View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by NASA Technical Reports Server

N89-21754
’ 1988

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER
THE UNIVERSITY OF ALABAMA

SOFTWARE SYSTEM SAFETY

Prepared by: James G. Uber
Academic Rank: Assistant Professor
University and Department: The University of Alabama in

Huntsville;
Department of Mechanical

Engineering
NASA/MSFC:
Laboratory: Safety, Reliability,
Maintainability and Quality
Assurance
. Division: Systems Safety Englneerlng
Branch: Hazard Analysis
MSFC Colleague: Dewey B. Channell
Date: , August 26, 198§
Contract No.: NGT 01-002-099

The University of Alabama

XXVIII

https://core.ac.uk/display/42828447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BOFTWARE SYSTEM SAFETY

by

James G. Uber
Assistant Professor of Civil Engineering
The University of Alabama in Huntsville
Huntsville, Alabama

Abstract

Software itself is not hazardous, but since software and
hardware share common interfaces there is an opportunity for
software to create hazards. Further, these software systems
are complex, and proven methods for the design, analysis, and
measurement of software safety are not yet available. This

" report reviews some past software failures, future NASA
software trends, software engineering methods, and tools and
techniques for various software safety analyses.
Recommendations to NASA SRM&QA are made based on this review.

XXVIII-i

ACKNOWLEDGEMENTS

I wish to thank the many engineers in the SRM&QA Systems
Safety Division who made my stay enjoyable and who shared
their thoughts and concerns about software and systems safety.
Also, it was Mike Freeman and Gerald Karr who introduced me
to members of the SRM&QA organization and thus made this work
possible. The financial assistance provided by the NASA/ASEE
summer faculty fellowship program is acknowledged.

XXVIII-ii

1. INTRODUCTION

Complex software systems are often required for real-time
control and monitoring of aerospace systems hardware. The
NASA Space Shuttle software, for example, consists of some ten
million lines of computer code that control and monitor
hardware on the ground and in the air; the Shuttle could not
fly without it. Since software and hardware share common
interfaces, there are opportunities for software to create
hazards. This linkage has historically been ignored, however,
in formal analyses of system safety.

This report examines some approaches for identifying and
eliminating or controlling software hazards. In order to
appreciate the software safety problem, however, it is
necessary to understand something about software development
practices, the characteristics of software and software
errors, and "the reasons why things are the way they are."
Accordingly, much of the report text is devoted to these
preliminary issues in preparation for a later discussion of
software safety and software safety analysis methods.

Section three provides the motivation for continuing on
into the rest of the report. This motivation is provided by
discussions of software development "horror stories," future
trends in NASA software control systems development, and the
value of implementing software safety programs. The next
section discusses the current state of software engineering,
some reasons for the current situation, and some modern
approaches to software development. Section five considers
the software safety problem and some solutions, and section
six presents recommendations for addressing present and future
software safety problems.

XXVIII-1

2. Objectives

The objectives of this study are to explore the breadth
and depth of the software system safety problem, and to
recommend SRM&QA actions that can reduce the present and
future hazards posed by software.

XXVIII-2

3. MOTIVATION
3.1. 8tatistics and Failures

Does the Federal Government get what it pays for?
Perhaps not, at least when it comes to software development.
A decade-old study of the software costs associated with nine
federal projects depicts software procurement as a monetary
black hole [Neumann, 1985]. Of software expenditures
totalling $6.8 million, 95% ($6.5 million) was wasted on
software that either was delivered but never used (47%), paid
for but never delivered (29%), or abandoned or reworked (19%).
Less than 2% of the software expenditures yielded software
that was used as delivered. These statistics reflect the
inherent difficulty of large-scale software management and
development, although improvements in software engineering
practice may produce more impressive results if a similar
study were conducted today.

Problems with real-time control software may be subtle
and remain innocuous until the worst possible moment. These
problems can also survive supposedly rigorous testing
procedures. A good example of such a software problem is the
"bug" that delayed the first shuttle orbital flight on April
10, 1981. The bug was discovered when, twenty minutes prior
to scheduled launch, the backup flight control system (BFS)
failed to initialize when commanded. Curiously, it turned out
that the bug was not in the BFS, but was in the primary
avionics software system (PASS), and had gone undetected for
over a year. John Garman, who at the time was Deputy Chief
of the Spacecraft Software Division at JSC, gives a detailed
account of the discovery and correction of the bug [Garman,
1981]; some of the details of this very intricate and subtle
problem are given below.

There are five general purpose computers (GPC’s) onboard
the Shuttle. These five independent machines combined with
the PASS and BFS provide two different types of redundancy to
guard against two different types of failures. The PASS
executes on four of the GPC’s and provides for full
operational capability after the failure of one GPC and a safe
return capability after the failure of a second. Note,
however, that this redundancy provides protection only against
hardware failures. Potential hazards from software design and
implementation errors are not controlled since the identical
PASS executes on all four machines simultaneously; a single
software error (i.e. a common mode failure) could "crash" all
four GPC’s and, in Garman’s words, convert "... the Orbiter
to an inert mass of tiles, wires, and airframe..." From this

XXVIII-3

realization came the idea to include a fifth GPC, which would
execute a functionally equivalent but separately designed and
implemented flight control system, the BFS. It was (or is)
believed that this "software redundancy" would contribute to
the overall safety and reliability of the flight software
system.

