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SUMMARY 

In the uniqueness part of a geophysical inverse problem, the 

observer wants to predict all likely values of P unknown numerical 

i m 
c3 

properties z = ( z  1, ..., z p )  of the earth from measurement of D other 

numerical properties y ( ' ) = ~  1''). ,..,yj09, using full or partial 

knowledge of the statistical distribution of the random errors in y(O). 

The data space Y containing y(') is D-dimensional, so when the 

model space X is infinite-dimensional the linear uniqueness prob- 

lem usually is insoluble without prior information about the correct 

earth model x. If that infarmation is a quadratic bound on x (e.& 

energy or dissipation rate), Bayesian inference (BI) and stochastic 

inversion (SI) inject spurious structure into x, implied by neither 

the data nor the quadratic bound. Confidence set inference (CSI) 

provides an alternative inversion technique free of this objection. 

The first step in CSI is to estimate unmodelled systematic errors in 

y(O) and z. The second step is to choose any finite-dimensional sub- 

space XAr of X , and to use the prior quadratic bound to estimate the 

truncation error when the full data function F :X + Y in the for- 

ward problem is approximated by restricting it to XA7 to give a 

finite-dimensional function FA, :XN + Y. Step three calculates the 

eigenstmcture (singular value decomposition) of FA,. Step 4 uses 
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this eigenstmcture to find for each positive p I 1  a Neyman subset 

KZ @) of the P -dimensional prediction space 2 such that either the 

correct value of the prediction vector z is a member of the 

confidence set K z @ )  or an event has occurred whose probability 

was no more thanp. In contrast to SI and BI, CSI offers no incen- 

tive for considering any value of P except 1. CSI is illustrated in 

the problem of estimating the geomagnetic field B at the core- 

mantle boundary (CMB) from components of B measured on or 

above the earth's surface. Neither the heat flow nor the energy 

bound is strong enough to permit estimation of B, at single points 

on the CMB, but the heat flow bound permits estimation of uniform 

averages of B, over discs on the CMB, and both bounds permit 

weighted disc-averages with continous weighting kernels. Both 

bounds also permit estimation of low-degree Gauss coefficients at 

the CMB. The heat flow bound resolves them up to degree 8 if the 

crustal field at satellite altitudes must be treated as a systematic 

error, but can resolve to degree 11 under the most favorablc statisti- 

cal treatment of the crust. These two limits produce circles of con- 

fusion on the CMB with diameters of 25" and 19' respectively. 

Key words: confidence sets, inverse problems, core-mantle boun- 

dary field 
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1 INTRODUCTION 

In geophysical inverse problems, the data are finitely many real numbers y fo). ..., ydo) measured 

with unknown observational errors 6y f0). ..., @do)'. The goal is to use the data to estimate proper- 

ties of the real earth. A common intermediate step is the existence problem, to find one physi- 

cally reasonable earth model x(O) which fits the data acceptably (i.e., within the random errors of 

observation and the systematic errors of modelling). Usually the model space X of all possible 

earth models x is infinite dimensional, so many physically reasonable models besides do) will fit 

thc data acceptably. Thus besides the existence problem there is a uniqueness problem, to esti- 

mate the "error" in x(O), i.e., to discover how much the real earth might deviate from x('! 

The uniqueness problem must be carcfully formulated if it is to be amenable to quantitative 

solution. Collect the data into an observed data vector y(') = 0 /'), ..., yj')), and let Y be the data 

space, the vector space (linear space) of all possible D -dimensional data vectors. The theory of 

the forward problem provides a function F which assigns to each earth model x in X the value 

F (x) which y(') would take if x were the correct earth model and there were no errors. The errors 

in y") are of two types: the random e m r  of observation, 6s = (6~1, ..., 6 y ~ ) ;  and the systematic 

errorq = (q 1, ...,q~) due to the inadequacy of the model space X .  If x is the correct model, then 

y(O)=F(x)  + sy +q . (l.la) 

The hope is to use the data y(') to estimate properties of the real earth. The complete infor- 

mation'content of an arbitrary infinite-dimensional model vector x can be neither registered in a 

finite computer nor comprehended by a finite observer, so in any real inverse problem the data 

y(') will be used to estimate ajinite number of properties of the earth. In the present paper it will 

be assumed that these properties can be described by a finite list of real numbers which together 

constitute a "prediction vector," z = (2  ..., zf ), in the P -dimensional "prediction space" 2. The 

theory of the forward problem provides a function G which assigns to each model x in X the 

value G (x) that z would take if x were the correct model and there were no errors. Thus 
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z = G (x) + C (I.lb) 

where [ is the systematic error produced by inadequacies in the model space. Since (I.lb) is a 

prediction rather than an observation, it contains no random error 6z of measurement. That ran- 

dom error would enter only in a later attempt to verify the prediction by direct measurement, and 

it need not encumber the inverse problem. 

The uniqueness part of the inverse problem consists in using y(O) in (1. la) to put limits on x, 

and transfemng those limits to z via (1.lb). Of course this program is doomed unless estimates 

are available for the e m s  6y, q and C. By definition, a systematic error like q or is one about 

which only inequalities are known, while the random error Sy can be thought of as drawn at ran- 

dom from a population of error vectors in Y wih a probability distribution p~ on Y. 

Even if pE for Sy and inequalities for q and [ are known, the uniqueness problem is usually 

insoluble for another reason, basically because dim Y < dimX, so (1.1) has more unknowns than 

equations. The difficulty is obvious in the linear case. Let Fi and Gj be the real-valued functions 

on X defined by 

F (x) = (F I@)* ... , F p  (x)) (1.2a) 

and 

I f F  and G are linear, so are the data functionals F; and the prediction functionals G,. If each Gi 

is a linear combination of F ..., FD, then estimates of z are possible (Backus & Gilbert, 1968, 

1970), but otherwise the set of z's permitted by the data is unbounded (Backus, 1970a). 

When the prediction functionals are not linear combinations of the data functionals. the 

observer who wants to estimate (i.e., bound) z from (1.lb) must invoke more information about 

the earth than is contained in (1.la). This "prior information" comes from previous knowledge 

about the earth in particular and about physics and chemistry in general. For example, in 
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attempting to invert seismic data to find the density p and seismic velocities \$ and V, ,  the 

seismologist is quite sure thatp, Vp and Vs are positive everywhere, and is rather confident of 

upper bounds for them based on laboratory measurements, the theory of condcnscd matter, and 

solar and astronomical observations which contribute to the discussion of the likdy range of 

chemical compositions of the earth. Examples of prior infomiation in modelling the geomagnetic 

field are that its total energy cannot have a rest mass greater than that of the earth (the energy 

bound), and that the minimum ohmic heating rate required to sustain it is probably less than the 

total rate of geothermal heat flow observed at the earth's surface (the heat flow bound). 

The seismic prior information just mentioned can be stated in terms of "linear bounds." 

There are M linear functions f i ,  i = 1, ..., M, which assign real numbers f i (x) to all earth models 

x, and there are 2N real numbers ai < bi such that the correct x is known to satisfy 

for i = 1. ..., M. In the seismic example, the model x is the triple of functions p ,  Vp,  V,, and 

fi (x) is the value of one ofp Vp or V, at a particular location ri in the earth. E\ idently M = = 

in the seismic case. This is essential, because for M < OQ the f ..., fM simply augment the 

number of data functionals from D to D + M ,  and if dimX =- it is still true that 

D + M < dim X. When M = =, linear constraints are extremely useful in resolving nonunique- 

ness. Seismic examples are given by Wiggins et al. (1973), Gannany (1979), Orcutt (1980), 

Stark et-al. (1986). Stark (1987, 1988), and Stark and Parker (1987). Examples from gravity 

inversion appear in Parker (1974, 1975), and examples from geomagnetic prospecting are given 

by Oldenburg (1983) and Huestis and Parker (1977). McNun and Royden (1988) give an appli- 

cation to the geothenn. In all these cases, the numerical inversion technique is linear program- 

ming (Cass, 1985) but many of the problems are nonlinear and involve very adroit use of the con- 

straints. 
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The energy and heat flow bounds in the geomagnetic modelling problem have a mathemati- 

cal character different from (1.3). They are both of the form 

where q is a known real number and Q is a known positive-definite quadratic form in the model 

x. That is, Q (x, x) is a homogeneous quadratic polynomial in x, and 

Q(x,x)> 0 (1.4b) 

for every nonzero model x. The bound (1.4) is a prior quadratic bound on the correct earth model 

x. A single prior quadratic bound on x always confines the prediction vector z to a bounded sub- 

set KZ of the prediction space Z ,  whereas infinitely many linear bounds are needed to do so if 

dim X = 00. Whether KZ is small enough to be useful must usually be settled by numerical calcu- 

lation. One of the conclusions reached in this paper is that very lax prior quadratic bounds on x 

can produce surprisingly tight bounds on z if the data are adequate. The use of a prior quadratic 

bound was suggested by Backus (1970a). Jackson (1979) and Gubbins and Bloxham (1985). 

Jackson (1979) calls (1.3) and (1.4) "hard bounds" on the correct earth model x, as opposed 

to "soft bounds." A soft bound is a probability distribution px on thc model space X, which 

describes where in X the correct model x is likely to be. A prior soft bound px can be subjective 

or objective. If subjective, it is the observer's personal probability distriburion for x, incorporat- 

ing all his or her knowledge about x except the data y(O). Measuring y(O) increases the observer's 

knowledge, and changes px from a prior to a posterior personal probability distribution. An 

objecrivepx arises when there really are many different earth models, for example many different 

ocean-bottom magnetic anomaly patterns. all sampIed by surface magnetometers, and some sam- 

pled by deep-towed magnctometers. The deep-towed samples constitute an objective data base 

from which px can be estimated by standard statistical techniques. This px can then be used to 

interpret a surface record from a new area. 
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The two currently popular methods for incorporating prior information into the inverse 

problem (1.1) are stochastic inversion (SI) and Bayesian inference (BI). Both methods use soft 

prior information, a probability distribution p x  for models x in X'. Stochastic inversion is essen- 

tially minimum variance estimation, while Bayesian infcrence uses Bayes' theorem to combine 

px with y(O) and the error distribution p E  to produce a new probability distribution fjx for x in X. 

Both SI and BI can be applied to either a subjective or an objective prior px. When px  and pE 

are Gaussian and (1.1) is linear, BI and SI produce the same results. A review of the two methods 

and a bibliography appears in Backus (1988a). Tarantola's (1987) book about BI appeared after 

that bibliography was assembled. 

In the geophysical literature it has become common practice to apply BI and SI to hard prior 

information like (1.3) and (1.4). This requires that first the hard information be "softened" to a 

prior probability distribution px. Backus (197&, 1988a), Jackson (1979) and Gubbins and Blox- 

ham (1985) discuss the softening process. Backus (1988b) recently shcwed that when 

dimX = QO, softening the hard quadratic bound (1.4) to a probability distribution inevitably adds 

spurious information about the correct model x. This new information is subtle, and can easily 

escape the observer's attention. It is definitely not implied by the original inequality (1.4). and is 

of a character likely to be unacceptable to most observers. For example, every px which adds no 

other information to (1.4) will assign prior probability zero to the set of models x for which 

Q (x, x) is finite. When dimX = QO and the prior information is a quadratic bound (1.4). neither SI 

nor BI is a suitable technique for resolving nonuniqueness in the inverse problem (1.1). 

The present paper develops Neyman's (1937) theory of confidence sets as a replacement for 

BI and SI when the prior information is a hard quadratic bound (1.4). The general idea of 

confidence set inference (CSI) is described by Backus (1987) and Stark (1988), and in fact is a 

special case of a well-established scheme for statistical inference, as will be shown in sections 3 

and 4 below. With CSI, the inevitable and often very large uncertainty in the value of q in (1.4a) 
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cannot be dealt with by "softening" (1.4a) to a probability distribution on X .  Thcrcfore, conclu- 

sions drawn with CSI must be tested for sensitivity to q over a range of values. In the geomag- 

netic problem, it will be seen that altering q by several factors of 10 docs not apprcciably affect 

the conclusions. 

The present paper advocates replacing BI and SI by CSI only in certain circumstances. If 

the prior information really is a probability distribution px  for x on X, and the observer has 

confidence in it, then BI and SI are preferable to CSI. To use CSI on p x ,  the observer must con- 

ven px  to a quadratic inequality (hardening the soft information. in the terminology of Jackson, 

1979). When dimX =-, this hardening process discards large amounts of prior information 

(Bachs, 1988b). 

In the existence problem as well. SI and BI are unobjectionable techniques. When 

dimX >> dim Y ,  computational schemes for constructing an do) which acceptably fits the data 

are prone to numerical instability because so many models are acceptable. Tikhonov (1963) and 

Tikhonov and Arsenin (1972) suggested a general remedy now called regularization: add another 

condition on x besides (1.1) which will make do) unique, so the computer does not go into hunt- 

ing oscillation or wander off to infinity in the high wave-number part of the model space. The 

oldest regularization scheme is simple truncation of the model space to an N-dimensional sub- 

space XN, from which an do) is selected by a least-squares fit to the data. If the fit is unsatisfac- 

tory, N is increased. Tikhonov considered oyher regularization schemes, most of which seek the 

x that acceptably fits the data and minimizes some norm on X.  Geophysical examples occur in 

Backus and Gilbert (1967) and Shure et al. (1982). Both BI and SI offer such techniques, and 

when so used they solve the existence part of the inverse problem but not the uniqueness part. 

This distinction is not always made clear in the literature. 

One of the most convincing examples of prior quadratic information in the form (1.4) arises 

in trying to estimate the geomagnetic field B at the core-mantle boundary (CMB) from 
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measurements of B made on and above the surface of the earth. Therefore, the geomagnetic 

problem will be used to illustrate the general theory of CSI. The next section describes the 

geomagnetic problem in detail, and uses it to clarify some general issues in inversion. The 

remainder of the paper is a description of CSI, followed by its detailed application to the geomag- 

nctic problem. 

2 THE GEOMAGNETIC INVERSE PROBLEM 

In the geomagnetic inverse problcm used here to illustrate CSI, the model space X is the linear 

space of all possible geomagnetic fields B produced outside the core-mantle boundary (CMB) by 

electric cumnts inside the core. Every such B is defined only in the region from the CMB to 

insnity. and can be written there as 

B=-Vv 

where 

(2.1 a) 

(2.lb) 

Here a is the radius of the CIMB, r is the position vector measured from the center of the earth, r 

is I r 1, P is r/r , and ( Y14, ..., Yf) is any orthogonal basis for the spherical harmonics of degree I ,  

normalized so that I Y;” I averages to (21+1)-’ on the surface of the unit sphere. TheP;”(a) are 

the intcmal Gauss coefficients of B at the CMB. They can be used to parameterize the model 

space X .  Ntcmatively, X can be parameterized by any parametcnz:ition of the set of scalar- 

valued functions on the CMB, bccause B outside the core is completely detcrmined by the radial 

comp:: : x t  B, on the CMB (Backus, 1986, gives several parametrizations). In this formulation 

of the inverse problem, the true values of B,  on and above the CMB will include unmodelled 

contributions from sources outside the core. These are treated as errors in the data. 

Scprember 19, 1988 
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In this gcomapctic inverse problem, the data are 

yi =vi  . B(r;) 

where, for i = 1, ..., D ,Gi is a unit vector and ri is a position on or above the surface of the earh. 

Equations (2.1) and (2.2) describe how to calculate the data produced by any mode1 B if the 

errors vanish. Therefore, (2.1) and (2.2) give the forward data function F in (1.la). This F is 

linear, but it would be nonlinear if some of the data were intensities or angles rather than Carte- 

sian components of B. 

For any i among I,  ..., D ,  if Ci is the unit vector appearing in (2.2) then the yi(O)of (1.la) is 

the measured C i  component of the magnetic field at r i .  Thus yi(O) includes the instrument errors, 

position errors, and the field produced by all sources outside the core (since (2.1) models only 

internal sources). These are magnetization in the crust and the satellite, and electric currents in 

the mantle, crust, ocean, ionosphere, satellite, and magnetosphere. The observer has wide lati- 

tude to apportion these contributions to y(O) among the three terms in (1.la): F ( x ) ,  6y and 7). For 

example, the instrument and navigation errors are likely to b:: treated as part of the random error 

Sy. The contribution to y(O) from crustal magnetization might be unknown, but an upper bound 

on its ma,@tude might be available; then it would belong in the systematic error 7. Alterna- 

tively, perhaps the crustal magnetization is well-described by a two-dimensional random process 

on the surface of the earth. Then its contribution to y(O) could be included in Sy. This statistical 

hypothesis about p~ , the probability distribution for 6y, could be tested by the methods described 

in section 3. Finally, if a representation for B more general than (2.1) were adopted (Backus, 

1986), any one of the sources of B could be included as part of the earth model x, and its contri- 

bution to B computed as part of F (x). 

The predictions zi in (I.lb) might be the 224 Gauss coefficients of degree less than 15, or 

the values of B, at 300 points on or above the CMB, or the flux of B through ccrtain null-flux 

curves on the CMB (Backus, 1968; Gubbins and Bloxham, 1985). In the first two cases, G in 

September 19, 1988 
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(1.lb) is linear, and in the first case ('=O in (1.lb) because the prediction can be made exactly 

once the model is known. In the last two cases, C # O  because the prediction includes a contribu- 

tion from magnetic fields with sources outside the core. 

In the geomagnetic example, prior inequalities (1.4) can be obtained for both energy and 

dissipation rate. Einstein's relativity requires that the rest mass of the energy in B be part of the 

total mass of the earth, as measured by surface gravity and the Cavendish experiment for 

Newton's gravitational constant. In the notation of (2.1), it follows that (Backus, 1988a) 

if thePT(a) are measured in nanoTesla. Alternatively, the electrical conductivity of the core 

probably is known to within a factor of 10, and the total geothermal heat flux is known with 

somewhat better accuracy (Stacey, 1977). If ohmic dissipation in the core does not exceed the 

geothermal heat flux then (Backus, 1988a. based on Parker, 1972, and Gubbins, 1975) 

I 
(1+1)(21+1)(21+3)1-' IP;"(a) I 5 3 x 10'' nT2 . 

1 5 1  m =-I 

Since the gauss coefficients are probably of the order of lo5 nT at the CMB, bounds like (2.3) and 

(2.4) appear at first sight to be unhelpful. It is one of the counterintuitive properties of BI on 

model spaces of high dimension that geographically well-distributed measurements of B can use 

a probabilistic (softened) version of (2.4) to find PP(a) from satellite data correct within about 

one part in 1 6 ,  and to find qy' ( a )  within five percent @.A. Langel and R.H. Estes, private com- 

munication). Whether this accuracy survives the replacement of BI by CSI will be answered by 

future computations, to be reported elsewhere. 

Other quadratic forms besides (2.3) and (2.4) have been considered in geomagnetic model- 

ling (see, e.g., Shure er al., 1982). but all have been isotropic, i.e., invariant under rotations about 

the center of the earth, and so have had expressions of the form 

September 19, 1988 
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for various-choices of C (I). 

3 CONFIDENCE SET INFERENCE IN GENERAL 

Confidence set inference (CSI) is an extension of the parametric method of statistical inference 

originally proposed by Neyman (1937). As a formal procedure, it applies to all inverse problems, 

linear or not. Useful results are extracted in particular problems by exploiting their special 

characteristics, such as linearity or the availability of prior information. The following discussion 

of CSI draws heavily on Chapter 34 of Cramdr (1946). The necessary measure- and set-theoretic 

notations are listed in Appendix A. 

