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Objectives
The objective of this paper is to study the stability characteristics of a
bearing tester. We verify our conclusions using numerical simulations of a

realistic model.
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Abstract. We study the properties of the solutions of a systeam of four

coupled nonlinear differential equations that model the behavior of the
rotating shaft of a bearing tester, In particular, we show how bounds for the
solutions of these equation can be obtained from bounds for the solutions of
the linearized equations. By studying the behavior of the Fourler transforas
of the solutions, we are also able to predict the approach to the stability
boundary. These conclusions are verified by means of numerical solutions of

the equations, and of power spectrum demsity (PSD) plots.
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1. Introduction.

In this study we continue the investigation of the properties of the
solutions of mathematical models of rotating machinery initiated by Day [1].
Both Day and this author [2] bhave studied the behavior of a simple Jeffcott
model with deadband, viz. a system of coupled differential equations that
represent the behavior of a rotating shaft.

The purpose of this paper is to examine the properties of the solutions
of a model of a bearing tester. This 1is a device designed to estimate the
life expectancy of bearings under realistic conditions of loads and
acceleration in cryogenic fluids. Our study will help determine safety
margins for its operation.

We consider a bearing tester with two seals and two bearings with
deadband. A sketch of this mechanical system can be seen in Fig. 1.

2. General Theory
2.1 Derivation of the Bearing Tester Equations.

We assume that the shaft is rotating with angular wvelocity ® along an
axis close to the x-axis, that both bearings are at the same distance a from
the center of symmetry of the shaft, that both seals are at the same distance
b froam this center of symmetry, and that the shaft cannot move in the
direction of the x-axis. We also assume that both seals have the same damping
cs, stiffness Ks’ and cross coupling stiffuness Qs’ and that both bearings
have the same stiffness Kb'

For j =1, 2, let § denote the magnitude of the deadband at bearing

3
j; let v&j and vzj describe the displacement of the center of the shaft at
bearing j, and let "yj and "zj be similarly defined for the seals (see
2 2 .1/2
Fig. 2). Let m denote the mass of the shaft. If rj = (vyj + vzj) ’
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h (t) =1 1if rj_5.6 / if r_, > §,, then the equations

6§ /r
] ] b b i
that describe the movement of the shaft are the following:

» and hj(t) =

Kb[l-hl(t)]vyl + Kb[I—hz(t)]vy2 + Ks['yl + H&zl + Qs[wzl + sz] +

Gyl + 5] + (DX, + %1 = (0 ®

Kbll-hl(t)]vzl + Kbll—hz(t)]v22 + Ks[wzl + wzzl - Qs['yl + "yzl +
C_[wl) +ul,] + (W/2)vy + v, = g,(D) (2)
--aKb[I--hl(t)]vyl + al(bll—hz(t)]vyz + th[wyz - "yll + st[wzz - wzll .
3

+bcs[w;2 - ';1] + (12/2a)[v;2 - v;ll - (mIIIZa)[v;2 - v;1] = nl(t)

-aKbll-hl(t)]vzl + aKbll_hz(t)]vzz + hKs["zz - "zll - hQs[wyZ - wyll
+ bcs[w;2 - ";l] + (12/2a)[v'z'2 - v;ll + (wIIIZa)[v;2 - v;ll = nz(t)(4)

+ - + + = + 5
Yy1 7 Vy2 Y51 7 Yy2? Va1 T V22 T Y T Y2 )
V., -V_=w_—W_, V., =VvV_=w_ =W _, (6)
yl y2 yl y2 zl z2 zl z2

where Il is the axial inertia, 12 is the rotational imertia about the axis

transversal to the shaft, and gl(t), gz(t), nl(t), mz(t) are given as
follows:

gl(t) - mZ-[(eyl + eyz)cos ot - (ezl + ezz) sin wt]
gz(t) - mzll(ezl + ezz)cos ot + (eyl + eyz) sin ot]
-l(t) - mznl(eyl - eyz) cos wt - (ez1 - ezz) sin wt])

lz(t) = mznl(ezl - ezz) cos ot + (eyl - eyz) sin ot],
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e and e represent the mass imbalamce. In our analyses

where eyl’ eyz, 21 22
we shall assume that g, » m, and m, are arbitrary continuous and
1’ 820 ™ 2

bounded functions.