In its standby mode, the BFS operates by "listening" to
the sensor inputs and some of the outputs from the PASS. Thus
the BFS 1is constantly aware of the current state of the
Orbiter and ready to "take over" when necessary (a crew
decision). The BFS must stop 1listening, however, if it
detects an inconsistency in the PASS’s data processing, so
that the integrity of the BFS can not be compromised by a
failure in the PASS (a separation of failure modes). On the
day of the bug incident, the BFS was tricked into believing
that the PASS was compromising its data, and so properly
refused to initialize (i.e. start listening to the PASS). The
BFS was tricked because the BFS processes (processes can be
thought of as individual tasks or programs) and some, but not
all, of the PASS processes were out of phase with other PASS
processes that were responsible for the "polling" of data from
sensors. Thus the BFS regarded all the information from the
sensors as garbage. This out-of-phase condition occured
because the BFS processes and some, but not all, of the PASS
processes were scheduled based on a cycle counter, while the
remaining PASS processes were scheduled based on a separate
calculated startup time.? The problem was that this
calculated startup time appeared, to the computer, to be in
the past because it was compared to a value in a supposedly
empty timer queue that unfortunately was not empty. The
computer let the "past" start time "slip" into the future (as
would an alarm clock set to go off an hour ago) and hence the
out-of-phase condition. The gqueue was not really empty

! This is debatable, even among the system developers. The BFS adds significant complexity to
the system (as will be discussed), and in fact the present failure was an indirect result of the BFS
implementation. Further, this "software redundancy" concept is essentially like the "N-version"
approach to achieving software reliability, which has its detractors. Both rely on the assumption that
software design and implementation errors for functionally equivalent but independently developed
systems are in fact independent; this assumption may not be justified, as discussed in a later section.
In any case, the debate should not center on whether or not the development of the BFS system improved
reliability and safety. The debate should instead center on whether the costs of BFS development would
have been better spent elsewhere, e.g. on further design and testing of the PASS. One wonders to what
extent development of the BFS was motivated by uncertainty about the trustworthiness of the PASS, or
by an ability to "point the finger" in the case of a disaster involving flight software. As Garman
says, "(because of the presence of the BFS) almost everyone involved in the PASS-side ’feels’ a lot
more comfortable!™

Zlf you find this incredibly complex and confusing, don’t worry - it is. The point here is not
to try to understand all the detail, but rather to appreciate the subtlety and complexity of problems
that can and do occur in real-time control system software. To me, the PASS/BFS design sounds like
an SRMRQA nightmare.

XXVIII-4

because an isolated data initialization process put a "delay"
value in the timer queue that specified when to start the
initialization routine. This delay was initially small and
did not produce any unwanted side effects. But late in the
system development, about one year prior to 1launch, this
isolated value, a single "constant in the code," was increased
to a value large enough so that the out-of-phase condition was
possible (the value was increased because of a totally
unrelated problem, and by this time much of the system testing
and integration had been completed). It is significant that
much of the problem stemed from a basic incompatibility
between the BFS and the PASS; the PASS is an asynchronous
system (i.e. a priority interrupt system) while the BFS is a
synchronous system. The PASS system had to be made to "look
synchronous”" to the BFS, but the emulated synchronism was
implemented unevenly (only in "critical" processes), and so
the possibility arose for processes to become out-of-phase.

The bug that delayed the initial orbital launch of the
Space Shuttle is one particularly well documented example of
the types of problems that can occur in real-time software.
As shown, problems can be caused by seemingly inconsequential
changes to seemingly unrelated code segments. Note also that
the timing of events is important, yet the timing constraints
that must be satisfied for safe operation may be unknown or
unclear. The following statéement by Garman is appropriate:

"Tt is complexity of design and process that got us
(and Murphy’s Law!). Complexity in the sense that
we, the ’software industry’ are still naive and
forge into large systems such as this (the Shuttle)
with too 1little computer, budget, schedule, and
definition of the software role. We do it because
these systems won’t work, can’t work, without
computers and software."

Garman also notes that the ability to quickly and easily
modify software (unlike hardware) is a two-edged sword; this
flexibility can reduce costs and lead to better designs, but
uncontrolled flexibility can create disasters. Recently, a
Shuttle engine test was scrubbed by a computer software check
because of an apparently sluggish valve. The valve controls
the flow of liquid hydrogen and must be no more than 20% open
to prevent a fuel system rupture. According to an Associated
Press report in The Huntsville Times (August 5, 1988), NASA
had the options of replacing the valve or changing software

3Many other illustrative examples have been recorded over the past decade in the issues of
Software Engineering Notes [Neumann, 1985].

XXVIII-5

commands to accomodate the way the valve worked (?) during the
test. NASA officials decided to change the valve.

3.2. Future Trends

Software controls have many advantages over hardware
controls, including greater precision, flexibility, and
(perhaps) reliability, as well as allowing a high degree of
automation. So software will continue to be an important part
of future aerospace systems, and more of the same types of
problems can be expected. The Space Station, for example,
will depend on the Space Station Information System (SSIS),
Data Management System (DMS), Technical and Management
Information System (TMIS), and other communications, tracking,
and ground support software to perform its important
information gathering functions. Further, these software
elements will need to interface successfully with each other
and with crew members, laboratory experiments, and (life
critical) software controlled subsystems such as the
Environmental Control and Life Support System (ECLSS).

Perhaps more significant for the future are the new set
of software safety problems posed by the incorporation of
"advanced software technology" into the Space Station
operations software. The use of artificial intelligence and
expert system technology is mandated by the Space Station
Program office. Consider the following Space Station
requirements [NASA, 1988a]:

" (capability for) Growth of artificial intelligence
and robotic technology"

"Incorporation of machine intelligence in the form
of expert systems, initially for well-defined and
structured applications and later for more advanced
applications"

"Complex information interfaces of telerobots and
autonomous robots. The following are example types
of potential information required by the
intelligence of robotic devices:

--The location at all times

--The location of obstacles and how to avoid
them at all times

--The proper interaction sequence with objects
to be manipulated

--Status of itself and its task object

~--Its own 1limitations with respect to its
current environment."