In CSI, the observer has measured a data vector y(O) = 0 j0), ...,ydo)) in the D -dimensional 

data space Y =RD. (R is the real line and RD is the space of the real 1 X D  matrices.) The 

observer knows that 

where y(O) and 7 are two vectors about which only the following partial information is available: 

there is a given (usually small) subset S y  of l' such that 

q d Y ;  (3.lb) 

and y") was drawn at random from a population whose probability distribution on Y is j j y  . This 

jjr is not known, but it is known to belong to a given f i  -parameter family of probability distribu- 

tions on Y .  The parameters,61, ..., eA, will be collected into a parameter vector 

8 := (61, ..., 6,) (3.1~) 

in the f i  -dimensional space 6 = R of parameter vectors. (":=" means "is defined as.") The pro- 
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bability distribution whose parameter vector is 6 will & written :6, .). AU the p ( 6 ,  -1, for 

6 E 6, are assumed to have the same domain Cy, a particular O-ring of subsets of Y .  If Q E Cy, 

then the probability assigned to Q by p'(8, .) will be written p ( 6 ,  Q). There is no rcstriction on 

how thep (6, .) depend on 6 .  They could aIl be Gaussian, with means and variance matrices in Y 

specified as functions of 8;  or they could be spline fits to an empirical distribution obtained from 

the data (Constable and Parker, 1988). Neyman (1937) requires that the function 6 l+p(t?, .) be 

injective, but no such demand need be made here; p (e,, e) =p (02, e) will not imply 8 ,  =e2. In the 

formal development of CSI, A in (3.1~) is unrestricted and can even be infinite. In practical 

applications, usually 

rii <<dimY, (3.1 d) 

a resmction which permits use of the observed data vector y(O) to test the hypothesis that py 

really does belong to the family p' (6, .) (Kendall and Stuart, 1979, Ch. 30). 

The observer's goal is to use y(O) to predict P numbers z 1, ..., z p .  Let z := (2 1, ..., z p )  be the 

"prediction vector," a member of the prediction space 2 = RP . Nothing is known about z except 

that 

2 = d (e',) + [ (3.le) 

where d : 6 +2 is a known function, go is unknown but is known to be one of the (possibly 

many) parameter vectors 6 such that 

9 y  =p@, .> 9 (3.10 

and c is an unknown vector about which no information is available except that 

where Sz is a given subset of 2. The vectors q in (3.la) and 

nown systematic errors. 

in (3. le) can be thought of as unk- 

September 19, 1988 



George E.  Backus Confidcnce Set Inference 14 

The CSI solution to the problem (3.1) is to look for a subsct KZ G 2 ,  which is small in 

some useful sense (to be discussed later) and which has a high probability of containing the true 

prediction vector z. This idea of probability requircs careful examination because it is not quite 

the usual one axiomatized by Kolmogorov (1950). Unlike Bayesian inference, CSI assigns pro- 

babilities to statcmcnts rather than to subsets of Z, and the number assigned to a statement is not 

unique. Typically, CSI produces a statement C, a numberp E (0,1], and a proof that either C is 

true or some event E has occurred whose probability wasp . If p << 1, the observer usually will 

feel safe in accepting C as true. The valuc of p is the "failure rate" for C, and 1 -p is the 

"confidence level" for C. The statement C is said to hold with failure ratep or at confidence level 

1 -p . An observer who always accepts statements when they have failure ratep will be wrong, in 

the long run, in a fraction of cases approximately no more than p. The nonuniqueness arises 

because if C is true with failure rate p ,  then obviously C is true with every larger failure rate. 

Ideally, one would like to calculate the greatest lower bound of the failure rates for C, but this is 

often a very difficult calculation. 

The calculus of failure rates is somewhat different from the ordinary calculus of probability. 

To illustrare this, suppose that C1 and C, are statements with failure ratesp I andp2. Let E; be the 

event with probabilityp; which must have occurred if Xi is false. Letp r\p2 denote the smallcr 

of p and p2. If C1 implies &, then failure of C, means that C1 is false, so E has occurred. 

Therefore C, has failure rate p 1. Consequently, if C1 implies &, then C, has failure rate p A p2 

as well as rate pz. The statement "C1 or &" is false whenever both Z1 and C, are false. (Here 

"or" has its technical, logical meaning.) Then both E and E 2  must have occurred. The probabil- 

ity of this compound event could be as high asp  Ap2, but not higher, so "C, or holds with 

failure rate I p 1 ~ p 2 .  The statement "C1 and &" is false whenever one of C1 or fails, Le., 

whenever one of E l  or E 2  occurs. The probability of this compound event is no greater than 

p +p2, so "1, and &I' holds with failure rate I p  +p2. If C1 is certainly true, thenp =0, and as 

- 
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special cases of the above calculations, "C, or &" holds with failure rate 0 (in fact it is certain), 

"C, and C," holds with failure ratep2, and if C1 implies then C, holds with failure rate 0. In 

fact, if C1 implies C, and is certain, then obviously so is &. 

The goal of CSI is to construct for eachp E (0, I J a set K Z  ( p )  iz Z , and to prose that if z is 

the true prediction vector then 

Z E  KZ(P) (3.2) 

with failure rate I p .  It is desirablc that the set Kz@), called a confidence set for z, be as small 

as possible, in a sense to be discussed later. The proof that (3.2) holds with failure rate I p  will 

make heavy use of the rules of inference described in the preceding paragraph. 

Givenp E (O,]), the observer begins the construction of KZ @) by choosing for each 6 E 6 

asetKY(p,8)E Zy suchthat 

p(e,l?Y@,B))r 1 -p . (3.3a) 

For each 6 E 6, the set ky (p ,e)  can be chosen in any way whatever, subject only to (3.3a). 

Now the 8, which appears in (3.le) solves (3.10, so p'(80, a )  is the true probability distribu- 

tion p y  . Therefore the probability that g(O) E k (p ,eo) is at least 1 -p , so the statement 

5"' E F @ , B 0 )  (3.3b) 

holds with failure rate I p  . By hypothesis, 

l p S Y .  (3.3c) 

Since (3.3b) has failure rate I p  and (3.3~) has failure rate 0, the conjunctive statement "(3.3b) 

and (3.3~) are both true" has failure rate Sp +O=p. But the truth of this conjunctive statement, 

together with (3.la), implies 

Y E  (O) RY@,60)  + s y  . (3.3d) 

Therefore (3.3d) has failure rate S p .  The offending event E with probability Sp which must 
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occur if (3.3d) fails is the event that (3.3b) is false; Le., 

y(% Y \n;Y(p,G,) .  

Next, for each y E Y the observer defines a set, namely 

Confidence Set Inference 16 

(3.3e) 

Clearly k ' ( p , y ) ~  0. Furthermore, 8 E k 6 ( p , y )  iff (if and only if, y e  K y ( p , 6 ) + S y .  There- 

fore (3.3d) is true iff 

so (3.3g) has failure rate I p .  Finally, the observer defines the set 

Statements (3.le) and (3.lg) are certain and (3.3g) has failure rate I p .  If Kz@) is defined by 

(3.3h). then (3.2) is a consequence of the simultaneous validity of (3.le), (3.lg) and (3.3g). 

Therefore, by the failure rate rules of inference, when KZ @) is defined by (3.3h) then (3.2) holds 

with failure rate I p  . The offending event with probability I p  which must occur if (3.2) fails is 

(3.3e). 

The observer has great freedom in choosing ky@,6) ,  the only restriction being (3.3a). 

This freedom can be exploited to make the set K z ( p )  in (3.3h) as small as possible. But what 

does "small" mean for a subset of Z if dimZ > l ?  No length or volume has been defined on Z ,  

and "small" may mean different things for different components zi , since those components may 

be measured in different physical units. If dim Z = 1, the "size" KZ of a subset KZ E Z is easy to 

define because Z is simply the real line R . A convenient definition is 

where sup KZ is the supremum or least upper bound of KZ and i n f K Z  is the i n h u m  or greatest 

lower bound of KZ . The quantity 2 I KZ I is called the "diameter" of KZ because 
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21KZ I =sup (lu-wl :u,w E K Z ) .  (3.4b) 

Therefore IKz I might be called the "radius" of KZ. Definition (3.4b) could be extended to the 

case dim Z > 1 if I u I were defined in that case, but it is not. A useful consequence of (3.4a) is 

that if Kf and K g  are any subsets of R then 

(3.4c) 

with equality, not merely inequality. 

Bayesian inference and stochastic invexxion lead naturally to prediction spaces 2 with 

dimZ > 1, but in confidence set inference it is both possible and desirable to consider only 

dim Z = 1. The goal of any inversion of data is numerical prediction. The point of considering 

the predictions z 1  ,..., z p  together as a single prediction vector z=(z l ,  ..., z p )  is that for any func- 

tion h :Z + R a confidence set for the numerical prediction h (2) is obtained easily from the 

confidence set for z. If z E KZ @) with failure ratep, then clearly h (2) E k (Kz@)) with failure 

rate p .  But vying to treat all functions h :Z + R simultaneously has a cost. It forces a 

compromise in choosing the l?'@,6) for (3.3a): none of the confidence set radii I h ( K z ( p ) )  I 

should be immoderately large, whatever the function h : Z -+ R . Clearly, for any particular h , 

the smallest value of Ih(KZ(p) ) l  is achieved by ignoring other functions h' when choosing 

l?'@,8) to satisfy (3.3a). For any particular prediction h (z), l?'@,6) should be tailored to the 

particular function h : 2 -+ R . But then the observer is simply replacing the function e : 6 -+ Z 

in (3.le) by the function's' :'e R ,  where g = h  o e, the composite of h with d .  Thus in CSI 

the observer is really dealing with the case dim Z = 1 in (3.1). This point of view has been made 

practical only by the advent of inexpensive and powerful computers. Before them, economy 

required that the data be "reduced" to a multidimensional model and its error estimates. All indi- 

vidual numerical predictions were then computed from the model. 
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Thcre may remain cases whcre an obscrver really nceds a multidimcnsional prediction for 

itself rather than as an intermediate step toward various onc-dimensional predictions. The present 

paper docs not discuss these cases. Hcnccforth, it will be assumcd ihat dim Z = 1, so Z = R  , and 

the function e : 8 + R in (3 .1~)  will be written s' : will 

be written [. Since the codomain of 

+ R , whilc z will bc written z and 

is R , f is a functional, the prediction functionsl. 

Scptcmber 19, 1988 



Confidence Set Inference 19 

4 CONFIDENCE SET INFERENCE IN GEOPHYSICAL INVERSE PROBLEMS 

Most geophysical inverse problems, even nonlinear ones, permit considerable simplification of 

the general formalism for CSI given in section 3. To see this, it is necessary to state the typical 

geophysical inverse problem at an almost pedantic level of precision, as follows. 

The observer has measured the components of the data vector y(o)=(-yfo),...,ydo)) in the 

data space Y = R D ,  and wants to use y(O) to predict the value z of a certain numerical property of 

the earth. As discussed at the end of section 3, the prediction is only one real number rather than 

several. The tools available to the observer are these: (1) an arbitrary set X called the model 

space, whose members x will be called earth models; (2) a function F : X -+ Y called the data 

function; (3) a functional g : X -+ R called the prediction functional; (4) a known subset S of Y ;  

(5) a known subset of Sz of R ; (6) an rn -parameter family of probability distributions on Y. The 

case rn =O is permitted, and then the "family" will consist of a single known probability disuibu- 

tion p on Y .  If rn >O, the rn parameters will be collected into a single parameter vector 

8 := (e1, ..., e,) in the parameter space O=R", and the probability distribution with parameter 

vector 8 will be written p (0. e). The probability which p (e, -) assigns to the subset Q c Y will be 

written p (e, Q ). All the p (e, -) must have the same domain Cy, a a-ring of subsets of Y. More- 

over. & must be closed under various operations of Euclidean geometry. Rather than list these 

in detail, the present paper assumes simply that Cy consists of all subsets of Y to which a 

Euclidean volume can be assigned, Le., the Lebesgue-measurable sets (Halmos, 1950), so Cy will 

include all open and all closed subsets of Y .  

The information available to the observer is the following: a vector 6y was drawn at random 

from a population in Y whose probability distribution is p ~ .  This p~ may be unknown but is 

known to belong to the given rn -parameter family. That is, there is at least one 8 E 0 such that 

The observer also knows that there are vectors x E X , q E Y and a real number 5 such that 

V E S Y ,  (4.lb) 
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(4.1~) 
(4.1 d) 

and 

2 =g(x )+ [ .  (4.le) 

In (4.1), x will be called a correct earth model, q will be called the systematic error in modelling 

the data with x, 5 will be called the systematic error in modelling the prediction with x, and Sy 

will be called the random error of observation. 

The geophysical inverse problem (4.1) is a special case of the statistical inference problem 

(3.1). To see this, introduce the following definitions: 

(4.2a) 

(4.2~) 
(4.2d) 

(4.2b) 

and, for every Q E Cy and every (e, x) E 6, 

To use this correspondence between (4.1) and (3.1). the "parameter vector" 6 must be permitted 

to be a member of an arbitrary set 6, not necessarily an rZ -tuple like (3.1~). The assumption 

(3.1~)  was never used in section 3, so abandoning it does no harm, and now (4.2b) makes sense. 

In practice, X is usually a linear space or a manifold of some dimension N , and then 6 in (4.2b) is 

exactly of the form (3.1~) with rii =m, +N. In this special case, the desirable but not essential 

condition (3.ld) becomes 

rn +dimX <<dimY. (4.3) 

The formal application of CSI to (4.1) requires neither (3 .1~)  nor (4.3). but (4.3) does permit tests 

of the statistical hypothesis (4.la), that 6s. was drawn at random from a population described by 

some member of the family p (6, e). 
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In principle, the family p (e, a )  can also depend on x, but the simpler problem (4.1) covers 

most geophysical inversions. In that simpler problem, some of the flexibility available in choos- 

ing a ky(p,8)  is not very useful, and can be sacrificed to the goal of economy. To construct the 

special kind of l?y(p ,6)  appropriate to (4.1), for each 8 E 0 choose a set K Y ( p , 8 )  E Cy such 

that 

p ( e , K Y  @,e)) 2 1 -p (4.44 

and define (in the notation of A.3d) 

fY@,& := F ( X )  + K y @ , e )  

where 6 = (0, x) as in (4.2b). Then (3.30 becomes 

(4.4b) 

f'@,y):= {(O,x):O E 0 and X E  X and Y E  F ( x ) + K Y ( p , O ) + S y ) .  (4.4c) 

Now, since dim Z = 1, (3.3h) is written 

KZ @) = g (P@, y"))) + sz (4.4 d) 

and, at confidence level 2 1 -p or with failure rate <p 

z E K z ( p ) .  (4.4e) 

The description of RZ ( p )  can be simplified further. For any subset @ E; 0 define llx (p) 
as 

llx (Vi) := { x : x E X and there is at least one 8 E 0 such that (e, X) E w ) . (4.5a) 

Heuristically, llX(l?) can be thought of as the shadow of w cast on X by light rays parallel to 0. 

According to (4.2d), for every subset @ s 6, 

gN)=8(~x" - 

Define KX (p , y) s X as 

KX@,y) := l l X ( P @ , y ) ) .  

Then the various definitions imply that 

(4.5b) 

(4%) 
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K X ( p , y ) = { x : x ~ X  andthereisatleastone Ocz 0 suchthat y ~ F ( x ) + K ~ ( p , 0 ) + S ~ ) .  

(4.5d) 

Furthermore, from (4.5b) and (4.5c), 

(4.5e) 

and, with failure rate I p ,  

The observer still has great freedom in constructing the sets K'(p,O) to satisfy (4.4a), and 

this freedom can be used to minimize I g (Kx (p , y(O))) I. By (4.50 and (3.4c), the result will be to 

minimize I Kz@) I .  To achieve the minimum possible value of J 8 (Kx ( p ,  y"))) J can require 

intricate statistical theory; the present paper will try to make Ig(KX@,y(03)1 small, but not 

always as small as possible. 

5 LINEAR INVERSE PROBLEMS WITH KNOWN ERROR STATISTICS AND AN 

INJECTIVE DATA FUNCTION 

The solution (4.5) to the inverse problem (4.1) is that z E K z ( p )  at confidence level 1 1 -p, or 

with failure rate rp ,  where Kz(p )  is given by ( 4 3 ) .  This "solution" is incomplete, because no 

particular choice has been made for the sets K y @ , O )  in (4.4a). The present section shows one 

way to choose the sets K Y ( p , B )  and thus complete (4.50 to an explicit solution, in whac is 

perhaps the simplest inverse problem of al l ,  the linear problem with known random e m r  statis- 

tics and an injective data function. 

In this simplest version of problem (4.1). X is a linear space, F : X + Y is a linear injection, 

g :X + R is a linear functional, and the observer knows p E ,  the probability distribution in Y for 

the random error vector 6y which appears in (4.ld). 
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As noted in appendix B, p~ induces a unique dot product on Y ,  and this makes Y a finite- 

dimensional Hilbert space. Therefore p~ can be discussed in the language of tensors on Hilbert 

spaces, as set out in appcndix C. The expected value of 6y. E [&I, is known. The observcr can 

redefine y(O) as y('1-E [6y], thus achieving the result 

E [6y] = 0 . (5.la) 

Then the variance tensor o f p E  is simply E [(6y)(6y)], and in terms of the dot product on Y deter- 

mined by p ~ ,  

where Iy is the identity tensor on Y. 

Let P F ( x )  and Q F ~ )  be the orthogonal projectors of Y onto F ( X )  and its orthogonal com- 

plement, F (X)'. Then 

and 

(5.23) 

(5.2b) 

(5.2~) 

(5.2d) 

Now F : X 4 Y is an injecrion, and thus so is (FIX) : X + F ( X ) .  But F I X is also a surjec- 

tion, and hence is a bijection. Therefore, (F IX)-' : F ( X )  +X exists. For brevity, this inverse 

function will be written simply F-', so 

F - ' : F ( X ) + X .  (5.3a) 

Note that F-'(y) is defined only for y E F ( X ) ,  not for all y E Y .  Therefore, F-' could not be 

applied to (4.ld). But (4.ld) has been split into the two pieces (5.2~) and (5.2d), and F-' can be 

applied to (5.2~) to give 
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(5.3b) 

where 

x(O)=F-'o PF(X)(y(03 (5.3c) 

and F-' is the composite (A.la) of F-' with P F ( ~ ) .  Substituting (5.3b) in (4.le) givcs 

=i?(0)+c-goF-10 f ' ~ p ) ( q ) - S  0 F - ' O  P F Q ) ( ~ ~ )  (5.3d) 

where 

2") = g (x")) = g 0 F-' 0 PFfl)(Y(o)) (5.32) 

In this simplest inverse problem, (5.3d) contains the germ of the solution (4.5e.f). Since p E  

is known, there is no parameter vector 8 in (4. la), and rn , the number of parameters, is zero. 

Then in (4.4a), K y @ , O )  does not depend on any 8 ,  so (4.4a) becomes the requirement that a set 

KY @) E Y be chosen so that 

P E ( K Y @ ) )  2 1 -p . (5.4) 

To motivate the particular choice of K y ( p )  to be suggested here, consider the linear functional 

g o F-' o P F p )  : Y + R . Since Y is a finite-dimensional Hilbert space, so is its subspace F (X). 

