an RS232 port, although it is a different port that that used by the terminal display task 
(refer to Section 5.2.2.1.1 ). Unlike the terminal display tasks, there is only one instance 
of this task, so commands from the Macintosh may come into only one channel at any 
given time. 

This task runs at the lowest priority and executes periodically. However, the periodicity is 
not achieved by using the Scheduler functions, but rather by a delay statement at the end of 
the task's main loop. 

Within its main loop, the task calls the procedure INPUT-WAITING to determine if new 
input has come in from the RS232 port. If it has, the input command is read and an 
appropriate routine is called to process it. If there is no new input, it sends the current 
configuration, date and time to the Macintosh. 

5.2.2.2.2 Process Name: SendChanProId 

Inpuk 
Processor id 
Channel id 

OutPuD; 
Processor and channel id to Macintosh 

Desaiption: 

This routine responds to the ID (Send Id) command. It transmits the processor id (CP or 
IOP) md channel id of the processor to which the Macintosh is connected. 
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5.2.2.2.3 Pmxs Name: SendAllChanStatus 

Inpuk 
None 

outplts 
None 

This routine responds to the ST (Display FTP Status) command. It sends the status of all 
FlT channels to the Macintosh by calling the subroutine SendChanStatus, which sends the 
status (online or failed) of the individual channels. 

5.2.2.2.4 Process Name: RepairChannel 

Inputs: 
Current configuration 
Channel-Recovery-Mode array 

hmb 
Channel-Repaired array 

Description: 

This routine processes the CR command, which is used to indicate that a failed channel has 
been repaired. If the recovery mode for the specified channel is On-Command, the 
Channel-Repaired array is updated to reflect the rep&, for the automatic recovery mode 
the command is ignored. The information in the Channel-Repaired array is subsequently 
used by Transient FDIR. 

5.2.2.2.5 Process Name: SetChannelRepair 

Inputs 
Recovery mode (automatic or on-command) 

owub 
Channel-Recovery-Mode array 

Description: 

This routine processes AU and OC commands, which are used to indicate the recovery 
mode to be used after a failure (either automatic or on-command). The same recovery 
mode is assigned to all channels, and the information is stored in  the 
Channel-Recovery-Mode array. 
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5.2.2.2.6 Process Name: SendFDIRLog 

w)ut= 
FDIR Error Log 

outplts 
Error log entries to Macintosh 

Desaiption: 

This routine responds to the FD (Display FDIR Errors) command. It sends entries from 
the FDIR Exror Log to the Macintosh. Rather than sending all entries currently in the log, 
the routine sends only those entries that have been made since the last time entries from the 
log were sent. For each log entry that is transmitted, the type of error, the faulty channel 
and the date and time of the fault are transmitted. Additional information is transmitted for 
the memory selftest errors (RAM scrub, RAM pattern, shared memory scrub, and PROM 
sum check): the address containing the fault, the actual value at that address and the 
expected value. 

5.2.2.2.7 Process Name: Sendconfig 

Inpk 
Integer version of current configuration 

outputs 
Integer version of current configuration to Macintosh 

This routine transmits the integer version of the current FTP configuration to the 
Macintosh. 

154 



5.2.2.2.8 Process Name: SendRELog 

Inputs: 

outm 

Reconfiguration log 

Error log entries to Macintosh 

This routine responds to the RE (Display Recodigurations) command. It sends entries 
from the Reconfiguration log to the Macintosh. Rather than sending all enmes currently in 
the log, the routine sends only those entries that have been made since the last time entries 
from the log were sent. For each log entry that is transmitted, the reconfiguration event 
(e.g., power on, disable, enable), the processor, the time and date of the event, and the 
channel(s) involved are transmitted. 

5.2.2.2.9 procesS Name: Mac-Display-IOP 

Current configuration 
Commands from Macintosh 

This task provides a means by which an operator may communicate with the FTP, 
specifically the IOP, via a Macintosh computer. The communication takes place by means 
of an RS232 port, although it is a different port that that used by the terminal display task 
(refer to Section 5.2.2.1.16). Unlike the terminal display tasks, there is only one instance 
of this task, so commands from the Macintosh may come into only one channel at any 
given time. 

This task runs at the lowest priority and executes periodically. However, the periodicity is 
not achieved by using the Scheduler functions, but rather by a delay statement at the end of 
the task's main loop. 

Within its main loop, the task calls the procedure INPUT-WAITING to determine if new 
input has come in from the RS232 port. If it has, the input command is read and an 
appropriate routine is called to process it. If there is no new input, it sends the current 
configuration, date and time to the Macintosh. 

Most of the commands handled by this task are also handled by the Mac-Display-CP task, 
and the routines to process these commands have been described earlier in this section. 
The reader is referred to previous subsections for descriptions of the routines which 
process the ST, FD, and RE commands. 
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5.2.2.2.10 procesS Name: RepairNode 

Inpu&: 
Nodeid 
Portid - 
None 

Description: 

This subroutine processes the RN (Repair Node) command. It reads the node id and port 
id sent from the Macintosh and calls the Restort-Node-or-Link subroutine which is part of 
the I/O Network Manager. (The reader should refer to pp. 64 and 69-70 of "Input/Output 
Network Management Software, May 1988, for further information.) 