Note that (1) and (2) are force equations, (3) and (4) are moment
equations, and (5) and (6) are derived from the symmetry assumptions on
bearings and seals. Setting v,Z = v _ + ivz sy W, = w _, + i.uz

] yl 37 3 yi
g(t) = gl(t) + igz(t) and m(t) = ll(t) + hz(t), we obtain:

j’

Kb[l—hl(t)]vl + Kbll-hz(t)]vz + (xs - 1Q8)[w1 + w2]

+ Cs[vi + wi] + (n/2)[v'1' + vi] = g(t). N
-a&b[l—hl(t)]vl + aKbll--hz(t:)]v2 + b(Ks - i.Qs)[w2 - w1] + sz[wi - wi]
+ (12/23)[\75 - v'l'] + :I.(wIIIZa)[vi - vi] = n(t), (8)
and
v, +v. =w +w, VvV, -V =W - (9)

1 2 1 2 1 2 1 2

- + = -
In view of (9), if we set v v ytv,u=v, -v,q

q, = hyv,, (7) and (8) can be written in the following form:

= hlvl , and

(m/2)v" + csv' + (Kb + Ks - 1Qs)v - Kb[q1 + q2] = g(t),

and

(IZIZa)u" + (bcs + i.mIIIZa)u' + (.<.|l(b + th - 1st)u + al(b[q1 - q2] = a(t).

2
Thus, setting C, = ZKb/n, K, = (2a Kb)/IZ’

A, = X /u, A, = 2abK /L, B,

= ZCslll, C2 = (Zabcs + imIl)llz,Kl

= = 4 -
ZabQBIIZ, M A, +K iB

= 2Q /u, B s B | 1’

2
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= + K -
HZ AZ iB

9 2? fl(t) = (2/m) g(¢t), fz(t) = (Za/IZ)m(t), and

Py =94 * 4y P, = q; ~ 4y (10)

we finally obtain the Bearing Tester equations:

v +C vt +Mv-~-K

1 1 1Py = £y (8 (11)

and
" L] =
u” + Czu + qu + szz fz(t). (12)

We shall assume that Bl’ Bz, cl, Cz, Kl, Kz, 61, 6, are positive, and A

2 1’

Az and t are nonnegative.

Since v, = (1/2)(v - u) and v, = (1/2)(v + u), pl(t) and pz(t) can

be expressed in terms of v and u using (10) and the following

representations for ql(t) and qz(t):

{v=u)/2, if Iv—ul.s 261
q,(t) = , (13)
61(v~u)/|v—u|, if Iv-ul > 261
and
(veu)/2, 1t || <28,
q,(t) = (14)

62(v+u)/|v+u|, 1if lvl—ul > 26,.
2.2 Existence, uniqueness, and representation formulas.

We have transformed the system of equations (1) - (6) into the equivalent
system (11), (12). This is a system of coupled nonlinear differential
equations similar to the Jeffcott equations we studied in [2]. The existence
and uniqueness of their solutions (and therefore, of the solutions of the
original system), follow by the same argument employed for the Jeffcott

equations, and need not be repeated here.