Therefore there is a unique vector y e  F ( X ) ,  such that for all Y E  F(X), g o F-'@)=yoy. But 

then, for aI I  Y E  Y ,  

because g o F-' o P F Q ) ~ )  =y P F f l ) ( Y )  = PF@:)(y) o y = y  y. It is also true that 

llg 0 F - 9  = llrll 

where 11fiI := ( y  oy)' and Ilg o F-'ll is defined as in appendix C. Hence, iff  := y /  I l f i l ,  then 

(5.5b) 
I 

and 

ll3I = 1 (5.5d) 
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Then 

g 0 F-1 0 PFQ)(63’) = 11s 0 F1l l ( j  0 6F). (S.Se) 

Now consider the real random variable f &. Its probability distribution, p i ,  is the margi- 

nal distribution of p E  on thc one-dimensional subspace of Y spanncd by j .  If V is any 

Lebesgue-measurable subset of thc real linc then 

P;(V> =PE(V?+ I Y P ) .  (5.6a) 

The mean and variance of j o  Sy are 

E 6 0 Ey] = 0 (5.6b) 

and 

E[(?  0 6yl21 = 1 9 
(5.6~) 

because E[fo6yJ = fo€[Sy] = ?DO = 0, and E[(fo6y)*] = E[(jk~Sy)(Syof>] = 

E 6 (6y)(6~’) 031 = f oE [(6y>(Sy)] cy = y c I y  oy = 7 oy = 1. 
CI C I C I  . . a  

To construct a KY ( p )  in (4.4), use the notation of appendix A for open and half-open inter- 

vals. For any v E [0, -), define 

P ( % V )  =p;([v,-)) +P$--l-vl) . (5.7a) 

For simplicity, suppose that pi(\.’) =0, whcnever V contains only one point, and that p; (V)  > 0 

whenever V is an open interval. Then 

p(?,0)=.1 9 (5.7b) 

and as v increases from 0 to -.p (?,v) decreases monotonically from 1 to 0. Therefore the func- 

tion p ( i ,  e) : [0, -) + (0,1] has an inverse function, p(T, e)-’ : (0,l J + [O, -), which will be writ- 

ten v ( i .  .) : (0.13 + [O,=). The probability is p that l io6y [ 2v(?,p). This motivates the 

definition 

Then 6y e K (p ) with probability p . Therefore 
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at confidence level 1 -p, or wilh failure ratep. 

Now for any positive a E R , Ict 

~ ~ ( a ) : =  [ z  : z  E R and I z I  l a ) .  

Clearly 

I B Z ( a ) l  = a  

in the sense of (3.4a). Also, from (5.5d) and (5.7d). 

with failure ratep. Therefore, from (5.3d), 

z E KZ@) 
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(5.7d) 

(5.8a) 

(5.8b) 

(5.8~) 

(5.8d) 

with failure ratep , where 

K Z @ ) = z ( O ) + S Z + g  0 F- '0  P,Q)(SY)+BZ(llgoF-111v(3,~)). (5.8e) 

Often. Sz and Sy , and hence o F-' o P F Q ) ( S y ) ,  will be symmetric about the origin; that is, 

SZ =-Sz and Sy =-Sy. In this case, the notation (3.4a) provides a simple way to restate 

(5.Sd.e). namely 

l z  4 O ) I  5 ISZ I + 1s 0 F-' 0 P ~ o r , ( s ' )  I + 118 0 F-'IIV(f$> (5.80 

with failure ratep . 

Of the three terms on the right in (5.80, I Sz I will be easy to evaluate because a symmetric 

Sz is usually defined simply by giving I Sz I .  For the second term on the right of (5.80 it is 

always m e  that 

Is oF-'oPFQ)(SY)I 511s oF-'ll ISY I . (5.9a) 

where 

lSYl := sup { [ I  yII : y E s y  ) . 
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The inequality in (5.9a) is equality if Sy is a ball, Le., if there is a real p such that S y  = B y @ )  

where 

However, (5.9a) will not be the best estimate if, as often happcns, S y  is a pardlelipipcd. In this 

case there is a/3=(P1, . . . ,PD) E Y such that S y  =Cy@) whcre 

cy@)  := {q :q E Y and lqi I 5 Ipi I for i = 1. ..., D ) . (5.9c) 

If S y  =Cy@) b ut the 6yj are correlated, then the edges of S y  are not mutually orthogonal in Y ,  

and cdcularing 1s o F-' o P , c c ~ ) ( S ~ )  J becomes a problem in linear programming on a graph with 

2' vertices in N dimensions, where N =dim X . 

It remains to discuss the last term on the right in (5.80. The easiest way to evaluate 

llg o Fill is to use the identity (5.5b). To evaluate v(+,p), one must do the integrals with respect 

to &E in Y required to evaluate p i  in (5.6a). and then onc must cany out the integrals over the 

real intervals in (5.7a), to evaluatep(f,v>. The inverse function ofp(f, is v(7, e). In one spe- 

cial case, a l l  these calculations can be done almost in closed form. If p E  is Gaussian, then p i  is a 

Gaussian distribution on R with mean 0 and variance 1. There is only one such one-dimensional 

Gaussian, so p i  does not depend on 7. and (5.7a) becomes 

OD 

p (v) = (2ht)" j d{ e-%' . 
V 

(5.10) 

The inverse function, v@), is tabulated; a partial list of its values appears in Table 1. Rational 

approximations are given by Abramowitz and S t e p  (1964, p. 298). 

++++++++++Table 1 near here+++++++++++ 

The solution (5.8d,e) or (5.80 has a simple interpretation in terms of least-squares fitting. If 

V is any subspace of Y, and y E Y ,  thcn the projection Pv (y) is that v E V which minimizes 

Ily-vll (Halmos, 1958). This is the V E  V which provides the best fit to y in the sense of 

weighted least squares, the weight matrix being the inverse of the variance matrix of the random 
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errors (see appendix B). Thus the do) of (5 .3~)  is that member of X such h a t  F ( d 0 ) )  gives the 

best fit to y(O) in the sense of weighted least squares. The z(O) of (5 .3~)  is the value the prediction 

would have if do) were actually the correct earth modcl and thcre were no errors. 

Of the two equations (5.2c,d) into which (4.1d) was partitioned, only (5.2~) has been used 

so far. If F ( X ) = Y ,  then QF(x)=O,  and (5.2d) has no content. On thc othcr hand, if 

dim X << dim Y (5.1 1) 

, 
then, since m =0, (4.3) holds, and it is possible to use the data vector y(O) to test the hypothesis 

that Sy was drawn at random from a population whose probability distribution is p E .  In the sim- 

plest case, IS, I << 1 so IlQ~m~)(q)ll << 1 in (5.2d). Since any component of Sy has variance 1, it 

follows that QFR)(q) can bc negIected in (5.2d). Then that equation assem that QFR)Q(o'>. the 

residual part of y(O) which remains after removing the best least squares fit, is itself a random 

sample from the population QFW,(Sy). The probability distribution of this population is the mar- 

ginal distribution of p E  on F (X)'. Many tests of this hypothesis are available in the extensive 

literature on tests of fit (see, e.g., Kendall and Stuart, 1979, Ch. 30). As an example, suppose that 

pE is Gaussian. Let N = dimX = dimF(X), and let { j " + ~ ,  ...,YD ) be an orthonormal basis for 

F (X)'. Then the D - N  numbers 9; oy(O) with i =D + 1, ..., N should bc independent random 

samples from a one-dimensional Gaussian population with mean 0 and variance 1. There are a 

variety of tests of this hypothesis (Kendall and Stuart, loc cit), one being the Kolmogorov- 

Smimoff test. Another test uses the fact that 

(5.12a) 

is the sum of D - N  independent identically distributed random variables, so the probability dis- 

tribution for s2 is nearly Gaussian (the exact distribution for (D - N ) s 2  is chi-square with D -N 

degrees of freedom). The mean of s2 is 1, and its variance is 2(0 -AT)-', so the probability is 

nearly 1 -p that 

I s2- 1 1 s v (p ) [2 / (D  -A')]" (5.12b) 
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That is, if p~ is Gaussian then (5.12b) holds with failure rate approximately p .  In (5.12b), v(.) is 

the inverse of the functionp(.) defined by (5.10). 

6 USING A PRIOR QUADRATIC BOUND TO h4AKE THE DATA FUNCTION 

IKJECTIVE 

The preceding section is based on three crucial assumptions: that the observer knows the proba- 

bility distribution p~ for the random error 6y in the data vector y(O); that F :X + Y and 

g :X + R are linear; and that the data function F :X + Y is an injection. The present section 

shows how to relax the third assumption, so as to treat realistic linear inverse problems in which 

dimX = =. Section 5 cannot treat such problems directly because if F is injective then 

dim X = dim F (X). Since F (X) c Y ,  it follows that dimX I dim Y = D < = when F is injective. 

When dim X =- (or more generally, when F is not injective even though dim X < -) the 

idea is to approximate the inverse problem (4.1) by another problem with an injective data func- 

tion. To generate this subproblem, it is necessary to invoke prior information beyond that con- 

' tained in the original problem (4.1). In the present section, the new prior information will be a 

quadratic bound (1.4). The observer knows a constant q and a positive definite quadratic form Q 

on X ;  and the observer knows that there are vectors x E X, I] E Sy and a scalar 5 E Sz such that 

x,q,c satisfy (4.1) and x also satisfies (1.4). 

Appendix B shows that q-'Q defines a dot product on X. The dot product of x and 2 will 

be written x j i ,  and I I  xll , the norm (or length) of the vector x, will be defined as Ilxll = (x ox)'. 

Then (1.4) can be wrinen as 

Even knowing (6.1). the obsenter cannot reduce (4.1) to a problem with an injective data 

function unless certain further information is available about the quadratic form Q which appears 

in the prior bound, (1.4) or (6.1). Specifically, the bound (1.4) must be a strong enough constraint 

on x that it makes the given data function F :X + Y  and the given prediction functional 
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g : X  +R continuous in the norm llxll which q-'Q defines. That is, lim 11 x, - x  11 = 0 must 

always imply lim I[F(x,)-F(x)ll  =O and Iim /g(x,)-g(x) I =O. Since F and g arc linear, 

continuity at x = 0 is equivalent to continuity at every x E X (Halmos, 195 1). And since F and 2 

n 4- 

n 4- n - m  

are linear, continuity at x=O is equivalent to boundedness (see appendix C for definitions and 

Halmos, 195 1 , for proofs). 

When dimX <my F and g will always be continuous because they are linear, but when 

dimX=m linearity does not imply continuity (Halmos, 1951). Continuity of F and g with 

respect to the norm llxli is an extra assumption about that norm. When dimX == and F is not 

continuous, CSI requires the observer to reexamine her or his prior knowledge of the earth and try 

to replace (1.4) with another such inequality strong enough to make F continuous. Backus 

(1970b) describes some methods ("quellings") for doing so. When dimX =- and g is not con- 

tinuous, the observer has two choices: finding a stronger Q for (1.4), or accepting a slightly dif- 

ferent prediction zA for which (4.le) can be replaced by ZA =SA ( x ) + ~ A ,  with a new prediction 

functional gA which is continuous. This is the tactic adopted by Backus and Gilbert (1968, 

1970). 

Besides assuring that F and g are continuous, which may require reexamining the prior 

geophysical information, the observer must also make sure that X is a Hilbert space with the dot 

product defined by the quadratic form q-*Q. This is merely a mathematical technicality, and 

requires no new geophysics. To say that the dot product space A' is a Hilbert space is merely to 

say that it is complete in the norm llxll; that is, all its Cauchy sequences have limits. This is a 

trivial requirement because if X is not complete it can always be completed (Halmos, 1951). 

Therefore it can be assumed without loss of generality that X in (4.1), (6.1) is a Hilbert space 

with the dot product defined by q-'Q. In the present paper, it will be assumed that X is separable 

(Halmos, 1951). This assumption is not essential, but does simplify the notation, since it 

amounts to assuming that all orthonormal bases for X can be indexed by the integers. In every 

Hilbert space inverse problem known to the author, X is separable. 
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Since X is a Hilbert space and g is a bounded linear functional on X , there is a unique vec- 

tor g E X such that 

for every x E X . Moreover, if 11 gll := (g s)". then 

llg ll = IIgII (6.2b) 

..- 
(6.2~) 

the ball B X  (a) being defined for any real a as 

B x ( a ) : =  ( X : X E  X and llxll Sa) . (6.2d) 

Also, since X and Y are both Hilbert spaces and F : X + Y is bounded and linear, thex is a 

unique tensor F E Y 63 X (see appendix C) such that 

F (x) = F x 

for every x E X. Moreover, 

where, as in appendix C 

and 

Now the inverse problem (4. I), (6.1) can be written as follows: 

(6.2e) 

(6.20 

(6.2h) 

(6.3a) 
(6.3b) 
(6.3~) 
(6.3d) 
(6.3e) 
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In the present section, the number rn of parameters in the parameter vector 8 is 0, so (6.3a) sim- 

ply means that pE is known. The precise stalcment of the inverse problem (6.3) is this: the 

observer wants to estimate z from what is known. What is known is p ~ ,  S y ,  Sz, y('), F, 6, the 

fact that & was drawn at random from a population with probability density p ~ ,  and the fact that 

therc is a triple ( x , q , c )  which satisfies (6.3). 

The observer can approximate (6.3) in many different ways by a problem with an injective 

data function, and so is free to choose an approximation which minimizes the error in estimating 

z . Section 7 will describe one technique for minimizing this error. The present section discusses 

how to find all the approximations to (6.3) which have injective data functions. 

To produce any such approximation, let N be a positive integer, and let X, be any N -  

dimensional subspace of X. It will not be necessary to assume that dimX ==, but that is the 

most interesting case, so the notation will be tailored to it. Define 

(0,") := xN 

and 

(6.4a) 

I X(N,m) := XN 

Since X is a Hilbert space, 

(6.4b) 

X = X ( O A ~ )  @ x ( N . 0 )  (6 .4~)  

This conventional notation for orthogonal direct sums is described in appendix D, and simply 

abbreviates the following remarks. For every x E X there are unique vectors x(oflN) E X(oflN) and 

x(,,,,~)E Xyv,m) such that 

. .  

(6.4d) 

These vectors have the additional property that 
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so that 

(6.40 

(6.5a) 

(6.5b) 
(6.5~) 
(6.5d) 

and let the corresponding tensors and vectors be F(OJ)E Y @ X ( O J ) ,  F ( N , ~ ) E  Y @X(A~n.+ 

g(08)E X(o,h'N) and g ( N , s ) ~  X(N,m) .  Now an apparent ambiguity of notation must be resolved. 

There are two ways to construct g ( o ~ )  and g(~,-) from 6: the construction g I+ g in (6.2a) fol- 

lowed by gk(g(OflN).g(N,m)) as in (6.4d); or the construction g I+ (S (Of l ) ) rg (N, - ) )  of (6.Sc,d) fol- 

lowed by g(08)k g(o)J) and gyu,m)k g(,,,,.+ as in (6.2a). Obviously both constructions give the 

same result, so in fact the notation is unambiguous. 

and 

Substituting the expressions in (6.3d,e) suggests the following definitions: 

where BX(N*e)  is defined by replacing X with X(N,o)  in (6.2d). Note that 

(6.6a) 

(6.6b) 

(6.7a) 

(6.7b) 

(6.7~) 

(6.7d) 

(6.7e) 
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whcre B Z  is defined by (5.8a). The preccding dcfinitions pcmiit (6.3) to be recast in thc f o l l o ~ , -  

ing form: 

(().Sa) 

(6%) 

(6 .8~)  

(6.8d) 
(6 .8~)  

(6.80 

To obtain (6.8) from (6.3). note that (6.8a) is (6.3a) and that (6.8d,e) are obvious consequences of 

(6.3d,e), (6.6). and (6.7a,b). The bound (6.80 follows from (6.30 and (6.40. Assertions (6.8b,c) 

follow from (6.3b.c) once it is shown that F(N,~)o~(K, , )E F ( N , , ) ( B ~ ( ~ ) !  and 

gYJIm) xWp.) E g (,,,,,)(BX (1)). These claims are established by noting that (6.30 and (6.40 

imply II X(N ,-)I1 5 1. 

The problem (6.8) is formally identical with (6.3). but now the data space is X(oflN) with 

dimX(o,,,N)=N COO. and the data function and prediction functional are F ( o ~ ~ ) : X ( ~ , , T ) + Y  and 

g(o,, ,):X(o,, ,)+R. These are approximations to the original F and 8 ,  and the errors of approxi- 

mation, the truncation errors, are included in (6.8b,c). 

Nothing in the foregoing construction of F(O,,I) assures ba t  it will be injective. However, it 

can always be restricted to be so. Let N(o,,,) be the null space of F(0)r7). That is, 

Then (F(~ , ,~)  I ~ 6 ~ ) )  : N$,,,) Y is necessarily injective. TO prove this, it suffices to prove that 

F(O,,,N) I N$,,,) never assigns 0 to a nonzero vector in its domain (Halmos, 1958). But if x E N$,,,) 

and )(x) = 0, then also x E N(o,,r)), so x is orthogonal to itself, and hence x = 0. 

Now let 

and in the argument leading from (6.3) to (6.8) use 

(6.9b) 
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x, =I\:(&) (6.9~) 

instead of X, .  Then X ( o f l ) = X M  =N&J) and the new F(oy) will be an injection ofX(ofl) into Y .  

Thus section 5 becomes applicablc. The numerical calculation of X(oyM) and F(O,hI)  from X(oJ) 

and F(OJN) can be done quite explicitly, since F ( o y )  = F(oJ,)  I X’(oy) = F I h’&,r). For any vector 

X E  X(ojr), the vector F(obr)(x) in Y can be wnttcn (F(!OJ)(X) .  .... F &)(L)). For any 

i E { 1,  ..., D ) the real number Fiobrj(X) depends linearly and continuously on X E  There- 

fore Fioy )  :X(oyN)+ R is a continuous linear functional on X(oy). Hence there is a unique vec- 

tor F & ~ J ) E  X ( O ) J )  such that 

for evcry x E X ( o N ) .  The functional F i o y )  will be called the ith restricted data functional and 

F b J )  will be called the i th restricted data kernel. The space N ~ J )  is spanned by the D restricted 

data kernels F:oJ,. ..., F(&) 

One particular choice of XN will assure from the outset that F ( o J )  : X(o,)  + Y is injective, 

so that the extra step described in the preceding two paragraphs is unnecessary. Let NF be the 

whole null space of F , that is 

Writing F (x) = (F ‘(x), ..., F D  (x)) defines the D data functionals F’ : X R , and (6.2a) provides 

the corresponding data kernels F’ E X (Backus 8: Gilbert, 1967). The space Nk is spanned by 

F’, ..., P , s o d i m N F I I D .  TakeN=dimNkand 

X N = h ’ k .  (6.10b) 

- 

When this XN is used to obtain (6.8) from (6.3). clearly F ( o y ) : X ( ~ y ) - +  Y will be an injection. 

Choosing XA7 =h’# avoids the extra step (6.9) in the approximation process for (6.3), and 

has the further advantage that with this choice 

F, ,-) = 0 (6.10~) 

and (6.7~)  becomes 
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S&,-) := s y  . (6.1Od) 

In other words, (6.10b) produces the smallest possible truncation error (namely 0) among all 

choices of subspaces of X.  However, (6.10b) has one serious disadvantage: it requires at least 

Some numerical computation with D x D full matrices, and D is often very large. For satellite 

magnetic data, D is typically of the order of IO4. Another problem is almost certain to appear in 

(6.10) but can also arise in (6.9). The data functionals F ', ..., FN in (6.10) or F', ..., F' in (6.9) 

may be linearly dependent or nearly dependent. Then a very small subset of them may carry all 

the information in y(O) which exceeds the noise, q +6y. Computations with the whole linearly 

independent set of data functionals will be numerically ill-conditioned and wasteful of computer 

resources. All these questions are addressed in the next section, which shows a way better than 

(6.9~) to choose Xu, whether XN is arbitrary or is given by (6.10). 
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7 RESOLUTION IN CONFIDENCE SET INFERENCE 

When dim X = - and the observer accepts a prior quadratic bound on the correct earth model x, 

the choices (6.9~) and (6.10b) provide two approximations to thc linear inverse problem (6.3). 