5.2.2.2.11 procesS Name: RepairLink 

Inpulx 
Nodeid 
Portid 

This subroutine processes the RL (Repair Link) command. It reads the node id and port id 
sent from the Macintosh and calls the Restore-Node-or-Link subroutine which is part of 
the UO Network Manager. (The reader should refer to pp. 64 and 69-70 of "Input/Output 
Network Management Software, May 1988, for further information.) 

5.2.2.2.12 €"xxssName: Start - -  IO Network - Manager 

Inputs: 
Networkid 

h r n b  
Network manager database 

This routine is called when Al, A2 or A3 (Activate VO Network) commands are received. 
This routine is part of the I/O Network Manager and is discussed in Section 3.1.1 of 
"Input/Output Network Management Software", May 1988. 
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5.2.2.2.13 Process Name: Stop-IONetWorkManager 

Inputs: 
Network id 

outplts 
Network manager database 

This routine is called when D1, D2 or D3 (Deactivate I/O Network) commands are 
received. 

5.2.2.2.14 procesS Name: SendNet 

Inputs: 
Network-Info array 

Network status info to Macintosh 

This procedure responds to N1, N2 and N3 commands, which are used to request a 
complete display of a particular network. Using the Network-Info array, which is 
maintained by the I/O Network Manager, this procedure transmits the status of every node 
and link in the specified network to the Macintosh. 

5.2.2.2.15 Process Name: SendConnectedNet 

Inputs: 
Active-Nets array 

Id of connected network(s) to Macintosh 

This routine responds to the CN (Send Connected Network) command. It sends the id of 
all the networks currently connected to the FlT. 

5.2.3 Status Reporting Process Descriptions 

Status reporting has not been implemented for the centralized AIPS configuration and so is 
not discussed in this section of the document. 
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6.0 LOCALTIMEMANAGER 

Maintaining and disseminating the current time is the responsibility of the Local Time 
Manager, which resides on each GPC. This task maintains the current time by periodically 
updating a software variable to reflect a time consistent across all AIPS sites as well as to 
reflect elapsed time on the local GPC. This task also provides the current time to all 
software processes, including the runtime system. These responsibilities are divided 
between two functions, the Local Timekeeper and the System Timekeeper, as shown in 
Figure 48. 

TIME MANAGER w 
TIMEKEEPER TIMEKEEPER 

Figure 48. Local Time Manager 

6.1 Local Time Manager Functional Requirements and Design 

The Local Timekeeper function of the Local Time Manager is required for both the 
centralized and distributed configurations of AIPS. The System Timekeeper function, 
however, is used only in the distributed configuration, The flow of information through 
these two functions is shown in Figure 49. 

6.1.1 LocalTimekeper 

The Local Timekeeper maintains the current time on each GPC. It updates the current time 
by periodically adding the elapsed time as measured by the hardware timer. If the GPC is 
part of a distributed AIPS configuration, it also updates the current time based on 
calculations made by the System Timekeeper so that the time is consistent across all GPCs 
in the configuration. The Local Timekeeper also provides the current time, either in 24- 
hour clock time, clock ticks or millisecond time, to all software processes that request it. 
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Figure 49. Information Flow through the Local Time Manager 
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The Local Timekeeper has three main components, the Time Database, the Time Database 
Manager and Calendar Extensions, which are shown in Figure 50. 

TIMEKEEPER u 
EXTENSIONS 

I 
I I 

Figure 50. Local Timekeeper Components 

6.1.1.1 'IEmeDatabase 

The Time Database consists of the hardware timer and software data structures used to 
maintain the current time. The hardware timer is located on the shared bus, and the data 
structures are located in shared memory, so the database may be accessed by both the CP 
and IOP. 

The hardware timer is implemented as a 32-bit counter driven by the GPC's fault-tolerant 
clock. Since the fault-tolerant clock signal is generated every 4.125 psec, each tick of the 
hardware timer represents 4.125 pec .  

The following data structures are used to maintain the current time. 

Local-GPC-Time. This record contains the most recent value of the current time as 
computed by the Time Database Manager, along with the value of the hardware timer 
corresponding to that time. This time is represented internally by a record containing the 
year, julian day, and seconds of the day. It is initialized at power on to a default value 
provided by the operating system and is set to an actual &e., external) time and date after 
the GPC has been synchronized. 
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Timer offset. Because the hardware timcr cannot be set to any value other than 0, a 
software variable is required so that the timer may be aligned among unsynchronized 
channels. The offset represents some previous value of the hardware timer and must be 
added to the current timer value to obtain a true timer reading. 

Delta Time. This value is provided by the System Timekeeper. It is used to correct the 
local GPC time so it corresponds to the universal time. 

Average Drift Rate. This value is also provided by the System Timekeeper and reflects the 
extent to which local GPC time is drifting from the universal time. 

6.1.1.2 'LEmeDatdbaseManager 

The Time Database Manager updates the Time Database with the current time and provides 
the current time to any software process, either application or operating system, that 
requests it. Applications typically need the current time relative to the start of the mission 
and to a granularity of seconds, while the runtime system needs the current time relative to 
only an hour ago, but to a granularity of clock ticks or milliseconds. The Time Database 
Manager provides both types of current time; it also provides functions to manipulate clock 
tick and millisecond time such as comparing or differencing two times. 