2
-1/2 2 2.1/2.1/2
B, = 8 [, + @ + 168,) " 17, (15)
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-1 \ -1

ay [81 B1 CI]/2, o] [Bj Bl + CI]IZ, (16)

== + = ' -

Xl ul 181, AZ ul 181. {17)
Then, as in [2], it is readily seen that 11 and 1, are the solutions of
the characteristic equation Az + clx + Hl = 0, and therefore

=9 exp(xlt) +ec, exp(xzt) (18)

is the general solution of

VT + GV + MV =0, (19)

Similarly, if vy, = a_  + 182 and v, = a'! + 185 are the solutions of the

1 2 2 2

characteristic equation yz + Czy + H2 = 0, it is clear that

u = d1 exp(Ylt) + d2 exp(yzt) (20)
is the general solution of
u” + Czu' + qu = 0, (21)

Without loss of generality, we shall always assume that “i.ﬁ a,e. 1f C2 is

real (i.e., if oI = 0), then formulas similar to (15), (16) and (17) obtain

1
for Yy and Yoo
If vp and up are particular solutions of the linearlized Bearing
Tester equations
”» ] + -
vt +Cv M v fl(t) (22)

and

» . =
u” + Czu + Mu fz(t), (23)

then, setting v, =v. . + v , u, =u + up,

L h P L h
-1
6,(t) = (A, = 1)) "lexp(2;t) - exp(},0)],
-1
G,(t) = (v; - v,) [exp(y,t) - exp(y,0)],
and proceeding as in [2], we readily deduce that (11) and (12) are equivalent
to the following nonlinear Volterra integral equations of convolution type:
v(t) = v,(t) + P (1) (24)

and
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u(t) = uz(t) + Pz(t), (25)

where the perturbation terms Pj(t) are given by:

J-0 ]
Thus, the existence and uniqueness of the solutions of (11) and (12) also

Pj(t) =k, [t¢ (tx)p (x)ax, j = 1, 2. (26)

"follow from the existence and uniqueness of the solutions of (24) and (25)

(cf. e.g. [3], [4]).
2.2 Bounds

Let D,(t) = _f:lcj(t:-x)ldx, and let & =& +6,. Since (10), (1), (13)
and (14) imply that

|py(] <8 3 =1, 2, (27)
we readily conclude that

ij(t)‘ < SK.Dy(1), § = 1, 2 (28)
Let D = |z - "zrl (lall-l + 'airl), Dy = |¥y - 72'_1 (I"zl-l + 'ail-l).

Note that “j S_uj. Thus 1f aj < 0 we readily see that Dj is a steady
state bound for Dj(t). From these inequalities we derive, as in [2], the

following counclusions:

1
(11) satisfies the following inequality:

le If a, <0 and |vp'.S.H1, then the steady state solution v_ of

|v.| < ¥, + D,
whereas if a, <0 and |up| < M,, the steady state solution u_
of (12) satisfies the inequality
'uwl <M, + 8K,D,
2. If aj = 0, the perturbation term Pj(t) can grow at most linearly.

3. If uj > 0, the order of growth of Pj

note that the order or magnitude of all nonzero solutions of (19) or

{t) cannot exceed exp(ajt);
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(21) cannot exceed exp(ajt).

Since our assumptions imply that fl(t) and fz(t) are bounded, we have
therefore shown that the study of the boundedness of the solutions of (11) or
(12) reduces to the study of the boundedness of the solutions of (19) or (21).

1f a, <0 and a, < 0 we shall say that the system (11), (12) (or

(1)-(6)) 1s stable, if a, = 0 and az_g’o, or a, <0 and a, = 0, that the

1 2
system has reached the stability boundary, and if ay >0 or a, > 0, that

the system is unstable. Thus the system is stable if all its solutiomns are

bounded.
2.3. Estimates for Bl and 82

We obtain estimates for the Bj in terms of the coefficients of (11) and

(12) and the signs of the uj. These estimates yield a simple method for
determining the stability of the system. Since (19) is identical with [2,

(7)), ve know the following:

1/2
l. If a, < 0, then Bl/C1 < B, < (A1 + Kl) / , and a! < O.

1

2. 1f a, = 0, them B ,/C < 0.

-5 - 1/2
1 1761 By (Al + Kl) , and a

1/2
3. 1If a > 0, then (Al + Kl) < Bl < Bllcl.