XXVIII-6

These advanced technology requirements ejither require
new software concepts (e.g. artificial intelligence and
expert systems) or require new software applications (e.g.
control of telerobots and autonomous robots in hazardous
space environments). These requirements add significant
complexity to the envisioned Space Station software system
and add new types of safety and reliability problems that are
not found in other real-time control and monitoring systems.
Unfortunately, common software engineering management and
development practices may be ineffective against these new
problems, as they have been against the more traditional
problems of the past.

3.3. Failure Costs

Some would argue that serious measures to improve
software safety in the manned space program are unjustified
because of added costs and limited funds. The space program
is, after all, a large-scale research program, so why doesn’t
NASA just "get on with it," and put the hardware into space
without worrying so much about the safety of this or the
reliability of that. This seems to be the view of Senator
Jake Garn, R-Utah, who flew on Discovery in April 1985. 1In
an August 5, 1988 Associated Press article in The Huntsville
Times, Garn was quoted as saying "I think that at this point
we probably are being a little bit too cautious because of
all the attention (from the news media)." Garn may be right.
After all, the potential catastrophic impact from a manned
space disaster surely cannot compare with, for example, the
accidental firing of a nuclear missle or the core meltdown of
a nuclear reactor. This simplistic analysis is flawed,
however, because it does not adequately take into account the
costs of failure due to lack of appropriate safety measures.

Any rational decision on how much to spend on software
safety, and systems safety in general, must consider not only
the costs of implementing the safety measures but also the
benefits of implementing the safety measures, i.e. the costs
of disasters avoided. For the manned space program these
benefits can be very great. The public no longer views NASA
as simply a large-scale research and development agency.
According to John E. Pike, a space program analyst at the
American Federation of Scientists, "A lot of the public
support and interest (in NASA programs) grows out of the
perception that this represents the best of America and our
highest aspirations" (The Huntsville Times, August 7, 1988).
As a consequence, NASA’s public image can suffer greatly
because of failures. In a recent survey of 1,223 adults,
nearly half lost confidence in NASA after the Challenger
disaster, and 60 percent of those still lacked confidence
(The Huntsville Times, July 25, 1988). The efferct of future

XXVIII-7

failures on agency funding should be obvious. According to
Pike, "If they (NASA) don’t get another dozen flights under
their belt before another accident, I’d be real surprised if
the shuttle ever flew again. If (an accident strikes) this

one (the next Shuttle launch), it would pretty well stop the .

space program." Such high costs of failure suggest that
safety measures, including software safety measures, are

probably a bargain if they can measureably reduce the chances.

of failure.

XXVIII-8

4. SOFTWARE ENGINEERING
4.1. Current 8tate

Software engineering is the art or science or whatever
of designing, constructing, and testing computer programs.
David Parnas, a noted computer scientist and consultant,
wrote a series of eight essays on why the Strategic Defense
Initiative would not be trustworthy because of software
development difficulties [Parnas, 1985]. These essays were
submitted in 1985 along with Parnas’ resignation from the
Panel on Computing in Support of Battle Management, convened
by the Strategic Defense Initiative Organization. 1In one of
these essays Parnas suggests that the state-of-the-art in
software engineering is significantly behind that of other
more mature engineering disciplines. His claim is supported
by three interesting contrasts between software and other
engineered products:

1) When most engineered products are designed, tested,
and sold, it is assumed that the product is "correct" as
per functional requirements) and reliable. Finished
software, on the other hand, often has significant
"bugs" and may be unreliable.* It is usually expected
that the software will improve with subsequent versions,
but this is not always the case.

2) Most engineered products come with an express or
implied warranty, but finished software products often
come with a specific disclaimer of warranty.

3) Designers in more traditional engineering disciplines
have been educated to understand and use a variety of
mathematical tools, while designers of software are
generally uneducated in even the modest tools that are
available to software engineers.

Some reasons for the current state of software
engineering are given below. The first reason is suggested
by Parnas, the others are my personal observations.

LRespected computer scientist Edsger W. Dijkstra [Neumann, 19851, claims that "most of NASA’s
software is full of bugs." After the successful moon Landing in 1969, Dijkstra asked Joel Aron of IBM,
who had been responsible for much of the flight software development, how he "got that software to work
okay." "Okay?" Aron reptied, "It was full of bugs. In one of the trajectory computations, we had the
moon’s gravity repulsive rather than attractive, and this was discovered by accident five days before
count zero."

XXVIII-9

Software is complex.

One reason for the current state of software engineering
is the inherent complexity of large-scale software projects.
Large software systems are discrete systems with an enormous
number of possible states. Further, software systems usually
have few repeatable structures, so that it is not possible to
construct a large software system by assembling a large
number of small, identical, software modules.’ In contrast
the design of large-scale integrated circuits, while discrete
and having many possible states, is made simpler because many
of the structures are repeatable (note that modern computer
hardware is vastly more reliable than computer software).

Success in software development may, in fact, be limited
by the complexity of the underlying systenm. In the
conclusion to one of his essays, titled The 1limits of
software engineering methods, Parnas discusses the difficulty
of developing a trustworthy software system for SDI battle
management:

"I am not a modest man. I believe that I have as
sound and broad an understanding of the problems of
software engineering as anyone that I know. If you
gave me the job of building the system (SDI battle
management software), and all the resources that I
wanted, I could not do it. I don’t expect the next
20 years of research to change that fact."

