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Objectives 

The objective of this paper is to study the s tab i l i ty  characteristics of a 

bearing tester. 

realis tic model. 

Y e  verify our conclusions using numerical simulations of a 
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Abstract. W e  study the properties of the solut ions 
? @  

coupled mnlinear d i f f e r e n t i a l  equations that model 
~i 
I "  

rotating shaft of a bearing tester. In p a r t i c u l a r ,  

of a system of four 

the behavior of the 

we sbaw bw bounds for the 

solut ions of these equation can be obtained from bounds for the solutions of 

the l inear ized equations. By studying the behavior of the Fourier transforms 

of the solutions,  w e  are also able  to predict  the approach to the s t a b i l i t y  

boundary. 

the equations, and of power spectrum density (PSD) plots. 

These conclusions are ver i f ied  by means of numerical solut ions of 
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* 1. Introduction. 

In this study we continue the investigation of the properties of the 

solutions of mathematical models of rotating machinery in i t ia ted  by Day [l]. 

Both Day and this author 121 have studied the behavior of a simple J e f f co t t  

model w i t h  deadband, viz. a system of coupled d i f fe ren t ia l  equations that 

represent the behavior of a rotating shaft, 

The purpose of this paper is to examine the properties of the solutions 

of a model of a bearing tester. T h i s  is a device designed to estimate the 

l i f e  expectancy of bearings under realistic conditions of loads and 

acceleration i n  cryogenic fluids. 

margins for  its operation. 

Our study w i l l  help determine safety 

We consider a bearing tester w i t h  bro seals and two bearings w i t h  

0 deadband. A sketch of th i s  mechanical syster  can be seen in Fig. 1. 

2. GeneralTheOry 

2.1 Derivation of the Bearing T e s t e r  Equations. 

W e  assume that the shaf t  is rotating w i t h  angular velocity w along an 

ax is  close to the x-axis, that both bearings are a t  the &me distauce a from 

the center of symmetry of the shaft, that both seals are a t  the saoe distance 

b from th i s  center of m e t r y ,  and that the shaft cannot move i n  the 

direction of the x-axis, W e  also assume that both seals have the same damping 

s t i f fness  K and cross coupling s t i f fness  Q and that both bearings cs ' 8' 8' 

53 have the same s t i f fness  . 
For j - 1, 2, let 6 denote the magnitude of the deadband a t  bearing 

j 
j ;  l e t  v and v describe the displacement of the center of the shaf t  a t  

Yj z j  

bearing j ,  and let w and w be similarly defined for  the seals (see 

Fig. 2). L e t  m denote the IL)SS of the shaft. I f  r = (vy, f v ) , 
Yj 

2 2 1/2 
j =j 
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hj(t)  = 1 i f  r < 6 and h ( t )  = 6 /r if r > 6 then the equations a 1 -  1' 1 j j  1 1' 
that describe the movement of the shaft are the following: 

v + v  
22 v + v  - w  + w  Yl Y2 Yl Y2' zl 

Y 1  Y2 Y1 Y2' 
v - v  21 22 

where I is the axial inertia, I is the 1 2 

v 'V ' W  - w  

'W + w  ( 5 )  

(6  1 

21 22 

22' ' U  - w  21 

rotational inertia about the axis 

transversal to the shaft, and gl(t), g2(t), a,(t), 5 ( t )  are given as 

f ollows: 

+ e,) sin otl  gl(t) - w r[(eyl + ey2)cos ut - (eZ1 

+(t)  - w '[(ezl + ez2)cos o t  + (e + e ) sin c o t ]  

2 I 

2 
Yl Y2 

- e 

2 
?(t)  - o m[(ezl - e 

) cos o t  - (eZl - e&) sin otl 

) cos o t  + (e  

2 
5 ( t )  = 0 m[(e,, Y2 

- e ) sin otl,  
z2 Yl Y2 
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e 
and e represent the mass Imbalance. In our analyses 

22 
where e yl’ ep2’ eZ1 

we shall assume that gl, +, and m are arbi t rary continuolis and 

bounded functions , 
p1 2 

Note that  (1) and (2) are force equations, (3) and ( 4 )  are moment 

equations, and ( 5 )  and (6) are derived from the m e t r y  assumptions on 

zj’ 
‘ Y  + f w  

Z Y  wj Yj 
bearings and seals, Setting v = v + i v  

g( t )  = gl(t) + lg2(t) 

1 Yj 
and r(t) = I (t) + im ( t ) ,  w e  obtain: 1 2 

and 

v ‘ V  = u  “ W  1 2 1 2  v + v  ‘Y + Y  1 2 1 2 ’  ( 9 )  

= h v  and LU view of ( 9 ) ,  if w e  set v - v + v2, u = v2 - vl, q1 

q2 = %v2, (7) and ( 8 )  can be written in the following form: 
1 1’ 1 

( I ~ / ~ ) U ”  + (M: + iw1~/2a)u’ + (ab + b~ - ibQ S )u + aKb[ql - q21 = dt). 
S S 
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Az and t are nonnegative. 

