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ABSTRACT 

Adaptive data compression techniques can be viewed as consisting of a 
model specified by a database common to the encoder and decoder, an 
encoding rule and a rule for updating the model to ensure that the 
encoder and decoder always agree on the interpretation of the next 
transmission. The techniques which fit this framework range from run- 
length coding, to adaptive Huffman and arithmetic coding, to the 
string-matching techniques of Lempel and Ziv. The compression 
obtained by arithmetic coding is dependent on the generality of the 
source model. For many sources, an independent-letter model is 
clearly insufficient. Unfortunately, a straightforward implementation 
of a Markov model requires an amount of space exponential in the 
number of letters remembered. The Directed Acyclic Word Graph (DAWG) 
can be constructed in time and space proportional to the text encoded, 
and can be used to estimate the probabilities required for arithmetic 
coding based on an amount of memory which varies naturally depending 
on the encoded text. The tail of that portion of the text which has 
been encoded is the longest suffix that has occurred previously. The 
frequencies of letters following these previous occurrences can be 
used to estimate the probability distribution of the next letter. 
Experimental results indicate that compression is often far better 
than that obtained using independent-letter models, and sometimes also 
significantly better than other non-independent techniques. 

INTRODUCTION 

Adaptive data compression techniques are useful when the statistics 
of the data are not known in advance or are changing slowly. This 
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paper surveys some well-known adaptive compression techniques and 
presents two new methods which give improved compression in many 
cases. All techniques presented are lossless (or noiseless) in that 
an exact copy of the original data can be obtained by decompressing 
the output of the compression algorithm. The data is assumed to be a 
string of characters from an arbitrary alphabet, though many of the 
ideas presented here could be applied to images or other 
multidimensional data. 

An adaptive compression technique can be viewed as consisting of 
three parts: 

1) A dictionary or database which defines the current state of 
the model. 

2) A coding r u l e  w h i c h  determines h o w  t h e  encoder transmits 

the next part of the string and how the decoder 
interprets the encoder's message. 

3 )  An adaptation rule which determines how the encoder and 
decoder update the model to reflect the previous 
transmission. 

If the encoder and decoder initialize their models identically, they 
can maintain identical copies of the model throughout the transmission 
by using the same adaptation rule. 

RUN-LENGTH CODING 

The simplest compression technique which fits this framework is 
probably run-length coding. In this case, the dictionary consists of 
the single character which forms the current run. The coding rule 
encodes the number of times this character is repeated, followed by an 
encoding of the' next character. For example, if the encoder's and 
decoder's dictionaries are initialized to "att, the data string 
ttccccabbbll could be transmitted as (0, c) ( 3 ,  a) (0, b) (2, b) . Since the 
initial character in the dictionary is "att, (0,c) is interpreted as no 

368 



IIaIIs followed by at least one llcll. The llcll then replaces the Itag8 in 
both dictionaries. (3,a) then indicates a run of 3 more .tlclls followed 
by an llall. (0,b) indicates that this llall is followed immediately by a 
I1b1l, and (2,b) can be interpreted to mean that the end of the string 
has been reached after two more lrblls, since there would not ordinarily 
be two consecutive runs of the same character. 

LEMPELZIV CODING 

A more interesting adaptive compression technique was developed by 
Lempel and Ziv while investigating a complexity measure for 
strings(4). In this case, the dictionary consists of that portion of 
the data string which has already been transmitted. The encoder is 
allowed to specify any substring of this string by transmitting an 
index and a length. The encoder parses off the longest prefix of the 
part of the data which has not yet been transmitted which matches a 
substring of the previously transmitted data. This is complicated by 
the fact that the encoder and decoder add letters to their dictionary 
strings as this matching is being done, allowing the matching 
substrings to overlap each other. The encoder then transmits the 
index of the previous substring, the length of the match, and the 
first character which caused the match to fail. If the data string is 
11abcabbcabbcb81 and llabcll has already been transmitted the encoder I s 

next transmission would be (1,2,b) indicating a match of 2 letters 
starting at position 1, followed by a llbll. The encoder and decoder 
would then concatenate I1abbtt to their dictionaries, giving *Iabcabbl1. 
Using the overlap mentioned above, the encoder can now transmit the 
rest of the string as (3,5,b). If the 5 was replaced by a larger 
number, this would indicate further repeats of the pattern tlcabbll, so 
this technique can be viewed in part as a generalization of run-length 
coding, where runs are allowed to consist of repeated patterns rather 
than just repeated single characters. 

