
N8 9 - 2234 7
NOISELESS COMPRESSION USING NON-MARKOV MODELS

Anselm Blumer
Computer Science Department

Tufts University

ABSTRACT

Adaptive data compression techniques can be viewed as consisting of a
model specified by a database common to the encoder and decoder, an
encoding rule and a rule for updating the model to ensure that the
encoder and decoder always agree on the interpretation of the next
transmission. The techniques which fit this framework range from run-
length coding, to adaptive Huffman and arithmetic coding, to the
string-matching techniques of Lempel and Ziv. The compression
obtained by arithmetic coding is dependent on the generality of the
source model. For many sources, an independent-letter model is
clearly insufficient. Unfortunately, a straightforward implementation
of a Markov model requires an amount of space exponential in the
number of letters remembered. The Directed Acyclic Word Graph (DAWG)
can be constructed in time and space proportional to the text encoded,
and can be used to estimate the probabilities required for arithmetic
coding based on an amount of memory which varies naturally depending
on the encoded text. The tail of that portion of the text which has
been encoded is the longest suffix that has occurred previously. The
frequencies of letters following these previous occurrences can be
used to estimate the probability distribution of the next letter.
Experimental results indicate that compression is often far better
than that obtained using independent-letter models, and sometimes also
significantly better than other non-independent techniques.

INTRODUCTION

Adaptive data compression techniques are useful when the statistics
of the data are not known in advance or are changing slowly. This

367
PRECEDING PAGE BLANK NOT FILMED,

https://ntrs.nasa.gov/search.jsp?R=19890012976 2020-03-20T02:28:50+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42828309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

paper surveys some well-known adaptive compression techniques and
presents two new methods which give improved compression in many
cases. All techniques presented are lossless (or noiseless) in that
an exact copy of the original data can be obtained by decompressing
the output of the compression algorithm. The data is assumed to be a
string of characters from an arbitrary alphabet, though many of the
ideas presented here could be applied to images or other
multidimensional data.

An adaptive compression technique can be viewed as consisting of
three parts:

1) A dictionary or database which defines the current state of
the model.

2) A coding r u l e w h i c h determines h o w t h e encoder transmits

the next part of the string and how the decoder
interprets the encoder's message.

3) An adaptation rule which determines how the encoder and
decoder update the model to reflect the previous
transmission.

If the encoder and decoder initialize their models identically, they
can maintain identical copies of the model throughout the transmission
by using the same adaptation rule.

RUN-LENGTH CODING

The simplest compression technique which fits this framework is
probably run-length coding. In this case, the dictionary consists of
the single character which forms the current run. The coding rule
encodes the number of times this character is repeated, followed by an
encoding of the' next character. For example, if the encoder's and
decoder's dictionaries are initialized to "att, the data string
ttccccabbbll could be transmitted as (0, c) (3 , a) (0, b) (2, b) . Since the
initial character in the dictionary is "att, (0,c) is interpreted as no

368

IIaIIs followed by at least one llcll. The llcll then replaces the Itag8 in
both dictionaries. (3,a) then indicates a run of 3 more .tlclls followed
by an llall. (0,b) indicates that this llall is followed immediately by a
I1b1l, and (2,b) can be interpreted to mean that the end of the string
has been reached after two more lrblls, since there would not ordinarily
be two consecutive runs of the same character.

LEMPELZIV CODING

A more interesting adaptive compression technique was developed by
Lempel and Ziv while investigating a complexity measure for
strings(4). In this case, the dictionary consists of that portion of
the data string which has already been transmitted. The encoder is
allowed to specify any substring of this string by transmitting an
index and a length. The encoder parses off the longest prefix of the
part of the data which has not yet been transmitted which matches a
substring of the previously transmitted data. This is complicated by
the fact that the encoder and decoder add letters to their dictionary
strings as this matching is being done, allowing the matching
substrings to overlap each other. The encoder then transmits the
index of the previous substring, the length of the match, and the
first character which caused the match to fail. If the data string is
11abcabbcabbcb81 and llabcll has already been transmitted the encoder I s

next transmission would be (1,2,b) indicating a match of 2 letters
starting at position 1, followed by a llbll. The encoder and decoder
would then concatenate I1abbtt to their dictionaries, giving *Iabcabbl1.
Using the overlap mentioned above, the encoder can now transmit the
rest of the string as (3,5,b). If the 5 was replaced by a larger
number, this would indicate further repeats of the pattern tlcabbll, so
this technique can be viewed in part as a generalization of run-length
coding, where runs are allowed to consist of repeated patterns rather
than just repeated single characters.