Since vl - (1/2)(v - u) and v2 = (1/2)(v + u), pl(t) and p2(t) can 

be expressed in terms of v and u using (10) and the following 

representations for qI (t) and q,( t) : 

and 

2.2 Existeace, uniqueness, and representation formulas. 

We h v e  transformed the system of equations (1) - (6) into the equivalent 

system (ll), (12). 

equations similar to the Jeffcott equations w e  studied in  [2]. 

a d  uniqueness of their solutione (and therefore, of the solutions of the 

o r ig ina l  system), follow by the tmme argument erployed for the J e f f c o t t  

T h i s  is 8 system of coupled nonlinear d i f f e r e n t i a l  

The existence 

equatiom, and need not be repeated here. 

Let Q, 3 C t  '4(A1 -k K1), 

2 1/2]1/2 
B1 = 8 -'/2[-Q 1 + (Q2 1 + 16B1) 9 
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I .  
(16) 

(17) 

-1 -1 
1 1  a' = - [B B + C1]/2, 

1 j 1  

a2 5 
ai - is, ' 

Then, 88 in (21, it is readi ly  seen that X1 and X2 are the solut ions of 

al = [ B  B - C11/2, 

A1 - a1 + if$, 

2 the  characteristic equation X + CIX + Hl = 0 ,  and therefore 

v = c eXp(alt) + c2 exp(a2t) h l  
is the general solut ion of 

v" + c v' + H1V = 0, (19) 1 

Similarly, If  y1 = a2 + i B 2  and y2 = a; + is; are the solutions of the 

characteristic equation y2 + c2y + 5 = 0, it is clear that 

% = dl exp(ylt) + d2 exp(y2t) 

u" + c u' + H2u = 0. 

(20 )  

I s  the general solut ion of 
(21) 

2 

Without loss of generali ty,  w e  shall always assume that a; 5 a2' If  c2 I s  
0 

real (Le., i f  

f o r  y1 and y 

d1 = O), then formulas sirilar to (15), (16) and (17) obtain 

2' 

I f  v and u are p a r t i c u l a r  solutions of the lfnear l ized B e a r i n g  
P P 

T e s t e r  equations 

v" + c v' + HIV - fl(t) 1 

and 
U" + c U' + n2u =. f,(t), 2 

= u  + u  L = vh + vp' h p' then, s e t t i ng  v 

G l ( t )  (A1 - X2)-1[exp(alt) - @ X P ( X ~ ~ ) I ,  

-1 
G 2 ( t )  = (yl - Y2) [ q ( Y l t )  - @XP(Y2t)I, 

and proceeding.as in [2], w e  readily deduce that (11) and (12) are equivalent 

to  the following nonlinear Volterra in tegra l  equations of convolution type: @ 
v(t) - V,(t) + Pl(t) (24) 

and 
XXXI I I- 5 



u ( t )  = u p  + P2(t), 

where the perturbation terms P ( t )  are given by: 
J 

0 
(25) 

P (t) = Kj ,: Gj(t-x)pj(x)dx, j = 1, 2. (26) j 
Thus, the existence and uniqueness of the solutions of (11) and (12) also 

follaw f r a  the existence and uniqueness of the solutions of (24)  and (25) 

(cf, e.g* [31, [41). 

2.2 Bounds 

L e t  D ( t )  = r t l G  (t-x)(dx, and let 6 = 61 + 62. Since (lo), (ll), (13) J - 0  j 
and (14) imply that 

L e t  = 1x1 - 
Note that a 5 
s ta te bound for  

1 . Thus i f  a < 0 w e  readily see that D is a steady 

Dj(t>. From these inequalit ies w e  derive, as i n  [2], the 
"11 1 J 

following coaclusions: 

1. I f  a1 < 0 and lvpl I n l ,  then the steady sta te  eolution v, of 

(11) sa t i s f i e s  the following inequality: 

wharsar if a2 < 0 and lupl I N 2 ,  the steady s t a t e  solution u, 

of (12) sa t i s f i e s  the inequality 

2. I f  a = 0, the perturbation t e r m  P ( t )  can grow a t  most linearly. 

3. If a > 0, the order of growth of P ( t )  cannot exceed exp(a.t); 
J j 

j 1 3 
note that the order or magnitude of a l l  nonzero solutions of (19) or 
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(21) cannot exceed 

Since our assumptions 

exp(ajt). 

imply that f l ( t )  and f2 ( t )  are bounded, w e  have 

therefore shown that the study of the boundedness of the solutions of (11) or 

(12) reduces to the study of the boundedness of the solutions of (19) or  (21). 