Each approximation provides a finite-dimensional model space X, an injective data function 

F :X -+ Y ,  and known confining sets Sy and Sz for the systematic errors q and 6.  Thenfore 

both approximations are amenable to treatment by section 5.  However, both approximations are 

potentially subject to a serious numerical defect. Even though F-' : F (X) +X exists in both 

cases, llF-'ll may be so large that 11s o F-'ll is too large to make (5.8d.e) or (5.80 a useful esti- 

mate of z . Since F is linear, all that is required to make F injective is that F ( f )  #O for all 

5 E d B x ( l ) ,  where dBx(l)  := {n : 2~ X and l l < l l =  I ). Nothing prevents F ( f )  from being very 

small for some such f ,  so that llF-lll is large. Physically speaking, i f f  E a B x ( l )  and F(E)  is 

smaller than the e m r  q + 6y. then whatever component E ox of f is present in the correct earth 

model x, that component will contribute to y(O) a "signal" which is below the noise, because (6.30 

requires I f  ox I I 1. Then, even though F 6)  f 0, it is fruitless to try to resolve f x and use it in 

estimating z .  

In Bayesian inference and stochastic inversion, the computations required to pick out the 

resolvable parts of the earlh model x in problem (6.3) are well-known (Jackson, 1979; Gubbins 

and Bloxham, 1985; Backus, 1988a). The present section describes the corresponding calcula- 

tions of resolution for confidence set inference (CSI). 

The first step is to use the prior quadratic bound to approximate (6.3) by a finite- 

dimensional problem (6.8). There is no restriction on the XN used here, and either (6 .9~)  or 

(6. lob) is acceptable. It will be assumed, however, that 

N =dimXN Id imY =D . (7.1 a) 

A more complicated notation would make (7.la) avoidable, but the effort is of doubtful value, 

since (7.la) holds in most practical inversions, and certainly in (6.10b). 
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Resolution in CSI is based on the eigcnstructure or singular value dccompos;tion (SVD) of 

the finire-dimensional approximate data funciion F ( o ~ N )  : X ( o ~ ~ )  + Y .  The eigenstructure is avail- 

able because both and Y are Hilbcrt spaces; and the eigenstructure is physically useful 

because the dot products on X and Y arise from real physical information about the correct earth 

model X and the random error Sy. Appendix D dcscribcs SVD in the form most convenient for 

the present discussion. 

Let the eigenfactors or singular values of F(O,,,N) in descending order be 

where multiple eigenfactors are repeatcd according to their multiplicities. Let { f, ..., 9~ ) and 

{fl ,  ..., ) be orthonormal subsets ofX(oJl and Y such that 

for i = 1, ..., N .  Since N =dimX(OflN)r In,, ..., 9 ~ )  is an ortbonormal basis for X,pl and can be 

extended to an orthonormal basis for all of X , written Ifl, f2, * ) . For each integer i define 

gi := go$; 

and 

and 

Here x and g are the earth model and prediction functional appearing in (6.3). 

(7.1 d) 

(7.1 e) 

Calculation of resolution is facilitated by the following notation. For any integers p and q 

such that OIp<g,  define X b , q l  as the subspace of X spanned by {$,+l,. . . ,5iq). Define 

X@,>= IO), and let Xb,,) be the subspace of X spanned by {j$,+l.fp+~, - ). For the special 
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cases X ( o A 7 )  and X ( N , m )  thcse definitions agree with those already introduced in (6.4). If 

0 < p  I q I =, define 

the orthogonal projector of X onto A’@ ,4) ; 

the orthogonal projector of Y onto Y(t7,q); 

(7.2a) 
(7.2b) 
(7.2~) 
(7.2d) 

(7.2e) 

and 

This notation leads to a number of useful identities, some of which are expressed most 

easily in the tensor language of appendices C and D. If 

OIp I q  I= 

then 

and 

4 

i=p+l 
P@x,q)= 2 3; Pi 

where a sum is understood to vanish if its upper limit is less than its lower limit. If 

O < p  < q  I N  

then 

(7.3a) 

(7.3b) 

(7.3c) 

(7.3d) 

(7.4a) 

e.- 

September 19, 1988 



George E.  Backur Conjidence Set Inference 40 

(7.4b) 

(7.4c) 

If O I p  I 4  and 4 is such that 

(7.5a) O q  > o  

then (7.lb) implies that F@,q):X6,q)+ Yb4) is a bijection whose inverse F@l,q) is represented 

by the tensor 

(7.5b) 

Here FG1,ql has as its domain Y@,q) ,  but FG',) can be interpreted as a member of either 

X@,q) 6 or X 6 Y. Equation (7.5b) is simply (D.l le) in appendix D. It is also important 

to observe that (7.5b), (7.4b) and the orthonormality of {f1,  ..., ftlv ) imply 

(7.5c) 

If n is any integer satisfying 

O I n  < N ,  (7.6a) 

then in the standard notation described in appendix D 

(7.6b) 
x(n,-)=x(n,h') @x(h' .m)  (7 .6~)  
X = X ( O . n ) @ X ( n ~ ) @ X ~ . - ) *  (7.6d) 

Now the idea is to approximate (6.3) by each of the X(O,n) for n = 1, ..., N and to try to select 

n to minimize I K C f l  @) J , the radius of the confidence internal with failure ratep for the predic- 

tion z . For each n in (7.6a), definitions (6.7a,b) become 

X (0,~) = X (0.n) @ X (n .N) 

(7.6e) 

(7.60 
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If n is small enough so that 

Gtn > O  (7.7a) 

thcn F(O,n)  : X ( O , n ) +  Y is an injection, and section 5 can bc applied verbatim to the linear, finite- 

dimensional injective invcrse problem whose terms in (4.1) are X := X(O,n) ,  F := F(O,n ), 

6 := 6 (0.n )* x’ := X(0.n ), q := q (n  ,m)v and c=ccn,ml. The solution, (5.3d) or (5.8e), can be slightly 

simplified because now X ( O , n )  as well as Y has a dot product, and tensors are available. Using the 

tensor notation, (5.3c,e) become 

and 

Z ( 8 )  := &Op) 0 X ( 0 p )  (0) (7.7c) 

Using (7.5~) makes it possible to write the solution (5.3d) in the form 

= z ( t k ,  +C(n,m) - g(0,n) 0 F&) 0 (q (n ,-)+6Y) * (7.7d) 

This last equation can be slightly simplified. Clearly F( , , , )=F( , , JV)+F(N,~)  and, from 

(7.4~) and (7.5b), 

F$n)oF(nAr)=O, (7.8a) 

so 

FrO:n 0 F(n ,-I = F& 0 F(N ,-I * 

Therefore,from definition (7.6e) applied to n and N 

(7.8b) 

(7.8~) 

= (ti) + c ( n  p) - S(0.n) 0 F&) (7 (Ar.-) + 6y). (7.8d) 

For the particular choice XAr=Nj$, Le., (6.10bj, clearly F(hr,-)=O, so in (7.Sd) q(~,..) can be 

replaced byq ,  the original systematic. error in (4.lb) and (4.ld). 
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For anyp E (0,l J a confidence intend A'&,n)(p) can be written down from (7.8d) such that 

2 E Kt0.n) (PI (7.9a) 

with failure rate p .  Here z is the correct value of the prediction. To construct K & , ) ( p ) .  first 

dcfine 

7cO.n ) := g(0.n ) FG!n ) 

and 

(7.9b) 

f ( 0 . n )  := T ( O , n ) l  IIT(O.n)II * 
(7.9c) 

Let 

vn @) =v&(o,n >.P) (7.9d) 

as calculated from p E  via (5.7). Then (5.8~) and (7%) permit the assertion that, with failure rate 

P ,  

Ig(o,n)oF&)o6YI ~ I I ~ ( o , ~ ) I I V ~ @ )  * (7.9e) 

For any set Q C Y  and a n y 7 ~  Y ,  define 

7.Q := { ~ O S : S E  Q). 

Then (7.8d) implies that with failure rate I p  

E 28;) +Sfn,m) -7(Op)OS&,-o) +BZ(I17(0,n)IIvn@)) (7.90 

where v n @ )  is given by (7.9d), ~(0.~1 by (7.9b). and BZ by (5.8a). Using (6.7d.e) to evaluate 

Sfn,m) shows that the set on the right of (7.90 is ... 

(7.9g) Y 
Kf&) @> := z ( t A )  + Sz +BZ( II&n ,m)II + V n  @> IIY(0,n)II I -7 (O ,n )  OS(n,m) * 

Thus, when Kf0,,)(p) is defined by (7.9g). (7.9a) holds with failure rate Sp.  Usually, Sz and 

S&,-) are symmetrical about the origin, and then (7.9a) and (7.9g) together are equivalent to the 

(7.9h) 
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The foregoing calculation can be repeated for any n satisfying (7.7a). and the idea is to 

choose n to minimize the right side of (7.9h). Therefore it is nccessary to understand how the 

terms in (7.9h) vary with n . In the interest of simplicity it will be assumed that 

sLr,ml = B ' @ >  9 

the ball defined by (5.9b). Then, by (7.8~). 

where 

(7.1 Oa) 

(7. lob) 

(7.11a) 

(7.1 lb) 

and 

Let M be the largest n such that en >O. The value of Tp(n) can be calculated for 

n =0,1, , . . . , M ,  and the minimum can be chosen by inspeclion. 

Why might the observer expect to find values of n E {0, ..., M ) for which 7',(n) is substan- 

tially less then Tp(0) or Tp(M)?  A rigorous general proof seems unattainable, but a suggestive 

discussion can be given. From (7.11b). Tp(0)= ~ ~ g ~ o , ~ l l ~  = Ilgll. In this case, the estimate of I in 

(7.1 la) comes entirely from the prior information (6.30. The data vector y(O) contributes nothing. 

If the data are at all relevant to the prediction, then Tp(n) should decrease initially as n increases 

from 0 and the data begin to contribute to the estimate of 2 .  But why should Tp(n) start to 

increase again before n reaches M ? 

The reason lies in a Characteristic property of most non-trivial linear inverse problems. In 

an ideal problem, all possible data could be collected without error, and would determine a 

unique earth model x. In this ideal case, both the model space X and the data space Y are infinite 

dimensional Hilbert spaces, and the data function F :X Y is a linear injection. In the non- 
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trivial ideal problems, however, F is compact (Kato, 1976), so that @,, + 0 as n + m. In a real 

inverse problem with dim Y < m, but with Y large enough to give some hope of approximating 

the ideal problem and obtaining uscful limit5 on the prcdiction, thc observer should expect to find 

as n increases toward M ,  and indeed this is commonly obscnled (GubbIns and Bloxham, 1985; 

Langcl and Estes, private communication). I 
To see more clearly how Tp(n) will vary with n, introduce the abbreviations 

R ( n ) : = ~ l g ~ , , , ~ j 1 2  and S(n):=lly(o,,l12. Then from (7.3~)  

m 

R ( n > =  c s: 
, i=tl+l 

and from (7.4c), (7.5b) and (7.10b) 

Furthermore, 

I Tp(n ) = R ( n  1" + s (n)'hKn ( p )  . 

(7.12b) 

(7.12~) 

(7.12d) 

Define 

D p ( n )  := &-2[Tp(n-l) - Tp(n ) ]  . (7.13a) 

Then, if the data are relevant, one can expect Dp(n)>O for small n. If Tp(n) does have a 

minimum, then eventually D,(n) will become negative. But a simple calculation gives 

Dp(n)= [R(n-l)'+ R ( n ) " ] - @ , % , , @ ) [ S ( n - l > " + S ( n ) " ] .  (7.13b) 

Thus D p ( n )  > 0 exactly as long as 

Kn @ ) [ R  (n-l)"+R (n)"] 

G n  [S (n -1p +s (n)"] 
* @ n  > (7.13~) 

Clearly, if OSn IM, 

September 19, 19S8 



George E.  Backus Confidence Set Inference 45 

while (7. i b) assures that 

4n[S(n-l>'+S(n)"1 5 2I/S(OJf)II . 

Except for distributions (5.6a) with pathologically long tails (e&, a superposition of two Gaus- 

sians with quite different variances) it will happen that V G ( ~ , ~ ) , ~ )  > 1 for the interesting values of 

p (see Table 1). Then ~ , , ( p ) >  1, and the right side of (7.13~) will always be at least 

II i q ~  ,+I1 1 II S(~,MM>II. When n becomes so large that 

@ n  < Ilg(M,-)II /II~(o,MM)II (7.13d) 

then Dp(n)< 0, and Tp(n) will increase with n .  The minimum value of Tp(n) will certainly have 

been passed. 

The foregoing calculation of a confidence interval for z makes no explicit attempt to 

enforce the constraint (6.1), and the n which minimizes Tp(n) may not satisfy 

I t  X(0JI) I1 1 * (7.14a) 

As a result, the confidence interval Kz@) is conservatively long, and could be shortened by 

enforcing (7.14a) as a further constraint. It is not clear whether the required calculations are 

worth doing. In practise, q in (1.4a) will not be known with any precision. and therefore the CSI 

estimate of I KZ @) I will not inspire much confidence unless 

II X(0.n)  II << 1 (7.14b) 

at the value of n which miimizes Tp(n). The cautious observer will compute II X ( ~ , ~ ) I I  and 

check (7.14b) as an essential part of CSI. For values of n near M ,  even (7.14a) is likely to fail, 

but such values of n are of no interest in estimating z . 
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8 ESTIMATING THE PROBABILITY DISTRIBUTION OF THE RAKDOM ERRORS 

In sections 5 ,  6, and 7 it was assumed that the probability distribution p~ for the random emor 

vector Sy is i-nown. In fact, under certain conditions p E  can be estimated from the data vector 

~('1. The conditions are that p~ be known to belong to a given m-parameter family of distribu- 

tions p (8, -); that there be a model space X such that F : X + Y is an injection; that (4.3) holds; 

and that I Sy [ <c 1. These conditions must often be verified a posteriori, because [ S y  1 depends 

on p E ,  that is, on the unknown value of 8. The optimal choice X =X(o,n)  in section 7 will also 

depend on this unknown 8.  

The recursive character of the foregoing statement of conditions under which p E  can be 

estimated from the data is one result of the nonlinearity of the problem of estimating 8. It is 

difficult to make general statements about nonlinear inverse problems, but one class of problems 

admits a general solution by the method of maximum likelihood. This is the class in which all 

the probability distributions p (e, a)  in the given family have density functions f (e, .) : Y + R . 
That is, for any Lebesgue measurable subset Q of Y ,  

a result usually abbreviated as 

Then the probability distributions (4.2e) all have densities given by 

@.la) 

(8.lb) 

(8.lc) 

where 6 = (0. x). The method of maximum likelihood estimates 8 and x from y(O) by choosing 

e(') and x(O) to maximize f (O,y(O)-F(x)).  The estimate is useful when 

A = dim Y - dimX - m (8.ld) 

satisfies A >> 1. The A in (8. Id) is called the number of degrees of freedom in the inverse prob- 

lem. Iff  (e ,y( ' ) -F(x))  does have a unique maximum (e('), do)), then e(') and do) are random 
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variables. Under mild conditions on f , the following facts are known (Cramir, 1946. ch. 33). 

Suppose that A >> 1 and that for each 8 E 0, p (8, .) makes 6y 1. ..., 6yo independent; or altema- 

tively, suppose that all the p (e, .) are Gaussian. Non-diagonal correlation matrices E [(6yi)(6y,)] 

are permitted in the Gaussian case. The random variables 8(') and do) are approximately Gaus- 

sian, with variance matrices of order A-' and means correct to order A-'. From thcse facts, 

confidence sets B y @ , 8 )  can be constructed as in (3.3a). using (4.2b). The author has not yet 

camed out this program for any rn > 1, but believes that the outcome will be the same as in the 

case rn = 1 to be described below. That is, for failure rates p which are not too small in a sense 

determined by the A of (8.ld) (see (SSa)), there will be a positive p <<p and a confidence set 

K e ( p ,  y")) with two crucial properties: (1) the true 8 will be a member of Ke(p,  y(O$ with failure 

ratep 1; (2) all the p (6, a) with 6 E K e ( p ,  y(O)) will be nearly the same. Then p E  can be taken to 

be any one of the p (6, e) with 6 E K e @ ,  y(O'>, and this known p~ can be used in sections 5 . 6 ,  and 

7 with failure ratep -p to produce a confidence set for z with failure ratep. 

This phenomenon is visible in one common formulation of the geomagnetic modelling 

problem, where rn = 1. Here the data function F :X + Y and the prediction functional g : X + R 

are linear, and the probability distribution p E  is believed to belong to the one-parametcr family 

p (e, -), all of whosc members are Gaussian on Y with mean 0 and with variance matrices which 

are O2 times the known variance matrix of p (1, .). This latter need not be diagonal. The usual 

statement of this problem is that the unknown parameter8 is to be estimated along with the earth 

model do). In CSI, estimating 8 and t are separate problems, and neither requires the other, 

although the scheme presented here begins by producing an estimate for 8 whose failure rate is 

much less than the failure ratep desired for z . 

To begin the estimates, note that if Q is any Lebespe-measurable subset of Y then 

If h : Y + R , then Ee[h (Sy)] will denote the expected value of h (6y) under p (e, a). That is, 
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Then 

Ee[6y;]  = 0 (8.2~) 

and, because of (8.2a), 

Ee[(6Jyi )(~Y;)I =e2~ i [ (6~ i ) (6>) l .  (8.2d) 

Let (JJOS)~ denote the dot product defined on Y by p (e, .) as in appendix B. Then (8.2d) makes 
~ 

I clear that 

~ O S ) ~  =e-20,0y)1 (8.2e) 

and, in an obvious notation, 

IIYIIs I IS I I~  (8.20 

In particular, if p (1, .) makes 

prompts the abbreviation 

a unit vector in Y, then p (e, a) will make 09, a unit vector, which 

9e 91 ( 8 . W  

The advantage of (8.2e) is that the notion of orthogonality in Y does not depend on 8.  

Therefore the orthogonal projectors of Y onto F (X) ihd F (A')' are independent of 8. AU of sec- 

tions 5 ,  6, and 7 can be camed out for 8 = 1, and the corresponding results for any 8 can be 

obtained by using (8.2e) to introduce appropriate powers of 8 in the various terms in sections 5.6, 

and 7. For example, if ei(8) is the ith eigenfactor of F :X -+ Y in the sequence (7.lb) when 

p~ = p  (6, .>, then 

@,.(e) =e-*ei(i) . (8.2h) 

denote the observed value of the random variable (5.12a) calcu- For any positive 8 ,  let s 

lated under the assumption that p E  = p  (e, e). Then (8.2e) implies 

s (el2 =e-% (8.3a) 

(8.3b) 
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If p E  really is p (e, .), then (8.3b) is true with failure rate p 1. Then so are all its consequences, 

including the assertion that 

e I ~ ( i ) [ i  - v ( P , ) ~ ~ ( D  -N)-~I-’. (8.3c) 

If p E  = p  (e, .), then (5.7d) becomes 

I 66 0 &)e I <v@2) (8.4a) 

where v(.) is the inverse of the functionp(.) defined by (5.1 1). and +e is as in (8.2s). Then (8.2e) 

and (8.2g) show that (8.4a) is equivalent to 

(8.4b) I &  0 6Y)l I <8v@2). 

Since (8.4a) holds at failure ratep2, so does (8.4b). 

Confidence sets can be combined by the rules given in the paragraph following (3.30. 

According to those rules, at a failure rate no larger than 

P =P1 +P2 (8.4~) 

both (8.4b) and (8.3~) are true. Therefore, at a failure rate no greater thanp, 

I &  06y)1 I <v@&(l)[l-v@1)2’n(D -N)-”]-”.  (8.4d) 

If p is fixed, (8.4d) will be satisfied with failure rate Sp for any choice of p and p2  satisfying 

(8.4c), sop1 andp2 can be chosen to minimize the right side of (8.4d), and then (8.4d) can be 

used as in section 5 to obtain KZ (p), a confidence set for the prediction z at failure ratep. 

In fact, unless (D -A’)”>> 1, the v@]) in (8.4d) really should be calculated from (5.10), 

the Gaussian density being replaced by the density appropriate to the chi-square distribution with 

D - N  degrees of freedom. Here it will be assumed that (D -N)’ >> 1. Then, if the observer is 

willing to accept a failure ratep large enough to permit 

v@) << (D 4)” , (8.5a) 

it will be possible to choosep so that 

P1 <<P 
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and yet 

v@ 1) << (D - N ) ’ h .  