Updates to the current time (the LocalGPC-Time variable) are made by only one function 
(Update-Local-Time) on only one processor (the IOP). The update is made in such a way 
that no other task or processor can read the variable while it is being updated. After the 
variable has been updated, it is copied to each processor's local RAM, where it is 
referenced whenever the current 24-hour clock time is requested. The variable is read in 
such a way that a task will not be interrupted before the read is completed, this ensures that 
a reading task will always obtain a logically consistent time. 

As seen in Figure 28, the Time Database Manager has four functions: 

Initializing the time and date, i.e., setting the time and date to an initial value at 
power-on; 

Setting the time and date, Le., setting the time and date to some actual (Le., 
external) time and date after the GPC has been initialized and synchronized; 

Updating local GPC time, i.e., using inputs from the hardware timer and the 
System Timekeeper to update the current time; 

Manipulating clock tick and millisecond time, for example, computing the 
difference between two successive values of the hardware timer, or 
comparing two times. 
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6.1.1.2.1 Initialiae’Ih~ 

The Initialize Time routine sets the date segment of the Local-GPC-The record in the 
Time Database to the default initialization value supplied by the operating system. It sets 
the time segment of the Local-GPC-Time record to zero and clears and restarts the 
hardware system timer. Interrupts are disabled and the shared bus locked during this 
update. The InitiaIize-Time routine is called only once by the operating system and on only 
one processor (the IOP). 

6.1.1.2.2 ImmediateSetTimeandDate 

The Set Time and Set Date routines set the time and date segments, respectively, of the 
Local-GPC-Time record to the values supplied by the caller. Interrupts are disabled and 
the shared bus locked during this update. The Set-Time and Set-Date routines are also 
invoked by the System Timekeeper function. They are executed on only one pmcessor (the 
IOP). 

6.1.1.2.3 Update Local Tim 

The current time is updated by adding to it the time elapsed since the current time was last 
computed. The elapsed time is computed by finding the difference between the value of the 
hardware timer when the current time was last updated and its current value. The 
computation of current time is summarized as follows: 

Local-GPC-Time = Local-GPC-Time + (current-timer-value - old-timer-value) 

Because the time is stored in shared memory and because the time may be requested by a 
user (via the Ada CALENDAR.CLOCK function) at an unpredictable frequency, thus 
incurring a potentially large overhead in shared memory access time, the calculation of 
current GPC time is divided into two phases. In the first phase, one processor (the IOP) 
computes Local-GPC-Time once a second and stores it in the Time Database. A copy of 
Local-GPC-Time is also saved in the processor’s local memory. In the other processor, 
Local-GPC-Time is not calculated, but only copied from shared to local memory, also 
once a second. LocalGPC-Time is thus maintained in shared memory to within one 
second of the actual time. In the second phase, requests for the precise current time, which 
are made by calling the Ada CALENDAR.CLOCK routine, are satisfied by computing the 
actual time as above using the locally maintained copies of Local-GPC-Time. In this 
manner the overhead of accessing shared memory is reduced, and the cost of computing the 
precise time is incurred only by those routines which request it. 

The Update-Local-Time routine must correctly account for the rollover of the hardware 
timer. It must also correctly account for the rollover of the 24-hour time values, such as 
seconds at the end of the day and julian days at the end of the year. The CLOCK routine in 
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the Ada CALENDAR package must also account for rollover when computing exact time 
on demand. 

In the Distributed AIPS system, the Updatc~Local-Timc routine must occasionally adjust 
the value of the time to account for hardware timer drift among the local GPCs. A value to 
be used to modify accordingly the result of the above time computation is maintained in the 
Time Database by the AdjustTime routine of the System Timekeeping function. 

6.1.1.2.4 Time Utilities 

The Time Database Manager also contains a number of auxiliary functions to provide time 
services to the operating system. These include (1) an align timer function which is called 
by the Lost Soul Sync task in order to update the timer offset variable and then clear and 
restart the hardware timer, (2) a function to access the hardware timec and (3) functions to 
provide the current time directly from the hardware timer (either in clock ticks or in clock 
ticks converted to milliseconds) and functions to add and compare time presented in this 
format. These functions are required for operating system scheduling services. 

6.1.1.3 Calendar Extensions 

Calendar Extensions provide the standard time functions specified in the Ada Language 
Reference Manual along with additional functions that allow A P S  application users to 
manipulate or examine time in additional ways. The Ada-supplied package CALENDAR 
(cf., MIL-STD-l815A, Section 9.6) includes the standard function CLOCK, which 
returns the current 24-hour time. Other functions extract the year, month, day, and sec- 
onds, as specified in the ADA Language Reference Manual. 

The CLOCK function enables any application to obtain the current 24-hour time, which is 
computed in the following manner: 

time = old-time + (current-timer-value - old-timer-value) 

where time is calculated by adding the amount of time elapsed since time was last updated 
(old-time). The elapsed time is computed by figuring the difference between the current 
value of the hardware timer and its value when the time record was last updated. 

The CLOCK routine must correctly account for the rollover of the hardware timer. It must 
also correctly account for the rollover of the internal time values, such as seconds at the end 
of the day and julian days at the end of the year. 