If C, 1is real (i.e., 1if wl, = 0), we also have:
4. If a, <0, them B,/C, < 8. < (A, + K,;)/%, and af <O
. 2 <0 2/Cy < By 2 ¥ K)o .

/2

Ne

1
5. 1f a, = 0, then lecz = 82 = (A2 + Kz) and a) < 0.

Ne

1/2
6. If a, > 0, then (A2 + KZ) < By < BZICZ'
From these conclusions we also infer that if fl(t) and fz(t) are bounded,

and I1 = 0, then the system (1) - (6) is stable if and only if
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1 1
Bl/c1 < (Al + Kl) , and lec2 < (A2 + Kz)

2.4 Resonance

Proceeding as in [2], we readily see that if fj(t) = Ajexp(iwt),
j=1, 2, then (1) - (6) can be in resonance only if o« = 0 or
1/2
Qslcs = [Za(hl(s + d(b)/(Il + 12)] .
3. Harmonic Analysis of the solutions.

3.1. Preliminaries.
We now study the properties of the Fourier transforms of the solutions.

Following standard practice, we consider a time interval of the form (c, d)

0<ec<d<= Let g(c’d)(t) = g(t) 1f c < t<d, and let g(c’d)(t) =0

otherwise. Thus, if F denotes the Fourier transform operator, we have:
PP = @02 [ g(0) explistiae,

and proceeding as in [2] we see that

lim F[vh(c’d)](s) =0, and 1lim F[uh(c’d)](s) = 0, (29)
Chrw cro

and therefore

1im F[vl(c’d)](s) =0, and lim F[vz(c’d)](s) = 0, (30)

Cro [ o

We want to study the properties of the graphs of the absolute values of
F[v(c’d)](s) and F[u(c’d)](s). From (29) it is clear that in order to
obtain useful information we need to study the Fourier transforms of the

perturbation teras Pj(t).
3.2. Analysis of the perturbation terms.

Let Q,(t) = [ expl,(t=x)]p, (x)dx, and
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R, (t) = f; exp[1,(tx) Ip, (x)dx, and let Q,(t), R,(t) be similarly defined in

terms of Yyr Ygo and pz(x). Clearly

Pl(c’d)(t) = Kl(ll‘xz)‘llQic’d)(t) - Ric’d)(t)]'
We have:

r[q{c,d)] - (Zw)‘llz ]: [: exp[}, (e=x)]p; (x)dx exp(-sti)dx

-1/2 4 ,t '
= (2n) !c !o exp(-llx)pl(x)dx exp[t(l1 - si)lde,
and integrating by parts we obtain:

O O

(2')-1/201_81)—1/2[exp(_dsi)pl(d) - exp(-cst)p, ()] - [‘: exp(-s(1)p, (t)dt]
= Hl(s, c, d)/(l1 - i),

where, since Ipl(t)l <8,

|ul(s, c, d)|_5 (21)'1/2(2 +d -~ c)s. (31)
Using the same argument we also see that
F[Ric’d)](s) = Hz(s, c, d)/A2 - si),

where Hz(s, c, d) satisfies an inequality similar to (31). Thus,

F[pfc,d)](s) -k O, xz)'llul(s, e, d)/(x;-s1) - M,(s, c, d)/(2,- si)]. (32)
Similarly,

F[ch’d)](s) = KZ(YI_YZ)-1[H3(8’ Cy d)/(Yl‘Bi) - H4(39 Cy d)/(YZ"s’-)], (33)

where |H3(s, c, d)I and lHa(s, c, d)| are bounded by (21r)-ll2 (2+d-c)s.