With this choice ofp 1, 

P =I32 

and with an error of orderv(p 1) (D -A’)-’, (8.4d) becomes 

I &  06391 I <v@)s ( l ) .  

For any 8 satisfying (S.3b), (S.5e) is equivalent to 

I &  fJ 6Y)l I V(PP 

with an error of orderv@ l)(D -N) -” .  By (8.2e) and (8.2g), (S.50 is the same as 

1 6 0  0 6Y)O I <v@> - 

( 8 . 5 ~ )  

(8.5d) 

( 8 . 5 ~ )  

(8.50 

(8.5g) 

Therefore, except for a fractional inaccuracy of order v@ ,)(D -A’)-’, the statement (8.5g) is 

correct with failure ratep i f8  is any parameter value which satisfies (8.3b). 

In other words, if the obscrver will accept a failure ratep which satisfies (SSa), then he or 

she can estimate 8 by choosing any value which satisfies (8.3b). and can use p~ =p (8, .) to define 

a dot product on Y. All of sections 5, 6, and 7 can then be invoked with the p E .  and the 

confidence sets thus calculated will be in e m r  by factors of the order of 1 +v@ l)(D -N)-’. 

Certainly there are interesting problems where dim 0 > 1. For example, the distribution of 

data errors may be the sum of two Gaussians, one with much smaller amplitude and larger vari- 

ance then the other, so that there are outliers in the data. Alternatively, the mean (63.) may not be 

known to vanish. If nothing is known about (@), of course the data are useless. Often, however, 

the unknown mean can be parameuized by a family of distributions for which dim 0 << dim Y ,  

and then the mean can be estimated from the data. This is probably true, for example, of the orbit 

ems in satellite geomagnetism, although the method has not been tried there. When dim 0 > 1, 

the estimation of 8 is more complicated then the one-dimensional illustration considered in this 

section. For example, the dot product in Y will depend on 8 .  Further work is required to discuss 
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9 THE GEOXTAGKETIC EXAhlPLE 

As an application of confidence set inference, considcr the inverse problem described in section 

2: to estimate the geomagnetic field B at the ChlB from measurcments of Cartesian components 

of B at and above the earth's surface. 

The infinitc-dimensional model space X consists of all the magnetic fields (2.1) outside the 

CMB whose sources are inside the core. Only prior quadratic bounds of the form (2.5) will be 

considered, so the dot product in X of the two fields B and B with Gauss coefficientsp;I(u) and 

1 is 

To study whether the data function F :X + Y and prediction functional g :X + R are con- 

tinuous under (9.1) it will be very helpful to have the particular orthonormal basis for X gen- 

erated by the individual spherical harmonics Yy. Let Sy denote the model field B all of whose 

Gauss coefficients vanish with the one exception that 

(9.2a) 

Then (9.1) evidently implies that 

By (2.1), if B nP;"=O for all I and rn then B = 0. Hence the collection of all the $7 is an ortho- 

normal basis for X in the sense of Hilbert space. For any model B with Gauss coefficienrsp;"(a), 

(9.1) and (9.2a) imply that 

n;" B = q-" C ( I  )"P;"(u) , (9.2~) 

so 

1.51 m -1 
(9.2d) 
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the series being convergcnt in the norm defined by (9.1) (Halmos, 1951). 

To study the continuity of the data function and prediction functional it will also be helpful 

to introduce thc dcfinitions 

EL := (S,"': 1 I 1  c L + 1 and -1 I r n  2 1 )  

and 

X [ L ]  := sp . 

(9.3a) 

(9.3b) 

Here sp EL is the "span" of ZL , the set of all finire linear combinations of members of Z L .  The 

set X I L 1  is a subspace of X , and if L < - thcn dimXiLl = L (L +2). The subspace Xi-] consists of 

all the scnes (9.2d) which have only finitely many nonzeru terms, and X is the closure of Xiel in 

the norm generated by (9.1). 

Now suppose a linear fimctional g : X R is given. Is it continuous? To find out, define 

g;" := q-"C( I )"g(fi;"). (9.4a) 

If B EX iL1 then evidently 

(9.4b) L I  

1-1 m=-I 
g(W= c c g;"PP(a) 

whcre P;"(a) are the Gauss coefficients of B. By the Riesz-Fisher representation theorem, 

(Lorch, 1962, p.63), the linear functional g is continuous iff there is a g~ X such that for every 

B € X  

g ( B ) = g o B .  (9.4c) 

From (9.4a), it then follows that g (ry) = g f;", so 

Therefore 

(9.4d) 

(9.4e) 
1.11 m i l  
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If g E X, IIgll< =, so g is continuous iff the series (9.4e) converges. The coefficients g;” required 

for this test can be obtained from either (9.4a) or (9.4b). If g is continuous, then (9.4b) holds for 

a l lBEX;that is  

the series being absolutely convergent for all B E X . 

It is of great interest to try to use the data to reconstruct B , ,  the radial component of B, on 

the CMB. To do so, consider the various functionals 6 : X + R which give weighted averages of 

B, over the CMB, with various weighting kernels. It will suffice to consider axisymmetric ker- 

nels. To describe these requires more notation. If c E R , define 

S ( c ) : = { r : r e R 3  and I r l = c ) ;  (9.5a) 

then S(c) is the surface of the three-dimensional sphere of radius c centered on 0. If 

f : S (1) + R , define the average off over S (1) by 

(9.5b) 

where d2P is the element of surface area on S(1). Every function G : [-1,1] + R produces an 

axisymmetric weighting kernel g(k) at each point a k E S (a) .  The linear functional 8 (3) : X + R 
is defined by requiring for each B E X that 

( 9 3 )  S(8 B := (G (f . k)B, (a P))? . 

The functional g (8) has coefficients g[”(k) as defined by (9.40. To find them, write 

where Pl (jf ) is the Legendre polynomial of degree 1 and 

(9.5d) 

(9.5e) 

The addition theorem for real scalar spherical harmonics (Erdelyi er al., 1953) permits (9.5d) with 
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p = f .  k to bc written 

Because of the Schmidt normalization of Yj'", (2.1) gives . 

Comparing (9.5g) with (9.40 leads to 

gj'"(S) = (I+1)(21+1)-'Gl Y;"(S) . (9.5) 

Two useful consequences of ( 9 5 )  should be noted. By the addition theorem for scalar spherical 

harmonics, 

I 

m -I 
IS;"@) 

and so (9.4~ 

= (1+1)2(21+1)-2 GF (9.5J) 

becomes 

OD 

IIg(S)1I2 = q C (1+1)2(21+l)-'C ( I  )-' GI2 . (9.5k) 
I =1 

As pointed out in section 6, CSI will fail if the prediction functional g :X + R is discon- 

tinuous under (9.1). The weighted averaging functional g(k) defined by (9%) is continuous iff 

(9.5k) converges. If (9.5k) diverges, then the prior quadratic bound (2.5) is too weak to overcome 

the non-uniqueness of the prediction t in (4. le) produced by the fact that dim X = -. Then the 

particular average (9%) cannot be estimated from surface and satellite data with only the prior 

information (2.5). One special case of ( 9 3 )  is obtained by putting G (p) =6(p) ,  the Dirac delta 

function, so G, =21+1. In this case, g(k) nB=B,(a S) (Backus, 1986). It follows that thc values 

of B, at single points u S on the CMB can be estimated from surface and satellite data iff (if and 

only if) the prior quadratic bound (2.5) satisfies 
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(9.6) 

For the energy bound (2.3). C ( I  ) = ( I  +1)(21 +l)-', and for the heat-flow bound (2.4), 

C ( I  ) = ( I  +1)(21+1)(21+3)1-'. For both these bounds, (9.6) diverges, so neither bound is strong 

enough to permit estimation of B, at the CMB from surface and satellite measurements of B. 

The best one can expect with those bounds is to obtain localized averages of B, . 

One such locdized average is the unweighted average of B, over a disc of radius a radims, 

or a a  km. centered on the point a 8 E S (a). For this average, 

G (p) = (1 -cow)-* (9.7) 

if cosa I p  I 1 and G (p )=O otherwise. When I >> 1, P,(cosO) is asymptotically the Bessel 

function Jo[S ( f  +Vi)], so (9.5e) becomes (Abramowitz & Stegun, 1964, pp.336 and 361) 

GI =2Cr(l-cosa)-' Jl[a(Z+Vi)] 
= (1 -cosa)-'(&ra/f)" cos [a(f + %) - %/4] 

as I -+ 00. Then (9.5k) converges for the heat-flow bound (2.4) but not for the energy bound (2.3). 

The heat-flow bound is strong enough to permit estimating uniform averages of B, over circular 

patches on the CMB, but the energy bound is not. If the energy bound is to be used to estimate a 

weighted average of B, over circular patches, the coefficients GI in (9.5d) must approach 0 faster 

than I-" as 1 approaches infinity, so the kernel function G (p) must be smoother than the boxcar 

(9.7). For example, G (p) might be a tent function, so that GI behaves like Z-3'2 as 1 -. 

Now consider the data space Y. For simplicity it will be supposed that the data (2.2) consist 

of all three Cartesian components of B measured at D /3 locations ri on and above S ( b ) ,  the sur- 

face of the earth. The random errors 6yi of the individual components will be assumed to be 

Gaussian, independent, and identically distributed with mean 0 and variance 8'. Then for any 

data vectors y and y ,  their dot product is 

D 

i=l 
yoy=e-2  x y i y i  (9.8a) 
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or 

DL3 

i=l  
y 9 = C B(ri) B(ri) (9.Sb) 

where B(ri) and B(ri) are the two measured vector magnetic fields at the location ri. The dot 

product on the right in (9.8b) is the ordinary vector dot product in R 3 .  

The data function F :X Y is very simple in the geomagnetic example. If y = F ( B )  then 

the D components of y are the D Cartesian components of B(r) at the D / 3  locations ri .  In par- 

ticular, (9.8b) implies that for two models B and B E X , 

Dl3 

i-1 
F(B)  oF(@ =8-* B(r;) 1 B(ri). (9.9a) 

Therefore, 

Dl3 

i-1 
llF(B>l12=8-2 IB(ri)I2. (9.9b) 

To use CSI, the observer must verify that the data function F :X + Y is bounded (continu- 

ous) in the norms on X and Y defined by (9.1) and (9.8a). To prove this, note that for any r > a ,  

(2.1) implies 

0 1 

l=l m=l 
B(rP) = C ( ~ / r ) l + ~  C P;"(a) b["(P) (9.9c) 

where 

Furthermore, by the addition theorem for vector spherical harmonics (Backus, 1988a, Appendix 

A), i f f  E S (1) then 

Thcrefore, by Schwaxz's inequality. 

(9.9d) 
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and hence, using Schwarz's inequality once more, 

I B ( r f ) I 2 I q  IlB1I2 5 (I+l)(2l+l)C(l ) - ' (a/r)U4 
1=1 

(9.9e) 

where llB1I2=B o B  as defined by (9.1). If r > a  and C( I ) is any rational function of 1 ,  then 

(9.9~) converges, so the linear function B I+ B(r P) with domain X and codomain R is bounded 

for any fixed r P with r > a .  Then the data function F : X + Y is also bounded, and in fact (9.9e) 

implies that 

as long as I ri I 2 c > a for all observation points ri . In panicular, llF II c - and F is continuous 

when the prior quadratic bound is either the energy bound or the heat-flow bound. Both these 

bounds pennit the use of CSI as long as the prediction functional is bounded. 

To cast the geomagnetic problem in the fonn (4.1), it remains to produce sets S s Y and 

Sz s R such that if q and 5 are the systematic errors in modelling the data and the prediction 

then the observer is confident that q E S y  and [ E Sz. For simplicity, it will be assumed here 

that the prediction z in (4.le) is a numerical property of the magnetic field produced outside the 

core by currents in the core. Nothing else is involved in z .  In that case, z is exactly calculable 

from the correct model x, so 6 = 0 and 

S Z = { O ) .  (9. loa) 

The specification of S * is more difficult, since q includes contributions to the data from the man- 

tle, crust., ionosphere an3 magnetosphere. To treat the crustal contributions, one can model them 

(Langel, Estes, and Meade, 1982). but here they will be controlled by assuming that all the data 

are collected from satellites on or above the spherical surface S (c), which lies at an altitude c - b  

above S ( b ) ,  the surface of the earth. Several workers (Lowes, 1974; Langel and Estes, 1982; 

Cain, Wang, and Schrnitz, 1988) have used the satellite data to estimate the spatial power spec- 

trum of the geomagnetic field, as defined by Mauersberger (1956), Lucke (1957) and h w e s  

(1974). They find the spectrum's dependence on spherical harmonic degree I to be well fitted by 
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a sum of two terms representing spatially white sources slightly below S ( a )  and slightly below 

S(b) .  lf the second term is interpreted as that produced by the magnetization of the crust, then 

the satellite data provide a bound on q c r  the contribution to q from the crust. At altitude 

c - b =400 km, the parameters of fit obtained by Cain er al. (1988) give the rms total intensity of 

the crustal field to be about 

u = 12nT.  (9.10b) 

If B is measured at D /3 points on or above S (c ). then 

Ilq. It 5 ( m ( 0 / 3 ) "  (9.10c) 

Estimates of the contributions to q from the mantle, ionosphere and magnetosphere are 

more difficult, and will be neglected here. In practice, ionospheric and magnetosphcric effects 

have been minimized by selectively discarding data particularly sensitive to these effects. For 

example, in modelling the MAGSAT data, Langel and Estes (1985) used vector data only at 

geomagnetic latitudes below 50". In the polar caps at higher latitudes thcy used only total inten- 

sity, which is less seriously affected than are the horizontal components of B by the field-aligned 

currents in the mapetosphere. Using total intensity makes the data function F :X Y non- 

linear, but it is nearly linear because above 50' geomagnetic latitude the radial component of B 

accounts for at least ninety percent of the total intensity. If only the crust contributes 

significantly to the systematic error, then (9.1 Oc) implies that one can take 

s y  = B Y @ )  (9.1 Od) 

\ 

where B * 'is the ball defined by (5.9b), and 

p = ( u /6)(D /3)" . (9.1 Oe) 

The foregoing discussion casts the geomagnetic problem in the form (4.1) with the prior 

bound (6.1). Now section 6 can be used to estimate the truncation errors produced when X is 

replaced by an N-dimensional subspace XN, so as to permit numerical calculations. Of course 

the answcr depends on how X, is chosen. One choice (Backus and Gilben, 1968) is to follow 

(6.10b) and take X, = N;. Then X, = sp {Fl, ..., FD 1, Fi being the data kernels defined by 

September 19, 1988 



George E.  Backus Confidence Set Inference 59 

(1.2a). This choice leads to no truncation emr ,  so 

but it has the disadvantage that N is Iik!) LO be D or nearly so. Parker and Shure (1982) chose 

XN to be the span of a subset of { F1, ..., FD ), chosen so that N << D but with the observation 

points sufficiently well-distributed to make the truncation error small. Parker and Shure uscd 

numerical evidencc rather than a rigorous theory to estimate the truncation error. Still another 

X,,, is obtained by triangulating S ( a ) ,  giving B,  at the nodes (vertices), and interpolating B ,  into 

each triangle from the vertices (R. L. Parker, private communication). The oldest choice of A',,, in 

geomagnetism, and the only one to be examined in the present paper, is truncation of (2.1) at 

some degree L. Thus XN will be one of the spaces XIIL1 dcfined by (9.3b), so that N =L(L+2). 

The space X ( N , ~ ) = X ~ I  will be written XIL1, and the functions F ~ I : X ~ ~ ] + Y  and 

FiL1 :Xyl  -+ Y will be defined by 

(9.1 la) 

(9.1 lb) 

Thus Xyl  and F [ L J  are the X ( O J )  and F ( o ~ N )  of (6.5a), while XIL1 and F Y I  are the X ( N , ~ )  and 

F (N p) of (6.5b). 

To calculate the value of l l F ~ N J l  needed in (6.7~). note that if B E XIL1 then (9.9e) remains 

true when the lower limit of the sum over 1 is L + 1 instead of 1. Therefore (9.90 becomes 

m 

l l F [ q 2  I (qo/3)8-' c (1+1)(21+1)C( I )-'(a/c)"* 
l d + 1  

(9.1 IC) 

Backus (1988a. appendix A) sums this infinite series when C ( I  ) comes from the energy bound 

(2.3). and provides an upper limit when C( I ) comes from the heat flow bound (2.4). The latter 

implies that for the heat flow bound 

(In equation (A.16) and the inequality preceding (A.15) of Backus, 1988a. the factor 1+2 should 

be 21+1. This misprint does not affect the subsequent calculations.) 
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Nothing is gained by taking L so large that the truncation e m f  (9.1 Id)  is several orders of 

mapitude smaller than the crustal systematic error (9.10~). The truncalion error is less than ten 

percent of the crustal error when 

(c /a  )L+3 2 (1O/u )(q /2)"[ 1-(a lc )2]-" . (9.1 le) 

With u = 12 nT, 9 = 3 x 1017 nT2 and c = 6771 km, (9.1 le) leads to 

L 2 2 7 .  (9.1 I f )  

It remains to carry out the analysis of resolution described in section 7, For this purpose, it 

is necessary to find the eigensmcture (singular value decomposition) of F I ~ ] : X I L 1 +  Y, as 

described in appendix D. In general, this wilI require numerical calculations based on the actual 

locations of the 0/3 obsewation points on or above S(c). To avoid such calculations, and to 

obtain answers in closed analytic form, two assumptions will be made: 

2 L + l < c D " ;  (9.12a) 

and the 0/3 observation points will be all on S(c) and so uniformly distributed that the sum 

(9.9a) can be approximated by an integral when B and fi E X lLl. Then 

This result is obtained from (9.9a) by assigning to each ri E S ( c )  a small patch of private tem- 

tory of area 1%c2/0, the patches being chosen to cover S (c) without overlap. If the ri are not 

nearly uniformly distributed, the data B(ri) can be weighted by areas of private patches which 

differ from one ri to ano the~  so as LO achieve (9.12b) when (9.12a) holds. This complication will 

not be explored here. 

In particular, if 1 5 L and T I L  then (9.12b) applies to B =$;" and B = f f ,  whose Gauss 

coefficients are given by (9.2a). Lowes (1966) and Backus (1986) evaluate the integral on the 

right of (9.12b) in this case, with the result that 

Equations (9.12~) and (9.2b) show that when L satisfies (9.12a) then Zt is an orthonormal 
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eigenbasis for F I L I  in X [ L I .  The corresponding eigenfactor, @r = IIF(i;”)[l/ l / % ~ l l ,  does not 

dcpcnd on r n ;  from (9.12~) it is 

The cobasis for F I L 1  in Y corresponding to the eigenbasis ZL consists of the vectors 

Therefore, by (D.l IC), 

(9.120 

It remains to consider the spaces X(O,n)sX[[Ll which appear in section 7, and to choose n to 

minimize the length of the confidence interval K f & ) @ )  for z defined by (7.9a) and (7.11a). 

Because @r is independent of m ,  all the $;” with the same I will be treated together, so only 

spaces X(n,o)=Xlll defined by (9.3b) will be considered. Here 1<1 IL and n =1(1+2). The 

models g(ofln) and g(,, will be written g r l  1 and glll so, by (9.4d), 

and 

j4+1 m -j 

Therefore, 

(9.1Sa) 

(9.13b) 

(9.13~) 

In (9.13a,b,c), gi” is defined by (9.4b) rather than as a Gauss coefficient of g. Similarly, 

~ ( 0 ~ )  := g(0,) F& will be written as 

(9.13d) 

so that, by (9.12f). (9.13a) and (9.12d). 
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(9.13e) 

(9.130 

In (7.1 1). with n = 1 (I +2), K 6 , ,  ( p ) ,  Tp(n) and K, ( p )  will be writtcn Rf, ( p ) ,  T p [  I 3 

and K~~ ~ ( p ) .  Since Sz = ( 0 ) in (7.1 la), it follows that 

K f l ]  @) I = Tp[ 1 1 = llg[‘lll +- ll7[ I 111 K [ l  I@)  - (9.13g) 

If L is chosen to make the truncation error (9.1 1 d) onc tenth of the crustal error (9.1 Oc), the p in 

(7.1 IC) is given by 

p = (1. I)( u /e)(D 13)“ . (9.13h) 

Now the values of Tp[ I ] for 1 I 1 I L must be examined, to see which is smallest. 

