AN OVERVIEW OF REFERENCE USER
 SERVICES DURING THE ATDRSS ERA

Aaron Weinberg ${ }^{1}$
Stanford Telecommunications, Incorporated

Abstract

The Tracking and Data Relay Satellite System (TDRSS) is an integral part of the overall NASA Space Network (SN) that will continue to evolve into the 1990's. As currently envisioned, the TDRSS space and ground segments will continue supporting the telecommunications and tracking needs of low-earth-orbiting (LEO) user spacecraft until the late 1990's. Projections for the first decade of the $21 s t$ century indicate the need for an $S N$ evolution that must accommodate growth in the LEO user population and must further support the introduction of new/improved user services. A central ingredient of this evolution is an Advanced TDRSS (ATDRSS) follow-on to the current TDRSS that must initiate operations by the late 1990's in a manner that permits an orderly transition from the TDRSS to the ATDRSS era. In addition, the ATDRSS must interface with the remainder of the $S N$ elements in a manner that simplifies user access to SN resources, while maximizing user flexibility in satisfying its mission requirements.

NASA is in the process of developing an SN/ATDRSS architectural and operational concept that will satisfy the above goals. To this date, an SN/ATDRSS baseline concept has been established that provides users with an "end-to-end data transport" (ENDAT) service characterized by the following fundamental features:

- A friendly interface with the SN that permits users to obtain services without in-depth knowledge required as to
${ }^{1}$ Supported under contract by NASA/Goddard Space Flight Center
- A transition from TDRSS to ATDRSS that is transparent to existing TDRSS users from an operational perspective, but leads to enhanced communications/tracking performance.
- Multiple grades of service that provide users with the flexibility to select an end-to-end service quality (including error-free operation) tailored to the specific mission requirements.
- Growth in the quantity of communication channels, commensurate with the growth in the user population.
- The provision of improved space-to-space RF link efficiency, thereby making ATDRSS support attractive to small users that are currently burdened by the LEO-to-TDRS propagation path.
- The introduction of data rates that exceed 300 Mbps , to permit satisfaction of evolving scientific requirements that may, for example, rely on the availability of digitized high-speed, high-definition TV.
- The application of advanced technologies/techniques that automatically mitigate external phenomena (such as RFI), thereby minimizing service schedule constraints and, hence, maximizing service availability.

Within the context of this baseline, additional service options are currently under investigation that can be readily incorporated with little or no perturbation to the baseline concept. One example is a user capability for autonomous LEO spacecraft navigation. A second example is the introduction of a near-real-time user access feature that potentially alleviates the existing long-lead scheduling process.

On the other hand, potential user services have been identified that are not supportable by the baseline. Most notable here are closure of the zone-of-exclusion (ZOE) and the distribution of data directly from the ATDRS to user premise terminals outside of White Sands. The baseline concept intentionally excludes these features because, to this date, no user requirement has been identified that justifies the associated increase in complexity and cost.

This paper provides an expanded description of the baseline ENDAT concept, from the user perspective, with special emphasis on the TDRSS/ATDRSS evolution. The paper begins with a high-level description of the end-to-end system that identifies the role of ATDRSS; also included is a description of the baseline ATDRSS architecture and its relationship with the TDRSS 1996 baseline. Other key features of the ENDAT service are then expanded upon, including the multiple grades of service, and the RF telecommunications/tracking services to be available. The paper concludes with a description of ATDRSS service options.
AN OVERVIEW OF REFERENCE USER
SRA
©
$\stackrel{\stackrel{r}{a}}{\stackrel{1}{8}}$
$\stackrel{\rightharpoonup}{\text { 롤 }}$
S DURING
SERVIC

USER SERVICE SUPPORT - NOT ACCOMMODATED BY SN/ATDRSS BASELINE
direct data distribution to user premise terminals
RATIONALE: ABSENCE OF SN OR USER REOUIREMENT

- above services are options that are supportable via atdrss
- ENHANCEMENT, HOWEVER. DEPENDS ON DEMONSTRATION OF NEED
wor

OUTLINE
ATDRSS DRIVERS AND OBJECTIVES
ATDRSS ROLE WITHIN END-TO-END USER SYSTEM
OVERVIEW OF END-TO-END SERVICES
ATDRSS SERVICE OPIIONS
- SUMMARY
$\hat{8}$