The Calendar package implemented for AIPS includes additional functions that are not 
predefined by Ada, such as a function to determine the julian day number of the current day 
and a function to convert a variable of julian date type to a variable of the private type time. 
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6.1.2 SystemTimekeeper 

The System Timekeeper function is part the distributed A I P S  configuration, but not part of 
the centralized configuration. Therefore, none of the System Timekeeper software has been 
implemented in the engineering model of the AJPS centralized configuration. The System 
Timekeeper function resides on one processor (either the CP or the IOP) at each processing 
site. It ensures that the Time Database on the local site has a time that is consistent with that 
of the universal time source. The System Time Manager, which is part of the System 
Manager software, resides on one GPC which has been designated as the universal time 
source, and periodically broadcasts the universal time. The System Timekeeper receives this 
universal time. The initial broadcast is used to set the GPC's local time. Subsequent 
broadcasts are used to adjust the GPC's local time to account for drift between the local GPC 
and the universal time source. The subsequent broadcasts are also used to monitor the 
universal time being broadcast for the Occurrence of large differences between it and the local 
time. 

If the System Time Manager is co-resident on the GPC, the function of System Timekeeper 
depends on the time source used by the System Time Manager. If the time source is local, 
i.e. the timer hardware resident on the GPC, then the System Timekeeper function is not 
invoked since no adjustment is necessary for consistency. Initialization of the time data is 
done in the same manner as in the centralized AIPS, i.e., by an operator or some other 
external source. If the time source is remote, then the System Timekeeper is invoked, but it 
receives the time data from the source via an external interface rather than the intercomputer 
network. The System Time Manager then uses the local copy of the adjusted system time for 
its periodic broadcast. 

Figure 51 shows the functions of the System Timekeeper. 

SYSTEM 
TIMEKEEPER 

Figure 51. System Timekeeper 
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6.13.1 Remde Set Local Time Data 

This process sets time to a value based on the time data received in the initial broadcast from 
the System Time Manager and the time stamps appended by Inter-Computer System 
Services. The algorithm that calculates the c o m t  time values to initially set and synchronize 
the local time with the universal time some is described below. 

There are two main values to be considered: (1) the initial time (designated with a subscript 
0) when the System Time Manager reads the system time source for broadcast and (2) the 
current time (designated with subscript 1) in the local GPC to be determined. In the 
following, time quantities in the local GPC are shown with a prime (7, while quantities in the 
global GPC are shown without the prime. Actual values are shown in upper case and 
estimates are shown in lower case. The problem is to find a value for timel', where timel' is 
the new time estimate in the local GPC that is required, so that: 

lTIME1- TIME1'15 E 

where TIME1 is the current time in the global GPC, 

and E is a time skew less than one millisecond. 
TIME1' is the current time in the local GPC, 

To estimate TIME1' in the local GPC, one must estimate TIME1. TIME1 can be estimated as 
follows: 

(1) time1 = m + D L B + D L X + D L A  

where is the time read for broadcast in the global GPC, 
is the delay before transmission in the global GPC, 

is the delay after reception in the local GPC. 

DLB 
DLX is the transmission delay, 
DLA and 

DLX will be estimated as a fixed constant (it is expected to be less than 20 microseconds). 
The other quantities can be calculated from the time broadcast as follows. Set-Time-Data 
includes the following: 

- the time read for broadcast in the global GPC, 
- the transmit time stamp (the time of transmission set 

- the receive time stamp (the time of reception set by 

TIME0 
TTS 

and RTS 
by the global GPC), 

the local GPC). 

From these values, one can determine: 

Using CALENDAR.CLOCK one can obtain the following: 
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=now' - the current time while processing the time q u e s t  in 
the local GPC. 

From this value, one can detexmine: 

The quantities from equations (2) and (3) are substituted into (1) to find b e l ' .  It is assumed 
that time1 is equal to timer' within one millisecond. 

After timel' has been determined the local copy of universal time source is set by invoking 
the Local Timekeeper routine, Immediate Set Time and Date. 

6.1.2.2 Adjust Local Time Data 

This process is responsible for adjusting the local copy of the universal time source based on 
the periodic time broadcast from the System Time Manager and the time stamps appended by 
Inter-Computer System Service. The adjustment value is used to maintain a consistent time 
value throughout the AIPS. The following is a description of the algorithm that calculates the 
adjustment value, Delta Time, that is used to dedrift the local copy of the universal time 
source. 

First, the Average Drift Rate is calculated as a moving average of some number 
(Drift-Readings) of the most recently measured values for the instantaneous Drift-Rate: 

N 

i = l  
<DR> = (l/N) DRi 

where <DR> is the Average-Drift-Rate, 

and DRi is the i* instantaneous Mt-Rate.  
N is the number (Drift-Readings) of readings included, 

The method for calculating the instantaneous Drift Rate is as follows. Each time the time 
broadcast occurs and the time data is received, a value is calculated for Delta Time, the 
correction needed so the time in the local GFC agrees with the broadcast system time. 

If the time has not been dedrifted (by Update Local Time) since the last time broadcast, then: 

(2a) DR = @ELOW - DELprlor) / CrrrvlEnow - TIMEprior) 

where DR is the instantaneous Drift-Rate, 
D E h w  

Rig', is the current time, 

is the current value for Delta-Time, 
is the previous value for Delta-Time, 

and is the previous time. 
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If the time has been dedriftd since the last time broadcast, then: 

where is the last Dedr&Tk, 
and the other quantities are as above. 