Software is abstract.

Software only exists in the computer, which is very
different from the world that people live in. Software can
not be seen, touched, or heard, it does not have material
strength, and it does not bend, twist, chip, split, or
otherwise wear out. This abstract property makes software
design appear inefficient to the near-sighted, because design
and coding (i.e. "construction") cost about the same but
coding produces something tangible (the code can be run on a
computer and large piles of results can be printed). Thus
there is a strong tendency in software engineering to skip
over the design phase to the coding phase. In many other
engineering disciplines, however, there is a c¢lear cost
advantage to establishing rational and efficient design

5Neumann {19841 quotes from a book called Software and Its Development by Joseph Fox, where Fox
discusses the problems of testing Air Traffic Control software systems: "“The number of possible paths
through these large programs, and the number of possible combinations of states of inputs, data,
calculations, and interactions is so large that even in 100 years of use, we will only be beginning
to execute the first few percent of the possible paths (through the code). Even after years of real
use, there will still be bugs in the program.”

XXVIII-10

methods because an iterative "construct and test" approach is
too expensive.

Software design requirements may be ambiguous or

incorrect.

This may be just a result of the complexity of software
as discussed by Parnas, but it is important enough to deserve

separate mention. Software requirements are often written
without specific knowledge of the hardware and without
complete knowledge of the functional requirements. In

contrast a civil engineer, for example, can make logical
assumptions about the loads a structure must withstand and the
"worst case" combination of loads.

Software engineering is multidisciplinary.

It seems intuitive that a software designer should
understand the application area as well as the software
engineering discipline (remember that computer science is
fundamentally an applied discipline). Unfortunately, these
larger-than-life persons are difficult to locate, and in any
case would probably demand far too much money. As a result,
software is usually written by persons who only know software
or who only know the application.

4.2. Modern Approaches

The current state of softwear engineering should concern
those responsible for the safety, reliability, and quality of
softwear. In recent years several softwear engineering design
approaches and tools have been developed to aid the softwear

engineering manager and the softwear designer. These
approaches and tools include: the concept of the softwear
acquisition 1life «cycle; independent verification and

validation of softwear projects; and computer-aided softwear
engineering tools. Although these concepts and methods are
not a panacea-they do not guarantee high quality softwear-they
can, if implimented uniformly, be the foundation for other
design approaches and techniques aimed at, for example,
improving softwear safety. Uniform implimentation of these
ideas also allows accurate measurement of the effects of
future changes in softwear design approaches. Each of these
design approaches and tools is discussed in the following
paragraphs.

61 read a recent letter to the editor that argued for a return to the "good old days" when
computer scientists were fundamentally rooted in an area of application (e.g. some type of engineering)
and applied computer science principles to their field of interest. This person suggested that the
four year undergraduate degree in computer science be eliminated in favor of a two year graduate
degree.

Y
C XXVITII-11

The software acquisition life cycle (SAILC).

The SALC comprises a heirarchical set of software design,
coding, and maintenance tasks, and associated documentation,
that define the software acquisition process from initial
concept phases through final delivery and maintenance phases.
The SALC is a highly structured approach to softwear
engineering. Specific requirements associated with each phase
are satisfied and baselined before the next phase is begun.
Control is exercised at the transitions between phases to
assure consistency of requirements and specifications.

The NASA SALC is shown in Figure 1, which is taken from
the NASA guidebook titled: Software Verification _and
Validation for Project Managers [NASA, 1987a].’ Loesh [1988]
gives a general description of the objectives of the various
life cycle phases, which for convenience is repeated below.

1) Concept and Project Definition Phase. Ensure software
plans, policies and management are appropriately part of
early plans and design, i.e. feasible/scoped/costed.

2) Software Initiation Phase. Specify a formal
system/software definition and consunmate the
acquisition/development plans (lowest risk delivery
agreements).

3) Software Requirements Definition Phase. Scope each
program, establish engineering procedures and confirm
computer/software compatibility (last chance to say what
you want).

4) Software Preliminary Design Phase. Evaluate the
following: 1) are there any major design flaws, and 2)
is it consistent with the hardware it is planned to
execute to?

5) Software Detailed Design Phase. Determine that the
module does the right things and will be coded following
good engineering principles.

6) Software Implementation Phase. Build and show as
agreed that the program works correctly.

7) Software and System Integration and Testing Phase.
Does the system do what was requested?

7This guidebook has been updated recently, and the SALC in the new version may be somewhat
different.

XXVIII-12

IHYMLIOS M8

M3IIAIH 1S31 W3ISAS HIS

M3IIATH SINIWIBINOIH W3ILSAS HUS
NVid ANINIDVNVA HVYMLIOS dWS .