More recently, Ziv and Lempel have developed another adaptive 
compression technique based on string matching(7) . To avoid the 
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complexity inherent in using both a pointer and a length to refer to 
any previous substring, the dictionaries for this newer method consist 
of only those substrings which have been parsed and transmitted by the 
encoder. The prefix parsed by the decoder must match one of these 
substrings. The decoder then transmits a code number for that 
substring and the next character. (Variations of this technique avoid 
the explicit transmission of the next character by methods such as 
initializing the dictionaries to contain all single-character 
strings (5) . The adaptation rule then adds the most recently 
transmitted to the dictionaries. For example, if the first eight 
characters of ltaabaaabaaabbtl have been transmitted, the dictionaries 
consist of the strings tlall, ltabll, l1aav1, and ltaball, numbered 1, 2, 3 ,  

and 4 ,  respectively. The encoder will then parse I1aa1l and transmit 
llaabft as (3,b). IIaabIl is then added to the dictionaries as string 5. 
The final @Ibl1 is then transmitted as (0,b) , since it does n o t  match 

any dictionary string. This technique works quite well in practice, 
as is evidenced by popularity of the UNIX (TM) llcompressll command. 
One slight drawback is that runs of repeated patterns can no longer be 

I 

I 

I parsed all at once, even wher. the pattern is only the repeated 
I 
I 

I occurrence of a single character. 

I A GENERALIZATION OF RUN-LENGTH CODING 

Another way to avoid transmitting both a pointer and a length is to 
use an implicit pointer which can be computed by both the encoder and 
decoder(l1. This can be done using a data structure known as the 
Directed Acyclic Word Graph (DAWG), a data structure which stores 
information about all substrings of a string in space proportional to 
the length of the string and can be built in time proportional to this 

algorithm always maintains a pointer to the longest suffix that has 

The previous occurrence of the tail can be used as the implicit 
pointer mentioned above. The encoder locates this previous occurrence 

I length (linear space and time) (2,3). The linear-time construction 

I occurred elsewhere in the string. This suffix is known as the I1taill1. 

I (which is uniquely defined by the DAWG construction algorithm) and 
I 
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predicts that the next character to be transmitted will be the same as 
the character which follows this previous occurrence. If this 

prediction is correct, the DAWG is then updated by adding this 
character and another prediction is made based on the new tail. This 
process continues until a prediction fails, at which point the encoder 
transmits a count of the number of correct predictions and the actual 
character for the first prediction which failed. For example, if the 
data string is "aababaabaa" and the first five characters have already 
been transmitted, then the tail is ''ab'' and the prediction is that the 
sixth character is 'la1'. This is correct, so the "a" is concatenated 

I to the string and the DAWG is updated. The tail is now llaball, which 
predicts a "b". This is incorrect, so the encoder's transmission is 
(1,a). The next predictions are "b", 'la1', and "btt, of which the first 
two are correct, so the next transmission is (2,a). With this 
technique any sufficiently long repeated pattern can be parsed in a 
single transmission, so it will act like a generalization of run- 
length coding in these cases. 

1 

I ARITHMETIC CODING WITH DAWG-BASED MODELS 

Although experimental results with this last technique were 
encouraging, it can be shown to be asymptotically nonoptimal for a 
wide variety of data sources. Fortunately, the information available 
from the DAWG can be used in combination with arithmetic coding(6), 
resulting in a technique which is both asymptotically optimal and 
gives good results in the cases where the above technique worked well. 
Arithmetic coding, like Huffman coding, is based on using estimates of 
the probabilities for the next character to encode that character. An 
adaptive arithmetic encoder will revise these estimates as each letter 
is transmitted. If the characters are statistically independent, a 
table of frequencies for each character will provide these estimates. 
In most cases, characters are strongly dependent, so a more 
sophisticated model is needed. The most natural next step is to use a 
Markov model of order m, where the probabilities of the next character 
depend on the previous m characters. There are two problems with 
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this: the amount of space needed to store the probability estimates is 
exponential in m, and the ideal m may change as the characteristics of 
the data change. Both of these problems can be solved by using a DAWG 
to store the frequency counts and using the previous occurrence of the 
tail to provide the appropriate amount of context. Using just the 
frequency counts from the DAWG gave good compression in many cases, 
but worked very poorly when the data contained long runs. The reason 
for this is that in a long run there will be relatively few previous 
occurrences of the tail, so the next character is not predicted with 
great certainty. When the probabilities were modified to take into 
account the length of the tail, the performance improved greatly in 
these cases. 

EXPERIMENTAL RESULTS 

F i 1 e type 
-------- 
Commands 
C Program 
Object Code 
Load Module 
Font File 
This Report 

Filesize ARITH LZ w GRL DAWGARITH 
-------- e---- --- --- -------_- 
347 253 200 184 142 
17 29 1160 840 6 0 3  515 

3890 2585 2096 2544 1759 
49152 29.47 23544 27774 18168 

16384 906 478 384 263 
15945 9528 7810 10982 8809 

Numbers are number of bytes before and after compression. 
ARITH is the adaptive arithmetic coding algorithm from(6). 
LZW is the UNIX (TM) ttcompresslt command(5). 
GRL is the generalization of run-length coding from(l). 
DAWGARITH is the last technique described above. 