I f  al < 0 and a2 < 0 w e  shall say that the system (ll), (12) (or 

(1)-(6)) is stable,  if a1 = 0 and a < 0 ,  or a < 0 and a2 = 0, that the 

system has reached the s t a b i l i t y  boundary, and i f  

the system is unstable. 

2- 1 -  

a1 > 0 o r  a2 > 0,  that 

Thus the system is s table  i f  a l l  its solutions are 

bounded, 

2.3. E s t i m a t e s  fo r  P1 and B2 

W e  obtain estimates f o r  the B i n  terms of the coefficients of 

These estimates yield a simple method and the signs of the 
3 

=j- 

(11) and 

for 

determining the s t a b i l i t y  of the system. Since (19) is identical  with [2, 

(7)], w e  bow the following: 

1/2 1, If a1 < 0, then B1/C1 < B1 < (A1 + K1) , and ai < 0. 

2. If a1 = 0, tben B ~ / c ~  - B~ = ( A ~  + K~)''', a d  ai < 0. 

3. I f  a1 > 0, then (A, + K1)1/2 < B1 < B1/C1. 
If c2 is real (i,e., if W I ~  = 01, we a lso  have: 

4. If a2 < 0, then B2/C2 < B2 < (A2 + %)'I2, and a; < 0. 

5. I f  a2 = 0, then B2/C2 5 B2 = (A2 + K2)li2, and a; < 0. 

6, I f  a2 > 0, then (A2 + K2)l12 < P2 < B2/C2. 

From these conclusions w e  also infer  that i f  f , ( t )  and f,(t) are bounded, 
I L 

and I1 - 0, then the system (1) - (6) is stable  i f  and only if 
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2.4 Resonance 

Proceeding as in (21, w e  r ead i ly  see that if fj(t) = A e x p ( i w t ) ,  
j 

j = 1, 2, then (1) - (6) can be in resonance only i f  a = 0 or 

3. Harmonic Analysis of the solu t ions ,  

3.1. Prel iminaries .  

W e  now study the p rope r t i e s  of the Four ie r  transforms of the so lu t ions ,  

Following standard p rac t i ce ,  w e  cons ider  a time interval of the form 

0 < c < d <-. L e t  g 

otherwise. Thus, if F denote8 the Four ie r  transform operator, w e  have: 

(c, d) 

(csd)(t) = g(t)  i f  c < t < d, and let  g (C’d)(t) = 0 - -  - 

and proceeding as in [2] w e  see that 

lia P[Vh (C’d)l(e) = 0, and l ia  P[uh (C9d)l(s) = 0, 
e- C- 

and therefore 

We want to study the p rope r t i e s  of the graphs of the abso lu te  va lues  of 

p[v(c’d)~(s) and F[U (C’d)l(s). From ( 2 9 )  it is clear that in orde r  to 

o b t a i n  use fu l  Inforration w e  need to study the Four ie r  transforms of the 

perturbs tion terrs Pj ( t) . 
3.2. Analysis of the perturbation t e r m s .  

XXXIII-8 



%(t )  = Jt exp[A2(h)]pl(x)dx, and let Q2(t), R2(t) be similarly defined in 

terms of y 1’ y2y and p2(x). C lea r ly  

Using the same argument w e  also see that 

F[R~c’d)](s) - %(s, e, d)/X2 - si), 
where p ( s ,  c, d) s a t i s f i e s  an inequality slmilar to (31). 

Pl (csd)](s) = Kl(A1- Az)-’[IY1(s, c, d)/(A1-si) - Mz(s, c, d)/(Xz- si ) ] .  (32) 

Thus, 

Similarly, 

FIP~c’d) l ( s )  5 4(Y1°Y2)-1[n3(s, c, d)/(yl-si) - M4(8, c, d ) / ( ~ ~ - s i ) l ,  (33) 

-1/2 
where ( S ( s ,  c, d ) l  and (nq(s, c, d)l are bounded by (2r) ( 2+d-c) 6. 