The method for calculating Delta-Time based on the time data broadcast is as follows. There 
are two main values to be considered: (1) the time (designated with a zero subscript) when 
the System Time Manager reads the system time source for broadcast, and (2) the current 
time (designated with a one subscript) when Delta-Time is to be determined. In the 
following, time quantities in the local GPC are shown with a prime (I), while quantities in the 
global GPC are unprimed. The problem is to find a value for DEL, where DEL is the 
correction to time in the local GPC that is needed, so that: 

where TIME1 
TIME1' 

is the current time in the global GPC, 
is the current time in the local GPC, 

E is a time skew less than one millisecond. 

To estimate DEL in the local GPC, one must estimate TIME1, and measure TIMEl', then: 

(3) DEL = time1 -TIME1' 

where time1 is an estimate of TIME1. 

TIME1 can be estimated as follows: 

where 
DtB 
DLX is the transmission delay, 

and DLA 

is the time read for broadcast in the global GPC, 
is the delay before transmission in the global GPC, 

is the delay after reception in the local GPC. 

DLX will be estimated as a fixed constant (it is expected to be less than 20 milliseconds). 
The other quantities can be calculated from the time broadcast as follows: 

- the time read for broadcast in the global GPC 
- the transmit time stamp, lTS 

and RTS - the receive time stamp. 

From these values, one can determine: 

( 5 )  DLB = TI'S - 
Using CALENDAR.CLOCK, one can obtain the following: 
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TIME1' - the current time in the local GPC. 

From this value, one can determine: 

(6) DLA = TIMEl'-RTS 

The quantities from equations (5)  and (6) are substituted into (3) and (4) to find DEL. The 
current value for DEL is then substituted into (2) to find DR, and that is in turn substituted 
into equation (1) to find the moving average, ab. 

These values are stored as part of the system time database. The Local Timekeeper function, 
Update Local Time, uses the Delta-Time value to dedrift the local copy of the universal time 
source, thus maintaining a consistent time. 

6.1.2.3 Monitor Time Data 

This process monitors the drift between the broadcast time data and local time data. If the 
time drift is large enough to indicate errors, this timer drift error is reported to the System 
Time Manager. 

6.2 Local Time Manager Software Specifications 

6.2.1 Local Timekeeper hocess Descriptions 

6.2.1.1 Time Database Manager Procesr Descriptions 

6.2.1.1.1 PmcesName: INlT - TIME 

Inputs: 
Year, Julian Date, Time of day (in seconds) 

The Local-GPC-Time in the System Time Database is initialized to the supplied date and 
time. This routine is invoked at power-on by only one processor (the IOP). The date is set 
to January 1, 1901. Interrupts are disabled and the shared bus is locked while 
LocalGPC-Time is being modified. 

169 



6.2.1.1.2 procesSName: SET - DATE 

Inpds: 
Year, Julian Date or 
Year, Month, Day - 
None 

The date portion of the Local-GPC-Time in the System Time Database is set to the 
supplied date. Interrupts are disabled and the shared bus is locked while Local-GPCTime 
is being modified. This routine is restricted to one processor (the IOP). 

6.2.1.1.3 pI.ocessName: SET_TIME 

Inputs: 
Time of day (in seconds) 

u 
None 

The time portion LocalGPC-Time in the System Time Database is set to the supplied time. 
Interrupts are disabled and the shared bus is locked while LocalGPC-Time is being 
modified. This routine is restricted to one processor (CP or IOP). 
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6.2.1.1.4 pI.ocersName: UPDATE_LOCAL - TIME 

Inputs: 
Cment-timer-valuefrom the system timer 
System-Time-Database 

0 Local-GPC-Time to CP and IOP 
u 

The LocalGPC-Time in the System Time Database is updated by the routine 
Update-Local-Time. In the IOP, the current time is computed according to the 
expression: 

LocalGPC-Time = LocalGPC-Time + (current-timer-value - old-timer-value) 

where time is calculated by adding the old time (the time of the last time update) and the 
difference between the current timer value and the old timer value (the system timer value of 
the last time update). It is then stored along with the current timer value in the System Time 
Database in shared memory. A copy of the data is preserved in local memory for use by 
the Ada CALENDAR.CLOCK function. In the CP, the current time is not calculated, but 
local copies are made of the values of the Local-GPC-Time and current timer which are in 
shared memory . When the current time is requested by an application via the CLOCK 
function as defined in the Ada CALENDAR package, routines local to both the CP and 
IOP compute the current time according to the above algorithm, using the locally stored 
copies of LocalGPC-Time and Old-Timer-Value. In this manner, the overhead of 
storing the current time in shared memory is reduced to the periodicity of the 
Update-Local-Time (no more frequently than once per second), while the overhead of 
computing the exact current time is incurred only by those routines which call CLOCK on 
demand. 
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6.2.1.1.5 Time Utilities 

The following routines provide access to the GPC hardware timer. The timer is 
implemented as a 32-bit counter register driven by the GPC's fault-tolerant clock. The 
fault-tolerant clock signal is generated every 4.125 psec. therefore, each tick of the 
hardware timer represents 4.125 psec. Due to hardware limitations (specifically, the 
hardware timer cannot be set to any value other than zero), it is necessary to maintain a 32- 
bit offset value, which is added to the value of the hardware timer to give the actual current 
time value. 