M3IA3H NDISIQ WILSAS HAS

MIIA3H SININIHINOIY AHVNINIIIHd HHd

M3IAIH NDISIO AHVNINIISHd HOd

110NV NOILVHNDIINOD TYIISAHd VOd

MIIAIHE TVAOHddY 103roHdd Hvd

N3 NOILYHNOIINOD JUVMAHVH 1OMH

110NY NOILYHNDIINOD TYNGILONNY - VOd

W34 NOILVHNDIINGD JHVMIA0S HILNGWOD 108D

NOILO3dSNI HINO1SND 1

MIIATJH NDIS3A TYIHLHD HAD

M3IIAIY 3ONVIdIOOVY IUVMLIOS HVS

3M1138V0

ORIGINAL PAGE IS
OF POOR QUALITY

Q
—
&)
>
O
Q
G
o
=
NSV 3MNasve NSV INaIsve NIV I3tV =]
twna vl 1200044 2002 NOIS3a QIIVIOTIY SINIMIINDIM ININTOVIVE arg (o]
QIL4T0V A5 GIVNDIIM ~8 s L) L3) () o
+
o
D @ ® & G u
W. ™
e
P S 1NINAO13AZG (06D) INVMIIOS 0 |
IUVMLION >l='.“:=!l ousase . A —
smisas wotveR i SuvaLios .
SawnoM BY RMOINY 1283 v inn'emood WYaLioS b~
_ NOLYLLIN [0} =
wvaLLI00 r 1%
ONUSRL ONY SANINIBIND 3Y
A8 NOLLYER LM a X
pyertnpeey 2 we waieae
i@ THEET @ ® &) e | mRE 2
. G
NOLLVANIMD MM o
145}
snueas HOLLYONEVS dvd
RN WS RE Ruviasuvd -
ANINAQOIFAIA (DMK FUVMANYH []
[}
2]
:.u!o..nuu NOUVHO X3 1430002 ﬂ.
NV
...\ 1NIN013A30 3IVIS TVIA$ HOLLVOITYA ONY NOLLVEASHONDD | \oyivimuiai3a Ga3n NOSSIN .n
1M3NA0Y30 avay 00 01123138
ey ool 4439409
ANINdOT3A30
= MO1STWN # anoiiwm | MOLSIWA nilsie

8) Software Acceptance Testing Phase. Get the software
and pay the bill.

9) Sustaining Engineering” Phase. Fix latent softwear
bugs and produce product upgrades, while ensuring that
the software still works correctly. Manage software

distribution and avthival (including documentation).

It should be obvious that successful implementation of
the SALC concept does not come easily and without costs. It
has been demonstrated in practice, however, that the 1life
cycle concept is cost efficient when considering costs over
the entire useful life of the software (recall the statistics
on military software spending). The life cycle model is also
thought to improve the general quality of the finished
software product (which of course can be linked to cost in
terms of sales revenues, disasters avoided, and reduced
maintenance). Perhaps the real reason why the SALC works is
that actual software coding (implementation phase) is
postponed till late in the project. The software managers and
designers must think hard in the beginning about requirements,
specifications, and associated design issues. This process
(and the sheer volume of associated paperwork) allows the
designers and implementers enough time to mull over the
various design possibilities and choose a good one before
committing to code, all the while "appearing" to be
productive. Some successful software engineering firms have
implemented rigid policies so that on a one-year project, for
instance, coding cannot commence until the ninth month!
Another important function of the SALC is that it provides
the development framework necessary for implementing design
tools and procedures aimed at accomplishing more specific
software design objectives, e.g. increasing software safety.

Independent verification and validation (IV&V).

Software independent verification and validation is a
technical discipline that is in effect during all phases of
the software acquisition 1life cycle. The various IV&V
activities and their relations to the SALC phases are shown
in Figure 2, taken from the previously cited NASA guidebook.
As shown, IV&V activities include designing and executing
tests based on information from requirements and specification
documents, design documents, and code audits. These tests are
meant to ensure that the final delivered product meets the
stated requirements and is of high quality. In addition to
formal testing, IV&V activities also assure that each software
end item, whether a individual module, a partially integrated
subsystem, or a fully integrated system, satisfies its
corresponding requirements and specifications as prescribed
during the heirarchical design process (a definition of

XXVIII-14

o >
=
Lt
(&)

=3
-~ o
<

z 3
aa
o

S

HOLLVOUTYA 9 NOILYOIMIIA WS ATAS
IVSO4OUd JONVHD DNMIMONI dd3
MYMLII0S Ll]

1900044 s3Inasve
.._wumuuwd 03LYHOIIM 3602 NDIS3a Q31VO01IV SAININIWINGIY HOILISIND DY
Juymlios IMYMLIIOS 3UYMISOS uvMiios IWVML408 MYMLI08 3MYMLIO08
D 1831 "14300v [15319 DIiw] NOLVININTIGHI NDIS3Q NDiS3Q NOLLINGIZO
3IMONI DNRuvISNS JUYML408 [BAS OGNV ms IWYMLI08 IDUMI M | AvHIRIud S| SININIMNDIN i Juvmiios .wuu.».u
ANINAOII0 ONY NOLLINOOUJ ININGOIIASG 3TVOS 1IN MOILVOIIVA ONY MOILVBASNON3Q NILSAS 343
Nv Av NMEE A
14043M MINAIY n»nmu.wx.:—ouwu R 0 ﬂu.mw
£313ud Il 7)) 200 v
v m\s s5313 1831 ASAS
$140d 34 $IUNGID0NM LLdd
1331 _Lony DMILSIL ASAS 1831 ASAS
.43 9423 423
TIOVRY SIMOJI SISATVNY NS
Iy 42 $30VIUIIN NS
DHISSII0 IJONYHD ONI00D WOIS30 WS SINIMINON NS
v TRIOW ™Y FZLTVRY
SNSYL
NOILYOITYA ONY
NOILYIIIHIA
18U BTy aHYMLIOS
SiNOSIN JBL SIUNCIO0N IS NOHVAIVAL FONVO A
NOLAVURDLINGD TWHOL IR NS IMOSINS 1831 $3001S 440-30VHL
DNILSIL NOISEIN0IN NOUYUNEINGD TYISANd SOMYIBIS 1931 a4 1831
e Sueu T T

Figure 2 - Software IV&V Activities

XXVIII-15

"validation"), and that the products of each phase of the SALC
satisfy the requirements and specifications of the preceeding
phase (a definition of "verification"). It seems logical that
IV&V staff should be mostly seasoned, experienced personnel
(who knows all the "tricks of the trade"); this is no place
for the green programmer with little practical experience.