Two extreme examples of predictions z will illustrate the foregoing calculations. First, sup- 

pose the prediction functional g :X + R corresponds to the kernel s($) defined by (9.512). In this 

case (9.3) converts (9.13c.f) to 

and 

(9.14a) 

(9.14b) 

The sum (9.14a) can be computed once for all when 1 = L ,  and then onIy L =27 expressions 

(9.13,0), for 1 I I I L , need be computed to minimize the confidence interval for z at failure rate 

P .  

In the other extreme example, z is a single Gauss coefficient of the true core field: 

z =b;”(a ). Then in (9.4b) g p  = 1 6-. One must take L 1 I ,  and then only the single subspace 

X I 1 need be considered. Clearly 
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(9.15a) 
(9.15b) 

Then (9.13g) becomes 

I K & ] ( p ) I  = (I+1)-’h(c/a)’+2[(1.1)U +(3 /0) ’%VO; [ ,  pp)] . (9.1%) 

If the crust can be treated as a two-dimensional random process on S ( a ) ,  thcn thc systemalic 

error in (9.1%) is only the truncation error, (0.1)~ instcad of (1.1)~. The crustal error can be 

included in Sy with other random errors, and 6’ in (9.1%) must be replaced by (02ta2u2)rA where 

a 1 1, and a = 1 only if the crustal statistics introduce no correlations between the 6yi at different 

measuring points (Langel, Estcs, and Sabaka, 1988). In the most favorable case, a=l ,  and 

(9.1%) is replaced by 

+++++++++++++++++++Table 2 near here+++++++++++++++ 

Table 2 gives I Kf, (p) I and I ff, (p) I in microTeslas. The values quoted in the table are for a 

failure rate p = lo4. Using the failure rate p = does not change I Kf11 (p) I by an amount 

sufficient to affect the table, while that larger failure rate lowers Iff, 1 ( p )  I by about ten percent. 

For comparison, Table 2 also gives the rms value (P,F(Q>~): of the Gauss coefficients of degree 

I at the CMB, where 

I 

rn =-I 
(Pl”(a)2)rn := (2I+l)--l c g f ( a ) 2 .  (9.15d) 

The values of (P;”(U)~):  are from Langel and Estes (1982). In Table 2, u = 12 nT (Cain et al., 

1988>, 8 =6 nT (Langel, et al., 1982). and D =26,500 (Langel and Estcs, 1982). The random 

errors are assumed to be Gaussian, so v(&, ] ,p)  is independent of i l l  1 and is given by (3.9) or 

Table 1. 

The implications of the computation leading to Table 2 are the following: the heat-flow 

bound permits truncation at L =27 with a truncation error of 1.2 nT in each measured component 

of B. Suppose a failure ratep = lo4 is acceptable. If the satellite data on a sphere of radius c at 
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altitude c - b  =300 km are fitted by least squares with a model (2.1) truncated at 1 = L ,  and if 

(9.10~) is accepted as a bound on the crustal field at satellite altitude (or as its standard dcviation 

if  it can be viewed as random) thcn each Gauss coefficicnt P;"<u) on the CMB has a confidence 

interval Kf, 1 ( p )  or ifl J @) whose half-length is given by Table 2. These half-lengb do not 

depend on m . If the crustal error must be treated as systematic, column 3 of Table 2 is appropn- 

ate, and shows that Gauss coefficients with 1 2 9  are not resolvable at the CMB. If the crustal 

error can be treated as random, with uncorrelated contributions at different measuring points, then 

column 4 of Table 2 is appropriate, and Gauss coefficients at the CMB become unrcsolvable 

when 1 112. If only Gauss coefficients of degree 51 are known, the circle of cordusion on the 

Ch4B has a diameter of about 4(1+1)-' radians (Bookc:, 1969). For 1 =8 this is about 25" and for 

1 = 11 it is about 19". 

Notice that the confidence interval specified by (9.1%) or (9.15d) does not explicitly 

involve t!e value q = 3  x 1017 nT2 from (2.4). That value enters only in choosing the truncation 

level (9.110. The relationship between q and the minimum acceptable truncation level which 

produces a truncation error no more than ten percent of the crustal error is (9.lle). If 4 is 

changed from 4 to 42, L must change from L , to L2 where 

L2 - L ,  = log (424 1) [2 log (c /u)]- l  . (9.150 

If q is increased by a factor of 3.8, L must be increased by 1. If q is increased by a factor of 

14.2, L must be increased by 2. Clearly the conclusions of CSI in this case are quite insensitive 

to the numerical value of q in (2.5). What is important is that the quadratic form Q(x,x) is 

known, and that the bound q is known to within a few orders of magnitude. 
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10 CONCLUSIONS 

The uniqueness question in geophysical inversion is the question of infcrence: :o prcdict from D 

obscrved numerical propertics of the earth, J :'I, ...,yd'), not only valucs but error bounds for P 

other numerical properties of the earth, zl, ..., z p .  Except in very special cases, infinhe dimen- 

sionality of the model space X makes the uniqueness problem insoluble withou! prior informa- 

tion to supplement the data. Such information is available from laboralory experiments, physical 

theory, and other studies of the earth. Even if the prior infomiation is not certain, accepting it as 

a working hypothesis is a useful way to approach the data. 

One particular kind of prior information is a quadratic bound (1.4a) on the correct earth 

model, usually a bound on energy or dissipation rate. In earlicr studies, such prior information 

has been "softened" to a probability distribution p x  on the model space X, so that stochastic 

inversion (SI) or Bayesian inference @I) could be used to incorporate the prior information into 

the inversion. Recent work (Backus, 1988a) has shown that this "softening" process always adds 

spurious new prior "information" not implied by the original inequality (1.3a). Neyman's (1937) 

theory of confidence sets provides a technique, confidence set inference (CSI), for directly incor- 

porating unsoftcned hard prior bounds into the data inversion without generating spurious infor- 

mation. The constant q in (1.4a) is usually known only to within a few ordzrs of ma,gtude, so 

an essential part of CSI is the analysis of the sensitivity of its conclusions to variations in q .  

With CSI the uncertainty in q cannot be dealt with by "softening" (1.4a) to a probability distribu- 

tion, as is done in BI and SI. 

CSI requires that the fomal description of the linear inverse problem include the following 

ingredients. all explicitly known to the observer: a linear model space X , a positive-definite qua- 

dratic form Q (x, x) on X ,  a data space Y = R D  , a prediction space 2 = R P  , a linear data function 

F :X i Y ,  a lincar prediction function G :X  -+Z, a subset SI' G Y ,  a subset Sz t Z, and an rn - 

parameter family of probability distribuLims p (8, e)  on Y ,  whcrc 8 =(e1, ..., e,) is the paramctx 

vector. All the p (8, e) must have as their domain the O-ring Cy of Lebespe measurable subsets 
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of Y .  The linear functions F and G must be continuous (and thercfore bounded) in the norm 

defined on X by llxll= Q (x, x)". 

To use CSI, the observer needs six more objects: p E ,  83'. Oo, x, q and 5. These may be 

unknown, but the observer must know that they exist and that thcy have thc following propcnies: 

p E  is a probability distribution on Y with domain Cy; 8y = (8y ..., 6 y D )  is a vector drawn at ran- 

dom from Y according to the probability law p ~ ;  and 

(10.la) 

(10.lb) 
(1 0.1 c) 

(lO.d) 

(1 0. le) 
(10.10 

(1 0.1 E) 
(1 0.1 h) 

In (lO.lg), y(O) is the observed data vector (yfO), ...,ydo)) E Y ;  and in (lO.lh), z is the desired prcd- 

iction vector ( z  1, ..., z p )  E Z. The vectors q and 5 are the systematic errors in modelling the data 

and predictions, and Sy is the random error in the data. The vector x is the "correct" earth model, 

and 80 is the "correct" parameter vector describing the probability distribution of the random 

error vector 6y in Y .  Neither x noreo need be unique. 

The final result of CSI is to produce for eachp E (0,1] a "confidence set" Kz@) r;Z such 

that either 

or an event E has occurred whose probability is no more than p . The statement (10.2) is said to 

hold at confidence level 1 -p, or with failure ratep . Section 3 describes a rudimentary calculus 

which keeps track of the failure rates of the statements in any chairi of argument whose 

hypotheses have known upper bounds on their failure rates. This calculus of failure rates greatly 

facilitates construction of the confidence sets KZ (p) .  Unlike BI or SI, CSI gains nothing by per- 

mining dim2 > 1, so in the present paper 2 is always the real line R ,  G :X 4 2  is always a 
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functional g :X + R , and KZ ( p )  is a subset of R . Therefore the size 1 K Z  ( p )  i is easy 10 define, 

and hcre is takcn to bc half the diameter of Kz@). Usually K z ( p )  is an hxrval ,  and I K z @ )  I 

is half its lenjgh. htmy subsets K Z ( p ) ~ R  will make (10.2) corrcct with failure ratep, and one 

goal of CSI is to find a Kz@) for which I K Z @ )  I is small enough to make the estimate of the 

prediction z useful. 

Section 5 shows how to construct K z ( p )  in the simplest special case of (10.1). in which p E  

is known, dimX <dim Y ,  and F :X + Y is injective. In this special case, (10.le) is not needed, 

and the continuity of F and g is an automatic consequencc of thc fact they are linear and that 

dim X < -. The construction of KZ ( p )  leans heavily on the fact that p E  provides a natural dot 

product on Y, the only dot product under which the variance tensor of p~ is the identity tensor on 

Y. When S and Sz are balls or parallelipipeds centered on the origins in Y and Z,  K Z  ( p )  is an 

interval whose center, t(’), is g(d0)) where x(O) is the model in X which best fits the observed 

data vector y(O) in the sense of least squares, weighted by the inverse of the variance matrix 

E my; )(6Yj)1. 

When dimX =-, (10.le) definitely is needed, and the dot product X ’ ~ D ~ ~ = Q ( X ~ , X ~ )  for 

x1,x2€ X plays an essential role in the argument. Continuity of F and g is not automatic, and 

any Q which makes F or g discontinuous is too weak to resolve the nonuniqueness inherent in 

Vying to make infinite-dimensional inferences from finitely m m y  data. When F is discontinu- 

ous, the observer has no option but to seek a stronger Q. When g is discontinuous, a second 

option is available: to replace g by a continuous gA which resembles 8 closely enough that the 

new prediction, tA , is an acceptable substitute for : . 

When dimX =- and p E  is known, CSI proceeds in two steps. The first (section 6) pro- 

duces a finite-dimensional approximation to (10.1). and the second (section 7) produces an injec- 

tive approximation to the first, thus subsuming the approximate problem under section 5.  In the 

first step, the observer chooses any finite N and any N-dimensional subspace A’AT of X. Then 

(10. le) provides an N-dimensional approximation to the original infinite-dimensional problem. 

The new model space is X ( o J ) = X N ,  the new data function is F(,,v]=F I X ( o ~ p  and the new 
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prediction functional is g(of l )=g I X(oJh') .  The approximation process adds a "trilncation error" 

to each of the systematic errors q and in (lO.l), and so changes Sy and Sz to larger sets S&,-) 

and S&,,, , but otherwise leaves (10.1) unchanged. One possible choice of XN is Nk, the orthog- 

onal complement of the null space of F .  This choice has two advantages: its data function F(Ob,) 

is automatically injective, so section 7 can be bypassed; and it may or may not add a truncation 

error to [ in (lO.lh), but never adds a truncation error to q in (1O.lg). Thus it assures 

S&,-) =S '. The disadvantages of the choice XF =Nk are that it requires manipulation of D X D  

full matrices (D = 26,500 for many MAGSAT studies) and that the I KZ ( p )  I it produces may be 

unnecessarily large by several orders of magnitude. If the data are relevant to the predictions, 

usually there will be an X, with N c<D which produces much tighter e m r  bounds on z than 

does N;. 

Section 7 describes the second step in approximating (10.1) by a finite-dimensional prob- 

lem. This step depends on computing the eigensuucture (singular value decomposition) of 

F(o,,,):X(OflN) + Y ,  so dot products on both X ( o ~ )  and Y are essential. If @ 2421 * 2qM > 0 

are the nonzero eigenfactors (singular values) of F ( O A ~  and if ..., f ~ )  is a corresponding 

on;ionomal eigenbasis for Y nF(OJp), with cobasis {jl, ..., fM ), then for i = 1, ..., M ,  

(1 0.3a) F ( % ; ) = @ ; Y ;  , 

while if X E  X(oyN) n { x ~ ,  ..., 2 ~ ) '  then F ( x ) = O .  The tensor F(O>)E Y @ X ( O ~ ~ N )  which 

corresponds to F (oA) : X (oJN) + Y is 

(10.3b) 
i=l 

Let X(o,) be the subspace of Y nF(o,,,) spanned by { j t ] ,  ..., fn ) ,  and let F(o, ) :=F I X ( o f i )  If 

1 S n IM , then F(o,> : X ( O , ~  + F (X(O,n )) is an injection, so section 5 produces a confidence set 

Kfo, 0). For each n , 

with failure rate p .  Now the observer can choose the n in 1 I n  IM which minimizes 
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JK&,) (p )  I . If the data are relevant to the predictions and X ,  is large enough to give a good 

approximation to the original problem (10.1). then this optimal n will be neither 1 nor M ,  and 

must be found by numerical computation. In the approximate inverse problcm whose data func- 

tion is F(oJ1) :X(O,n)+ Y ,  the model components 2, ox with j I n  are estimated from the data 

vector y(O), and provide an estimate z(@) for the prediction z . The components with j > n are 

not used in estimating z(fi). All the model components with 15 j IN contribute to 

I Kto f i )  @) 1 ,  the error estimate for z . The contributions of the components with j I n arise from 

the random error Sy and the systematic error q in the data vector, while the contributions of the 

components with j > n come from the prior quadratic bound, (1O.le). If n is too small, useful 

data are being discarded, and if n is too large, some data are being used whose errors are so large 

that better error control in z is provided by the prior quadratic bound on x. 

If p E  is not known, it can be estimated from the data as long as m + n << D . This problem 

is not examined here for m 22, but the case m = 1 is studied in one common situation: the vari- 

ance matrix E [(8yi)(8yj)J is supposed to be an unknown multiple e2V1 of a known D X D  matrix 

VI. The result, which seems likely to generalize to any m <<D - n ,  is that i fp  is not too small 

relative to (D-n)-' in the sense of (5.8a), then a confidence set K e ( p  J for8 can be found such 

that p <<p and yet K e ( p  produces nearly the same p (e, e). 

Then for any 8 E Ke(p  ]), pE can be assumed equal to p (6, e), and sections 5, 6, and 7 can be 

invoked for this known p~ . 

is so small that every 8 E K e @  

The problem of geomagnetic modelling at the CMB illustrates CSI. The data are measure- 

ments of Cartesian components of the geomagnetic field B at points ri on or above the earth's 

surface. The model space X is the set of all B outside the CMB which can be produced by elec- 

tric currents inside it. Both the energy bound (2.3) and the heat-flow bound (2.4) make the data 

function F :A' + Y continuous. If the prediction functional g :X + R is defined by choosing a 

fixed r on the CMB and requiring 8 (B) =B,  (r) for every B E X , then both the energy bound and 

the heat-flow bound make g discontinuous (unbounded). Therefore neither bound enables the 

obsehrer to estimate B, (r) on the CMB from the data. If 8 (B) is the unweighted average of B, 
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over a disc on the CMB, the heat-flow bound makes 8 continuous and g(B) obsrnfable (i.e., 

estimatable from the surface data), while the energy bound makes 8 discontinuous and g(B) 

unobservable. If 8 (B) is the disc average weighted by a tent function, both prior bounds make g 

continuous and g (B) observable. 

Among the many choices for XN which have appeared in the Iiterature of geomagnetic 

modelling, section 9 examines only the oldest, X, =A’[tl, the space of models (2.1) whose Gauss 

coefficientsP[”(a) vanish for 1 >L. Then N=dimX,,,=L(L+2) and F ~ ~ l : = F ( O S r ) = F I A ’ , L 1 .  

To avoid numerical computation in finding the eigenstructure of FIL1, some simplifying assump- 

tions are accepted. The data consist of all three Cartesian components of B measured by satellite 

at D /3 positions ri on a single spherical surface S (c) of radius c = 6771 km. The positions ri are 

nearly uniformly distributed on S ( c ) ,  and only truncation levels L are considered for which 

2L+1 c< (D /3)’, so the necessary sums over the ri can be approximated by surface integrals over 

S ( c ) .  The random errors in the D individual component measurements of B are assumed to be 

independently and identically distributed as Gaussians with mean 0 and variance e*. Then an 

orthonormal eigenbasis for F I L l  in Xyl  consists of the magnetic fields with a single non- 

vanishing Gauss coefficient, and the data vectors generated by these fields are the cobasis. The 

eigenfactors for FiLl  are calculated analytically to yield explicit formulas for lKz(p) I .  Table 2 

shows the results when the satellite data are used to predict the Gauss coefficients P r ( a )  at the 

CMB. In that table, MAGSAT parameters are used: D = 26,500; 8 = 6  nT; and a systematic nns 

error u = 12 nT is produced in the data by the crustal field. The possibility is also considered that 

the crust might be amenable to treatment as a two-dimensional random process, so that u 

becomes a standard deviation rather than an e m r  bound. The uuncation level L = 27 is chosen to 

make the truncation error no more than 1.2 nT. The actual value of q in (2.4) enters only through 

this truncation level. If q were 14 times its value in (2.4). the truncation level would have to be 

L = 29. Thus the conclusions are quite insensitive to q . Table 2 is calculated for a failure rate 

p = lo4, but relaxing this t o p  = would not affect the table entries for the systematic crust 

and would decrease those for the random crust by ten percent. An improvement of accuracy by a 
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factor of about 8 is produced if the crustal error can be treated as random rather than systematic. 

The smallest circle of confusion in observing B,  on the CMB has diameter about 26" for a sys- 

tematic crustal error, and about 19" for a random crustal error, corresponding lo highest resolv- 

able degrees of 1 = 11 and 1 = 8 respectively. 
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APPENDIX A. NOTATION FOR SET THEORY 

The notation for set theory will be that advocated by MacLane & Birkhoff (1967) and Birkhoff & 

Bartee (1970). For any objects, u , v , w , { u t  v , w } denotes the set whose members are u , v and 

w ,  while (u ,v ,w)  is the ordered triple. Thus { u , v , w }  = ( v , w , u )  but (u ,v ,w)#(v ,w,u) .  

The null set, the set without members, is written 0. If X is a set, U CX means that U is a subset 

of X , i.e., every member of U is a member of X ; and x E X  means that x is a member of X . Thus 

u E { u , v , w )  and [ w , u )  iz [ u , v , w } , b u t ( u , v ) e  ( u , v , w )  a n d ( u , v ) h  [ u , v , w ) .  Thesym- 

bo1 "x E X" also abbreviates the noun clause "x which is a member of X . "  If P [ X I  is a statement 

about x ,  such as "x is an odd integer," then ( x  : P [ X I )  is the set of all x for which P [ X I  is true. 