6.2.1.1.5.1 Prows Name: ALIGN-TIME 

Inputs: 
None 

outplts: 
None 

The system timer offset is updated with the sum of the current value of the system timer 
offset and the value of the GPC hardware timer. The hardware timer is then cleared and 
restarted. Due to hardware limitations (specifically, the timer register cannot be set to any 
value other than zero), it is necessary to maintain a 32-bit offset value which is added to the 
value of the timer register to give the actual time value. By saving the current time value in 
the system timer offset and clearing the hardware register, the invoking routine is able to 
align the the GPC time by aligning only the timer offset which can be set to the appropriate 
value. It is assumed that interrupts have been disabled by the invoking routine. This 
routine is called only by Lost Soul Synch when recovering a channel. 

6.2.1.1.5.2 procesSName: READTIMERANDOFFSET 

Inputs: 
None 

Time duration (in seconds) 

The GPC hardware timer is read and added to the value of the system timer offset. The 
result (in seconds) is returned to the caller. Due to hardware limitations (specifically, the 
timer register cannot be set to any value other than zero), it is necessary to maintain a 32-bit 

172 



offset value which is added to the value of the timer register to give the actual time value. 
This function may be called indirectly by an application routine via the CLOCK function of 
the Ada CALENDAR package, and may therefore be invoked with interrupts enabled. It 
would then be possible for the system timer offset to be aligned while the GPC hardware 
timer was being read, resulting in an unmatched set of values; to insure against this 
possibility, the offset is read, the hardware timer is read, and the offset is read once again. 
If the two values of the offset agree, a consistent set of values has been obtained, if not, the 
procedure is repeated. The resulting time value (in 4.125 psec. clock tick units) is 
multiplied by 4.125e-6 to convert it to seconds and is returned to the caller. 

6.2.1.1.5.3 procesSName: Ms_TIME 

Inputs: 
Time(inseconds) 

bw 
Time (in milliseconds) 

Desaiption: 

The specified time in seconds is converted to milliseconds. This routine is needed to 
convert a time value of the Ada fixed point type DURATION to the integer derived type 
MSTIME-T which is used by the Operating System to manipulate values expressed in 
milliseconds. 

6.2.1.1.5.4 procesS Name: MS-ADD 

Inputx 
Time1 , Time2 (in milliseconds) 

ouw 
Time (in milliseconds) 

Description: 

The sum of the input values, modulo the maximum value of the GPC hardware timer, is 
returned. The maximum value of the hardware timer is 2**31 * 4.125e-6 sec. 
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6.2.1.1.5.5 pI.ocessName: MS-DIFFERENCE 

hputs: 
Timel, Time2 (in milliseconds) 

WJ- 
Time(inmilliseconds) 

The difference of the input values, modulo the maximum value of the GPC hardware timer, 
is returned. The maximum value of the hardware timer is 2**31 * 4.125e-6 sec. If Time1 
is before Time2, the difference is returned. If Timel is later than Time2, zero is returned. 
For efficiency, this routine is implemented so as to avoid the use of divide instructions. 

6.2.1.1.5.6 procesSName: MS - CLOCK 

Inputs 
None 

u 
Time (in milliseconds) 

The value of the GPC timer, converted to milliseconds, is returned. The GPC time in 
seconds is determined using the Read-Timer-and-Offset function (6.1.1.5.2), converted 
to milliseconds using MS-Time (6.1.1.5.3), and returned to the caller. 
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6.2.1.2 CALENDAR Extensions procesS Descriptions 

6.2.1.2.1 pI.ocess Name: CLOCK 

Inputs: 
None - 
Current Time 

The local GPC time is periodically updated by the routine Updak-Lmal-Time. This time is 
maintained in the LocalGPC-Time data structure in the System Time Database. A local 
copy of this data is also preserved by both the CP and IOP at the time of update. When the 
current time is requested by an application via the CALENDAR.CLOCK function, the 
current time is calculated according to the expression 

time = LocalGPC-Time + (current-timer-value - old-timer-value) 

using the locally stored copies of Local-GPC-Time and Old-Timer-Value. In this 
manner, the overhead of storing the current time in shared memory is reduced to the 
periodicity of the Update-Timer-Routine, while the overhead of computing the exact 
current time is incurred only by those routines which call CLOCK on demand. 

Since the local copy of the Local-GPC-Time data structure consists of several data values, 
a single move-multiple machine instruction is used to read these values into registers in 
order to insure consistency of the data without disabling interrupts. 

6.2.1.2.2 PmcessName: JULIAN - DATE 

Inputs: 
Current Time 

outplts: 
Julian Date 

The Julian date corresponding to the supplied time is returned to the caller. This function is 
necessary since the Julian date is a component of the Ada private type TIME and cannot be 
accessed directly. 
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6.2.1.2.3 PmesName: TIME - OF 
Inputs: 

Year, Julian Date, Time of Day (in seconds) 

The supplied date (expressed in terms of the Julian day instead of the month and day as 
defined in the standard Ada package CALENDAR) and time are converted to the Ada 
private type TIME. This function is necessary since the input values are components of the 
Ada private type TIME and cannot be assigned directly. 