Note, moreover, that there is no reason why Pl ( 8 ,  c, d) 

should vanish as c .* -, provided w e  keep the difference d-c constant. 

o r  Pl ( 8 ,  c, d) 1 3 

Since v = (1/2)(v-u) and v2 - (1/2)(v+u), for  j = 1, 2 w e  obtain: 1 
= T  + L  + E  PJ 9 J 1’ 

( C ~ d ) l ( s )  = 0, J @ w h e r e  L is a particular solution of (7) or ( 8 ) ,  l l m  F[T 
j c+- 
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Since A - si = a + ( B  - si), and yl - si = a + ( B  - si), this means 

that the only value for which F[H~c’d)](s) and PIH1 (csd)l(s) may diverge as 

1 1 1 2 2 

+ 0- is s - B1, and the only value f o r  which they may diverge as a1 

a2 .* 0- is s = B2. 

Let u = max €0 a2). Y e  ident i fy  the nonlinear natural  frequency w i t h  
1’ 

those frequencies a t  which the PSD p lo t s  have r e l a t i v e  pax- that become 

unbounded u + 0-. The method w e  have used to reach the conclusions of this 

section is much simpler than the one w e  employed in  [2]. 

3.3.3 conc lus ions  

I f  u = max €a1, a2) and 5 = B if u = a or 5 = B2 otherwise, w e  

ccnclude that as u -+ 0 F[vl (csd)i(s)  and ~ [ v F ’ ~ ) l ( s )  may diverge only a t  

s = 5 (or, if both a1 + 0’ and a2 + 0‘ simultaneously, a t  both B and 

B ’ ) ,  that f o r  u negative and constant, but suf f ic ien t ly  close to zero, the 

graphs of the absolute va lues  of Plvj(c,d)l(s), j = 1, 2 w i l l  have spikes 

mar s = 5 (or, in PSD plots ,  near S/sn), and that the magnitudes of these 

splkes -d not decrease w i t h  time (Le., as c + m). 

4. Exarples 

We LYW study the behavior of the solut ions of (111, (12) for various 

2 
rc. tating speeds. We assume that Il = 0, I2 = 1.65 1bf.in.sec , 6 = 0.0015 in., 

2 m = 0.0587 1b.sec /in., a = 4.15 In., b = 7.1 in. If 4 denotes the angular 
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speed of the shaf t  i n  Bz., then K = 0.03986 lb/in, Q - 0,02016 lb/in, 

C = 0.00001361b/in, and Kb = -1,8006 + 105,480,000. We also assume that 

S 8 
0 

S 

2 
= e = 0 ,  v(0) = u(0) = 6, and yl’ eZ1 22 e = 5.7 x loo6 1b.sec /in, e = -e 

Y1 Y2 
v9(0) = u’(0) = 1. These values have been obtained from aa act.ml bearing 

tester. Since, as w e  have already shown, when a = 0 w e  have 

Bl/C1 = (A1 + K1)l’*, w e  readily see that the value of 4 for  which th i s  

happens is 4 = 939 Eiz. = 56,359 rpm,  and that a1 < 0 i f  0 < 0 

I1 = 0, we can apply a similar procedure to conclude t h a t  

4,, = 916 Hz, = 54,950 rpm,  and that a2 < 0 if 0 < If f i  denotes 

the frequency that corresponds to the value of f? when a1 = 0, it is 

readily seen that 0 = 245 Hz. If  f 2  denotes the frequency that 

corresponds to B2 when a2 = 0, w e  see that also * 245 tlz. Since a 

vanishes before a w e  reach the s t ab i l i t y  boundary when the shaft’s rotating 

speed is 54,950 rpm. 

1 

S ince cl cl 

1 

1 

2 

1’ 
0 

In Figs. 3 through 8 w e  see PSD plots for v for  various values of 6 
2 

ranging from 30,000 r p m  to 57,000 rpm. (The plots for v are s i m i l a r ) .  To 

obtain these plots w e  f i r s t  solved (111, (12) using a fourth order Bunge-Kutta 

method. 

1 

W e  then applied a Fast  Fourier algorithm, The plots w e r e  obtained 

using 256 points and l inear interpolation, and are for  the time interval 

5.120 sec. < t <  5.632 sec. The frequencies are measured i n  Hz. 

Since the mass inbalance is so s m a l l ,  the forcing frequency 4 is 
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undetectable. We see that  as $ increases, the location of the nonlinear 

natural frequency (I rerains a t  246 W. The magnitude of the spike increases 

steadily, until around 50,000 r p m  it starts to c l imb steeply. 

show that the nonlinear natural frequency rap appear w e l l  before the s t ab i l i t y  

boundary is reached. 

n o t a  good indicator of s t ab i l i t y  margins, and that the approach to the 

s t a b i l i t y  boundary is accompanied by a steep increase i n  the s i ze  of the 

spike. 

J e f f co t t  model i n  121. 

These examples 

They also show that  the location of th i s  frequency is 

These conclusioas are sinilar to those w e  reached for  a s h p l e  
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