I 
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I APPENDIX: THE DAWG CONSTRUCTION ALGORITHM 

The DAWG is a Partial Deterministic Finite Automaton ( P D F A )  which 
recognizes the set of all substrings of a word. If the word has 
length n, the DAWG will have less than 2n nodes and 3n edges. It can 
be built online in linear time using some auxiliary edges (one per 
node) called suffix pointers. Each node corresponds to the class of 
strings labeling the paths from the source to that node. The longest 
such path is called primary. The destination of the suffix pointer of 
a node is identified by removing the first letter from the label of 
the shortest path from the source to that node. Thus the suffix 
pointer of the sink node can be used to identify the longest suffix 
which occurs somewhere else in the string (the l1tailV1). 

The pseudo-C code below updates a DAWG for a word, w to a DAWG for 
wa. It assumes that wa is stored in a global buffer, and that llindexll 
is the position of the letter a in this buffer. Each node contains: 

position: a buffer index pointing to the letter labeling edges to 

depth : the length of the primary path from the source to that 

edges : a linked list of outgoing edges, and 
suffix : the suffix pointer for that node 

that node 

node 

llsourcell and llcurrentsinkll are global variables. The following 
auxiliary procedures are needed: 

allocnode( position, depth ) allocates and returns a pointer to a 
new node 

allocedge( node, edgelist ) adds to lledgelistll an edge which 

findedge ( node, letter ) returns a pointer to an outgoing edge 
points to tlnodell 

from llnodell labeled lllettertl, or NIL if no such 
edge exists 
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unlist ( edgelist, node ) removes an edge pointing to 11node8g 
from ltedgelistll 

update( ch, index ) 

char ch ; /* ch is the character pointed to by index */ 
unsigned index; / *  index points into the text buffer */ ( 

/ *  make a new node, "newsinkll, and make an edge to 
/ *  this node from "currentsink", the old sink. */ 
newsink = allocnode( index, index+l ) ;  

edges( currentsink ) = allocedge( newsink, edges( currentsink ) ) ;  

suffixnode = source; / *  the default value */ 

/ *  follow chain of suffix pointers from currentsink */ 
for (currentnode = suffix( currentsink ) ;  currentnode ISNT NIL; 

currentnode = suffix( currentnode ) ) ( 

/ *  no edge with this character, so make a secondary edge to 
llnewsinkll */ if ((Edge = findedge( currentnode, ch ) )  IS NIL) 

edges( currentnode ) = 

allocedge( newsink, edges( currentnode ) ) t  

/ *  a secondary edge labelled Ilch'l, so split */ 
else if ((depth(currentn0de)tl) ISNT depth(node(Edge))) ( 

/ *  Make Edge into a primary edge to a new node */ 
childnode = node ( Edge ) :  

newchildnode = allocnode( index, depth(currentnode)+l ) :  

edges( currentnode ) = unlist( edges( currentnode ) ,  childnode 
1 ;  edges( currentnode ) = 

allocedge( newchildnode, edges( currentnode ) ) ;  

/ *  Give a copy of each of childnode's edges to newchildnode */ 
for (Edge = edges( childnode ) ; Edge ISNT NIL; Edge = next( Edge 
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edges( newchildnode ) = 

allocedge( node( Edge ) ,  edges( newchildnode ) ) ;  

/ *  Set the suffix pointer of newchildnode to that of childnode, 

suffix( newchildnode ) = suffix( childnode ) ;  

suffix( childnode ) = newchildnode; 

*/ / *  and reset childnodels to point to newchildnode 

/ *  follow chain of suffix pointers, changing secondary edges 
*/ 

for (currentnode = suffix( currentnode ) ;  currentnode I S N T  N I L :  

/ *  which point to childnode to point to newchildnode 

currentnode = suffix( currentnode ) )  { 

if ((Edge = findedge( currentnode, ch ) )  I S  N I L )  break: 
if ( (depth (currentnode) +1) IS  depth (node (Edge) ) ) break; 

edges( currentnode ) = unlist( edges( currentnode ) ,  node( Edge ) ) :  

edges( currentnode ) = 

allocedge( newchildnode, edges( currentnode ) ) :  

1 
suffixnode = newchildnode; 
break: 

I 
/ *  otherwise, it's primary, so set suffixnode and break out */ 

else ( 

suffixnode = node( Edge ) ; 

break; 
) 

/ *  set the suffix of newsink to be the node the above 18for11 loop found 
*/ suffix( newsink ) = suffixnode; 
currentsink = newsink; 

*7*  
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