6.2.2 System Timekeeper procesS Descriptions 

The System Timekeeper has not been implemented for the centralized AIPS configuration 
and therefore is not discussed in this section of the document. 
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7.0 CONCLUSIONS AND RECOMMENDATIONS 

Local System Services for a centralized configuration of the AIPS engineering model have 
been designed, implemented and tested. This software provides the redundancy 
management and operating system support for the core GPC. The responsibilities of this 
software include initialization of the GPC hardware and software, task execution and 
memory management, intertask communication, detection and isolation of hardware faults 
in the core GPC, collection and dissemination of local GFC status, and management and 
dissemination of the system time. 

Additional functions of Local Systems Services required for a distributed AIPS 
configuration are presently in the design phase. These functions, including GPC Resource 
Allocation, Status Reporting, and System Timekeeping, will be documented when the 
distributed AIPS software is completed. 

The Local System Services software is composed of 25,935 lines of Ada source code, 
which includes 11,150 Ada statements and comments. When compiled and linked into an 
executable module, this code (which includes instructions and global variables) requires 
354,380 bytes of FTP memory. 

7.1 Testing of Local System Services Software 

Preliminary testing of Local System Services software was done by forcing hardware faults 
and by executing modified software that generated artificial error conditions. An 
unsynchronized channel, for example, could be caused by resetting a processor or turning 
off a channel's power. An interstage failure could be caused by flipping a specially 
constructed switch that grounded the interstage's power supply. The software that 
analyzed data exchange link failures, on the other hand, was tested by executing a modified 
version that selectively changed the values read from the error latches to values which 
represented a fault condition. Similarly, error analysis paths in the background selftests 
were exercised by modifying the results of selected tests to make it appear that a fault had 
occurred. The results of these preliminary tests were monitored by setting breakpoints, 
using the display routines described in Section 4.2.4.1, and using the debug log described 
in Section 4.2.4.2. The software correctly identified the fault and reconfigured the FJT in 
all tests. 

Some performance metrics were gathered using both oscilloscopes and the debug log to 
make time measurements. Operating system overhead and FDIR overhead were measured, 
and the results are summarized in Figure 52. Since the FDIR tasks are periodic, their 
numbers represent the time required for each iteration. 

Extensive systematic testing of the GPC hardware for performance and reliability under 
fault-free and degraded conditions remains to be done. A hardware fault injector will be 
used for much of this testing. 
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CP FDIR (no fault conditions) 

IOP FDIR (no fault conditions) 

Regular Ada Delay 
Scheduling 
Dispatch 

Modified Ada Delay 
Scheduling 
Dispatch 

Simple Ada rendezvous 
Return Again 

Timer Dispatch 

Context switch 

Local Event Dispatch 

Remote Task (Event) Dispatch 
Signal (one CPU) 
Dispatch (Other CPU) 
Total (some overlap) 

Shared Memory Protected Access 
Access (one CPU) 
Rupt handler (Other CPU) 

2150 ps 

1800 ps 

11.8 mSec 
1200 ps 

1300 ps 
1200 ps 

500 ps 

2100 ps 

1300 ps 

480 ps 

lo00 ps 

360 ps 
1100 ps 
1300 ps 

650 ps 
300 ps 

Figure 52. FDIR and Operating System Overhead Measurements 

7.2 Futurework 

There are several areas of design and validation for the AIPS Fault Tolerant Processor that 
remain to be addressed in the AIPS program. These include: 

channel resynchronization after a transient fault or repair event, 
differentiation between transient and intermittent faults, 
additional monitor interlock functionality and fault detection, 
fault identification in a duplex FI’P, and 
additional protection against common mode faults, i.e., faults that affect more 
than one fault containment region simultaneously. 
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7.2.1 Channel ResynchronizatiOn 

After a transient fault or repair event, it is necessary to bring the previously faulty channel 
back into synchronism with the others. To assure identical states, the redundant channels 
must be synchronized to the instruction level and must have identical values for all volatile 
hardware control registers, memory and processor registers. 

As discussed in Section 4.2.2.2.4, the synchronization of channels to the instruction level 
is done by an assembly language routine that makes use of the data exchange hardware and 
fault tolerant clock. In the current implementation, the instructions executed in this routine 
must take a known number of fault-tolerant clock cycles to be able to synchronize divergent 
channels. The routine is dependent on the instruction fetch and execution time of the 
particular microprocessor being used. A way must be found to implement the 
synchronization routine so that it is independent of the microprocessor instruction times. 
An algorithm must be developed which can also be rigorously proven to be correct. 

A second problem with channel synchronization involves the time required to give all 
channels identical values for their volatile registers and memory, i.e., to 'align' them. 
Since AIPS software is very sophisticated and complex, it requires a large amount of 
memory for static and local variables. Because alignment is accomplished by transferring 
all values through the data exchange one 32-bit word at a time at a basic rate of 15 ~ s e c  per 
word, and because the entire synchronization process must run uninterrupted, the 
alignment process takes an unacceptably long time. Critical application tasks m i s s  too 
many cycles. The resynchronization process cannot be omitted because it allows a GPC to 
sustain more than one fault, thus providing greater reliability. 