The symbol ":=" means "is defined as." If X and Y are sets, then X n Y := ( u  : u E X and u E Y } 

x u Y : = ( u : u ~ X  or U E Y  orboth}, X \ Y : = [ U : U E X  and u ~ Y } ,  and 

X X Y  := {u  : u  = (x ,y )  and x E X and y E Y}. This last definition can be abbreviated 

X X Y  := ( ( x , y ) : x  E X and y E Y}. The sets X n Y ,  X u Y ,  X \ Y and X xY are called the 

intersection, union, difference and Cartesian product of X and Y. 

Suppose X and Y are sets and F is a function which assigns to each x E X a value 

F ( x )  E Y. Then one writes "F : X  + Y ,It usually read as "F maps X into Y ." The symbol 

"F : X Y also stands for the noun clause "the function F which maps X into Y ." The sets X 

and Y are the domain and codomain of F. Two functions F and G are equal iff (if and only if) 

they have the same domain X , the same codomain Y, and F ( x )  = G ( x )  for every x E X .  When 

F can be given by an explicit formula, another notation is available. For example, if R is the set 

of real numbers and F : R + R is defined by requiring F ( u )  = uz+ 3u for every u E R , then 

"F:X+Y"canbercplaced by"F:ul+u2+3u,"orsimply by"u t - ,u2+3u . " I fP [x ]  i s a  

statement about x ,  and F : X + Y ,  then the set [ y  : y = F ( x )  for at least one x EX which makes 

P[x]true) isabbreviatedas { F ( x ) : x e X  andP[x]),orsimplyas { F ( x ) : P [ x ] ] .  

If F :X + Y and U r X ,  then F ( U )  stands for the set [ F  ( u )  : u E V } .  The set F ( X )  is the 

"image" of F .  If  U G X ,  then F I U denotes the function F' : U +F ( U )  such that $ ( u )  = F ( u )  

for every u E U .  The function F I U is called the "restriction of F to U .'I Its image coincides 
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with its codomain. 

If F :X + Y and G : Y +Z, then the "composite" of G with F is the function 

(G o F )  : X + 2 defined by requiring that for each x E X 

(GoF)(x) := G(F(x)). (A.la) 

If also H : 2 -+ W ,  then (A.la) implies 

H o ( G o F ) = ( H o G ) o F .  (A. 1 b) 

The identity mapping on X is the function Ix : X + X such that Ix  ( x )  = x  for every x E X . 
I f F  :X+Y,thenclearlyIyoF = F  =FoIx. 

If F : X + Y and F (X) = Y ,  then F is a "surjection." If F ( x )  = F (2) always implies x =f , 

then F is an "injection" If F has both properties, it is a "bijection of X to Y ." If F : X + Y is a 

bijection, then it has an inverse function, F-' : Y +X, defined by requiring that for each y E Y ,  

F-*Cy)istheuniquexEX suchthatF(x)=y. 

A function G : Y + X is a "left inverse" of F : X + Y if G o  F = I,, and a "right inverse" of 

F if F O G  = I y .  If F :X -+Y has a left inverse, then F is an injection; and if F has a right 

inverse, then F is a surjection. If F : X + Y has both a left inverse G : Y +X and a right inverse 

H : Y  +X, then F is a bijection and G=H=F".  For example, G =GoZy =Go(FoF-') = 

(GoF)oF-'=IxoF-'=F-'.  

R will always denote the set of real numbers. If a and b E R then a ~b is the smaller of a 

and b ,  while a v b  is the larger. The four kinds of intervals an: 

[ a , b ] : =  { u  : u  E R anda l u  I b ) ,  and 

(a ,  b ) := { u : a < u < b ). Suppose Y is a real vector space, N is a positive integer, and for each 

i E { I ,  ..., N), ai E R and Fi :X +Y. Then the linear combination, the function 

( a , b ] : =  { u  : a  cu I b ) ,  [ a , b ) : =  { u  : a  l u  c b ) ,  

ai Fi) : X + Y ,  is defined by requiring that for each x E X  
. 

(A.2a) 

If both X and Y are vector spaces, a function F :X + Y is called "linear" if for every positive 
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integer N and any a ..., uN E R and any xlr  ..., xhf E X 

Confidence Set Inference 7 4 

(A.2b) 

Any linear combination of linear functions Fi :X 4 Y is itself linear. Since R is a one- 

dimensional real vector space, the definitions and remarks of the foregoing paragraph apply to 

functionals (functions with codomain R ). 

If X ,  Y and 2 are real vector spaces and T :X X Y  +Z, then T is "bilinear" if T(x, y) 

depends linearly on each of 11 and y when the other is fixed. Linear combinations of bilinear 

functions are defined by (A.2a) and are themselves bilinear. 

Suppose U and V are subsets of real vector space X , and A and B are subsets of R . Then 

Ifc E R andxe  U then 

cu := (c)U 1 

- U := (-1)U , 
x+u := [x)  +u , 
A x : = A  { x )  . 

/ 

In particular, o U = { O] and 1 U = U . Notice the distinction between U - V and U \ V .  1 -  

I 

A a-ring (Halmos, 1950) is a non-empty set C whose members are subsets of another set X . 

To qualify as a a-ring, I: must have two properties: (1) P and Q E C implies P \ Q E C; (2) if all 

sets of the countably infinite sequence Q 1, Qz, Q3, * - are members of I:, then so is their union, 
00 

Q u Q u Q u - - (abbreviated as ui-1Q;). 

A measure p on a set X is a function whose domain is a a-ring C of subsets of X, whose 

codomain is R+,  the set of non-negative real numbers together with +m, and which satisfies 

(A.4a) 

whenever Qi E C and Qi n Qi = 0 for all i and all j f i .  Property (A.4a) is caned "countable 
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I additivity," and the members of C are then called thep-measurable subsets of X (Halmos, 1950). 

I If the whole set X isp-measurable and if 
~ 

p ( X > =  1 (A.4b) 

then p is called a "probability measure" or a "probability distribution" on X . The p-mcasurable 

subsets P and Q of X an: then called "events." P is called "the event P ," "the event that x E P ,*I 

or "the event that P happens." Thuspx(P uQ) is "the probability that at least one of P and Q 

happens," whilepx (P  n Q ) is "the probability that both P and Q happen," andpx ( P  \ Q ) is "the 

probability that P happens and Q fails." Clearly 

PXU' ~ Q ) S P X ( J ' ) + P X < Q )  (A.4c) 

and 

PX(P ~ Q ) S P X ( P ) V X < Q ) *  (A.4d) 

Ifpx andpy are probability measures on sets X and Y ,  their O-rings being CX and Cy, then 

the product measurepxfl on X x Y is defined as follows. Its O-ring is the intersection of all the 

O-rings of subsets of X X Y  which include as members all the sets P x Q  with P E Cx and 

Q E Cy. For such sets, 

~xxv(f '  X Q  1 :=PX (P  M Y  (Q 1 ( A 3  

and (A.4a) permits the calculation ofpxxv(W) for any other set W E C,Y, (Halmos, 1950). Set- 

ting P =X and Q = Y in (AS) shows that pxxy is a probability measure on X x Y .  In this con- 

text, if P E CX and Q E &, then the event P x Y is called the event P , and the event X x Q is 

called the event Q , so (A.4c,d) remain true. The probability that at least one of events P and Q 

happens is no more than the sum of their probabilities, and the probability that both P and Q 

happen is no more than the smaller of their probabilities. 
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APPENDIX B. REAL HILBERT SPACES FOR MODELS AND DATA 

In linear inversion, the model space X is a real linear space (vector space; Halmos, 1958). and its 

dimcnsion, dim X ,  is infinite. A quadratic inequality like (2.3) or (2.4) induces on X a natural 

dot product, which makes X a pre-Hilbert space. Then (Halmos, 1951) X can be completed to a 

Hilbert space. On the data space Y ,  the probability distribution for the random error vector Sy 

induces a dot product. Since D =dim Y < -, Y is automatically complete, and so a finite- 

dimensional Hilbcrt space. These natural dot products on X and Y will be constructed in this 

appendix. 

On X , a quadratic inequality like (2.3) or (2.4) produces a symmemc. positive-definite bil- 

inear functional Q . This Q assigns to any pair (x, it) of models in X a real number Q (x, n) such 

that 

if x # 0; and for any positive integer N , real numbers a 1, ..., UN , and models XO. XI, ..., XN , 

(B.la) 

@.lb) 

(B.lc) 

Q is "bilinear" because @.la) and (B.lc) imply that Q (x, it) is also linear in x when it is fixed. 

The observer's prior information is the knowledge of a real number q such that the correct earth 

model x must sa!isfy Q (x, x) 5 4 ,  or 

&(X,X) I 1 . (B .2) 

For example, in (2.3) ifP;"(a) andfl;"(a) are the Gauss coefficients of the magnetic fields B and 

B at the CMB, then 

. 

On X , define the inner product or dot product x 0% by 
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(B.3a) 

and the length I[ x 11 by 

I[ x I[  := (x ox)% (B.3b) 

The notation v . B will be reserved for use with the ordinary real three-dimensional vectors. On 

being completed in the norm Ilx- 11, X becomes a Hilbcrt space. The investigator's prior quadratic 

information (B.2) can now be written 

In geomagnetism, the simplicity of the recursion relations for complex spherical harmonics 

sometimes makes it useful to consider a complex model space X', one whose scalars are com- 

plex. A real Hilbert space X can always be extended to a complex Hilbert space X'. The 

members of X' are the formal symbols x + i f where x and f E X and i = (-l)%. Linear combina- 

tions with complex scalars are defined in the obvious way using i2=-1, and the complex conju- 

gate of x + i %  is (x+iS)' =x- iZ .  If xl, x2, f l ,  f 2 e  X, the dot product of w1 = x l + i f l  and 

w2 = x2+iS2 is defined as w1 o w2 := x1 x2 - f l  f2 + i [fl o x2 + x1 f2] and the inner product 

of w1 and w2 is (wl I w2) := w1 ow2. Complexifying X in this way introduces a distinction 

between inner and dot products which engenders complications in the notation, so only vector 

spaces with real scalars will be admitted here as model or data spaces. 

C 

On the data space Y ,  the inner product comes via integration from p~ , the probability distri- 

bution of the random error vector Sy. As usual, integrals of real-valued functions of 6y with 

respect to pE will be written as expected \*dues. Thus 

(B.5a) 

(B 3) 

If p E  is known and E [6yi ] f 0, then its known value can be subtracted from both sides of (1.1). 

This redefines y(O) and Sy in such a way that 

E [ 6 y i ] = 0 .  (B.6a) 
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If p~ is being estimated from the data, €[6y;] will be estimated. Alternatively, p E  can be 

parametrized so that E [6yi J = 0, and the necessary correction can be added to 7; or Fi (x) and 

subtracted from 6yi in (1.la). This slightly increascs the bound on 7 or the amount of informa- 

tion camed by the models in X ,  and again achieves (B.6a). Henceforth, (B.6a) will be accepted. 

Then the D x D  variance matrix V of 63. has entries 

This variance matrix is positive semi-definite. If it is not positive-definite, then, with probability 

1, Sy lies in a subspace U of Y (Cramtr, 1946). Then there are only dim U linearly independent 

linear combinations of 6 y l ,  ..., SYD. The corresponding linear combinations of y 1. ...,YD can be 

taken as the ncw data, and U is the new data space. The remaining D -dim U linear combina- 

tions of y 1, ...,I'D have no random error. In the real world, this must mean that their values are 

obtained from theory rather than measurement. They are not really data, and can be discarded. 

(Usually, they will all vanish.) Henceforth, the matrix V of (B.6b) will be supposed positive- 

definite. 

Now let W := V-'. The D X D  matrix W is the "weight matrix" generated by the random 

errors. It is symmetric and positive-definite. On the data space Y define the dot product of 

y = 01. ...,yo) and 9 = W1, ....yo) as 

D 

i J=1  
y 05' := c yi w;i yj . 

This dot product measures the data in units of their random errors, so it is a dimensionless pure 

number. It will now be shown to have the property that for any fixed y and 3 in Y 

Conversely, no other dot produc: on Y has the property (B.8). That (E.7) does imply (l3.8) fol- 

lows immediately from (B.6b) and the definition of W .  For the converse, suppose that y o  9 is 

any dot product on Y .  There will be a symmetric, positive-definite D X D  matrix U such that 

D 

i.;-I 
y o  y =  yi uij yj 
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(Halmos, 1958). If the dot product (B.9) has property (B.8), then 

D D 

Since y and 5 are arbitrary, it follows that UVU = U. Since U is positive-definite, U-’ exists, so 

UV = I ,  when: I is the D X D  identity matrix. Hence U = V-’ = W ,  so (B.9) and (B.7) agree, 

andyof=yoQ. 
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I 

APPENDIX C. TENSORS AND LINEAR hIAPPINGS ON HILBERT SPACE 

This appendix is a self-contained list of the facts and sometimes slightly unconventional Hilbert 

space notation used in the present paper. Proofs of all assenions can be found in Halmos (1951). 

Dunford and Schwartz (1958), or Lorch (1962). Some of the shortcr proofs are given here to aid 

the exposition. 

A linear mapping F : X  + Y from Hilbert space X to Hilbert space Y is "bounded" if there 

is a real number K such that for every x E X , 

Halmos (1951) shows that a linear mapping of one Hilbert space into another is bounded iff (if 

and only if) it is norm-continuous (i.e.. lim Ilx, -xll = O  implies lim l lF(xn)-F(x) l l  =O). The 
n +- n-w- 

smallest K which works in (C. la) for all x E X is called the norm of F ,  written llF 11. Then the 

best possible version of (C. la) is 

llF 5 llF II IIxll * (C.lb) 

A bilinear functional T : X x Y + R is "bounded" if there is a real number K such that for 

each (x, y) E X x Y 

A bilinear T is nom-continuous iff it is bounded. The smallest K which works in (C.lc) for all 

(x, y) E X x Y is called the nom of T and written 11 TI1 . If X and Y are Hilbert spaces whose dot 

products are written with *' o ", and if T : X x Y + R is a bounded bilinear functional, T(x, y) will 

often be written as x o T y. Thus - 

x o T y := T(x, y) , (C.ld) 

and the best possible version of (C. 1 c) is 

The real number x T o y depends linearly on each of x, T and y if the other two are fixed. 
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If X and Y are Hilbert spaces, the set of all bounded linear mappings F :X --$ Y will be 

denoted by BL(X + Y ) ,  and the set of all bounded bilinear functionals T : X x Y + R will be 

denoted by X 0 Y .  The members of X 0 Y are “tensors over X x Y .” If linear combinations are 

defined by (A.2a), both BL(X -+ Y )  are X 0 Y are real vector spaces. In fact, if N is any positive 

integer ,andFiEBL(XjY),  T i ~ X O Y , a n d a i ~  R fooreachie (1, ..., N],then 

(C.2a) 

(C.2b) 

Moreover, if Z is also a real Hilbert space, and G E BL(Y +Z), then 

Inequalities (C.2b.c) follow immediately from the definitions of the norms, while (C.2a) is a 

consequence of two facts about any Hilbert space Y :  if a E R and y, 3 E Y then 

(C.3a) 

and 

lls+.311 5 IIYll + 11.311 . (C.3b) 

The triangle inequality. (C.3b). is itself an immediate consequence of the Schwarz inequality, 

I Y I 5 Ilsll 1 1 ~ 1 1  9 (C.3c) 

which in turn follows from the fact that y’ os’ 1 0 for all y’ E Y (Halmos, 195 1). 

When X and Y are Hilbert spaces, every function in BL(X -+ Y )  can be thought of as a ten- 

sor in Y @X and vice-versa. This correspondence is useful both to simplify notation and because 

it permits any operation applicable to either a tensor or a linear mapping to be transferred 

immediately to the other. To establish the corespondence, let F E BL(X + Y ) ,  and define 

TF : Y XX + R by requiring that for each (y. x) E Y XX 

TF(~,x) = Y o F (x) (C.4a) 
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Clearly TF is a bilinear functional on Y x X .  Moreover, by (C.lb) and (c .3~) .  

ITF(J’,X)I Illsll IIFll Ilx.II, so TF E Y @X and IITF(( IIIFII. In fact, 

IITF II = IF I I  (C.4b) 

To see this, let x1,x2, - be an infinite sequcnce of nonzero vectors in X such that 

Therefore l l T ~  II 2 llF 11. Since also llTF 11 S IIF I [ ,  (C.4b) is established. 

Equation (C.4a) is a rule which assigns to each bounded linear function F E BL(X + Y )  a 

tensor TF E Y @X. That is, (C.4a) defines a function y: BL(X + Y )  + Y @ X  such that for each 

F E BL(X + Y ) ,  

(C.4C) 

It follows immediately from (A.2a) that 9 is linear, and (C.4b) shows that 3’preserves norms. 

To show that 9 is a bijection from BL(X x Y )  to Y @ X ,  an inverse for it will be con- 

structed. First, suppose that f E BL(Y +I?). Then (Halmos, 1951) there is a uniqu, - vector 

yr E Y such that for every y E Y 

f 6 9 = y  OYf * (C.5a) 

Now suppose T E I’ @X . For any fixed x E X ,  consider the functional f : Y + R defined by 

requiring that for each y E Y 

(C.5b) 

Denote this functional f by T(.,x). Clearly f ,E BL(Y +I?), and in fact Ilf ,I1 I IlTll 11x11. 

Therefore (C.5a) applies to f = f x. In Y there is a unique vector yf,, or .VT(,%). such that for every 

Y E  Y ,  f,(y)=yoyT(*,x). Thatis 
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Now define FT : X + Y by requiring that for each x E X 

(C.Sc) 

Then FT is uniquely determined by the fact that for each x E A’ and y E Y ,  

TO, X) = y 0 FT(x)  . 

Finally, define 3 Y @ X + BL(X + Y )  by requiring that for each T E Y 63 X , 

(C.5d) 

3 ( T )  = FT * (CSe) 

Comparing (C.4a) with (CSd) shows that F = F T  iff (if and only if) T=TF. That is, 

3: Y @X + BL(X -+ Y )  is both a left and a right inverse for BL(X + Y )  + Y @X. There- 

fore.3and r a re  both bijections, and each is the inverse of the other. SinceJ is linear, its inverse 

must be linear. The linearity of 3 can also be inferred directly from the uniqueness of the FT 

defined by (C.5d). Of course, (C.4b) now implies 

Henceforth it will be convenient to confuse the bounded linear mapping F : X + Y with the 

tensor TF E Y @X, and to write TF as F. Then, in the notation of (C.ld), 

y F x = y F (x) (C.6a) 

for every x E X and y E Y .  If either F or F is given (C.6a) Uniquely determines the other. Furth- 

ermore, (C.4b) can be written 

IlFll = IlFII * (C.6b) 

Equation (C.6a) suggests writing the vector F (x> as Fox, so 

F O X  := F ( x ) .  (C.6c) 

Then (C.6a) becomes 

y o F o x = y o ( F o x ) .  (C.6d) 

The vector Fox depends linearly on each of F and x when the other is fixed, and moreover (C.lb) 

September 19, 1988 



George E. Backus 

takes the Schwan-like form 

IIF 0 41 5 IIFll IIxll . (C. 6e) 

A special case of (C.6) is that in which Y = R . Then F is a Iincar functional f : X + R , F 

is the corresponding vector x j  E X, and (C.63) reduces to (C.5a). 

A first application of the correspondence (C.6a) bctween tensors and bounded linear map- 

pings will be to define the transpose of each. For F E Y OX, the definition of Lhe transpose FT is 

simple: for every (y, x) E Y XX , 

F~ (x, y) = ~ b ,  X) . 

Evidently FT E X @ Y ,  

IIFII = llFT I I  

and 

(F*)T = F . (C.7c) 

Moreover,ifF, GE Y @X anda ,b  ER,thenclearly 

( ~ F + ~ G I ~  = Q F ~  + b ~ ~ .  (C.7d) 

Now suppose F E BL(X + Y ) .  Then FT, the transpose of F ,  can be defined as the mapping in 

B L ( Y  +X) corresponding to the tensor FT E X @ Y .  Thus FT : Y + X  is the unique function 

with domain Y and codomain X such that for every (x, y) E X x Y ,  

y F (x) = x F ~ O I ) .  (C.7e) 

Without a discussion equivalent to the introduction of tensors, it is not clear that a function 

F T  : Y  +X with property (C.7e) exists at all. The tensor argument shows that a unique FT 

exists, is linear and bounded, and satisfies (C.7b,c.d). 