More recently, Ziv and Lempel have developed another adaptive
compression technique based on string matching(7) . To avoid the

369

complexity inherent in using both a pointer and a length to refer to
any previous substring, the dictionaries for this newer method consist
of only those substrings which have been parsed and transmitted by the
encoder. The prefix parsed by the decoder must match one of these
substrings. The decoder then transmits a code number for that
substring and the next character. (Variations of this technique avoid
the explicit transmission of the next character by methods such as
initializing the dictionaries to contain all single-character
strings (5) . The adaptation rule then adds the most recently
transmitted to the dictionaries. For example, if the first eight
characters of ltaabaaabaaabbtl have been transmitted, the dictionaries
consist of the strings tlall, ltabll, l1aav1, and ltaball, numbered 1, 2, 3 ,

and 4 , respectively. The encoder will then parse I1aa1l and transmit
llaabft as (3,b). IIaabIl is then added to the dictionaries as string 5.
The final @Ibl1 is then transmitted as (0,b) , since it does n o t match

any dictionary string. This technique works quite well in practice,
as is evidenced by popularity of the UNIX (TM) llcompressll command.
One slight drawback is that runs of repeated patterns can no longer be

I

I

I parsed all at once, even wher. the pattern is only the repeated
I
I

I occurrence of a single character.

I A GENERALIZATION OF RUN-LENGTH CODING

Another way to avoid transmitting both a pointer and a length is to
use an implicit pointer which can be computed by both the encoder and
decoder(l1. This can be done using a data structure known as the
Directed Acyclic Word Graph (DAWG), a data structure which stores
information about all substrings of a string in space proportional to
the length of the string and can be built in time proportional to this

algorithm always maintains a pointer to the longest suffix that has

The previous occurrence of the tail can be used as the implicit
pointer mentioned above. The encoder locates this previous occurrence

I length (linear space and time) (2,3). The linear-time construction

I occurred elsewhere in the string. This suffix is known as the I1taill1.

I (which is uniquely defined by the DAWG construction algorithm) and
I

370

predicts that the next character to be transmitted will be the same as
the character which follows this previous occurrence. If this

prediction is correct, the DAWG is then updated by adding this
character and another prediction is made based on the new tail. This
process continues until a prediction fails, at which point the encoder
transmits a count of the number of correct predictions and the actual
character for the first prediction which failed. For example, if the
data string is "aababaabaa" and the first five characters have already
been transmitted, then the tail is ''ab'' and the prediction is that the
sixth character is 'la1'. This is correct, so the "a" is concatenated

I to the string and the DAWG is updated. The tail is now llaball, which
predicts a "b". This is incorrect, so the encoder's transmission is
(1,a). The next predictions are "b", 'la1', and "btt, of which the first
two are correct, so the next transmission is (2,a). With this
technique any sufficiently long repeated pattern can be parsed in a
single transmission, so it will act like a generalization of run-
length coding in these cases.

1

I ARITHMETIC CODING WITH DAWG-BASED MODELS

Although experimental results with this last technique were
encouraging, it can be shown to be asymptotically nonoptimal for a
wide variety of data sources. Fortunately, the information available
from the DAWG can be used in combination with arithmetic coding(6),
resulting in a technique which is both asymptotically optimal and
gives good results in the cases where the above technique worked well.
Arithmetic coding, like Huffman coding, is based on using estimates of
the probabilities for the next character to encode that character. An
adaptive arithmetic encoder will revise these estimates as each letter
is transmitted. If the characters are statistically independent, a
table of frequencies for each character will provide these estimates.
In most cases, characters are strongly dependent, so a more
sophisticated model is needed. The most natural next step is to use a
Markov model of order m, where the probabilities of the next character
depend on the previous m characters. There are two problems with

371

this: the amount of space needed to store the probability estimates is
exponential in m, and the ideal m may change as the characteristics of
the data change. Both of these problems can be solved by using a DAWG
to store the frequency counts and using the previous occurrence of the
tail to provide the appropriate amount of context. Using just the
frequency counts from the DAWG gave good compression in many cases,
but worked very poorly when the data contained long runs. The reason
for this is that in a long run there will be relatively few previous
occurrences of the tail, so the next character is not predicted with
great certainty. When the probabilities were modified to take into
account the length of the tail, the performance improved greatly in
these cases.

EXPERIMENTAL RESULTS

F i 1 e type

Commands
C Program
Object Code
Load Module
Font File
This Report

Filesize ARITH LZ w GRL DAWGARITH
-------- e---- --- --- -------_-
347 253 200 184 142
17 29 1160 840 6 0 3 515

3890 2585 2096 2544 1759
49152 29.47 23544 27774 18168

16384 906 478 384 263
15945 9528 7810 10982 8809

Numbers are number of bytes before and after compression.
ARITH is the adaptive arithmetic coding algorithm from(6).
LZW is the UNIX (TM) ttcompresslt command(5).
GRL is the generalization of run-length coding from(l).
DAWGARITH is the last technique described above.

I

3 7 2

REFERENCES

Blumer, "A Generalization of Run-length Coding," Presented at
the IEEE International Symposium on Information Theory, June
1985, Brighton, England.

Blumer, Blumer, Ehrenfeucht, Haussler, Chen and Seiferas, "The
Smallest Automaton Recognizing the Subwords of a Text,"
Theoretical Computer Science, (40) 1985, pp. 31-55.