The "independent" in IV&V refers to the relationship
between the project management (NASA), the development
contractor, and the IV&V contractor. The quality of the IV&V
effort and hence the quality of the delivered softwear is
thought to increase with the degree of independence between
these players. Minimal independence is achieved by a
development contractor who uses the development staff for IV&V
(really just V&V), while maximal independence is achieved by
a wholly separate IV&V contractor that communicates with the
developer and with NASA by separate channels. A truly
independent verification and validation contractor provides
an unbiased critical review and "second opinion" of the
softwear. Independence assures that the testing and design
reviews will not be polluted by the day-to-day design
activities, and that IV&V personnel will not be competing for
resources with development personnel. A higher degree of
independence does, of course, add significantly to the up-
front project cost. These costs should properly be weighed
against the criticality of the software when deciding on the
degree of independence. This trade-off analysis should also
consider the non-trivial costs of the sustaining engineering
phase (maintenance), which are presumed to decrease with an
increase in independence.

Computer aided software engineering (CASE).

CASE tools are programs to help write programs. CASE
tools emphasize a systems approach to software engineering,
as opposed to a ad hoc "software crafting" approach. Thus
CASE supports the life cycle model of software development,
and can make the transition to SALC easier by assisting the
programmer in various tasks associated with the life cycle
phases. The following are examples of CASE tools that either
exist or are under development: program design languages and
specification languages; test design aids; symbolic debuggers;
automatic code generators; and configuration management aids.
These tools are usually graphical and highly interactive.
Other CASE tools implement the structured approach to
requirements specification that is growing in popularity
[DeMarco, 1979].

The future Space Station Software Support Environment

(SSE) is an ambitious effort by NASA to supply Space Station
software developers with a consistent and comprehensive set

XXVIII~16

of CASE tools. Consider just a few of the stated requirements
for the SSE, taken from the SSE system functional requirements
specification [NASA, 1988b]:

"The SSE system shall support project initiation and
control, project management, metrics collection and
analysis, project planning, budgeting, resource
allocation and accounting, scheduling, 1lessons
learned gathering and analysis, and performance
management."

"The SSE system shall provide the capability to
determine the complexity and criticality of a
proposed change and to prioritize proposed changes
based upon those metrics."

"The SSE system shall support computer-aided
preliminary design for SSP operational software and
SSP prototypes, models and simulations."

"The SSE system shall support software checkout and
verification from the unit level, to the subsystem
level, to the complete software system, and finally
to integrated software and hardware systems."

And the list of requirements goes on and on. Once complete,
the SSE will be a state-of-the-art programming environment for
the development of all Space Station software. Further, the
SSE will support the development of new software engineering
tools and methods as well as their rapid integration into the
development life cycle. Some of these new tools and methods
could address timely issues in software safety.

XXVIII-17

5. SOFTWARE SAFETY

Software by itself is harmless. When software is
embedded in a hardware system, however, say for a real-time
control application, inappropriate software actions or
inactions can 1lead to hazardous system states with

catastrophic potential. Nevertheless, modern software
development efforts do not normally consider these software
safety concerns. Safety is not usually included in the

software requirements specification, and 1IV&V activities
address software "quality" issues but not necessarily software
safety.

Comprehensive and generally applicable software safety
methods, tools, and techniques do not currently exist.
Software safety can be achieved only through software design
(as opposed to redundancy as in hardware). Unfortunately,
there are few adequate mathematical tools for analyzing
software designs, and few adequate metrics for measuring
software safety. It is wunlikely that a "safety factor"
concept can be applied to software, and at the present there
is no comprehensive "building code" that will assure software
safety.

Although technology 1lags behind, there is a strong
institutional motivation for developing and implementing
software safety methods. Applicable government standards and
new project requirements are now addressing software safety
issues. This new focus is especially noticeable in the
Military safety program requirements and t*the program
requirements for the Space Station.

The Military standard on system safety program
requirements [DoD, 1987] includes a new task section (as of
July 1987) on software hazard analysis requirements. This
set of requirements emphasizes a systems approach (which is
necessary, of course) that includes analyses of the safety
critical hardware/software interfaces. Thus information from
hardware safety analyses (hazard analyses, FMEA’s) are used
as input to the software safety analysis, and leads to the

concept of a Safety Critical Computer Software Component
(SCCSC) . These SCCSC’s or sets of interfacing SCCSC’s can be
targeted for detailed investigations to determine, for
example, whether certain hazardous events can occur as a
result of software actions or inactions, or if adequate
software safety controls are present. This standard
appropriately supports the life cycle software development
model, and includes software hazard analysis requirments for
each of the major SALC phases.

XXVIII-18

A variety of Space Station Program (SSP) documents
specify software safety requirements. The software product
assurance requirements [NASA, 1988a] state that the provider
"shall plan, document, and implement a software safety
process."” The MSFC level C Space Station software management
plan (NASA, 1987b] requires a software product assurance plan
that emphasizes "software fault tolerance and software failure
mode and effects analysis for all critical software packages."
The instructions for SSP hazard analysis preparation [NASA,
1987c] includes software hazard analyses in the scope of work,
and describes a software hazard analysis approach that
includes the use of software fault tree analysis.