Several alternatives can be explored to speed up alignment such as an alternative data 
transfer mechanism (not the present data exchange hardware) or by partitioning memory 
and only bringing back the critical application task first, or using a hardware memory 
consistency checker whose purpose is to identify sections of memory which have changed 
and need to be realigned. The performance and reliability of new fast realignment 
techniques can then be modeled. 

7.2.2 Differentiation Between T d e n t  and Intermittent Faults 

When recovering a failed channel, system resources are used most efficiently if a 
distinction is made between transient failures and hard failures. The current design for 
making this distinction was previously described in Section 4.1.2.1. This design does not 
account completely, however, for intermittent faults, i.e., hard faults which occur 
sporadically. The probation concept used in this design will catch intermittent faults which 
occur at brief intervals (that is, within the probation period) but will not detect intermittent 
faults which occur at longer intervals (e.g., once every 10 minutes). 
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Two main areas need to be studied in this regard: (1) how do we distinguish between 
transient and intermittent faults, and (2) how do we treat the intermittent fault once it has 
been identified. 

Intermittent faults may be identified by the periodicity and frequency of their occurrence. 
For example, a fault occuning once an hour may be arbitrarily designated as transient while 
one occurring once a minute would be designated as intermittent. History records could be 
kept, so that a fault which recurred three times within 24 hours might be designated as 
transient while one which recurred 100 times within this period would be designated as 
intermittent. 

The second area to be studied concerns how an intermittent fault should be treated When 
a fault is intermittent, is the reliability of the system greater if the channel is taken off line 
(leaving a less robust GPC) or if the channel is allowed to continue (with the chance of the 
intermittent fault occurring at the same time as a second fault)? At what point does 
continually recovering an intermittently faulty channel use more system resources than the 
additional reliability warrants? 

We need to study the relative frequency of transient, intermittent and hard faults. The 
results of the study will be used to createhpdate Markov models of the AIPS system to 
include the effects of transient and intermittent faults as well as hard faults. Sensitivity 
analysis on these models can be performed by varying parameters such as the frequency of 
an intermittent fault. The results of this analysis will be used to improve the transient 
analysis algorithm to calculate the appropriate thresholds to use for the transient fault 
analysis. At present those parameters are guesses. 

7.2.3 Additional Monitor Interlodc Functionality and Fault Detedbn 

At present, the engage/disengage function of the hardware Monitor Interlock is used to 
disengage or engage a channel's outputs and the watchdog timer function is used to reset a 
runaway processor. The Monitor Interlock also has a lock feature which provides more 
stringent control than does the engage mechanism. Once a faulty channel is locked by the 
other two channels, it cannot be reset other than by operator intervention. The channel 
remains locked even if the system is restarted or the power is cycled. This feature is not 
used presently. A study needs to be done to determine how the use of this feature will 
affect the reliability of the system and to determine what situations would require using the 
lock. 

A reliable method for detecting latent faults in the monitor interlock is also needed. The 
monitor interlock is presently tested by comparing the three channels' discrete values. This 
does not effectively test the hardware, but extensive selftest of this hardware may not be 
possible in real time. To allow selftests of this hardware in real time, a complicated scheme 
requiring additional hardware and software must be developed to disengage the entire FTP 
from the rest of the system. A selftest needs to be developed that will thoroughly test the 
monitor interlock at preflight and a subset of this test could perhaps be added to the runtime 
selftes ts. 
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7.2.4 Duplex FTP Fault Isolation and ReconfigUration 
According to fault tolerance principles, a quadruply redundant FTP can sustain two faults 
and detect a third, while a triply redundant FI'P can sustain one fault and detect a second 
with 100% coverage. If a fault occurs in a duplex FI'P, the failure can be detected with 
100% coverage but cannot be isolated to one one of the two channels with high coverage. 
The present redundancy management algorithm simply goes to a fail-safe state by 
disengaging both channels. However, for those applications where it is not possible to 
downmode to a fail-safe mode because continued opemtion is absolutely essential, some 
attempt must be made to isolate the fault, albeit at less than 100% coverage. 

There are several hardware features that can be used to develop the desired isolation 
algorithm. In particular, since the monitor interlock engage/disengage and watchdog timer 
discretes are available to all channels via point to point connections, these discretes can be 
accessed even if the channels are not in sync. A lone channel could perform self tests to 
determine if it was the faulty member of the duplex. If it fails the tests it could disengage 
itself. If it passes, it would check if the other channel was disengaged. (The coverage of 
this action is the coverage that can be obtained by selftests running on a simplex 
processor.) The other channel being disengaged would indicate that that channel was faulty 
and the lone channel would be able to continue as a simplex. Other algorithms to allow a 
duplex to degrade to an operational simplex need to be studied. 

7.2.5 Common Mode Fault Protection 

At present Local System Services provides a restartheinitialization of the FTP as a 
protection for common mode faults, i.e., faults that affect more than one fault containment 
region simultaneously or almost simultaneously. Since all the manifestations or the emrs 
generated from common mode faults are not known, the restart only protects the FI'P when 
the error symptoms are the following: hardware exception, operating system software 
exception, desynchronization of channels, or watchdog timer reset. 

Further work needs to be done to identify and categorize other potential sources of common 
mode faults and potential errors generated by those faults. Additional fault avoidance 
techniques such as proof-of-correctness and alternative recovery techniques such as 
function migration, software watchdog timers and multiversion software should be studied 
for practicality and effectiveness. 
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