Note, moreover, that there is no reason why Ml(s, cy, d) or H3(s, c, d)

should vanish as ¢ * =, provided we keep the difference d-c constant.
Since v, = (1/2)(v-u) and v, = (1/2)(v+u), for j =1, 2 we obtain:
v. =T +L +H_,

] b i 1]

where Lj is a particular solution of (7) or (8), lim F[Tgc’d)](s) = 0,
cro
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a1 = W2 Ep P16 - Fpi& V1), (34)
and
1) = 2!V + &V 1. (35)

Since 11 -8l =a + (B1 - 8i), and vy

1 -8l =a + (82 - 81), this means

1 2

that the only value for which F[Hic’d)](s) and F[Hic’d)](s) may diverge as

ay +0 18 8 = Bl’ and the only value for which they may diverge as

a, * 0 18 8 = 82.
Let ¢ = max {al, az}. Ve identify the nonlinear natural frequency with
those frequencies at which the PSD plots have relative maxima that become

unbounded o > 0-. The method we have used to reach the conclusions of this

section 1s much simpler than the one we employed in [2].
3.3.3 Conclusions

If o0 = max {al, u2} and £=8 if o=a or £ = 82 othervise, we
ccnclude that as o + 0 F[vic’d)](s) and F[vgc’d)](s) may diverge only at

s =¢ (or, if both @ * 0 and a, * o simul taneously, at both B and

8'), that for o negative and constant, but sufficiently close to zero, the
graphs of the absolute values of F[vj(c,d)](s), j =1, 2 will have spikes

near 8 = ¢ (or, in PSD plots, near £/sw), and that the magnitudes of these
spikes need not decrease with time (i.e., as c + =),
4., Examples

We now study the behavior of the solutions of (11), (12) for various

rctating speeds. We assume that I. =0, I, = 1.65 lbf.in.secz, 6 = 0.0015 in.,

1 2

m = 0,0587 1b.sec2/1n., a=4,15 in., b = 7.1 in. If ¢ denotes the angular
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speed of the shaft in Hz., then Ks = (0.0398¢ 1b/in, Q8 = 0.0201¢ 1b/in,

cs = (,00001361b/in, and K = -1,800¢ + 105,480,000, We also assume that

b

-5 2
eyl = 5,7 x 10 ~ 1b.sec /in, ey2 = -eyl’ e

v'(0) = u*'(0) = 1. These values have been obtained from an actual bearing

e, = 0, v(0) = u(0) = §, and

tester. Since, as we have already shown, when a, = () we have

Bllcl = (Al + Kl)llz, we readily see that the value of ¢ for which this

happens 1is ¢c1 = 939 Hz, = 56,359 rpm, and that @, <0 1f ¢ < ¢c1° Since
Il = (), we can apply a similar procedure to conclude that
¢c2 = 916 Hz. = 54,950 rpm, and that a, <0 1if ¢ < ¢c2' If fl denotes

the frequency that corresponds to the value of Bl when a = 0, it is

1

readily seen that ¢1 = 245 Hz, If £, denotes the frequency that

2
corresponds to 82 when a, = 0, we see that also ¢2 = 245 Hz. Since a,
vani#hes before @, we reach the stability boundary when the shaft's rotating
speed 18 54,950 rpa.

In Figs. 3 through 8 we see PSD plots for v, for various values of ¢
ranging from 30,000 rpm to 57,000 rpm. (The plots for v are similar). To
obtain these plots we first solved (11), (12) using a fourth order Runge-Kutta
method. We then applied a Fast Fourler algorithm. The plots were obtained
using 256 points and linear interpolation, and are for the time interval

5.120 sec. € t € 5.632 sec. The frequencies are measured in Hz,

Since the mass imbalance is so small, the forcing frequency ¢ 1Is
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undetectable. We see that as ¢ increases, the location of the nonlinear
natural frequency ¢ remains at 246 Hz. The magnitude of the spike increases
steadily, until around 50,000 rpm it starts to climb steeply. These examples
show that the nonlinear natural frequency may appear well before the stability
boundary is reached., They also show that the location of this frequency is
aot a good indicator of stability margins, and that the approach to the
stability boundary is accompanied by a steep increase in the size of the
spike. These conclusions are similar to those we reached for a simple

Jeffcott model in [2].
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