The cited Military standards and NASA documents say what
to do but not how to do it (which is appropriate for documents
of this type). As indicated above, the current technology for
the "how" part is probably inadequate for implementing the
"what" part. Recent concern about software safety has,
however, spurred the investigation of new software safety
tools, techniques, and methods [Leveson, 1986]; these
approaches are summarized below. Most investigations have
borrowed existing hardware safety analysis techniques and
applied them to software, and most have applied the techniques
to relatively simple test systems. Although in an early stage
of development, some of the techniques show promise, and the
continued development of these and other software safety
approaches should be supported in order to meet the software
safety needs of the future.

Software fault tree analysis (SFTA).

The application of fault tree analysis to software was
investigated by Leveson and Harvey [1983], Leveson and Stolzy
[1983], Leveson [1984], and Cha, Leveson, and Shimeall [1987].
SFTA uses a knowledge of the programming language to build a
fault tree that describes all possible software paths leading
to a particular hazardous event. Successful paths (those
which produce the hazardous event) must be eliminated or
controlled or justified as very unlikely to occur in practice.
In Leveson and Harvey [1983], SFTA was applied successfully
to a flight and telemetry control program for a University of
California, Berkely, spacecraft (approximately 1250 lines of
assembly language code). The SFTA identified a logic error
whereby two sun-pulse interrupts within 64 ms of each other
could crash the microprocessor and render the spacecraft
useless (such a condition is highly unlikely, but one of the
"sun-pulses" could be artificially produced by gamma
radiation). A simple software check could eliminate this
hazardous condition.

XXVIII-19

SFTA is practical when there exists only a limited number
of safety critical failures, a condition that is apparently
often satisfied. SFTA is thought to be helpful because it
provides a structured approach to thinking about software
problems from a safety perspective. It also may be possible
to automate the generation of the software fault trees by
examination of the code. A disadvantage of SFTA 1is the
difficulty of including timing related failures in the
analysis.

Petri nets.

The application of Petri nets to software safety analysis
was investigated by Leveson and Stolzy (1987]. A Petri net
is a dynamic system modeling approach consisting of places,
transitions between places, and a set of tokens marking the
places and defining the current system state. Software
systems can be modeled by Petri nets and the Petri nets can
be executed, which consists of "firing" the tokens along the
enabled tran51t10ns toward a new set of places. Repeated
firing of the Petri net models the dynamic system behavior.

The advantage over static analysis approaches (e.g. SFTA) is
that important timing properties of programs can be

investigated. Run-time faults and failures can also be
incorporated into the analysis, and there is significant
opportunity for computer-aided analysis. In the paper by

Leveson and Stolzy a Petri net model was applied to a simple
railroad crossing controller.

Sneak software analysis.

In sneak software analysis the program is converted into
flow diagrams using electrical symbols, and is then analyzed
to detect certain logic errors such as undefined variables.
Leveson [1986] points out that much of this information is
provided by good compllers, and that furthermore sneak
software ana1y51s is more a reliability than a safety
technique since it attempts to identify all faults. She
further notes that it is unlikely that many significant faults
will be found this way (of the type that were discussed
previously), and draws a parallel between trying to find
significant errors u51ng sneak software analysis and "trying
to find the errors in a book by checking the grammar."

N-version programming.

N-version programming was investigated by Avizienis
[1985] as an approach to fault-tolerant computing. In this
approach N different programs are developed from the same
functional specifications. The developers should be as

independent as possible, and should use different tools and

XXVIII-20

compilers. These N program versions are executed
simultaneously and the results are polled and compared by a
voting program, with the correct answer taken as the majority
answer. Sophisticated methods have been devised to provide
for communications between the various versions and the voting
program, and hence to ease development efforts. The approach
depends, however, on the assumption that software design and
implementation errors associated with the different versions
are independent (a high degree of dependence of errors could
create situations in which the majority of program answers
agree but are all wrong). Unfortunately the approach may be
limited by this assumption, as a recent study suggests that
the assumption of independence may not be justified [Knight
and Leveson, 1986] (consider the special problem of dependence
because of common specification errors). Further study is
needed to evaluate thoroughly the assumption of independence
before N-version programming can be used widely with
confidence.

XAVIII-21

6. CONCLUSIONS AND RECOMMENDATIONS

Large-scale software systems are often used to control
real-time flight and ground operations on manned space
missions. This trend is expected to increase because of the
emphasis on automation and advanced software technology.
There is ample evidence that suggests these large software
programs will contain logic errors that may under certain
situations lead to hazardous conditions. Thus it is important
to emphasize safety-related approaches to software development
throughout the useful 1life of the software, beginning at
requirements development. Software safety engineering is a
young discipline, however, and the necessary analysis and
development tools are only beginning to be developed. It is
a tough problem, since software is highly complex, abstract,
and does not lend itself easily to mathematical analysis.

SRM&QA should take a leadership role in the development
and refinement of software engineering methods, techniques,
and tools that can help to improve software safety,
reliability, and quality. This is especially important for
software safety, because while software reliability and
quality have many proponents, software safety is largely
neglected because it is separated from functional requirements
and traditional performance measures. SRM&QA should strive
to build and maintain a knowledge base of sound software
engineering practices that it can distribute to contractors
for use in project development.

Several specific recommendations follow, not necessarily
in any order.

SRM&QA should continue to develop its software product
assurance function and to promote SPA methods.