SN/ATDRSS END-TO-END SERVCE CONCEPT

L WDICATES THE SCOPE OF END-TO-END DATA TRANSPORT CONCEPT

ЩUSTRATIVE TDRSS/ATDRSS EVOLUTION
TRDSS/ATDRSS TRANSITON PHASE
$-1997-1990$
$\overline{3 N I T I N O}$

> ATDRSS ROLE WITHIN END-TO-END USER SYSTEM
> OVERVIEW OF END-TO-END SERVICES
> ATDRSS SERVICE OPTIONS
> SUMMARY

> ORIGINAL PAGE IS OF POOR QUALITY

ATDRSS LOW DATA RATE SERVICE MODEL

SЭJInyJS ONJ-01-ONJ SSyOIV/NS

END-TO-END SERVICE CONCEPT PROVIDES RELIABLE/STANDARDIZED/USER-
FRIENDLY ACCESS TO SN

CSDS STANDARDS/PROTOCOLS SERVE AS REFERENCES FOR SPECIFICATION OF

- KEY CCSDS SPONSORS: NASA, ESA, NASDA
LAYERED ATDRSS SERVICE MODEL
-

ATDRSS COMMUNICATIONS/TRACKING SERVICES*

FEATUR	SER VICE	ENHANCED SMA (EMA)	SSA	KSA	NEW HIGH DATA RATESA (K_{A} SA OR WSA)
TDRSS DATA	FORWARD TELE- COMMAND	$\leq 10 \mathrm{KBPS}$	- 500 KDPS - SIIUTILE-UNIQUE	- 525 MBPS - Shutile-unipue	-
RETAINED	RETURN/ TELEMETRY	S 50 KBPS	- $\quad \mathbf{5} \mathbf{M B P S}$ - ShiUTLLE-UNIQUE	- 5300 MBPS - SIIUTLLE-UNIQUE	-
NEW DATA RATES	FORWARD TELECOMMAND	-	-	- SSOMDPS	S 50 MBPS
INIRODUCED	RETURN/ TELEMETRY	- $\leq 300 \mathrm{KBPS}, \mathrm{PN}$ - 53 MBPS, NO PN	-	-	5650 MBPS
LINK ENIIANCE ON PHYS RELATIVE T TDRSS	QUALITY MENT GOALS cal layer comparable SERVICE	- NONE, FORWARD - 9 dB, RETURN (PROVIDES SSA LINK QUALITY	NONE	- 3 dB, FORWARD - 4 dB, RETURN	
	RRIER	- 2106.4, FORWARD - 2287.5, RETURN	TUNABLE - 2030-2113, FORWARD - 2205-2295, RETURN	- 13775, FORWARD - 15003, RETURN	TBD
QUAN CIIANNE	$\begin{aligned} & \text { VTTYY OF } \\ & \text { LS (SYSTEM) } \end{aligned}$	$\begin{aligned} & \text { - 4, FORWARD } \\ & \text { - 12, RETURN } \end{aligned}$	4, FULL DUPLEX	8, FULL DUPLEX	4, FULL DUPLEX
$\begin{array}{r} \text { SCH } \\ \text { TRACKIN } \end{array}$	EDULED o SER VICES	- TWO-WAY - RANGE - DOPPLER - ONE-WAY RETURN - NONCOILERENT DOPPLER - TIME TRANSFER			\longrightarrow

llLustrative Concatenated coding performance
OUTLINE
ATDRSS DRIVERS AND OBJECTIVES
ATDRSS ROLE WITHIN END-TO-END USER SYSTEM
OVERVIEW OF END-TO-END SERVICES
ATDRSS SERVICE OPTIONS
SUMMARY

EMA OPTION, FULL-DUPLEX SUPPORT TO ALL MA UERS

- EMA CAPABILITY PER S/C

NEAR-REAL-TIME SERVICE ACCESS OPTION

DEFINITION: OBTAINING "RAPID" ATDRSS SERVICE WITHOUT REOUIRING
USE OF THE FORMAL, LONG-LEAD SCHEDULING PROCESS
$!$

ACCOMMODATE UNPLANNED/UNSCHEDULED USER SERVICE NEEDS:
MAXIMIZE USER OPERATIONAL FLEXIBILITY
ILLUSTRATIVE NEAR-REAL-TME-ACCESS SCENARIO

OUTLINE

ATDRSS DRIVERS AND OBJECTIVES
ATDRSS ROLE WITHIN END-TO-END USER SYSTEM
OVERVIEW OF END-TO-END SERVICES
SUMMARY

ATDRSS DRIVERS AND OBJECTIVES
ATDRSS ROLE WITHIN END-TO-END USER SYSTEM
OVERVIEW OF END-TO-END SERVICES

- ATDRSS SERVICE OPTIONS