Blumer, Blumer, Haussler, McConnell and Ehrenfeucht,
I8Complete Inverted Files for Efficient Text Retrieval and
Analysis,Il JACM, July 1987, pp. 578-595.

Lempel, Abraham and Jacob Ziv, "On The Complexity of Finite
Sequences,Il IEEE Transactions on Information Theory, IT-22,
no. 1, Jan. 1976, pp. 75-81.

Welch, T.A., "A Technique for High-Performance Data
Compression,'1 Computer, 17, no. 6, June 1984, pp. 8-19.

Witten, Ian H., Radford M. Neal, and John G. Cleary,
IIArithmetic Coding for Data Compression,It Communications of
the ACM, 30, no. 6, June 1987, pp. 520-540.

Ziv, Jacob and Abraham Lempel, IICompression of Individual
Sequences via Variable-rate Coding,tn IEEE Transactions on
Information Theory, IT-24, no. 5, Sept. 1978, pp. 530-535.

3 7 3

I APPENDIX: THE DAWG CONSTRUCTION ALGORITHM

The DAWG is a Partial Deterministic Finite Automaton (P D F A) which
recognizes the set of all substrings of a word. If the word has
length n, the DAWG will have less than 2n nodes and 3n edges. It can
be built online in linear time using some auxiliary edges (one per
node) called suffix pointers. Each node corresponds to the class of
strings labeling the paths from the source to that node. The longest
such path is called primary. The destination of the suffix pointer of
a node is identified by removing the first letter from the label of
the shortest path from the source to that node. Thus the suffix
pointer of the sink node can be used to identify the longest suffix
which occurs somewhere else in the string (the l1tailV1).

The pseudo-C code below updates a DAWG for a word, w to a DAWG for
wa. It assumes that wa is stored in a global buffer, and that llindexll
is the position of the letter a in this buffer. Each node contains:

position: a buffer index pointing to the letter labeling edges to

depth : the length of the primary path from the source to that

edges : a linked list of outgoing edges, and
suffix : the suffix pointer for that node

that node

node

llsourcell and llcurrentsinkll are global variables. The following
auxiliary procedures are needed:

allocnode(position, depth) allocates and returns a pointer to a
new node

allocedge(node, edgelist) adds to lledgelistll an edge which

findedge (node, letter) returns a pointer to an outgoing edge
points to tlnodell

from llnodell labeled lllettertl, or NIL if no such
edge exists

374

unlist (edgelist, node) removes an edge pointing to 11node8g
from ltedgelistll

update(ch, index)

char ch ; /* ch is the character pointed to by index */
unsigned index; / * index points into the text buffer */ (

/ * make a new node, "newsinkll, and make an edge to
/ * this node from "currentsink", the old sink. */
newsink = allocnode(index, index+l) ;

edges(currentsink) = allocedge(newsink, edges(currentsink)) ;

suffixnode = source; / * the default value */

/ * follow chain of suffix pointers from currentsink */
for (currentnode = suffix(currentsink) ; currentnode ISNT NIL;

currentnode = suffix(currentnode)) (

/ * no edge with this character, so make a secondary edge to
llnewsinkll */ if ((Edge = findedge(currentnode, ch)) IS NIL)

edges(currentnode) =

allocedge(newsink, edges(currentnode)) t

/ * a secondary edge labelled Ilch'l, so split */
else if ((depth(currentn0de)tl) ISNT depth(node(Edge))) (

/ * Make Edge into a primary edge to a new node */
childnode = node (Edge) :

newchildnode = allocnode(index, depth(currentnode)+l) :

edges(currentnode) = unlist(edges(currentnode) , childnode
1 ; edges(currentnode) =

allocedge(newchildnode, edges(currentnode)) ;

/ * Give a copy of each of childnode's edges to newchildnode */
for (Edge = edges(childnode) ; Edge ISNT NIL; Edge = next(Edge

375

edges(newchildnode) =

allocedge(node(Edge) , edges(newchildnode)) ;

/ * Set the suffix pointer of newchildnode to that of childnode,

suffix(newchildnode) = suffix(childnode) ;

suffix(childnode) = newchildnode;

*/ / * and reset childnodels to point to newchildnode

/ * follow chain of suffix pointers, changing secondary edges
*/

for (currentnode = suffix(currentnode) ; currentnode I S N T N I L :

/ * which point to childnode to point to newchildnode

currentnode = suffix(currentnode)) {

if ((Edge = findedge(currentnode, ch)) I S N I L) break:
if ((depth (currentnode) +1) IS depth (node (Edge))) break;

edges(currentnode) = unlist(edges(currentnode) , node(Edge)) :

edges(currentnode) =

allocedge(newchildnode, edges(currentnode)) :

1
suffixnode = newchildnode;
break:

I
/ * otherwise, it's primary, so set suffixnode and break out */

else (

suffixnode = node(Edge) ;

break;
)

/ * set the suffix of newsink to be the node the above 18for11 loop found
*/ suffix(newsink) = suffixnode;
currentsink = newsink;

7

376