It will be useful to write F7@) as y OF. Thus, if y E Y and F E BL(X -+ Y), then invoking 

(3.9~)  gives 

y F := F ~ o , )  = F~ O Y  (C.8a) 
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(C.7a) 

(C.7b) 
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The "dot product" y OF is bilinear in y and F, and (C.6e) and (C.7b) imply 

IIY OFll 5 Ilsll IlFll * (C.8b) 

Equation (C.7e) can now be rewritten as y (F x) = x (y o F), which is @ F) ox. Thus, (C.6d) 

and (C.7e) now yield 

y ( F ~ x )  = @OF) O X  = F O X  = X  F~ O Y  . 

The correspondence (C.6a) also provides a simple way to define symmetric and positive 

definite linear mappings. A mapping F E BL(X + X )  is symmetric if FT = F ,  and positive 

definite if x oFox  > 0 whenever x E X and x#O. 

Composition is an operation more easily defined for functions and then transferred t~ ten- 

sors. Suppose thatX, Y, andZ areHilbertspaces and G E  Z BY, and FE Y 63X. Then GoFis  

defined as the member of Z OX such that for each x E X 

(G o F) x : = G (F' X) . (C.9a) 

If W is another Hilbert space and H E W 63 Z , then (A. Ib) implies 

H ( C o n =  (HOG) O F .  

The identity 

( G D F ) ~ = F = O G =  

(C.9b) 

(C.9c) 

and the corresponding result for G and F come immediately from the following tedious but sim- 

ple application of the definitions and the various associative laws: for every X E  X and ZE Z ,  

xo(GoF)' o z  = zo(GoF)ox  = z o [ ( G o ~ o x ]  = z o [ G o ( F o ~ ) ]  = (zDG)o(Fox) = 

(Fox)o(zoG) = (XOF~)O(G*OZ)  = xo[F'o(G'o~)] = x o . [ ( F T ~ G T ) o ~ ]  = 

x o (F' oGT) o z. Then (C.9c) and (C.8a) imply that for every z E Z 

(znG) o F = z (G OF) .  (C.9d) 

The identity tensor on X is defined as the tensor IX E X @X which corresponds via (C.6a) 

to the identity mapping Ix E BL(X +X). To any (x, 2) E X XX , Ix assigns the value 
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I ~ ( x , 2 ) = x D I ~  0 2 = x 0 2 .  (C. I Oa) 

Then evidently 

IZ=Ix . (C. 1 Ob) 

If F E BL(X + Y )  has an inverse, F-' : Y + X ,  then so docs FT E BL(Y +A'), and 

( F y  = ( F - y  . (C.lOc) 

The proof is this. Since X and Y are complete, the Banach inverse theorem (Luenberger, 1969, p. 

149) says that F-' E BL(Y +X). The tensor in X 63 Y corresponding to F-' is written, of 

course, as F'. Now (F-')' E BL(X + Y) does exist, and (F-')T o FT = (F o = I T  = l y ,  

while FT o (F-')' = (F-' o F)T = 1; = Ix . Thus (F-')' is a right and a left inverse for FT. 

Hence (FT)-' exists, and satisfies (C.lOc) 

Another application of the correspondence (C.6a) is in the construction of dyads, which are 

very easy to define as tensors. Let X and Y be real Hilbert spaces and let Z E X and 7 E Y.  

Define the "dyad" Zg E X C3 Y by requiring that for every x E X and y E Y 

x 0 (Zg) 0 y = (x 0 ii>@ 0 y) . 

The dyad Sg is often written 3 @ 9. Evidently 

( z ~ ) T  = j3 . (C.llb) 

For any a E R and x E X , ax will also be written x u .  With this convention, the mapping in 

BL(Y +X) which corresponds to the tensor $3; is determined by the fact that for each y E Y 

(C.lla) 

(n?; )Dy=r@Oy) ,  (C.llC) 

and its transpose is determined by the fact that for each x E X 

x D (23;) = (x 0n)g . (C.l Id) 

There is still another pair of associative laws for dyads. Suppose X , Y ,  Z are real Hilbert spaces, 

and F E Z  @ X ,  and G E  Y @ Z ,  and S E X ,  and Y E  Y. Then for any Y E  Y ,  [Fo(P3;)]og = 

Fo[(Zg)ny] = F o [ % @ ~ y ) ]  = ( F o f ) @ o y ) =  [(FoS)g]oy. Therefore 
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F D (Sg) = (F on)f . 

Similarly 
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(C.lle) 

(%y)oG=fi@oG). (C.1 If) 

It will be necessary to define the integral of a function whose codomain is a set of tensors, 

because variance tensors of probability distributions are such objects. Suppose that R is an arbi- 

trary set and p is a probability distribution (measure) on R (see appendix A and Halmos, 1950). 

For a large class of functionals f : R -+ R , called the p -integrable functionals, the integral 

J dp (o)f (a) is defined, and is usually written as an expected value, 
R 

(C. 12a) 

Now suppose that X and Y are Hilbert spaces and T : R + X @ Y .  For each fixed ( x ,  y) E X 60 Y , 

w l-+ x o T(w) oy defines a functional on R. Suppose that for each (x, y) E X XY this functional 

is p -integrable. Then it is possible to define the integral of T(w) with respect to p , written either 

J dp (o)T(w) or Ep [T(a)l .  
R 

By definition, Ep [T(o)] :X XY 3 R , and this functional is defined by requiring that for each 

( X , Y > E  x XY 
E,[T(U)J(X,S) := E , [ ~ D T ( ~ I I ) D ~ J .  (C.12b) 

Clearly Ep [T(o)] is bilinear in x and y. If it is also bounded, then Ep [T(o)] E X @ Y, and the 

function T.: R +X @ Y is called p -integrable. For example, if the functional w h IIT(o)ll is p - 
integrable, so is T, If T i s p  -integrable, then the definition (C.12b) of its inteegal can be rewritten 

x EP [T(u)] := Ep [X T(o) o y] . (C. 1 3a) 

One consequence of (C.13a) is that if W and 2 are also Hilbert spaces, and P E  W @X and 

Q E  Y OZ,thenPoTandToQareintegrable,and 

P o EP [T(o)] = Ep [P D T(w) J (C.13b) 
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and 

Ep [T(@)l Q = Ep [T(@) 0 Q1.  (C. 13c) 

In the special case of (C.12) which arises in CSI, R is the data space Y ,  p is the probability 

distribution pE of the random error vector 6y, and X is either R or Y .  Following the convention 

introduced in (B.5). EPE[T(y)J will be written E[T(6y)]. Then €[6y] is defined as a member of 

R 63 Y ,  i.e., of Y, and clearly (B.6a) implies 

E [6y] = 0 . (C. 14a) 

The variance tensor of Sy is defined as 

because of (C.14a). From (C.13a). if y and E Y then 

TherefoE, from (B.8). 

y o v o y = y o g .  

Then, from (C.lOa), 

V = I y  . (C.14~) 

Thus the dot product (3.7) is the only dot product on Y which makes V, the variance tensor of 6y, 

equal to the identity tensor on Y .  If p E  is Gaussian, then adopting on Y the dot product (B.7) 

gives p~ the densiry function 

where d!y is the volume element in Y defined by the dot product (B.7). If some other dot pro- 

duct, y o  9, is adopted for Y ,  then V is defined by (C.14b) and I7#I,.. A GaussianpE will have a 

density function given by 

dpE 6) = ( 2 ~ ) - ~  R(det l')-"exp(-%y o V-' o y) d? y 

where d?y is the volume element in Y defined by the dot product 0. 

(C. 1 5 b) 
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APPENDIX D. THE EIGENSTRUCTURE OF A BOUNDED LINEAR FUNCTION WITH 

FINITE DIMENSIONAL CODOMAIN 

When the model space X and the data space Y are Hilbcrt spaces, and the data function 

F :X + Y is linear, section 7 describes the calculations needed to optimize resolution in 

confidence set inference. Those calculations depend on the eigenstructure of F (its singular valuc 

decomposition). That eigenstructure is determined by the facts that 

dim Y < w (D.la) 

and 

The algebraic discussion in Golub and Van Loan (1983, p. 16) suffices for computations, but the 

geometrical discussion given here may be a useful supplement for readers who, like the author, 

find it easier to think geometrically. 

The geometrical discussion is based on orthogonality. If X is a real Hilbert space and 

x,Z E X, and if x o P = O ,  then one writes 'I x l f i " ,  read " x is orthogonal to P .I' A set 

{SI, 9;'2. - - ) c X is "orthonormal" if 

f; 0 9j = &j (D.2) 

(6, = 1 if i = j  and 6q =O if i # j ) .  Every orthonormal set is linearly independent. 

If X E  X, U E;X and V SX. then x l U  means that x l u  for eveF U E  U, and U I V  

means that u I v  for every u E U and v E V .  Define 

X O U  := { X O U : U E  U )  

and 

U O V  := { U O V E U E  U and V E  V )  . 

T h e n x l U  i f f x o U = { O ) , a n d U l V  iffUoV={O).  
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If x E X and also x LA' then x x = 0, so x = 0. The most useful corollary of this obscnia- 

tion is that if x1 and X and x, o x = x 2 0 x  for all x E X ,  then (x , -x2)LX so x1 =x2. 

If U c X  and \7 G X  and U J-V,  then U +V is written U @ V .  Every vector in U 0 V can 

be written in exactly one way as u + Y with u E U and v E V .  To see this, suppose u, u' E U and 

V,V'E V .  Then (u-u')o(v'-v)=O. If also u+v=u'+v',  then u-u'=v'-v=O. 

If U cX, then 

The set UL is the "orthogonal complement" of U. It is always a subspace of X ,  even if U is not, 

and it is closed in the sense that if x1.x2, - * E U' and lim Ilx, -xll = O  then X E  U' (Halmos, 
n +- 

1951). Clearly U I U' so 

u s (U')l. 

If U is itself a subspace of X , then (Halmos, 195 1) 

where U c  is the closure of U . If U is a closed subspace of X , then U c  = U so 

(D.3a) 

(D.3b) 

in this case 

X = U @ U L .  (D.3c) 

In particular, (D.3c) holds if dim U <-, because every finite-dimensional subspace of X is 

closed. Equation (D.3c) means that for each x E X there are unique vectors xu and x i  such that 

~ U E U ,  x&EU',and 

Of course it is also me that 

x u o x ~ = o .  (D.3e) 
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If U is a closed subspace of X , (D.3d) permits the introduction of functions Pu : X +X 

and QU : X + X defined by requiring that for each x E X 

(D.4a) 

@.4b) 

The function Pu is called the orthogonal projector of X onto U . It is a surjection onto U ,  and 

Pu I U =Iu .  Clearly Qu is P i .  From the uniqueness of xu in (D.3c) it follows that Pu is 

linear. From (D.3d) it follows that 

and 

IIQuII=l if U # X .  (D.6b) 

Also, from the definitions, 

Suppose U is a f i t e  dimensional subspace of X. Let dim U =N <-, and let {SI, . . . ,f~ ) 

be any orthonormal basis for U (many can always be found; Halmos, 1958). Then 

To prove this, let x E X. Then xu E U ,  so 

N 

i=l 
xu = ai Pi 
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I where 

But 5!i E U SO 2; ox$=O. Thus 

I ai = P i  ox. 

I Therefore 

P ~ n x = x ~ = C P ~ a ; = C P t ; ( 9 ; o x ) = C  [ ( S i 8 ; ) o x ] = ( C f i S i ) o x .  

I 

N N N ff 

i-1 i= l  i=l i=l 

This proves (DSh). 

The foregoing properties of orthogonality can now be used to obtain the eigenstmcture of 

F :X + Y when X and Y are Hilbert spaces, F is linear and bounded, and (D.1) holds. First con- 

sider the null space of F ,  defined as 

NF := { X : X E X  and F ( x ) = O ) .  (D.7a) 

Since F is linear, NF is a subspace ofX. Since F is continuous, NF is closed. Therefore 

x =NF @N;. (D.7b) 

In the spirit of the conventions (C.6c) and (CAa), define 

F O X  := { F D x : x E X )  
l 

and I 

I 

Y OF:= { Y O F : Y E  Y ) .  

I Then, clearly, 
I 

F o X = F ( X ) c Y  (D.8c) 

and 

Y O F = F * ( Y ) G X .  @.W 
I 
I Since Y OF is the image of the linear function FT : Y + X  whose domain is finite-dimensional, 
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dim ( Y  F) < m (Halmos, 1958). Define 

M := dim(Y OF). 

The identity 

( Y o F ) o x = Y  o ( F 0 x )  

holds for every x E X .  Therefore x I (Y o F) iff F o x  = 0, Le., iff x E N F .  It follows that 

NF = (Y OF)', (D.80 

and, by (D.23) 

N k = ( Y  OF)'. 

But, being finite-dimensional. Y F is closed, so (Y F)' = Y F ,  and hence 

Y O F = N ~ .  (D.8g) 

Then @.7b) can be written 

X =NF @ ( Y  O F ) .  @.8h) 

Equation @.8h) resolves X into the two pieces N F  and Y OF. The function F I NF is 

trivial, simply 0, so to study F it suffices to study the function 

P : = F  I Y o F .  (D.94 

The function 

P ( Y o F ) = F ( X ) .  (D.9b) 

To see this, take ?I E X and, using (D.7h). write 

X = X Y  o~ + XY o~ . 

Since x k O F  E NF , therefore F (x;,~) = 0, so F (x) = F ( x y  o ~ )  = F ( x y  o ~ ) .  This proves (D.9b). The 

second important property of 

P : Y oF+F(X) (D.9c) 

has two important properties. Firstly, 

' 
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is that it is an injection. For suppose x E Y G F and f ( x )  = 0. Then F (x) = 0, so x E h', . Then by 

(D.80, x E (Y OF)' as well as Y OF, so x=O. Since is linear, it is injective. But this fact and 

(D.9b) show that F' is a bijcclion, and thus has an hversc, 

? ' : F ( X ) + Y  OF. (D.9d) 

: Y o F + Y o F. This function is symmetric, for 

(FT o F ) T = p T  ~ ( p ' ) ~  = F T  OF. It is also positive definite, for if X E  Y OF and x # O  then 

F(x)#O, so O<IlF0x11~ = ( P o x ) o ( ~ o x )  = ( X D ~ ~ ) O ( ~ O X )  = x o ( p T  oE)ox. The domain 

Y OF of the symmetric, positive definite function FT o P has finite dimension M. Therefore, 

counting repetitions of multiple eigenvalues, PT o F has M positive real eigenvalues (Halmos, 

1958). These can be ordered as 

q+@+ . . .  rq);>o. 

Furthermore, Y OF has an orthonormal basis {t1, ..., 

with the eigenvalues @.I Oa). That is 

Now consider the function FT o 

(D. 1 Oa) 

consisting of eigenvectors of FT o f  

FT 0 F(2 j )  =#?si 

for i  = 1, ..., M. This last equation can also be written 

pT &of ;  =@?si.  

Then, by (D.2), 

g j  O F T  oFn2;  =@?6i;. 

Therefore, by (CAa), 

@02j)O(Pof;)=qj?6i;  . 

Next, define 

f i  := @;' F (2;) . (D.l la) 

By @.lOc), If1,  ..., f M  ) is an orrhonormal subset of Y OF. Since dim Y nF=M,  (pl, ..., QM ] is 

an orthonormal basis for Y OF. Morcoever, from the definition (D.l la), 

(D. 1 Ob) 

(D.lOc) 
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(D.llb) 

for i = 1, ..., M. An immediate consequence of (D.l lb) is that in Y CQ (Y nF) 

To see this. note that 

M 

i=l 
I Y ~ F =  fi fi 

and that 

Now 0.1  IC) follows from (D.l lb). A useful consequence of (D.1 IC) is that 

(D.l IC) 

(D.l ld) 

(D.l le) 
i=l 

To prove @.lie), denote its right-hand side by G, and observe from @.lld) and (D.11~) that 

e nE = E G =Iy 

Finally, from (D.8h) and (D. 11 c) it will be shown that 

(D.12a) 
i -1 

. - . 7  

. where now the right side of (D.12a) is interpreted as a tensor in Y @X. Equation 0.12a)  exhi- 

bits the eigensmcture of F, its singular value decomposition. The positive real numbers 

fj 1, ..., G M  are the eigenfactors or singular values of F , { f,, ..., %j,, ) is an eigenbasis for F , and 

{jl, ..., fM ] is the corresponding cobasis. 

To prove (D.12a). let G denote its right-hand side. It will suffice to show that F o x = G n x  

foreveryxEX. But i fxEX then 
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Since 9; E Y OF, X; OX~~,F=O,  SO fi O X Y  = f; OX. Therefore 

This completes the proof of (D. 12a). 

If NF = (0}, so Y oF=X, then = F ,  and (D.11~) will hold for F as well as F. In general, 

NF # IO), and then F-’ does not exist. When NF # IO), F is said to have the eigenfactor 0: 

singular value 0 as well as the positive eigenfactors 4 l@,l 1 . 2@M > 0. Even when NF # ( O), 

F T  : Y + X exists, and it follows immediately from (D. 12a), (C.7d) and (C.11 b) that 

M 

i-1 
F T = C @ ; P i 9 ; .  @. 12b) 

Thus F and FT have the same eigenfactors. and the eigenbasis for either is the cobasis for the 

other. 

The foregoing discussion can be camed out verbatim when D =dim Y = m  as long as 

F :X -+ Y is compact (Kato, 1976). The numberM of nonzero eigenfactors will always obey 

M 5 (dimX) A (dim Y) . (D. 13) 

This point is of only academic interest in practical problems, because they never supply infinitely 

many data. 

The eigenstxucture theorem (D.12a) can be applied either to the whole data function 

F :X + Y on the infinite-dimensional model space X or its restriction F(ohrhr) : X ( o f l ) +  Y to any 

~ 

. - N-dimensional subspace X(o,,,hr) of X . The calculation of resolution in section 7 will be formally 

the same in either case. However, if a subspace X(oJrj can be found which permits tight bounds 

on the truncation errors (6.7) and also satisfies N << D , then section 7 should be applied to F(Ohr) 

rather than F .  Truncation will produce only a small loss of accuracy, and will permit the very 

large computational economy consequent on manipulating N x N  rather than D X D  matrices. 
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Table 1 

P . v @ )  

2.58 

3.29 

10-~ 4.42 

10" 4.89 

10-~ 5.33 

IO4 3.89 

Half-length v @ )  of the symmetric confidence interval with failure rate p for a one- 

dimensional Gaussian with mean 0 and variance 1. 



Table 2 

1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

(Pi% )2 ),” 

107.77 

22.59 

23.01 

17.86 

1 1.96 

9.36 

7.93 

4.73 

6.78 

4.59 

4.34 

3.62 

I K t l @ ) l  

.07 

.11 

.19 

.32 

.57 

1.03 

1.87 

3.42 

6.30 

11.67 

2 1.69 

40.5 

If;]  @>I 

.009 

.015 

.024 

.042 

.075 

.135 

.25 

.45 

.83 

1.53 

2.85 

5.32 

Confidence sets for the Gauss coefficients when the quadratic bound is the heat flow bound. 

Column 2 gives the value in microTeslas of the rms of the Gauss coefficients P;”(a) of degree 1 

at the CMB, calculated from Langel and Estes, 1982. Columns 3 and 4 give the half-len@is of 

the confidence intervals forP;”(u) if the crustal error is systematic, or random and uncorrelated. 

The failure rate p is lo4. Usins p = would leave column 3 unaffected and would decrease 

the entries in column 4 by about ten percent. 
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