The SPA activities (including IV&V) are the backbone of
any effort to improve software safety, reliability, or
quality. SRM&QA should logically be responsible for the bulk
of NASA SPA activities and in fact for the bulk of NASA IV&V
contracting and monitoring. NASA should consider a software
project management structure that provides for internal
independence of development and IV&V engineers and managers.
SRM&QA should develop a consistent and rational method for
determining the necessary degree of independence of the IV&V
contractor based on software criticality, total life cycle
cost, and other factors.

XXVIII-22

SRM&QOA should develop a software hazard analysis

methodoloqy.

This development effort may include an evaluation of
applicable Military standards and other guidebooks and
instruction manuals with regard to NASA’s needs; an evaluation
of personnel requirements including skill and education
levels; identification and evaluation of existing techniques
and computer-based tools for software hazard analysis:;
development and evaluation of new techniques and computer-
based tools for software hazard analysis; and investigation
and development of recommended software design methodologies
that encocurage the production of safe software (i.e. safety
metrics and analysis techniques, and "building codes" for safe
software development).

SRM&OA should explore the possibility of developing an

integrated computer-based environment to support all SRM&QA
management and engineering activities.

This computer-based environment would be graphics-based,
would include a variety of tools specific to SRM&QA
activities, and would interface directly or indirectly with
the Technical and Management Information System (TMIS), the
Software Support Environment (SSE), the Space Station
Information System (SSIS), and the Data Management System
(DMS) . The potential benefits of this development effort
include improved efficiency and quality of work, and expedited
flow of information between SRM&QA, other NASA organizations,
and contractors.

SRM&QA should develop and investigate methods,

techniques, and tools for evaluating the safety, reliability,
and gquality of software systems that use advanced software

engineering technology.

Specifically, SRM&QA should investigate special safety,
reliability, and quality problems (and their possible
solutions) created by the use of artificial intelligence and
knowledge based expert system technology in critical software
systems. Use of this technology (or provision for its use)
is a requirement of the Space Station Program, and it is not
clear, for example, whether current software engineering
practices apply or whether anyone even knows how to debug an
expert system or artificial intelligence program.

XXVIII-23

7.

1.

10.
11.

‘ 12.

13.

REFERENCES AND SELECTED BIBLIOGRAPHY

Avizienis, A., "The N-Version Approach to Fault-Tolerant
Software," IEEE Trans. on Software Eng., Vol. SE-11, No.
12, Dec. 1985.

Cha, S., Leveson, N., and Shimeall, T., Safety

Verification of Ada Programs in MURPHY, University of
California at Irvine, UCI Technical Report 87-27, 1987.

DeMarco, T., Structured Analysis and System
Specification, Prentice Hall, Englewood Cliffs, N.J.,

1979.

DoD, Software System Safety Handbook, Air Force Handbook
AFISC SSH 1-1, Sep. 1985.

DoD, Military Standard, System Safety Program
Requirements, MIL-STD-882B, July 1987.

Garman, J., "The ’Bug’ Heard ‘Round the World," Software
Engineering Notes, Vol. 6, No. 5, Oct. 1981.

IEEE, The Small Computer Revolution, Proceedings COMPCON,
IEEE Computer Society Press, Fall 1984.

Jahanian, F., and Mok, A., "Safety Analysis of Timing
Properties in Real-Time Systems," IEEE Trans. on Software
Eng., Vol. SE-12, No. 9, Sep 1986.

Knight, J., and Leveson, N., "An Experimental Evaluation
of the Assumption of Independence in Multiversion
Programming," IEEE Trans. on Software Eng., Vol. SE-12,
No. 1, Jan. 1986.

Leveson, N., "Software Safety in Computer Controlled
Systens," IEEE Computer, Feb. 1984.

Leveson, N., "Software Safety: Why, What, and How,"
Computing Surveys, Vol. 18, No. 2, June 1986.

Leveson, N., and Harvey, P., "Analyzing Software Safety,"
IEEE Trans. on Software Eng., Vol. SE-9, No. 5, Sep.
1983.

Leveson, N., and Stolzy, J., "Safety Analysis of Ada

Programs Using Fault Trees," IEEE Trans. on Reliability,
Vol. R-32, No. 5, Dec. 1983.

XXVIII-24

14.

15,

l6.

17.

18.

19.

20.

21.

22.

23.

Leveson, N., and Stolzy, J., "Safety Analysis Using Petri

Nets," IEEE Trans. on Software Eng., Vol. SE-13, No. 3,
March 1987. -

Loesh, R., Software Verification and Validation, Training
Course Notes, System Technology Institute, Inc., Rev. C6,

1988.

NASA, Software Verification and Validation for Project

Managers, Version 0.1, Safety, Reliability,
Maintainability, and Quality Assurance Publication D-GL-
13, March 1987a.

NASA, Level C Space Station Software Management Plan,
George C. Marshall Space Flight Center, SS-PLAN-0006,

1987b.

NASA, Instructions for Preparation of Hazard Analyses for
the Space Station, JSC 30309, Space Station Program

Office, 1987c.

NASA, Space Station Program Definition and Requirements,
JSC 30000, Lyndon B. Johnson Space Center, Houston,

Texas, 1988a.

NASA, Space Station software Support Environment System

Functional Requirements Specification, LMSC F255416,
1988b.

Neumann, P., "Letter from the Editor," Software
Engineering Notes, Vol. 10, No. 5, Oct. 1985.

Neumann, P., "On Hierarchical Design of Computer Systems
for Critical Applications]BEE Transactions on
Software Eng., Vol. SE-12, No. 9, Sep. 1986.

Parnas, D., "Software Aspects of Strategic Defense
Systems," Communications of the ACM, Vol. 28, No. 12,
December, 1985.

XXVIII-25

